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Ongoing neuronal oscillations are pivotal in brain functioning and are known to influence subjects' performance.
This modulation is usually studied on short time scales whilst multiple time scales are rarely considered. In our
studywe show that Long-Range Temporal Correlations (LRTCs) estimated from the amplitude of EEG oscillations
over a range of time-scales predict performance in a complex sensorimotor task, based on Brain-Computer
Interfacing (BCI). Our paradigm involved eighty subjects generating covert motor responses to dynamically
changing visual cues and thus controlling a computer program through the modulation of neuronal oscillations.
The neuronal dynamics were estimatedwithmultichannel EEG. Our results show that: (a) BCI task accuracymay
be predicted on the basis of LRTCs measured during the preceding training session, and (b) this result was not
due to signal-to-noise ratio of the ongoing neuronal oscillations. Our results provide direct empirical evidence
in addition to previous theoretical work suggesting that scale-free neuronal dynamics are important for optimal
brain functioning.

© 2016 Elsevier Inc. All rights reserved.
Introduction

Whilemany neuronal operations occur over specific and often limited
time scales, there is growing consensus that in order to develop a com-
plete picture of neuronal functioning, brain activity should be viewed si-
multaneously over a range of time scales (Beggs and Plenz, 2003; Chialvo,
2006; Barbieri and Shimono, 2012; Petermann et al., 2009; Shew et al.,
2011), an approach which is justified by recent work suggesting that
the brain operates at a “critical” state. The theory of criticality implies
that neuronal firing occurs in the form of avalanches (Bak et al., 1987)
consisting of bursts of simultaneous neuronal firing of variable size and
duration. The duration and the size of such avalanches at criticality follow
a power-law distribution (Beggs and Plenz, 2003), implying scale free be-
havior of neuronal activationwhich results from the system being poised
at a phase transition. In the case of neural systems, being poised close to a
edizin Berlin, Department of
.
n).
phase transition implies a balance between excitation and inhibition (Poil
et al., 2012). A number of theoretical and empirical studies indicate that
the functional implications of such a critical state includemaximizing dy-
namic range (Kinouchi and Copelli, 2006; Shew et al., 2009), information
transfer (Shew et al., 2011) and information capacity (Shew et al., 2011)
in brain functioning.

Criticality manifests itself not only in the presence of aperiodic
avalanches but also in slowly decaying autocorrelations in the
amplitude dynamics of neuronal oscillations (Poil et al., 2012;
Linkenkaer-Hansen et al., 2001; Zhigalov et al., 2015). Correlations
such as these are often referred to as Long-Range Temporal Correlations
(LRTCs) with the corresponding spectra of the amplitude envelopes
having 1/fα shape. Importantly, avalanche dynamics and LRTCs in
neuronal oscillations have been found to occur simultaneously (Poil
et al., 2012); this connection between LRTCs in the amplitude envelopes
of oscillations and critical dynamics, coupled with the fact that such
dynamics have been shown to be important for optimal neuronal
processing, suggests that measuring LRTCs of neuronal oscillations
(such as alpha/μ oscillations) could prove to be an important measure
of how close the networks under study are to the “theoretical optimum”
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at criticality. These considerations motivated our empirical study of the
relationship between LRTCs estimated from the amplitude envelopes of
oscillations and task performance. The physiological implications of
LRTCs were elucidated by (Poil et al., 2012) where it was shown that
LRTCs and critical dynamics arise simultaneously in networks in
which excitation and inhibition are balanced; such a balance causes
oscillations to arise spontaneously, but not to spiral out of control and
likewise not to be completely extinguished by inhibitory neurons—this
leads to optimal signal propagation through the network as shown by
(Shew et al., 2011; Kinouchi and Copelli, 2006; Shew et al., 2009).

As ameasure ofmulti-scale dynamics LRTCs are particularly attractive
for the study of the human brain. They can be assessedwith non-invasive
recordings such as EEG and MEG whereas assessment of avalanche dy-
namics non-invasively is problematic. Due to the continuous nature of
EEG/MEG, a separation of the time-series into avalanches and inactivity
is often not feasible (Blythe and Nikulin, 2015), whereas LRTCs may be
estimated directly from continuous time-series. Interesting is that
LRTCs have been observed not only in electrophysiological recordings
but also in behavioral measures such as reaction times (Kello et al.,
2010). Moreover, recent studies have shown that LRTCs in the amplitude
dynamics of neuronal oscillations correlate with LRTCs in motor tapping
(Smit et al., 2013) and with LRTCs in perceptual hit rate (Palva et al.,
2013). However, given the predictions from previous studies regarding
the relevance of power-law dynamics for brain functioning, themost im-
portant question remains open: whether LRTCs in neuronal oscillations
directly predict cognitive performance and whether this predictive
power extends to activities involving distributed brain areas.

In the present study we used Brain-Computer Interfacing (BCI) on
the basis ofmotor imagery (MI)which is known to effectivelymodulate
sensorimotor oscillations. MI is defined as mental simulation of an ac-
tion without the activation of effectors (Decety, 1996; Jeannerod,
1994; Jeannerod, 2001). In the context of BCI subjects perform specific
MI depending on the type of visual stimuli, requiring them to move
the cursor to a designated part of the screen. Thus performance in BCI
depends on complex neuronal activations including processing of visual
stimuli, selection and generation of the appropriate MI, and assessment
of the intended result according to the actual position of the cursor on
the screen. While BCI commands are conventionally generated on the
basis of activity lasting a few hundreds of milliseconds (Blankertz
et al., 2008), it remains open whether cortical states extending over
time-scales up to tens of seconds may be helpful in the prediction of
BCI performance. In order to address this question we use LRTCs,
which are consistentwith the presence of criticality in neuronal dynam-
ics, in order to predict subjects' performance in sensorimotor BCI.

Materials and methods

Data set

We study the Vital BCI data set (Blankertz et al., 2010), which com-
prises the EEG recordings of 80 subjects performing motor imagery
with the left hand, right hand or feet, consisting of the kinaesthetic imag-
ination of amovementwith the corresponding body part. All participants
(41 female, age 29.9±11.5 years; 4 left-handed) were BCI-novices and
had not been diagnosed at the time of the experiment with any neuro-
logical diseases. The experiment consisted of a training and a subsequent
feedback session which were recorded on the same day with a break of
about 10–15 min. The experimental procedures were approved by the
local ethics committee and all subjects gave informed consent.

Participants were seated in a comfortable chair with arms on arm-
rests. Electroencephalography (EEG) signals were recorded from the
scalp using an extended 10–20 electrode systemwith 119 Ag/AgCl elec-
trodes (EasyCap, Munich, Germany) and multi-channel amplifiers
(BrainAmp DC by Brain Products, Munich, Germany). The sampling
rate was set to 1000 Hz with a band-pass filter of 0.05 Hz to 200 Hz
and the reference was at nasion. The BCI experiment started with one
run of real movements and three training runs of imaginedmovements,
each containing 25 trials each of left hand, right hand, and right foot or
feet movements. Each trial lasted 8 s with a baseline period of 2 s, a 4 s
motor imagery period and a 2 s rest period. The motor task to perform
was indicated by visual cues, namely arrows pointing left, right or
down. After every 20 trials there was a break of 15 s. In total 225
motor imagery trials were recorded during the training session indicat-
ing left, right or foot imagery, respectively. Fig. 1 summarizes the exper-
imental protocol.

After training the two motor imagery classes yielding highest
classification accuracy were selected using cross-validation (Blankertz
et al., 2008). Out of 80 subjects analyzed, the optimal pair chosen was
left/right hand for 30 subjects, left hand/ft for 34 subjects and right
hand/ft for 16 subjects. Subsequently three online BCI feedback runs,
each of 100 trials, were performedwith these two classes. For somepar-
ticipants only one or two runs were recorded due to fatigue (N= 3) or
lack of time (N=7). During feedback, as in the training stage, each trial
beganwith a baseline period of 2 swhere a black fixation crosswas pre-
sented in the center of a grey screen. The arrow indicating the target
motor imagery class, i.e., the type of movement (left, right hand or
feet) the user was asked to imagine in this particular trial, appeared
for 1 s; then the cross turned purple and moved according to the classi-
fier output. After 4 s of cursor movement the cross froze at the final po-
sition and turned black again. Two seconds later the cross was reset to
the central position and the next trial began. The classification score
was indicated during the 15 s break between every block of 20 trials.

Preprocessing & BCI classification

The preprocessing steps consist of spectral filtering, extraction of
informative time segments and artifact removal. For each of the 80 sub-
jects we first downsampled the signal to 100 Hz and selected 62 elec-
trodes densely covering the sensorimotor cortices. Noisy electrodes
were then removed using the method proposed in (Blankertz et al.,
2008). The EEG was filtered in a restricted frequency range with a 5th
order Butterworth filter and cut into epochs. In order to reduce the im-
pact of EEG artifacts on BCI training, we removed outlier trials from the
training data (Blankertz et al., 2008). Then we selected subject-specific
frequency ranges and time segments by cross-validation on the training
data (Blankertz et al., 2008).

To reduce the dimensionality of the datawe spatially filtered the data
using Common Spatial Patterns (CSP) (Blankertz et al., 2008; Ramoser
et al., 1998). This method is a popular preprocessing approach because
it improves the signal to noise ratio by enhancing the amplitude changes
related to event-related synchronization and desynchronization (ERS/
ERD) (Pfurtscheller and Lopes da Silva, 1999). These effects are induced
by motor imagery and reflect sensorimotor brain activity resulting in an
amplitude decrease (ERD) or increase (ERS) of oscillatory components,
typically in the alpha or beta frequency range. Applied to band passed
signals CSPfinds spatialfilters thatmaximize the bandpower differences
between motor imagery classes. Technically, CSP solves the generalized
eigenvalue problem

Σ1wj ¼ λ jΣ2wj ð1Þ

Σ1 and Σ2 are the average covariance matrices estimated for the two
motor imagery classes.

In this paper we compute two types of CSP filters: the first type uses
subject-specific frequency ranges and time-segments for computation
of the optimal subject classifier and the second type consists of 6 CSP fil-
ters per subject and per frequency. The second type is frequency specific
with fixed bin width and time-segments. The reason for this distinction
is that for calculating performance we wished to compute the optimal
parameters, used for the first type, whereas for comparibility of results
between subjects and clear physiological interpretability, the second



2 Note that negative values correspond to troughs in the power-spectrum. In practice,
however, we find that significant troughs do not occur.

3 An instance of a process withH∈(0,1) is fractional Gaussian noise, which is defined as
the increments of fractional Brownianmotion (Mandelbrot and Van Ness, 1968; Eke et al.,
2000, 2002).
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Fig. 1. Overview of the experimental protocol.
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type is more suitable. From now on unless specified all discussion re-
lates to the second type of CSP filter. See appendix for details.

CSP filters were sorted according to their ability to separate motor
imagery conditions. Throughout this paper we refer to the most discrim-
inative CSP component as 1st CSP, to the second most discriminative CSP
component as 2nd CSP and so on.

Fig. 2 displays typical topographies of the two most discriminative
CSP components which define the features onwhich the final classifica-
tion was performed. The middle panel of Fig. 2 also displays power-
spectral densities of CSP components with typical peaks in the alpha
(~10 Hz) and beta (~20 Hz) frequency ranges. The lower panel of the
figure displays time-resolved event-related desynchronization (ERD)
of the amplitude of alpha oscillationsduring left/right handmotor imag-
ery: note stronger attenuation of the oscillations in the left and right
hemispheres for the imagery of right and left handmovements, respec-
tively. These transient ERDs were the basis for the BCI classification
(Blankertz et al., 2008; Lemm et al., 2011).

After applying the CSP filtersW=[w1…wd] ∈ RD×d to the data, each
trial i was brought into the form of a feature vector:

f i ¼ log diag WΤX ið Þ X ið Þ
� �Τ

W
� �� �

ð2Þ

The logarithmic transformationwas applied inorder to render the fea-
tures approximately normally distributed (Blankertz et al., 2008). diag[⋅]
denotes the operator extracting the diagonal of a matrix. In the final
step of BCI training a classifier y=h(x) separating the twomotor imagery
classes was computed and applied to the first type of CSP filter. We used
Linear Discriminant Analysis (LDA), which classifies trials x according to
the decision criterion:

h xð Þ ¼ sign vΤxþ b
� 	

with v ¼ Σ−1
f μ2−μ1ð Þ and b ¼ −

1
2
vΤ μ1 þ μ2ð Þ ð3Þ

μ1 and μ2 denote themean feature vectors of class 1 and 2, respectively,
Σf stands for the covariance matrix of the features and sign(x) is a func-
tion taking the values +1 for x≥0 and −1 otherwise.

For each of the 80 subjects we computed the out-of-sample classifi-
cation accuracy:

acc ¼ number of correctly classified trials
total number of trials

ð4Þ

Based on the first 20 trials of the feedback we used the bias adaptation of
(Vidaurre et al., 2011). More methodological details are included in the
appendix.
Performance predictors

We use signal-to-noise ratio and Hurst exponent estimation, both
computed on the training data, to predict the performance of the sub-
jects in the separate online feedback session. Both predictors are com-
puted on the six most discriminative CSP components computed using
fixed frequency ranges and fixed time-segments.

Signal-to-noise ratio estimation
In order to compute the signal-to-noise ratio (SNR) in a frequency

range [f−Δ, f+Δ] we spatially filter the data by applying a CSP filter
using fixed frequency ranges and time-segments and compute the
power spectrum P½ f � with Welch's method (Welch, 1967) using 2 s
windows. We considered narrow frequency bins of width 5 Hz, with
lower limit f−Δ=1,2,… ,40 Hz and Δ= 2.5 Hz. After discarding the
15 s pause periods and outlier windows (see description in appendix)
we compute SNR as the degree to which a spectral peak at f stands
above the 1/fα background neural noise, i.e.,

SNR fð Þ ¼ max log P f 0

 �� 	

−q f 0
� 	j f 0∈ f−Δ; f þ Δ½ ��  ð5Þ

q(⋅) is the linear polynomialwhich intercepts logðP½��Þat f−Δ and f+Δ.
Large values correspond to pronounced peaks in the spectrumat a given
frequency f (Fig. 2middle panel), while for small SNR there are no peaks
in the spectrum.2

Hurst exponent and their estimation with detrended fluctuation analysis
The Hurst exponent H, quantifies the fluctuations in a stochastic

process. For a stationary process, H may be defined formally via the
auto-covariance function of the process X(t):

E X tð ÞX t þ sð Þð Þ−E X tð Þð Þ2 � 1
s2−2H ; ð6Þ

This relation holds for 1NHN 1
2, in which case the process is said to be

long-range temporally correlated (LRTC).3 Note that there are several
Hurst exponents associated with a process X(t). These include the
Hurst exponent of X(t) but also the Hurst exponent of amplitude enve-
lope time-series obtained from X(t) by narrowband filtering in some
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frequency range. It is exactly these narrowband exponents which we
study in the following: we obtain one exponent per frequency range,
using the same frequency ranges as for SNR estimation.

Fig. 3 displays amplitude dynamics of sensorimotor μ oscillations from
a typical CSP component over a range of time scales. The upper panel dis-
plays several minutes of the training run, on the basis of whichHwas cal-
culated. One observes “bursts” of alpha oscillations lasting for a few
minutes, although closer inspection at a higher temporal resolution re-
veals that in fact within these larger bursts, transient bursts occur inter-
leaved with periods of relative quiescence—behavior which continues
towards increasingly higher temporal resolutions (lower panel).

In order to quantify these fluctuations we estimated the Hurst
exponent of the amplitude envelopes of the narrowband time-series es-
timatedwith theHilbert transform (MATLAB implementation).We per-
formed estimation on the CSP filtered data computed using fixed
frequency ranges and time-segments with Detrended Fluctuation Anal-
ysis (DFA) (Peng et al., 1994), usingwindow lengths spanning a range of
time-scales. The advantage of DFA over covariance analysis or analysis
of the power-spectrum are its robustness to trends contaminating the
empirical time-series and its desirable convergence properties (Bardet
and Kammoun, 2008; Taqqu et al., 1995). Robustness to trends implies
Fig. 2. An example of EEG patterns relating to the task performance: the top panels display tw
during training epochs, with blue and green lines indicating left and right hand imagery, resp
For left hand motor imagery (left column) the CSP pattern shows an activation over the ri
decrease in the alpha and beta band. The event related desynchronization response of the a
motor imagery (right column, green lines) the responses are analogous.
that if the data is contaminated by shifts in voltage then these are
ignored by the DFA estimation. The steps involved in DFA (Peng et al.,
1994) are as follows. First one forms the aggregate sum of the empirical
time-series Y(t): in our case Y(t) is the amplitude envelope of the nar-
rowband filtered EEG obtained with the Hilbert transform.

X tð Þ ¼ ∑
t

i¼1
Y ið Þ ð7Þ

Analysis of the fluctuations in X(t) is then performed by measuring
the variance of X(t) in windows of varying size n after linear detrending,
i.e., X(t) is split into windows of length n, Xn

(1) ,… ,Xn
(j) ,… ,Xn

(⌊N/n⌋) and
the average variance after subtracting the linear fit to the data Xn

(j) in
these windows is formed let P(Xn(j)) be the least-squares estimated line-
ar fit of Xn(j), then the DFA coefficients or detrended variances are:

F2DFA nð Þ ¼ 1
N=nb c � n

X
j

X jð Þ
n −P X jð Þ

n

� �� �Τ
X jð Þ
n −P X jð Þ

n

� �� �

¼:
1

N=nb c � n
X
j

f 2DFA n; jð Þ
ð8Þ
o sensorimotor CSP topographies, the middle panels their corresponding power-spectra
ectively, and the bottom row displays event related desynchronization (ERD) responses.
ght sensorimotor cortex and the power spectrum (blue line) displays a strong power
lpha band filtered signal depicts the time course of the power decrease. For right hand



Fig. 3. The scale free nature of oscillation amplitudes. The time-series are amplitude envelopes from a typical CSP component, where single trials are marked in red at the smallest time
scale. On the time scales of minutes bursts of neuronal activity are clearly distinguishable (top row). Within these bursts finer bursts lasting less than a minute can be identified (second
row). Furthermorewithin these finer bursts one can observe bursts of activity on the time scale of single trials (bottom row). These scale-free dynamics of neural activity indicate that the
signal contains information on multiple time-scales.
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Crucially, in the limit of data the slope of log(FDFA2 (n)) against log(n),

the DFA estimate of the Hurst exponent Ĥ, converges to H. Thus notice

that there is a distinction between the estimate ĤusingDFA andH itself;
in the limit of data these converge, however, for finite data, there will
always be a difference which depends on the amount of data. For sim-
plicity and due to the absence of any ambiguity in the interpretation,

we use simply H instead of Ĥ throughout the paper. In Appendix D.1
we show how H can be affected by decimation and filtering of the
EEG.We applied an outlier detection procedure prior to DFA estimation.
Windows containing outliers and time-scales with insufficient data
after outlier removal were not used for estimation (see Appendix). In
Appendix D.2 linearity of the least-squares fit in DFA is assessed. In
Appendix D.3 we provide information on the effect of the window
length on the estimation of H.

Results

BCI task performance and classification

The mean accuracy computed was acc=72±2% (standard
deviation estimated from 500 bootstrap iterations) (median acc=
75±3%). In particular, we find that 59 of the 80 subjects performed
significantly above chance according to the threshold (accN56%) deter-
mined by a binomial test at the 5% confidence threshold. Notice, howev-
er, thatwe include all 80 subjects in the subsequent analysis becausewe
aim at predicting a wide range of individual performances.

The spatial distribution of the topographies corresponds to neuronal
generators located in the sensorimotor cortices; a grand-average of the
individual inverse solutions (weighted minimum norm (Ioannides
et al., 1990)) of CSP components confirmed the presence of maxima in
the left and right sensorimotor cortices for the right and left hand
motor imagery, respectively, while in amore symmetricmedial location
for foot motor imagery (see Fig. 4). The median ranges of the lower and
higher frequencies were 9.5 Hz and 13.5 Hz chosen using the subject-
specific frequency range selection, indicating that alpha oscillations
were most relevant for classification, which was further confirmed by
the calculation of biserial-R2 values (Fig. 5).

Signal-to-noise ratio

SNR was most pronounced in the alpha frequency range, especially
for the first, most discriminative CSP component. For all frequency
ranges, we report in Fig. 6 the grand-average values for the first and
last CSP component out of the six CSP components as well as the
average value over all six CSP components (denoted ‘Average CSP’).

Hurst exponent values and statistics

In our subsequent analysis we estimate Hurst exponents on the am-
plitude envelope time-series of oscillations extracted using CSP (six
components) during the training session. Although transient modula-
tions of oscillations occur during motor imagery, weconsider ongoing
EEG activity over long time periods of about 30–50 s which allows the
estimation of amplitude variations over a range of time-scales. Note
that a number of studies have also analysed LRTCduring task conditions.
It is also important to note that Hurst exponents were estimated in the
training session,whilewe estimated BCI performance in the subsequent
feedback phase of the experiment.



Fig. 4.Grand-averageweightedminimumnorm inverse solutions for themost discriminative CSP patterns from each class: left, foot, and right handmotor imagery. The results confirm the
sensorimotor origin of the most discriminative CSP components considered.
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Based on the criterion that a time-scale should display at least 10
epochs of outlier free data (see Appendix), for 99% of the Hurst expo-
nents estimated on the first CSP filter, the largest window size lay be-
tween 29 and 55 s. Fig. 7 displays typical DFA plots for different CSP
components for a representative subject in the alpha/μ frequency
range. Note a highly accurate linear relationship between the length of
thewindow n (logarithmically scaled on the x-axis) and thefluctuations
measured by the logarithm of DFA coefficients log(FDFA(n)) (see Eq. (8)
for the definition of FDFA), thus indicating the presence of LRTC extend-
ing for at least 50 s in the amplitude dynamics of sensorimotor alpha os-
cillations. We found that the goodness of fit of this log-log plot (based
on R2) across all subjects was on average N91% and in the alpha/μ fre-
quency range N99%. To avoid confusionwith other goodness-of-fitmea-
sures used in this paper, we refer to the goodness of the linear fit of the
log-DFA coefficients with the log-scale as DFA-R2. In amanner similar to
the SNR analysis, we calculated the dependency of Hurst exponents on
the frequency of neuronal activity. Fig. 8 shows that the largest Hurst ex-
ponents are detected for alpha and beta oscillations, especially for the
most discriminative CSP component. All six CSP components displayed
significant LRTC behavior (HN0.5) for all frequencies (p≪0.001; two-
sided Wilcoxon sign rank test on exponent values), see Fig. 8.

Dependency between signal-to-noise ratio and Hurst exponent values

We computed correlations between signal-to-noise ratio and Hurst
exponents (SNR and H). As already noted by (Blythe et al., 2014), SNR
confounds the measurement of Hurst exponents—a higher SNR results
Fig. 5. Sorting frequency–specific Hurst exponents according to individual BCI performance. Th
component. Subject-specific components are sorted according to the individual BCI performanc
CSP component predicts class information.
in the measurement of larger Hurst exponents than in the presence of
higher noise levels. We find indeed that H and SNR are positively
correlated (see Fig. 9), with the most pronounced correlations in the
alpha range (r=0.56, p≪0.001; Student t approximation to the distri-
bution of Spearman's correlation coefficient). After a Bonferroni correc-
tion (Bland and Altman, 1995) controlling for multiple testing the
correlation is significant (pb0.001, number of tests = 40 (number of
frequency bands)).

Sensorimotor cortex Hurst exponent values predict task performance

We calculated Spearman correlations between Hurst exponents, H,
and BCI task performance, acc. This correlation analysis was performed
for all frequencies between 1–40 Hz in analogy to the analysis
performed for H and SNR statistics. For comparison wemeasured corre-
lations between SNR and acc.

Traces of Hurst exponent values over frequencies for the first CSP
component are plotted in Fig. 5 as an image, when sorted in an ascend-
ing order with respect to BCI performance, acc. The image clearly shows
that higher exponents correspond to improved performance, which is
especially visible for oscillations in the alpha frequency range. Less pro-
nounced but still visible is the peak in the beta frequency range. Inter-
estingly, these peaks resemble the location of the peaks in the biserial-
R2 distribution (Fig. 5) showing which frequencies were most discrimi-
native for classification (see Appendix C.2 for the definition of biserial-
R2 values—these should be distinguished from the DFA-R2 values). The
left panel of Fig. 10 displays a scatter-plot between Hurst exponents
e left panel displays Hurst exponents H (in colour) for each frequency bin of the first CSP
e (y-axis). The right panel depicts the average biserial-R2 explaining how power of the first



Fig. 6. Grand-average signal-to-noise ratios for CSP components for each frequency. Left: The most discriminative CSP component; middle: the sixth CSP component; right: the average
across the sixmost discriminative CSP components. The results show that signal-to-noise ratio is highest in the μ/alpha range≈10Hz. For themost discriminative CSP component the SNR
value is close to 1 whereas for the last CSP component it is significantly smaller and not frequency specific.
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and BCI performance, acc, for the first CSP component (r=0.56,
pb0.001; frequency band 10–15 Hz). The right panel of Fig. 10 displays
a corresponding scatter-plot between SNR and acc (r=0.52, pb0.001).
When training a linear regression model on N−1 subjects using their
H (or SNR) and acc values and using it to predict the performance of a
new subject (leave-one-subject-out approach), we found that H and
SNR explain 28% and 27% of the variance of acc, respectively. Even
when Hwas averaged across frequencies (for the first CSP component),
we found it remains predictive of acc (r=0.45, pb0.001). Finally we
found these results to be robust even to removing subjects who did
not perform significantly above the chance level, 56% (r=0.35,
pb0.01; frequency band 10–15 Hz). We also tested whether the corre-
lation between H and acc can be explained in a binary way, i.e. depend-
ing on whether a subject performed above chance or not. For that we
constructed a binary variable by dividing subjects into two groups on
the basis of their performance: acc≤56% and accN56%. The partial corre-
lation between H and acc remains significant when regressing out this
binary variable (r=0.30, pb0.01; frequency band 10–15 Hz). Thus the
correlation between exponents and performance cannot be explained
simply on the basis ofwhether a subject performed above chance or not.

A comprehensive overview of the correlation between H and acc by
frequency bin is displayed in the first column of Fig. 11. We found that
the peak in correlations in themu/alpha range is particularly pronounced
for the first and average CSP components, where the correlations are sig-
nificant after a Bonferroni correction.We found that the peak is negligible
for the last (i.e. sixth most discriminative) CSP component.

The correlation between SNR and acc by frequency is displayed in
the second column of Fig. 11. The figure demonstrates that SNR values
are also predictive of BCI performance in the alpha frequency range.
Fig. 7. SampleDFA log-log plots for estimation of the Hurst exponent on six CSP components of a
the corresponding power-spectra.
Likewise, we found that there is a significant correlation between aver-
age SNR over frequencies and acc (r=0.32 ,pb0.01); however the
correlation is much weaker than the correlation between H and acc.

Hurst exponent predictions cannot be explained in terms of signal-to-noise
ratio

Since we observed that SNR and Hurst exponents are cross-
correlated, and that SNR also predicts performance, we used partial
correlations to determine whether the predictive power of H is inde-
pendent of the predictive power of SNR values; see the appendix for a
review of partial correlation analysis.

We found that even after controlling for SNR, the predictive
power of Hurst exponents of BCI performance is significant. For the
average H over frequencies on the first CSP component we found
that after controlling for the effect of the average SNR, a significant
correlation remains (r=0.42, pb0.001). The same analysis performed
for SNR, controlling for H yields a much weaker correlation (r=0.24,
pb0.05).

Partial correlations for individual frequency bands are displayed in
the third and fourth columns of Fig. 11. In order to rigorously check
whether the correlations between frequency-wise H values and acc do
not depend on SNR, we controlled not only for SNR and H values in the
same frequency range (for each bin in the range 1–40 Hz) but also for
separate frequencies. To do this for each pair of frequency bins (i, j) for
i , j∈{1 Hz, 2 Hz, …, 40 Hz}, we calculated a partial correlation

ri; j ¼ corr Hi; accjSNRj
� 	 ð9Þ
representative subject. The angle of each line is a Hurst exponent. The right panel displays



Fig. 8. Grand-average Hurst exponents for the first CSP component at each frequency (left), the last CSP component (middle) and the average across CSP components (right). The results
show that Hurst exponents are highest in the μ/alpha range, but are also elevated in the beta range. For the last CSP component the H values do not show discernible peaks in these
frequency ranges.
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The most stringent control for correlation between Hi and acc is
given by ri⁎=minj{ri ,j}. ri⁎ is the lowest partial correlation which results
from controlling for the potentially confounding effect of SNR in all
frequencies.

Having performed this analysis for the first CSP filter we found that
the largest worst case partial correlation for individual frequency
bands is nevertheless highly significant (r⁎=0.37, pb0.001). After a
Bonferroni correction controlling for multiple testing this result is still
significant (p=0.005, n=40, number of frequency bands). An analo-
gous result also holds for the average H across all CSP components. On
the other hand, after controlling forH, we found that aftermultiple test-
ing correction SNR over frequencies is not significantly predictive of per-
formance for any of the CSP components considered (pN0.05).

Tomake sure that the correlations are also not due to a binary effect
we performed a similar analysis on the subjects who performed signif-
icantly above the chance level (accN56%). Fig. 12 displays the partial
correlation between BCI classification accuracy and H or signal-to-
noise ratio with the effects of SNR or H respectively being removed
where SNR and H respectively were estimated in the same frequency
bins. As before after controlling for SNR, the Hurst exponent is signifi-
cantly (after multiple testing correction, pb0.05) predictive of the per-
formance; this is not the case for SNR. This result not only holds for
the average CSP, but also for the first CSP component.
Discussion

Usingmultichannel EEG, we showed that the performance in a com-
plex sensorimotor task can be predicted on the basis of the neuronal dy-
namics of neuronal oscillations. This prediction is frequency specific and
involves oscillations generated in the Rolandic brain area. Below we
discuss the robustness of the results obtained and provide a tentative
Fig. 9. Correlations between signal-to-noise ratio and Hurst exponents for the first CSP compon
components (right). In each case the black line denotes the p=0.05 threshold; the green line, p
Bonferroni corrected p=0.05 threshold for n=40. The results show thatHurst exponents and si
For the last CSP component significant correlation is lacking for all frequencies.
neurophysiological explanation for this predictive power, emphasizing
the role of power-law dynamics in neuronal information processing.
Task performance and classifiers

We trained a classifier for each of 80 subjects, obtaining a median
accuracy of 75%, which corresponds closely to the performance of state-
of-the-art classification procedures for naïve BCI subjects (Blankertz
et al., 2010). The classifiers were based on well-tested standards for sen-
sorimotor BCI (Blankertz et al., 2007) and included optimization of spatial
filters, frequency ranges and feature selection. CSP patterns could be
modeled with sources located in the sensorimotor areas of the cortex,
which is in agreement with previous BCI studies (Haufe et al., 2010;
Haufe et al., 2011) and demonstrated a somatotopy relating to hand
and foot activations. While LRTCs were systematically calculated for all
frequency ranges, we found that Hurst exponents in the alpha-
frequency range have the highest predictive power, with good perfor-
mance also achieved in the beta range; this finding relates to the central
role of μ oscillations in sensorimotor processing (Smit et al., 2013;
Pfurtscheller and Berghold, 1989; Nikulin et al., 2008; Jones et al.,
2010). Note that, although for the evaluation of LRTCs we used data
from the training condition, requiring subjects to performmotor imagery,
the temporal scales of DFA analysis far exceeded (Fig. 7) the time scale
over which the transient modulation of oscillations (4 s) due to the per-
formance of motor-imagery occurred, with DFA windows extending up
to 55 s. Such estimation of LRTCs during task conditions has also beenper-
formed in other studies (Linkenkaer-Hansen et al., 2004; Hohlefeld et al.,
2013) leading to the insight that transient modulation of neuronal dy-
namics does not abolish LRTCs. In fact, task-related performance may
even allow subjects to remain more vigilant, preventing them from
drowsiness, which is a risk factor during purely resting-state conditions.
ent at each frequency (left), the last CSP component (middle) and the average across CSP
=0.01; the dotted purple line, the FDR corrected p=0.05 threshold; and the red line, the
gnal-to-noise ratio are significantly correlated in the alpha range but not outside this range.



Fig. 10. Prediction of BCI classification accuracy. The figure displays scatter plots of Hurst
exponents, H, BCI classification accuracy acc and signal-to-noise ratio, SNR. The H and
SNR values were estimated in the 10–15 Hz range on the first (most discriminative) CSP
component, whereas acc was computed on multiple CSP components and a subject-
specific frequency band. The results show that both H and SNR are highly correlated
with classification accuracy.
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Fig. 12. Partial correlation between BCI classification accuracy and Hurst exponents or
signal-to-noise ratio with the effects of SNR or H respectively being removed for subjects
who performed significantly above the chance level. In each case the black line denotes
the p=0.05 threshold; the green line, p=0.01; the dotted purple line, the FDR
corrected p=0.05 threshold; and the red line, the Bonferroni corrected p=0.05
threshold for n=40.
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Task prediction on the basis of SNR and LRTCs

We showed that the predictive power of Hurst exponents cannot be
explained by the confounding effect of SNR. (Blythe et al., 2014) showed
that estimation of Hurst exponents may be biased by SNR: smaller SNR
leads to an attenuation of exponents, moving estimates closer to the
0.5 value characteristic of white noise. Thus it might be argued that
Hurst exponents are predictive of the BCI performance only due to
Fig. 11. Prediction of BCI classification accuracy by Hurst exponents and signal-to-noise ratio. Ba
well as a partial correlationwith the effects ofH or SNR having been removed.Middle row—as p
average of CSP components. In each case the black line denotes the p=0.05 threshold; the gre
line, the Bonferroni corrected p=0.05 threshold for n=40.
their correlation with SNR, which has been shown to predict BCI perfor-
mance (Blankertz et al., 2010; Suk et al., 2014). As an estimator for SNR
we used the amplitude of the spectral peaks relative to the 1/fα noise
floor. Importantly, however, such a prediction does not carry neuro-
physiological information since it may be reduced to howwell neuronal
oscillations may be extracted from the background neuronal noise.
Fig. 11 in fact shows that when SNR from all CSP components is taken
into account (third column, third row), the task accuracy can still be
predicted from Hurst exponents, while when the Hurst exponents
sed on the first CSP component, first row displays the correlation of accwith H and SNR as
er thefirst row but for the last CSP component. Bottom row—as per the first rowbut for the
en line, p=0.01; the dotted purple line, the FDR corrected p=0.05 threshold; and the red



300 W. Samek et al. / NeuroImage 141 (2016) 291–303
from all CSP components are taken into account, no prediction could be
obtained between SNR and task accuracy (fourth column, third row).
This provides strong evidence for task-performance prediction not
being explainable in terms of SNR. This furthermore implies that the
predictive power gained by the Hurst exponents cannot be simply due
to the signal quality on the scalp and that the exponents rather reflect
neurophysiological aspects of dynamic neuronal activity which predict
performance.

Neuronal oscillations predict task performance

A number of previous studies showed that the performance in differ-
ent tasks may relate to the amplitude (Schubert et al., 2009; Haegens
et al., 2012) or phase (Busch and VanRullen, 2010) of ongoing oscilla-
tions immediately preceding the stimulus requiring behavioral
response. The usual interpretation of such dependencies is based on
changes of cortical excitability or in general on a neuronal propensity
to respond given a neuronal state directly preceding the stimulus. In
the present study, however, we were interested instead in how the
task performance can be predicted from the neuronal dynamics record-
ed in a separate experimental session, thus relating performance with
subject-specific persistent features of neuronal activation. BCI systems,
which use sensorimotor oscillations, require the monitoring of visual
stimuli and continuous generation of covert motor activity depending
on the position of the cursor on the screen. An advantage of the BCI
paradigm is that it allows for the study of motor behavior without the
confounding factors associated with overt movements, such as proprio-
ceptive feedback, which can strongly modulate ongoing neuronal
oscillations (Nikulin et al., 2008). Successful BCI performance is thus
primarily based on the ability of subjects to quickly generate the appro-
priate modulation of ongoing oscillations in response to the visual cues.
Thus, in the case of BCI, performance is directly defined by very specific
neuronal events, which, in our case, are event-related desynchronization
(ERD) of the sensorimotor rhythms (Blankertz et al., 2007; Pfurtscheller
et al., 2000). This in turn allows us to be specific in interpreting the fac-
tors defining performance. ERD of sensorimotor oscillations has long
been associated with the active participation of a given cortical area in
the task (Pfurtscheller and Lopes da Silva, 1999), while an increase in
the amplitude of oscillations (event-related synchronization) is thought
to correspond to active inhibition (Haegens et al., 2012; Palva and Palva,
2007). Preventing a cursor moving in one direction and immediately
moving it in another direction requires swift switching between ERD
in one somatotopic cortical location to the subsequent generation of an
ERD response in another location. In neurophysiological terms this
translates to rapidly alternating states of cortical excitation and inhibi-
tion leading to a selective modulation of neuronal activity. Such coordi-
nation between excitation and inhibition is likely to benefit from the
underlying neuronal networks moving fluently from one state to the
other. Interestingly, it has recently been shown in a computational
study (Poil et al., 2012) that stronger LRTCs in neuronal oscillations
may relate to a balance between excitation and inhibition. Thus stronger
LRTCsmay represent a suitable background condition for the rapidmod-
ulation of neuronal oscillations. This in turn provides a possible explana-
tion for the positive correlation between LRTCs and BCI performance
which requires rapid switching between cortical states.

Implications for BCI practioners

For BCI researchers the question arises how to make use of the
results presented in this paper. Since Hurst exponent estimates were
shown to correlatewith performance, one possible practical application
would be to use these predictors for subject pre-screening. This would
save time as poorly performing subjectswould be identified and exclud-
ed from the experiment and a different experimental paradigm could be
used in their case. Another possible field of application of the presented
results is the improvement of BCI signal processing methods. For
instance, one might apply Hurst exponent estimation for selecting the
number of spatial filters by only selecting filters with H values larger
than a predefined threshold. Alternatively the CSP algorithm could be
regularized towards sources exhibiting large H values, similarly to the
approach in (Samek et al., 2012) where CSP was regularized towards
stationarity. Hurst exponents could also be used for selecting the most
informative frequency band for each subject. In addition to these techni-
cal applications, Hurst exponents combined with neurofeedback
techniques could be used to improve subjects' capability to perform
BCI. More precisely, on the basis of our findings we conjecture that if
subjects were to learn how to optimize their neuronal states leading
to increased Hurst exponents, then they could potentially improve in
control of a BCI.

Effect size

The strength of the correlation reflects the effect size and in our
study even after themost stringent control for the possible confounding
effect of SNR, the strength of the correlation between H and the task
performance was at least 0.37. The interpretation of the effect size
may vary from discipline to discipline, but it is not uncommon to refer
to the correlation of 0.3 or higher as moderate (Cohen, 1988). Given
the non-invasive character of the recordings, the correlation values
obtained in the present study are not insubstantial. Clearly temporal dy-
namics are not the only factor determining task performance; however,
the obtained correlation establishes a link between LRTCs in neuronal
oscillations and task performance.

Are dynamics genuinely scale-free?

The time-scales studied in this paper ranged between 4 s and 1 min.
On this basis alone we may not be able to claim that the dynamics
studied are scale-free. Due to the nature of the task, we were unable
to use longer time-scales in all subjects, because of the occasional out-
liers in EEG activity induced by task performance. However, in
Appendix D.3, we in addition estimated Hurst exponents in the range
0.5–81 s (in subjects where this data was available due to absence of
outliers) and found that they were strongly correlated (r=0.90) with
the exponents estimated in the 4–54 s range. The range 0.5–81 s covers
two orders of magnitude reflecting a similar range of magnitudes re-
ported for alpha oscillations elsewhere in the literature (for example
Ton and Daffertshofer, 2016). However, as we show in Appendix D.1,
using very short windowsmay introduce a small positive bias in the es-
timation of Hurst exponents and that is whywe rather considered time
windows starting from 4 s. Moreover, it is known from studies at rest
that alpha/μ oscillations are scale-free over at least two orders of magni-
tude (Smit et al., 2013; Palva et al., 2013). Discussion of the limitations of
finite-size data for the estimation of Hurst exponents can also be found
in other studies (Linkenkaer-Hansen et al., 2007; Tagliazucchi et al.,
2013). While acknowledging these limitations, the authors in the
abovementioned studies argue that shorter time segments may allow
the extrapolation of neuronal dynamics over longer scales. While un-
equivocal demonstration of scale-free dynamics requires very long
time series, DFA is known to reliably estimate scaling exponents when
using even short data segments (Tagliazucchi et al., 2013).

Moreover in Appendix D.2 we analyse whether the scaling ana-
lyzed with DFA is scale-free or non-linear over the range of magni-
tudes studied. We find that there is a small systematic departure
from genuine monofractal scaling. However the increase in DFA-
R2 is b0.005, thus not yielding a large increase in explanatory
power.

Task performance and power-law dynamics

Although the presence of LRTCs does not constitute conclusive
proof of the existence of criticality in a neural system, it is
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nonetheless consistent with this hypothesis (Poil et al., 2012;
Linkenkaer-Hansen et al., 2001). The main finding of our study is
that LRTCs are advantageous for brain function, as has been
conjectured for critical dynamics. Previous research has revealed
that Hurst exponents in the amplitude dynamics of ongoing oscilla-
tions correlate with Hurst exponents in motor tapping (Smit et al.,
2013) and with Hurst exponents of subliminal-stimulus detection
(Palva et al., 2013). These studies, however, did not provide direct
evidence that the presence of LRTCs predicts task performance as
shown in our study. Indeed, it is exactly performance itself not sim-
ple variability of behavioural measures which is most important for
understanding the functional significance of LRTCs. In general our
work contributes to growing evidence that power-law neuronal dy-
namics may be beneficial for brain functioning as shown previously
for dynamic stimulus range (Kinouchi and Copelli, 2006; Shew
et al., 2009), information capacity (Shew et al., 2011) and informa-
tion transmission (Shew et al., 2011). The fact that we could predict
task performance from LRTCs determined during the training ses-
sion indicates that power-law dynamics are subject-specific. This
is in line with findings that LRTCs are genetically defined
(Linkenkaer-Hansen et al., 2007) and have significant test-retest re-
liability (Nikulin and Brismar, 2004) showing stability of individual
LRTCs across many days. In addition, the existence of subject-
specific LRTCs is further confirmed by demonstrating that LRTCs
are sensitive biomarkers of pathological neuronal activity in a vari-
ety of diseases such as Schizophrenia (Nikulin et al., 2012),
Parkinson's (Hohlefeld et al., 2012) and Alzheimer Disease
(Montez et al., 2009).

In conclusion, we have shown that power-law dynamics in the
amplitude of neuronal oscillations, estimated collectively over a range
of time scales, predict subjects' performance in a complex sensorimotor
task. This finding provides a direct demonstration for the functional
relevance of scale-free critical organization of neuronal activation in
the human brain.
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Appendix A. Selection of Spatial Filters

We selected three filters with the lowest and highest median
variance scores sj, which we then sorted according to discriminativity
max(sj, 1− sj) in decreasing order (Blankertz et al., 2008). Note that
the median variance score sj of the jth CSP filter was computed as

s j ¼
mediani var wjX

ið Þ
� �� �

XD

k¼1
mediani var wkX

ið Þ
� �� � ðA:1Þ

where X(i) denotes the band-pass filtered signal of ith trial and var(⋅)
stands for the variance operator. We preferred the median score over
using the eigenvalues λj (mean score) in virtue of its greater robustness
to outliers. For the calculation of the optimal classifier we used the heu-
ristic of (Guillot et al., 2009) to choose the optimal number of filters; for
the 6 CSP filters computed with fixed parameters over subjects we
chose the following values: window width = 5 Hz, time-segment =
[500 2500] ms.

Appendix B. Outlier Removal

Weapplied the followingoutlier detectionprocedure prior to theDFA:

1. Find all outlier time-points X(ti) s.t. |X(ti)−μ |N4σ where σ is the
standard deviation and μ the mean of X(t).

2. Remove these outliers and repeat 1. recursively until no outliers
remain.

3. Record all outliers obtained from every step of the recursion.
The motivation for the recursive step was that, since outliers may be
present on a range of scales, the less pronounced outliers may be
missed during the first iteration. After this outlier detection step,
we rejected all DFA epochs fDFA

2 (n, j) which spanned time indices
including outliers. In order to avoid frequent exclusion of large seg-
ments, we restrict DFA estimation to a range n such that there are
at least 10 segments per scale available after outlier rejection.
This approach to outlier rejection for DFA was necessary to ensure
that the time-series structure of the data was preserved; simply cut-
ting out portions of data may have introduced spurious autocorrela-
tions which might bias the DFA procedure. We dealt with pauses in
the experimental session in a similar manner by requiring that all
DFA epochs fDFA2 (n, j) should range over time-indices from a continu-
ous stretch of the experiment's duration, i.e. not spanning stretches
separated by pauses.

Appendix C. Mathematical details

C.1. Partial correlation analysis

Several steps of our analysis require the estimation of a partial
correlation between two variables (X ,Y) but controlling for the effect
of additional variables Z. This amounts to measuring the correlation be-
tween the residuals RX and RY of regression fits between resp. X and Z
and Y and Z. Under the null hypothesis H0 that X and Y are correlated
only through Z, RX and RY are uncorrelated. In other words, partial cor-
relation is a test for conditional independence (dependence measured
by correlation) of X and Y given Z. Formally, under H0 we assume
that, for uncorrelated random variables ε1 ,ε2:

X ¼ β1Zþ ε1 and Y ¼ β2Zþ ε2 ðC:1Þ

Since RX ≈ X−β1Z and RY ≈ Y−β2Z, this implies that:

RX ≈ ε1 and RY ≈ ε2 ðC:2Þ

So these residuals are independent in the limit of data points. In our
calculations we use partialcorr.m in MATLAB, which allows for the
control of correlation over an arbitrary number of variables.

Becausewe do notwish to assume the presence of Gaussian or linear
relationships between the variables we measure, we consider non-
parametric Spearman correlations. These are related to Pearson partial
correlations in exactly the same manner as the standard Spearman
correlation is related to a Pearson correlation. Thus, one considers the
Pearson correlation between the residuals resulting from regressing
the ranks of the values of X and Y respectively against the ranks of Z.

C.2. Biserial R2 values

The biserial-R2 value is a general measure indicating how well data
fit a statistical model. Here we use this quantity to measure of how
much variance of the joint distribution can be explained by class
membership. In this case the biserial-R2 value is equivalent to the
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squared bi-serial correlation coefficient

R2 ¼ μ1−μ2ð Þ ffiffiffiffiffiffiffiffiffiffi
n1n2

p
σ n1 þ n2ð Þ

� �2

ðC:3Þ

where μ1 and μ2 denote the mean value of class 1 and 2, respectively, σ
represents the overall standard deviation and n1 and n2 stand for the
number of samples in the respective class. Note that the biserial-R2

value should be distinguished from the DFA-R2 value.

Appendix D. Supplementary analyses

D.1. The effect of filtering on Hurst exponent estimation

Here we present a simulation which aims at checking the size of the
bias induced by the temporal smoothing yielded bydecimation,filtering
the signal using Butterworth filter and calculating amplitude envelope.
This corresponds to the same pipeline as applied to the EEG data for
Hurst exponent estimation.

To this end, we simulate 1000 uncorrelated Gaussian noise time-
series in MATLAB of length 2×106. We then decimate the signals to 1/
10th of their sampling rate, filter using Butterworth filters of order 5
in a frequency range corresponding to 8–10 Hz assuming the sampling
rate of the signal is now 100 Hz (corresponding to the signal analyzed)
and calculate the amplitude envelope using the Hilbert transform. We
then estimate Hurst exponents using DFA with log-spaced window
lengths between 4 and 30 s and between 4 and 220 s.

We find that the mean Hurst exponent estimated in the range 4 to
30 s is 0.52 and the standard deviation over estimates is σ=0.020.
Over the range 4 to 220 s we find the mean estimate is 0.51 and the
standard deviation over estimates is σ=0.022.

Since the simulated noise is uncorrelated, the true Hurst expo-
nent of its amplitude envelopes is 0.5. This simulation shows that
there is a small positive bias in estimation induced by our prepro-
cessing pipeline but which is not large enough to explain the values
of Hurst exponents we observe in our data analysis (H often larger
than 0.6).

D.2. Systematic non-linearity in the DFA fluctuation plot

Here we present additional data analysis to investigate whether
there is a significant systematic departure from monofractal (linear
log-log) scaling over the range of time-scales analyzed using DFA. If
the log-log plot is significantly non-linear, then a quadratic polynomial
fit should provide a substantially better fit than a linear fit. Moreover,
if the non-linearity consists of a saturation of scaling (lower-gradient
at larger scales) then the x2 coefficient in the quadraticfit should be neg-
ative. To this end we fit quadratic polynomials to the DFA log-log plot,
i.e. we fit log(F2(n)) as a function of log(n) in the alpha frequency
range (8–13 Hz).

We find that there is indeed a systematic saturation of scaling
towards larger time-scales, as we find that the quadratic coefficient of
the polynomials fitted has mean less than zero (pb0.001; Wilcoxon
sign-rank). However, we find that there is not a large change in the
explained variance between the quadratic fit (mean DFA-R2=0.99±
7.6×10−4) and the linear fit (mean DFA-R2=0.99±0.0011).

Thus we conclude that while there is indeed a small systematic
saturation for large time-scales, this saturation does not lead to a sub-
stantially better model-fit over the linear model.

D.3. The effect of largest window length on Hurst exponent estimation

Due to the presence of outliers in the data, the longest window
length available for Hurst exponent estimation is approximately one
minute. We show here, however that Hurst exponents measured over
a wider range of time-scales correlate with Hurst exponents measured
over a narrower range of time-scales.

To this end, we estimate Hurst exponents in the alpha range
(8–13 Hz) between 0.5 and a maximumwindow length of 81 s and be-
tween 4 and 54 s respectively for all subjects. We find a Spearman
correlation of 0.90 (pb0.001) between the two estimates. However,
due to the positive bias introduced by the filtering (see Appendix D.1)
we performed ourmain analysis using DFA analysis with timewindows
starting at 4 s.
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