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Effects of anisotropy and disorder on the conductivity of Weyl semimetals
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We study dc conductivity of a Weyl semimetal with uniaxial anisotropy (Fermi velocity ratio ξ = v⊥/v‖ �= 1)
considering the scattering of charge carriers by a wide class of impurity potentials, both short- and long-range. We
obtain the ratio of transverse and longitudinal (with respect to the anisotropy axis) conductivities as a function of
both ξ and temperature. We find that the transverse and longitudinal conductivities exhibit different temperature
dependence in the case of short-range disorder. For general long-range disorder, the temperature dependence
(∼ T 4) of the conductivity turns out to be insensitive of the anisotropy in the limits of strong (ξ � and � 1) and
weak (ξ ≈ 1) anisotropy.
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I. INTRODUCTION

Weyl semimetals (WSMs) are three-dimensional (3D)
analogs of graphene [1,2]. Their quasiparticles are described
by the massless 3D Dirac Hamiltonian. Such systems were
first proposed as an exotic theoretical possibility, with an
expectation to observe some of their features in pyrochlore
iridates [3] and in certain semiconductor heterostructures [4,5].
Recent experiments uncovered several chemical compounds,
which can be classified as WSMs [6–13]. The subject is
attracting growing theoretical and experimental interest (see,
e.g., the reviews in Refs. [1,2,14]).

Charge transport in WSMs has also received considerable
attention and a number of interesting phenomena have been
discovered (see Ref. [14] and references therein). The main
emphasis was on manifestations of topological effects: an
additional topological protection of the gapless spectrum near
the Dirac points in 3D and the chiral anomaly [15–21], as
well as an unusual Kondo effect [22]. Disorder and impurity
effects have also attracted significant attention [23–26]. A
detailed study of the influence of Coulomb disorder in highly
compensated WSMs was undertaken in Ref. [27]. The problem
is that even in the simplest case of delta-correlated disorder,
the field theory of a WSM is non-renormalizable. Progress
in overcoming this stumbling block was recently achieved in
Refs. [28,29], where the conductivity of weakly disordered
semimetals was treated in terms of the ε expansion within
the renormalization group (RG) approach. However, Weyl
semimetals correspond to ε = −1 and the predictions are
qualitative. Nevertheless, it appeared to be possible to reveal
some specific features of the conductivity for different kinds
of disorder and even to predict a disorder-driven quantum
phase transition distinct from the Anderson transition. A RG
approach [30] has been also applied to demonstrate the possi-
bility of non-Fermi-liquid behavior in systems with isotropic
3D Dirac points having a weak disorder and Coulomb-type
interparticle interactions [30].

The computation of the isotropic conductivity was recently
performed [25,31,32] in the framework of the kinetic-equation
technique, improved by the self-consistent Born approxima-
tion, as well as numerically [33].

Most Weyl semimetals obtained in laboratories so far are
anisotropic [7,8]. The anisotropy can be also induced by a
linearly polarized electromagnetic wave [34]. Some effects
related to the anisotropy and tilting of the Dirac cones have re-
cently been treated [35]. However, the influence of anisotropy
on the charge transport in WSMs with quenched disorder has
remained unexplored so far. In this paper, we analyze the
effects of disorder and anisotropy on the conductivity, in the
framework of the Born approximation. We treat these effects
in the diagrammatic approach, both for short- and long-range
disorder taking into account the uniaxial anisotropy. We obtain
analytical results for the cases of strong and weak anisotropy.
The diagrammatic framework allows us to find out the validity
range of the Fermi-liquid approach in WSMs.

The potential produced by impurities (disorder potential)
is introduced as a rather general spatial distribution u(r).
Its characteristic scale in momentum space is specified by a
parameter p0. Thus, at small values of p0, we are dealing with
long-range disorder, whereas large p0 corresponds to short-
range disorder. The ratio of Fermi velocities perpendicular
and parallel to the z axis, ξ = v⊥/v‖, becomes an additional
control parameter of the problem.

We have found that for sufficiently low temperatures (or
doping level εF), when the disorder can be considered to be
a short-range one (p0 � max{T/v‖,εF/v‖}), the longitudinal
and transverse conductivities exhibit a different temperature
dependence

σ‖ξ 2

σ⊥
= 1 − 4∂g(0)

15
(1 + ξ−2)

π2T 2/3 + ε2
F

(v‖p0)2
, (1)

where g(p2/p2
0) is the impurity structure factor and ∂g(0) ≡

dg(x)/dx|x=0. The temperature dependence in Eq. (1)
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is in fact the first term of the asymptotic series in
max{T/v‖,εF/v‖}/p0 � 1. This dependence becomes even
more pronounced at higher temperatures T ∼ p0v‖.

The σ‖ξ 2/σ⊥ ratio saturates to a temperature-independent
constant in the high-temperature (or long-range disorder) limit,
when (p0 � max{T/v‖,εF/v‖}). At εF � T , the temperature
dependence of both components of the conductivity obeys the
relation

σ‖, σ⊥ ∼ T 4 (2)

regardless of the particular form of the disorder potential or
impurity structure factor. In the long-range disorder limit, for
ξ � 1, ξ ≈ 1, and ξ � 1, we found that the σ‖ξ 2/σ⊥ ratio
approaches constant values, independently of temperature and
disorder potential. The results concerning the conductivity
ratio can be summarized in the form

σ‖ξ 2

σ⊥
=

⎧⎪⎨
⎪⎩

3/
(

1
2 + 4 ln 2

) + O(ξ−1), ξ � 1,

1 + O(δξ 2), ξ = 1 + δξ, δξ � 1,

c3 + O(ξ 2), ξ � 1,

(3)

where c3 is a constant of the order of unity.
The scales of the problem are the temperature T of the

system, Fermi energy εF, and the elastic scattering rate 1/τ .
The latter is assumed to be small, so

1

max{εF,T }τ � 1 (4)

is a small parameter of the problem. Our task is to compute
the Drude conductivity. The fermion doubling theorem implies
that the WSM spectrum always has an even number of Weyl
points. For simplicity, we assume that the charge carriers
have identical spectra near all Weyl points and compute the
conductivity per point. All the results for the conductivity
should be multiplied by the number of Weyl points.

The disorder potential is assumed to be quite weak, so that
the Born approximation is justified:

|u(r)| � min{v⊥,v‖}p0. (5)

Note here that our results are applicable not only to the Weyl
semimetals themselves, but to a wider class of materials with
the 3D Dirac spectrum (topological Dirac semimetals, etc.; see
the classification given in Ref. [36]).

In Sec. II, we describe the formalism used in dealing with
the scattering problem, give all the necessary definitions, and
describe the employed calculation procedures. In this section,
we also analyze the limits of applicability of the Fermi-liquid
approach in the case of WSMs. In Sec. III, we revise the general
temperature dependence of the conductivity in isotropic Weyl
semimetals with long- and short-range disorder. Section IV
deals with the anisotropic case. We provide a detailed analysis
of the solution to the Dyson equation for the singular part of the
vertex function for short- and long-range disorder potentials.
We compute the conductivity for different T/εF ratios and
different values of the anisotropy parameter ξ . The conclusions
are presented in Sec. V. Several important technical issues are
presented in the Appendices.

II. FORMALISM

A. The model

We consider a system with a Hamiltonian, which generally
has uniaxial anisotropy. Namely, the Fermi velocity along a
specified axis n0 (the longitudinal component) is different from
that in the perpendicular direction v⊥ = ξv‖

H = H0 + Hdis;

H0 = −i

∫
ψ†(r)[v‖σ‖∂r‖ + v⊥σ⊥∂r⊥]ψ(r)dr,

Hdis =
∫

ψ†(r)u(r)ψ(r)dr,

(6)

where u(r) is the disorder potential, ψ are quasiparticle field
operators, and σ‖ = σn0, r‖ = rn0, σ⊥ = σ − σn0, r⊥ = r −
n0(n0r) are the projections of Pauli matrices and radius vectors.
The disorder potential correlation function reads∫

dre−ipr〈u(r)u(0)〉 = nimpu
2
0

p6
0

g

(
p2

p2
0

)
, (7)

where g(p2/p2
0) is the dimensionless Fourier transform of the

normalized (g(0) = 1) disorder structure factor. In our case, it
incorporates the correlation of impurity positions, as well as
the form of the potential. The parameter u0 plays the role
of the amplitude of the disorder potential and nimp is the
concentration of impurities.

It is implied that the short-range potential is well defined
and that u0/p

3
0 is finite at the p0 → ∞ limit. The potential

is assumed to be isotropic. The scale p0 is understood to
incorporate the effect of screening by charge carriers. We
assume that the screening does not lead to an anisotropy
of the potential. The last assumption certainly depends on
the nature of the disorder. However, a simple computation
shows that the isotropic Coulomb potential screened by charge
carriers with an anisotropic spectrum remains isotropic [26,31]
in the Thomas-Fermi approximation. This approximation is
applicable if the ratio of the particle wavelength to the
screening radius is small. This ratio is equal (up to a factor
of the order of unity) to the square root of the effective fine
structure constant of the material: α = e2/(�vκ) (where v is
the characteristic value of Fermi velocity and κ is the dielectric
constant) [26,31]. The corresponding estimates for typical
WSMs are given in Ref. [26]. They show that α is indeed
small, e.g., α ≈ 0.05 for Cd3As2.

Therefore, we neglect a possible induced anisotropy of the
potential due to screening. Our task is to emphasize the main
effect of the anisotropic spectrum on the transport properties,
which manifests itself even with an isotropic potential.

To simplify the analysis, we rescale the coordinates and ψ

operators to absorb the anisotropy in H0 according to

r‖ = r ′
‖, r⊥ = ξr ′

⊥, ψ(r) = 1

ξ
ψ ′(r′). (8)

Then, the Hamiltonian changes its form to

H ′
0 = −iv‖

∫
ψ ′†(r′)(σ∂ ′

r)ψ ′(r′)dr′,

H ′
dis =

∫
dr′ψ ′†(r′)u(r′

‖ + ξr′
⊥)ψ ′(r′),

(9)
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q

ε,q

=
nimp u2

0

p6
0ξ

2
g

(1 − ξ−2)(pn0)2 + ξ−2p2

p2
0

=
1

ε − v pσ + i0

FIG. 1. Feynman diagrams for the noninteracting fermion re-
tarded Green’s function and the disorder correlation function.

which leads to the modified disorder correlation function∫
dr′e−ipr′ 〈u(r′

‖ + ξr′
⊥)u(0)〉 = nimpu

2
0

p6
0ξ

2
g′

(
p2

p2
0

)
,

(10)

g′
(

p2

p2
0

)
= g

(
(1 − ξ−2)(pn0)2 + ξ−2p2

p2
0

)
,

where we have decomposed the momentum as p2 = p2
‖ +

(p2 − p2
‖) → (pn0)2 + ξ−2[p2 − (pn0)2].

The Feynman rules are extracted from (9) and (10), and
depicted in Fig. 1.

B. Conductivity

The conductivity tensor is found via the Kubo formula

σαβ(ω,0) = e2�R
αβ(ω)

iω
,

�R
αβ(ω) = i

∫
dt dr〈[jα(t,r),jβ(0,0)]〉eiωt θ (t),

(11)

where �R
αβ(ω) is the retarded polarization operator and

jα(t,r) = ψ†(t,r)σαvαψ(t,r) is the quasiparticle current oper-
ator. The averaging 〈. . . 〉 is assumed to be done over the Gibbs
distribution as well as over different realizations of disorder.
We will be interested in the system response to a uniform
electric field, constant in time. For this purpose, we set q = 0
and ω → 0.

The computation of the polarization operator in the lowest
order of the 1/(εFτ ) expansion involves the summation of
disorder ladder series (accounting for the difference between
averages 〈jαjβ〉 and 〈jα〉〈jβ〉) as well as one-loop corrections
to the Green’s functions (mainly responsible for the finite
quasiparticle lifetime).

Due to the Onsager relations, the conductivity (as well as
the polarization operator) is a symmetric tensor. Thus, the
exact diagrammatic representation for �αβ(ω) [we denoted
�αβ(ω,0) ≡ �αβ(ω)] allows for its symmetric form (see
Fig. 2).

The noninteracting and disorder-averaged Green’s func-
tions are related via the standard diagrammatic equation
depicted in Fig. 3(a) and have the form

GR(ε,q) = [ε − v‖pσ − �R(ε,q)]−1. (12)

The self-energy is worked out in the Born approximation; its
diagrammatic representation is shown in Fig. 3(b).

The ladder summation in the polarization operator is
included into the renormalized vertex J corresponding to the

ω ωΠαβ(ω) =
Jα jβ1

2
+

1
2 ω ω

Jβ jα

ε + ω,p ε + ω,p

ε,p ε,p

Gα(ε,q) =
ε,q

exact Green’s function

α=

ε + ω,p

Jα(ε, ε + ω, ω;p)
ω

ε,p

exact vertex

FIG. 2. Diagrammatic representation of the polarization operator.

electric current. To perform the summation, one has to solve
the corresponding Dyson equation depicted in Fig. 4.

The conductivity tensor in a system with the uniaxial
anisotropy is characterized by only two eignenvalues σ‖, σ⊥
and in “principal rescaled axes” takes the form

σαβ =
⎛
⎝ξ 2σ‖ 0 0

0 σ⊥ 0
0 0 σ⊥

⎞
⎠. (13)

The general expression for the conductivity in the leading
1/(εFτ ) approximation reads

σαβ(T ) = 1

4T

∫
dε

2π

σαβ(ε)

cosh2 ε−εF
2T

, (14)

where

σαβ(ε) = e2v2
‖

4π

∫
dp

(2π )3
tr
{
GA(ε,p)

[
JARR

α (ε,p) − σα

]
×GR(ε,p)σβ + GA(ε)

[
JARR

β (ε,p) − σβ

]
GR(ε,p)σα

− [GR(ε,p) − GA(ε,p)]σα[GR(ε,p) − GA(ε,p)]σβ

}
.

(15)

Here, for brevity, we denoted JARR
α (ε,ε,0; p) ≡ JARR

α (ε,p),
and JARR is the singular part of the vertex function (see
Appendix A for details).

C. Validity of the Fermi-liquid approach

Expression (15) for σαβ(ε) is rather complicated and
deserves special attention. The integrand defining σαβ(ε) is
deliberately split into two lines. The second line leads to a con-
vergent integral because (GR − GA) ∼ 1/p2, when p → ∞.

Σ (ε,q) = p

(a) G (ε,q) =
ε,q

+= Σ (ε,q)

q − p

(b)

FIG. 3. (a) Dyson equation for the exact fermion Green’s func-
tion. (b) Fermion self-energy in the one-loop approximation.
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α

ε + ω,q

ω

ε,p

α

ε + ω,q

ω

ε,q

α

ε + ω,q

ω

ε,q

= +

FIG. 4. Dyson equation for the vertex Jα(ε,ε + ω,ω; p).

The first line of (15), though, contains the vertex JARR , which
makes it problematic even in the isotropic case (v‖ = v⊥ = v).
At first glance, the expression seems suitable enough, because
the product GRGA is sharply peaked at p = pε = ε/v. The
integral, therefore, appears to be completely determined by the
vicinity of p = pε. However, a more attentive look reveals that
the product GRGA converges rather slowly: GRGA ∼ 1/p2 at
pε � p � τεpε, and GRGA ∼ 1/p4 at p � τεpε. Thus, we
need to know at least the asymptotic behavior of JARR(ε,p) at
large momentum in order to complete the calculation.

This difficulty is closely related to the justification of the
Fermi-liquid approach. Indeed, this justification includes two
constraints: (a) the smallness of the quasiparticle scattering
rate guarantees the applicability of perturbation theory (in
most cases, the vacuum state, the Fermi sphere, survives); and
(b) all observables are determined by the scattering processes
in the proximity of the Fermi sphere. The latter statement
allows expanding the momentum near the Fermi surface
in every integration [d3p = (εF/v)2dp in 3D] making any
momentum integral one-dimensional and fast converging.

The justification of the second constraint follows from the
fact that a momentum integral defining the observable always
involves the GR(p)GA(p) term (sharply peaked near the Fermi
sphere). However, we have just seen that the latter argument
fails when computing the WSM conductivity. The integrand
defining the conductivity does contain a sharp GR(p)GA(p)
peak as well as a long tail (see Fig. 5).

To justify the Fermi-liquid framework, we need to accu-
rately estimate the contribution given by the tail. We divide
the integration domain according to p2dp = (p2 − p2

ε )dp +
p2

εdp. Then, denoting the first line in Eq. (15) as F sing we split

0

I

II

|GR(p)GA(p)|p2

p

FIG. 5. (Color online) Contributions to the conductivity. Region
I represents the Fermi liquid contribution; region II originates from
the scattering far from the Fermi surface.

it into two:

F
sing
αβ = I + II,

I =
∫ (

p2 − p2
ε

)
GA(ε,p)

[
JARR

α (ε,p) − σα

]
(16)

×GR(ε,p)σβdp,

II = p2
ε

∫
GA(ε,p)

[
JARR

α (ε,p) − σα

]
GR(ε,p)σβ dp.

Part II is already convergent. The convergence of part I
entirely depends on the asymptotic behavior of the vertex
function. The ultraviolet behavior of the vertex is discussed
in Appendix C, where it is proved to decay fast enough to
secure its convergence. Part I is estimated in Appendix D,
where it is shown that

I ∼ max

{
1,

p0

pε

}
1

ετ
II. (17)

This means that the Fermi-liquid approach holds with
1/(max{εF,T }τ ) accuracy. Therefore, some care needs to be
taken when working out the weak-localization corrections
(WLCs) to conductivity in, e.g., the 3D case. Indeed, this
correction is determined by the next term in the 1/(εFτ )
expansion, and the WLC in 3D reads δσWLC/σ ∼ 1/(εFτ ).
Therefore, when computing corrections to the conductivity in
the 3D case, one has to take into account the values of the
momentum far from the Fermi surface. For ordinary metals,
contributions from large (comparing to Fermi) momenta were
analyzed in Ref. [37].

As a result, expanding all the momentum integrals near the
Fermi surface, we can omit (in the leading order) the GRGR

and GAGA terms in the expression (15) for the conductivity
and obtain the standard formula

σαβ(ε) = e2v2
‖

4π

∫
dp

(2π )3
tr
{
GA(ε,p)JARR

α (ε,p)GR(ε,p)σβ

+ GA(ε)JARR
β (ε,p)GR(ε,p)σα

}
. (18)

III. CONDUCTIVITY IN THE ISOTROPIC CASE

In order to understand how to tackle the anisotropic
problem, we briefly outline the diagrammatic derivation of
the isotropic conductivity. Wherever isotropy is implied, we
omit the ‖ and ⊥ indexes, and write v‖ = v⊥ = v. In the
corresponding limits, we reproduce the earlier results for the
conductivity [25,26,31].

A. Disorder averaging

The self-energy of the Green’s function has matrix structure
(due to the presence of σ matrices) and consists of two
parts: �R = �R

I + �R
II . The first part is responsible for the

renormalization of Fermi velocities and the rescaling of
the Fermi field operators; the second part is responsible
for the nonvanishing relaxation rate. Perturbation theory
can be applied only if |�R| � max{εF,T }. The estimate
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gives ∣∣�R
I

∣∣
ε

∼
(

vp0

ε

)
1

τε
∼ λ(p0) min

{
1,

(
p0v

ε

)2
}

,

(19)
1

τ
∼

(
nimpu

2
0

)
min{ε2,(p0v)2}
v3p6

0

,

where |�R| is understood as the modulus of any of its matrix
component, ε ∼ max{T/v,εF/v} (εF can be considered here
as the the doping level). The dimensionless coupling constant

λ(p0) = nimpu
2
0

v2p5
0

(20)

represents the strength of the potential. It is defined at the
characteristic disorder scale p0.

Clearly, despite the smallness of the Fermi-liquid parameter
1/(ετ ), the first part of the self-energy may lead to a
strong renormalization for short-range (p0 � ε/v) disorder,
depending on the initial coupling strength λ(p0). This is
in contrast to the situation in ordinary metals, where the
ultraviolet cutoff vp0/εF ∼ 1 and the smallness of the 1/(εFτ )
parameter guarantees the validity of perturbation theory. In
WSMs, it is appropriate to consider both limits: short- (p0 �
max{pF,T /v}) and long-range (p0 � max{pF,T /v}) disorder.

1. Renormalization due to short-range disorder

The analysis of the influence of strong short-range disorder
λ(p0) � 1) was attempted in Ref. [25] via the self-consistent
Born approximation (SCBA). The latter however overlooks
the diagrams with crossed disorder lines. In WSMs, these
diagrams happen to be of the same order as the diagrams
included in the SCBA. Therefore, the SCBA is an uncontrolled
approximation for a WSM. A fully consistent analysis was
performed in Refs. [28,29] (by means of the ε expansion).
Crucially, it was shown that the disorder operator becomes
relevant if the initial coupling exceeds some critical value

λ(p0) > λ∗ ∼ 1. (21)

For λ(p0) > λ∗, the disorder coupling grows with decreas-
ing momentum, which leads to the metal-insulator transition.
If the initial disorder strength is small, λ(p0) � λ∗, then the
disorder operator is irrelevant. The corresponding running
value of the dimensionless coupling constant is

λ(p) = λ(p0)
p

p0
, (22)

where p ∼ max{εF/v,T /v}. We will focus on the case
λ(p0) � 1 and discard the renormalization of the Fermi
velocity and field operators.

2. Long-range disorder

As one can deduce from Eq. (19), the long-range (p0 �
ε/v) disorder does not present a problem since the corre-
sponding �I part is much smaller than the 1/(ετ ) parameter.
Therefore, here we also discard the renormalization of the
Fermi velocity and field operators.

B. The general Dyson equation and its solution
in the isotropic case

Surprisingly, even for an anisotropic system, the Green’s
function preserves its simple isotropic form (in the limiting
cases of short-range and long-range disorder; see Appendix F
with detailed calculations). The Green’s function has the
form [26]

GR,A(ε,p) = ε + v‖pσ(
ε ± i

2τ

)2 − (
v‖p ∓ i

2τ1

)2 . (23)

We will need the following scattering times:

1

τ (nn0)
= nimpε

2

2πv3
‖p

6
0

∫
d�

4π
g′

pε(n−n′),n0
,

1

τtr(nn0)
= nimpε

2

2πv3
‖p

6
0

∫
d�

4π
g′

pε(n−n′),n0
(1 − cos θnn′)

≡ 1

τ
− 1

τ1
, (24)

1

τtr2 (nn0)
= nimpε

2

2πv3
‖p

6
0

∫
d�

4π
g′

pε(n−n′),n0
(1 − cos2 θnn′)

≡ 1

τ
− 1

τ2
.

The derivation of the scattering rates is sketched in Ap-
pendix B. In accordance with what was said about the validity
of the Fermi-liquid approach, we only need the value of the
vertex function at p = pε.

This allows us to perform a partial momentum integration
in the Dyson equation and write down the equation for the
on-shell (p = pε) vertex (see Appendices A and C). It reads

JARR(nn0) = σ + nimpu
2
0ε

2

4πv3
‖p

6
0ξ

2

∫
d�′

4π

× (1 + n′σ )JARR(n′n0)(1 + n′σ )g′
pε(n−n′),n0

2
τ (n′n0) − 1

τtr(n′n0)

,

(25)

where we denoted JARR(ε,npε) ≡ JARR(nn0), meaning that
the angular dependence of JARR(ε,npε) is clearly defined just
by the angle between the anisotropy axis and momentum
direction (see Fig. 6 illustrating the scattering angles). The
energy argument in the scattering times is suppressed. In the
isotropic case, Eq. (25) allows for a simple solution. Since J is
a renormalized current operator, we look for a solution in the
form of the polar vector ansatz,

JARR(ε,n) = J1(ε)σ + J2(ε)n + J3(ε)n(σn). (26)

The ansatz (26) turns Dyson equation (25) into an algebraic
one. Changing the integration measure in the expression
(18) for the conductivity p2dp = ε2dp/v2, we arrive at the
following suitable formula for the conductivity tensor

σαβ = e2

6πv
δαβ

∫ ∞

−∞

ε2dε

2π
∂ε tanh

ε

2T

J1(ε) + J2(ε) + J3(ε)
1

τ (ε) + 1
τ1(ε)

.

(27)
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x

zy

n0

ϕ

χ

pFn

pFn

FIG. 6. (Color online) Scattering event: q is the momentum of
the incoming particle, n0 is the axis of the uniaxial anisotropy. For
simplicity, the coordinate system is chosen such that q, n0 span
the xz plane; p is the scattered momentum, θ ′ and ϕ are the polar
and azimuthal scattering angles, while χ is the scattering angle with
respect to the anisotropy axis.

The J1 + J2 + J3 term is extracted with the help of Eqs. (25)
and (26)

J1 + J2 + J3 =
1
τ

+ 1
τ1

1
τ

− 1
τ2

. (28)

The conductivity then takes the typical Fermi-liquid form

σαβ = e2

6πv
δαβ

∫ ∞

−∞

ε2dε

2π
∂ε tanh

ε

2T

1
1

τ (ε) − 1
τ2(ε)

. (29)

Now, we write down the temperature dependence of the
conductivity in the cases of the long- and short-range disorder
potentials.

C. Short-range potential

In the case p0 � max{T/v,εF/v}, the structure factor
gpε(n−n′) depends only slightly on the scattering angle (between
the n and n′ directions) as the scattering is nearly isotropic.
This means that g(pε(n − n′)/p0) ≈ g(0) = 1. The transport
scattering time is

1

τtr2 (ε)
= 2

3τ (ε)
= nimpu

2
0

3πv3p6
0

ε2, (30)

and the conductivity reads

σαβ = σδαβ, σ = 1

2π

e2v2p6
0

nimpu
2
0

. (31)

The conductivity is independent of the chemical potential and
temperature in the short-range disorder limit. The result is
obtained in Ref. [25]. We remind the reader that the limit of
u0p

3
0 at p0 → ∞ is assumed to be well defined.

D. Long-range potential

This case corresponds to p0 � max{T/v‖,εF/v‖}. Now,
the scattering is strongly anisotropic. Then, p2

ε (n − n′)2 =

2p2
ε (1 − cos θ ) ≈ p2

ε θ
2, and

1

τtr2 (ε)
= nimpu

2
0g1v

8π

1

p2
0ε

2
, (32)

where g1 = ∫ ∞
0 g(x)x dx (we assume the convergence of the

corresponding integral). The conductivity then reads

σαβ = 8

3

e2

nimpu
2
0g1

ε4
Fp

2
0

v2
f

(
T

εF

)
δαβ,

f (x) =
[
1 + 2π2x2 + 7π4

15
x4

]
.

(33)

In particular, when the doping level is low, εF � T (x � 1),

f (x) ≈ 7π4

15
x4, (34)

we have

σαβ ≈ 56

45

e2p2
0

nimpu
2
0g1

T 4

v2
δαβ. (35)

The temperature dependence σ ∼ T 4 was obtained in Ref. [31]
for Coulomb disorder. However, the result (35) is derived
for long-range disorder of an arbitrary form. It can be
qualitatively explained in the following manner. The Born
transport scattering rate is τ−1

tr ∝ (p0ε)−2 and the density of
states satisfies ν ∝ ε2. For T � εF, the characteristic energy
of the charge carriers becomes ε ∼ T . Therefore, the Drude
conductivity takes the form

σ ∝ τtr(T )ν(T ) ∝ T 4. (36)

Formula (35), surprisingly, gives the same dependence even
for Coulomb disorder. As was pointed out in Refs. [26,31],
the screening length for the Coulomb disorder potential is
temperature-dependent and p0 ∼ T . The potential amplitude,
however, also depends on temperature u0 ∼ e2/r ∼ e2p0 ∝ T

and the T 4 dependence survives.
The low-energy limit of Eq. (33) matches Eq. (31) at the

crossover point max{T0,εF} ∼ vp0.
Next, our attention turns to the anisotropic case. As

we will see, the longitudinal and transverse conductivities
exhibit different temperature dependence. Also, the uniaxial
anisotropy introduces additional geometric factors, which
are usually needed by experimentalists. In some cases, we
managed to obtain exact results.

IV. ANISOTROPIC CASE

A. The Dyson equation and conductivity

For convenience, we now introduce a modified vertex
function I = JARR/(2/τ − 1/τtr) and denote IARR(ε,npε) ≡
I(nn0)

I(nn0)

(
2

τ (nn0)
− 1

τtr(nn0)

)

= σ + nimpu
2
0ε

2

4v3
‖p

6
0πξ 2

∫
d�′

4π
(1 + n′σ )

× I(n′n0)(1 + n′σ )
∣∣g′

pε(n−n′),p0

∣∣2
. (37)

195117-6



EFFECTS OF ANISOTROPY AND DISORDER ON THE . . . PHYSICAL REVIEW B 92, 195117 (2015)

The solution to the Dyson equation is sought in the form of
the most general polar vector composed of σ , n, and n0

I = I1σ + I2n + I3n(nσ ) + I4n0(nσ )

+ I5n(n0σ ) + I6n0 + I7n0(n0σ ). (38)

Plugging (38) into expression (15) for the conductivity
tensor, we obtain

σαβ(ε) = e2ε2

2π2v‖

∫
d�

4π

∫ [
�(nn0)nαnβ

+ 1

2
�(nn0)(n0αnβ + nαn0β )

]
, (39)

where � = I1 + I2 + I3 + I5x, � = I4 + I6 + I7x, and x =
cos θ .

B. Short-range potential

1. δ-correlated potential

A weak momentum dependence of the potential leaves it
essentially isotropic, because it does not depend on the momen-
tum. Therefore, the answer for the δ-correlated potential (its
characteristic momentum is p0 = ∞) is obtained immediately:

σ‖ = σ, σ⊥ = ξ 2σ, (40)

where the conductivity σ is defined in Eq. (31) with v = v‖.

2. Finite-range potential corrections

Now it is clear that the anisotropy in the rescaled basis
enters the conductivity expression only as a max{εF,T }/p0

correction. The first correction in the max{εF,T }/p0 series is
easy to compute, expanding the Dyson equation. The spectrum
also acquires anisotropic corrections. They are proportional
to the disorder potential amplitude and are irrelevant for
sufficiently weak potential. We expand the disorder form factor
(7) according to

g(x) ≈ 1 + ∂g(0)x, x = p2

p2
0

� 1. (41)

Using Eq. (39) and solving the Dyson equation (37) with the
ansatz (38), we obtain the corresponding correction to the
conductivity (the details of the computation are summarized
in Appendix E)

σ‖ = σ

[
1 − ∂g(0)

1 + 4ξ−2

5

π2T 2/3 + ε2
F

(v‖p0)2

]
,

σ⊥ = σξ 2

[
1 − ∂g(0)

7 + 8ξ−2

15

π2T 2/3 + ε2
F

(v‖p0)2

]
.

(42)

It is worthwhile to note that the anisotropy manifests itself in
the temperature-dependent conductivity ratio

σ‖ξ 2

σ⊥
= 1 − 4

15
(1 + ξ−2)∂g(0)

π2T 2/3 + ε2
F

(v‖p0)2
. (43)

Equation (43) is one of the central results of the paper.
We have just found that the conductivity components in the

npF

p0

x

y

z

FIG. 7. (Color online) A part of the Fermi sphere (shown in
orange). The small dark sphere represents the possible change of
momentum due to scattering.

parallel and transverse directions exhibit different temperature
behavior. Although Eq. (43) is obtained in the limit p0 �
max{T/v,εF/v}, we guess that the temperature dependence
of the σ‖ξ 2/σ⊥ ratio should become more pronounced when
p0 ∼ max{T/v‖,εF/v‖}.

C. Long-range potential

The long-range potential u(p) corresponds to the case p0 �
max{εF/v‖,T /v‖}. Now the ratio

κε = p0

pε

� 1 (44)

becomes an additional small parameter of the problem. The
disorder potential does not change much the momentum of
an incoming particle δp ∼ p0 � pε. Therefore, hereafter we
can consider small scattering angles wherever necessary (see
Fig. 7).

The calculations are rather cumbersome. They are presented
in Appendix F. The Dyson equation is turned into two coupled
differential equations:

�′′(1 − x2) + x�′( − 3 − ξ 2 + x2(ξ 2 − 1))

−�(1 + ξ 2 − x2(ξ 2 − 1)) = − 1
2 [ξ 2 − (ξ 2 − 1)x2]3/2,

� ′′(1 − x2) − x[(ξ 2 + 1) − x2(ξ 2 − 1)]� ′ = −2�′,

(45)

where, for brevity, we switched to dimensionless functions
κ2

ε ξ 2

4
g1

g0τ0
(�,�) → (�,�) and g0 = ∫ ∞

0 g(x) dx. Naturally, the
problem of boundary conditions immediately comes on stage.
As will be shown below, it is possible to circumvent it in a
number of important limiting cases. The Dyson equation for �

determines the �(x) function up to an arbitrary constant. This,
however, does not cause any difficulty for the conductivity,
because �(nn0) enters the integral (39) with n as a multiplier
and forms an odd function of the polar angle.
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The resultant expressions for σ‖ and σ⊥ read

σ‖(T ) = σ1f

(
T

εF

)∫ 1

−1
[�(x)x2 + �(x)x] dx,

σ⊥(T ) = ξ 2σ1

2
f

(
T

εF

)∫ 1

−1
�(x)(1 − x2) dx,

σ1 = 8e2ε4
Fp

2
0

nimpg1u
2
0v

2
‖
,

(46)

where the function f (x) is defined in Eq. (33).
Next, we explore the geometrical implications of anisotropy

in the three limiting cases.

D. Limiting cases of anisotropy

1. Easy plane, ξ � 1

The first one is the case of strong anisotropy, when ξ �
1 (v⊥ � v‖). Then, the Dyson equations (45) reduce to the
first-order differential equation

(�x)′ = ξ

2

√
1 − x2,

� ∼ const. + O

(
1

ξ 2

)
.

(47)

The constant in �(x) is irrelevant as was mentioned earlier,
while the solution, which is analytic in the interval x ∈ [−1,1],
reads

�(x) = ξ

4

(√
1 − x2 + arcsin x

x

)
. (48)

The conductivity can be then written as

σ‖(T ) = 3πξ

32
σ1f

(
T

εF

)
,

σ⊥(T ) = πξ 3

32
σ1f

(
T

εF

)(
1

2
+ 4 ln 2

)
.

(49)

The conductivity ratio becomes

σ‖ξ 2

σ⊥
= 3

1
2 + 4 ln 2

+ O(ξ−1), ξ → ∞. (50)

2. Weak anisotropy, ξ ≈ 1

Now we turn to the case of v⊥ ≈ v‖. Let ξ = 1 +
δξ, δξ � 1. We expand the vertex function according to
� = 1

4 + δ�(x) (the value 1/4 corresponds to the isotropic
scattering). The corresponding equation reads

δ� ′′(1 − x2) − 4xδ�′ − 2δ� = −δξ (1 − x2). (51)

The solution analytic in x ∈ [−1,1] has the form

�(x) = 1

4
− δξ

12
(x2 − 5),

�(x) = − (δξ )
x

6
.

(52)

ln(T/εF)

ln ξ

α
β

0

0

5

10

0

0

ln(σ ),
ln(σ⊥/ξ2)

a.u.][

/εF)F

ln ξ

α
β

0

0

5

0

0

FIG. 8. (Color online) Conductivities σ‖,⊥(T ,ξ ) as a function of
the anisotropy parameter ξ ; tan α = 4, tan β = 1.

Then, the conductivity reads

σ‖(T ) = 1

6
σ1f

(
T

εF

)(
1 + 4

15
δξ

)
,

σ⊥(T ) = 1

6
σ1f

(
T

εF

)(
1 + 34

15
δξ

)
.

(53)

It is worth noting that to the first order in the deviation from
anisotropy, the ratio

σ‖ξ 2

σ⊥
= 1 + O(δξ 2), δξ � 1, (54)

does not exhibit any shift.

3. Easy axis, ξ � 1

In this case, we are unable to obtain exact coefficients.
However, it is enough to say that at ξ = 0 there exist finite
solutions �(x) and �(x), which lead to some finite integrals
with x2 and x in the [−1,1] range. Then, we have a qualitative
answer

σ‖ = σ1f

(
T

εF

)
c1,

σ⊥ = σ1ξ
2f

(
T

εF

)
c2,

(55)

where c1 and c2 are constants of the order of unity. Then, the
conductivity ratio takes the form

σ‖ξ 2

σ⊥
= c1

c2
+ O(ξ 2), ξ � 1. (56)

The above results are summarized in Fig. 8.

V. CONCLUSIONS

The results of this work can be summarized as follows.
We have rigorously studied the conductivity of isotropic and
anisotropic weakly disordered WSMs in two important limits:
short- and long-range disorder (p0 � or � max{T ,εF}/v‖).
With the help of the diagrammatic approach, we have been able
to justify the applicability of the Fermi-liquid theory to WSMs.
The disorder potential was assumed to have a general form.
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We have found that short- and long-range disorder leads to
different temperature dependences of the conductivity. In the
case of short-range disorder, we have discovered that uniaxial
anisotropy leads to even different temperature dependences of
the longitudinal and transverse conductivities. In contrast, the
long-range disorder yields identical temperature dependences
of conductivity components, σ‖,⊥ ∼ T 4, for T � εF.

We have also explored the dependence of the conductivity
tensor on the anisotropy parameter ξ and established general
scaling relations in the cases of strong and weak anisotropy. We
have managed to compute analytically the geometric factors
for the conductivity tensor in the limit of strong ξ � and weak
ξ ≈ 1 anisotropy.

The recent experimental data on WSMs makes it possible
to estimate the Fermi velocities and Fermi energies for typical
samples. For example, for both Na3Bi [7] and Cd3As2 [8],
the Fermi velocity ratio is ξ ≈ 4; thus the regime ξ � 1
is realized and the anisotropy of the conductivity should be
clearly pronounced (∼ξ 2). The Fermi energy takes values in
the 100–1000 K range. Therefore, depending on the disorder
correlation length, results (49) or (43) should be applicable.

We note that a similar problem of conductivity in
anisotropic media was addressed long ago in Ref. [40]. Our
treatment is different in the following way. The authors of
Ref. [40] solve an anisotropic Dyson equation (Eqs. (7) and
(8) in Ref. [40]) similar to our Eq. (25). The authors expand the
vertex in spherical harmonics and discard the harmonics with
l > 1. The intuitive argument (similar to an inductive proof)
is then put forward to argue that the error due to such step is
not too large. The authors then strengthen their argument with
the discussion of a specific exactly solvable model potential in
the Appendix. In this paper, we do not use such a truncation.
We effectively sum up all the harmonics by solving the full
system of Dyson equations (F13) in several limiting cases.

The approach developed and the results obtained provide
a good basis for further progress in the field of transport
phenomena in 3D systems with Dirac points in their energy
spectrum.
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APPENDIX A: EXPRESSION FOR THE
POLARIZATION OPERATOR

In order to work out the polarization-operator diagram
in Fig. 3 (left or right), we follow the scheme proposed by
Eliashberg [38]. To build an analytical continuation of the
expression for the Matsubara polarization operator, we need
to establish the analytical properties of the vertex function
Jα(z,z + iωn,iωn; p) in the whole domain of the complex
variable z. This is done via the Lehman representation and
it was discussed in detail in, e.g., Ref. [39].

The conclusion is that the domain of analyticity of Jα(z,z +
iωn,iωn; p) is a complex plane with two horizontal cuts:
Im(z + iω) = 0 and Im(z) = 0. Since we need a retarded
vertex function, we put ωn > 0. Next, the three vertex
functions are defined in accordance with the structure of the
cuts

JRRR
α (z,z + iω,iω) if Imz > 0,

JARR
α (z,z + iω,iω) if − iωn < Imz < 0,

JAAR
α (z,z + iω,iω) if Imz < −iωn.

(A1)

The general expression for �αβ(iωn) then becomes

�αβ(iωn) = −T
∑
εk

Jα(iεk,iεk + iωn,iωn; p)G(iεk + iωn,p)jβG(iεk,p)

= −
∮

C

dε

4πi
tanh

ε

2T
Jα(ε,ε + iωn,iωn; p)G(ε + iωn,p)jβG(ε,p). (A2)

The contour C is shown in Fig. 9. As usual, the integral over the large circle vanishes and we are left with integrals over different
branches

�αβ(iωn) =
∫ ∞

−∞

dε

4πi
tanh

ε

2T

{
JRRR

α (ε,ε + iωn,iωn; p)GR(ε + iωn,p)jβGR(ε,p)

− JARR
α (ε,ε + iωn,iωn; p)GR(ε + iωn,p)jβGA(ε,p) + JARR

α (ε − iω,ε,iωn; p)

× GR(ε,p)jβGA(ε − iωn,p) − JAAR
α (ε − iωn,ε,iωn; p)GA(ε,p)jβGA(ε − iωn,p)

}
. (A3)

195117-9



YA. I. RODIONOV, K. I. KUGEL, AND FRANCO NORI PHYSICAL REVIEW B 92, 195117 (2015)

Making the analytic continuation iωn → ω + i0, we obtain

�R
αβ(ω) = −v2

‖ tr
∫

dε

4πi

dp
(2π )3

{
GA(ε,p)JARR

α (ε,ε + ω,ω; p)GR(ε + ω,p)σβ

[
tanh

ε + ω

2T
− tanh

ε

2T

]

+GR(ε,p)JRRR
α (ε,ε + ω,ω; p)GR(ε + ω; p)σβ tanh

ε

2T
− GA(ε,p)JAAR

α (ε,ε + ω,ω; p)GA(ε + ω,p)σβ tanh
ε + ω

2T

}
.

(A4)

Here, the vertex functions Jα are defined diagrammatically in Fig. 3(c). They obey the Dyson equation presented in a diagrammatic
form in Fig. 4. The disorder is static and does not cause a change of frequency in the diagrammatic loops. Thus, the Dyson
equation takes an especially elegant form:

Jα(iεk,iεk + iωn,iωn; q) = σα + nimpu
2
0

p6
0

∫
dp

(2π )3
g′

q−p,n0
G(iεk,p)Jα(iεk,iεk + iωn,iωn; q)G(iεk + iωn,p). (A5)

We are interested in the zero-frequency response of the system and set the external frequency ω = 0. After the analytic
continuation, the vertex function is split into RRR, AAR, and ARR parts:

JARR
α (ε,q) = σα + nimpu

2
0

p6
0ξ

2

∫
dp

(2π )3
g′

q−p,n0
GA(ε,p)JARR

α (ε,p)GR(ε,p),

J RRR
α (ε,q) = σα + nimpu

2
0

p6
0ξ

2

∫
dp

(2π )3
g′

q−p,n0
GR(ε,p)JRRR

α (ε,p)GR(ε,p),

JAAR
α (ε,q) = σα + nimpu

2
0

p6
0ξ

2
+

∫
dp

(2π )3
g′

q−p,n0
GA(ε,p)JAAR

α (ε,p)GA(ε,p).

(A6)

The learned reader already knows that only the JARR (so
called singular) vertex undergoes a strong (nonperturbative)
renormalization due to the interaction with impurities, while
the other two exhibit weak perturbative corrections. The reason
is, of course, the position of the poles of the Green’s functions.
Since we claim some rigor, we discuss this issue in detail in
Appendix B.

APPENDIX B: ONE-LOOP STRUCTURE
OF THE GREEN’S FUNCTION

General expression

The general expression for the one-loop self-energy reads

�R(ε,q) = nimpu
2
0

p6
0ξ

2

∫
dp

(2π )3

ε + v‖pσ

(ε + i0)2 − v2
‖p2

g′
q−p,n0

(B1)

and its imaginary part

Im �R(ε,q) = − nimpu
2
0ε

2

4πv3
‖p

6
0ξ

2

∫
(1 + nσ )g′

q− εn
v‖ ,n0

d�

4π
. (B2)

The self-energy has the following tensor form:

�R(ε,q) = α(ε,q) + β(ε,q)σ − i

2τ (ε,q)
− iσ s(ε,q)

2τ1(ε,q)
, (B3)

where s and β are vectors in the (q,n0) plane and

α

ε
,
|β|
ε

∼
(

p0v‖
ε

)2 min{p0v‖,ε}
ε

1

ετ
� 1. (B4)

For the case of isotropic potential, the anisotropic short-
range potential (p0 � pε) and anisotropic long-range potential

(p0 � pε), vector s ≡ n, and the scattering rates τ and τ1 are
immediately extracted and presented in Eq. (24).

As is seen from the structure of the integrals (B1) and (B2),

τ (ε,−q,θ ) = τ (ε,q,θ );

s(ε,−q,θ )

τ1(ε,−q,θ )
= − s(ε,q,θ )

τ1(ε,q,θ )
.

(B5)

Here θ is the angle between q and n0 and the parity relation
(B5) follows from the measure invariance under the change
θ → π − θ, ϕ → ϕ + π .

Now we may write the Green’s function in the standard
way:

GR(ε,q) = ε − α + i
2τ

+ σ
(
q + β − is

2τ1

)
(
ε − α + i

2τ

) − (
q + β − is

2τ1

)2 . (B6)

In a typical computation, we need to integrate prod-
ucts of the type GR(ε,q)GR(ε,q), GA(ε,q)GA(ε,q), and
GA(ε,q)GR(ε,q) over the momentum q ∈ (−∞,∞). There-
fore, we need to know the position of the poles of the Green’s
function in the q domain.

The retarded function GR(ε,q) obeys the causality condi-
tion, which means that its poles, defined by the equation

det[ε − v‖qσ − �R(ε,q)] = 0, (B7)

lie in the lower half plane of the complex variable ε, i.e.,

1

τ (ε,ε,θ )
+ ns(ε,ε,θ )

τ1(ε,ε,θ )
> 0 (B8)

for any ε and θ ; n stands for q/q. Since we need the position
of the poles in the q plane, we solve the spectral equation (B7)
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q

−ε ε

q

ε

−ε

q

GR(ε, q) GR(ε, q)GR(ε, q)

GA(ε, q)GR(ε, q)

(a) (b)

(c)

FIG. 10. Poles of (a) GR(ε,q), (b) GR(ε,q)GR(ε,q), and (c)
GA(ε,q)GR(ε,q), in the q plane.

for q and obtain two roots. Their imaginary parts are

Im q(ε) = ±
[

1

2τ (ε,±ε,θ )

]
− s(ε,±ε,θ )n

2τ1(ε,±ε,θ )
. (B9)

Using (B5) and (B8), we see that the position of the poles of
GR(ε,q) in the complex plane q is always such as depicted in
Fig. 10(a). The poles of GR(ε,q)GR(ε,q) and GA(ε,q)GR(ε,q)
are sketched in Figs. 10(b) and 10(c). Now, we see that while

integrating the product GRGR or GAGA over q the contour
of integration can be deformed to pass far from the poles.
When integrating the product GAGR , the contour is squeezed
between the nearby poles and the deformation is no longer
possible, leading to their enhanced contribution.

APPENDIX C: DYSON EQUATION

1. Structure of J AR R(ε, p)

In order to find the conductivity, we need to solve the Dyson
equation for the vertex function JARR(ε,p) at p = ε/v‖ as well
as explore its asymptotic behavior at p → ∞ (to justify the
Fermi-liquid approach). The asymptotic behavior is easier to
extract focusing now on the isotropic potential. This allows
us to capture all the principal details and avoid unnecessary
complications due to uniaxial anisotropy.

The ansatz for the vertex comprises only three vertices
[Eq. (26)]. However, in formula (26) the vertex is taken on
a mass shell at p = pε = ε/v. Here we consider a complete
vertex

J(ε,q) = J1(ε,q)σ + J2(ε,q)
pεq
q2

+ J3(ε,q)
q(qσ )

q2
. (C1)

For brevity, we will omit the energy symbol ε in J (ε,q) ≡ J (q)
to restore it later. Using the identity [ε + vpσ ]σ [ε + vpσ ] =
(ε2 − v2p2)σ + 2vp[ε + vpσ ], we obtain the equation

J1(q)σ + J2(q)
pεq
q2

+ J3(q)
q(qσ )

q2

= σ + nimpu
2
0

p6
0

∫
dp

(2π )3
gq−p

×
J1(p)

[(
p2

ε− p2
)
σ + 2p(pε + pσ )] + J2(p)pεp

p2

[
p2

ε + p2 + 2pε(pσ )
] + J3(p) p

p2

[(
p2

ε + p2
)
(pσ ) + 2pεp

2
]

[(
ε + i

τ (ε,p)

)2 − (
vp − i

τ1(ε,p)

)2][(
ε − i

τ (ε,p)

)2 − (
vp + i

τ1(ε,p)

)2] . (C2)

For the integral (C2) to converge, the vertices J1,2,3(p) must
be bounded when p → ∞. As in the expression for the
conductivity, the integrand has a sharp peak at p = pε of
width �p ∼ 1/(vτ ) near the Fermi surface. Generally, we
cannot restrict the computation of the integral by expanding
the integral near the Fermi surface. Such an expansion leads
to a significantly deformed integrand [see Fig. 11(a)]. First,
however, we discuss the vertex at p = pε.

2. On-shell vertex: J ARR(ε, pε)

If we are interested in the value of J1,2,3 at p = pε then the
range of momentum integration is the sphere of convergence
of the disorder structure factor g, namely the sphere of radius
p0 with the center at the external momentum q = pεn. There
are two distinctive contributions. The first one comes from
the integration inside the small sphere: |p − npε| � 1/(τv),
where the integrand is peaked due to the proximity of the
poles of GAGR; the second one comes from a thick shell
|1/(τvf)| � |p − pεn| � p0. Alternatively, one can think of
the first contribution as the one coming from the singularities
of GRGA and the second from the singularities of gnpε−p.

Simple estimates give∫
|p−npε |� 1

τv

dpGA(p)JαGR(p)gnpε−p ∼ τε
pε

v2
Jα(pε)gpε

,

(C3)∫
1
τv

�p�|pεn+n′p0|
dpGA(p)JαGR(p)gnpε−p ∼ p3

0

ε2
gp0 .

Comparing the two contributions, we see that if the disorder
cutoff p0 is not too high, the contribution from the thick shell is
1/(τε) × (p0/pε)3 smaller than the one from the small sphere
due to the GRGA product. Therefore, one can indeed discard
the contribution from the shell |1/(τv)| � |p − pεn| � |p0|
(or equivalently, the contribution from the poles of the potential
gnpε−p). Thus, in the leading order of the 1/(τε) expansion,
one can take into account only the poles of the GRGA term.

3. Vertex J AR R(ε, p) at p → ∞
The same logic of estimates holds for the large p behavior

of the vertex. We now plug ansatz (27) into the Dyson equation
(A6) and employ the estimates (C3), modified for the external
momentum q � pε, p0. The computation is simple though
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(a)

(b)

pε

p

px

pz

1
τv

p0

npε

py

θθ
π

FIG. 11. (Color online) (a) Approximate integrand GR(p,θ )GA

(p)p2
εgpε (n−n′) (transparent) versus the exact one GR(p,θ )GA

(p,θ )gq−pp
2 (solid), for a typical potential. (b) The range of

integration over p. The transparent region (radius p0) corresponds
to the smaller contribution.

tedious. Solving the system of self-consistent equations, one
arrives at the following asymptotics

J1(q) = 1 + β1gq

p2
ε

p2
0

J,

J2(q) = β2
q

pε

p0∂qgq

p2
ε

p2
0

J,

J3(q) = β3gq

p2
ε

p2
0

J,

(C4)

where J ≡ J1(pε) + J2(pε) + J3(pε) and β1,2,3 are constants
of the order of unity. We see that the estimate for the vertex in
the isotropic case can be rewritten as

J(q) − σ ∼ rg(q), (C5)

where r is some restricted vector function of the momentum
q. Therefore, the renormalized current vertex J(q) approaches
the bare one σ at large momenta q with the rate proportional
to the structure factor g(q).

4. On-shell Dyson equation

Now we are able to write down the Dyson equation in
a somewhat simplified form performing integration over the
absolute value of the momentum. As was argued previously,
the most important contribution comes from the peak in
the GRGA product at p′ = pε. Therefore, we put p′ in the
argument of J(ε,p′n′) and g′(p − p′n′,p0) inside the integral
equation (A6) equal to pε. Moreover, we take into account
the fact that in all the limiting cases considered (isotropy,
anisotropy with short- and long-range disorder) the Green’s
function assumes a simplified form (23) rather than (B6)
(see Appendix F). Changing p2 = ζ, dp = v‖dζ/2ε, and
changing the lower limit of integration to −∞, we perform
the integration∫ ∞

0

p2dp[(
ε + i

2τ

)2 − v2
‖
(
p − i

2τ1

)2][(
ε − i

2τ

)2 − v2
‖
(
p + i

2τ1

)2]
= π

2v3
‖

1
1
τ

+ 1
τ1

. (C6)

This way we arrive at the Dyson equation (25) and (37) for the
modified vertex.

APPENDIX D: ESTIMATE OF THE REGULAR
TERM IN CONDUCTIVITY

Thanks to the factor ε2 − p2 in the nominator of (16) we
can substitute

(p2 − ε2)GA(ε,p) ≈ (ε + pσ )

[
1 + O

(
1

ετ

)]
, (D1)

and the contour of integration is no longer squeezed between
the proximate poles of the product GRGA. The path therefore
can be deformed in any suitable way. Estimating at p ∼
max{pε,p0}, GRGA ∼ 1/ε2, we obtain

I ∼ δαβ | max{pε|J(ε,pε) − σ |,p0|J(ε,p0) − σ |} 1

v2
. (D2)

On the other hand, the convergent expression II is completely
determined by the behavior of JARR

α (ε,p) in the vicinity of
the peak and one can substitute Jα(ε,p) with Jα(εF,pF). The
integral is then estimated as

II ∼ δαβ |J(ε,pε) − σ |ε
2τ

v3
. (D3)

Combining Eqs. (D3) and (C5), we obtain relation (17).

APPENDIX E: CONDUCTIVITY, SHORT-RANGE
POTENTIAL

In the δ-correlated (momentum-independent) case, the
vertex functions � and � are angle-independent and, as
follows from Eq. (25),

�(nn0) ≡ �0 = 3τ

2
, �(nn0) = 0. (E1)

In the case of small momentum-dependent correction to
form factor (41), these also acquire small angle-dependent
corrections

�(nn0) = �0 + δ�(nn0), �(nn0) = δ�(nn0) (E2)
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of the order of (pε/p0)2. Thus, the formula for the conductivity
[see Eq. (39)] becomes

σαβ = σ

(
δαβ + δ�0 − δ�2

4τ
δαβ

+ 3δ�2 − δ�0 + 2δ�1

4τ
n0αn0β

)
, (E3)

where (δ�n,δ�n) = ∫ 1
−1(δ�,δ�)xn dx. Now δ�n and δ�n are

easily extracted perturbatively from the Dyson equation (see
the next appendix for details). The corrections can be written
as

δσ⊥ = ξ 2σ
δ�0 − δ�2

4τ
,

δσ‖ = σ
δ�2 + δ�1

2τ
.

(E4)

We thus obtain the conductivity as a function of the energy

δσ⊥ = −σ
ξ 2

5

p2
ε

p2
0

∂g

g
(1 + 4ξ−2),

δσ‖ = −σ
ξ 2

15

p2
ε

p2
0

∂g

g
(7 + 8ξ−2).

(E5)

Plugging these into (14), we determine the temperature
dependence of the conductivity (42).

APPENDIX F: SOLUTION OF THE ANISOTROPIC
DYSON EQUATION

1. Short-range potential

We now need to compute the anisotropic corrections to the
spherically symmetric self-energy. From the structure of (B2),
we see that we need to compute the following averages:

nimpε
2

4v3
0πξ 2

∫
d�′

4π
g′

pε(n−n′),n0
n = − ∂g(0)p2

ε

3τp2
0

[(1 − ξ−2)(nn0)n0 + ξ−2n],

(F1)
nimpε

2

4v3
0πξ 2

∫
d�′

4π
g′

pε(n−n′),n0
nαnβ = 1

6τ

(
δαβ

[
1 + ∂g(0)p2

ε

p2
0

{
(1 − ξ−2)(nn0)2 + 12 + 9ξ−2

5

}]
+ 2∂g(0)p2

ε

5p2
0

(1 − ξ−2)(nn0)n0αn0β

)
.

Therefore, we see that the self-energy retains its isotropic form
with the corrections to the scattering times:

δ
1

τ
= 1

τ

∂g(0)p2
ε

p2
0

(
(1 − ξ−2)

[
(nn0)2 + 1

3

]
+ 2ξ−2

)
,

(F2)

δ
1

τtr
= 1

τ

∂g(0)p2
ε

p2
0

(
5

3
(1 − ξ−2)(nn0)2 + 1 + 7ξ−2

3

)
.

Following the same steps as in the isotropic case, we arrive at
the following equations for the vertex functions:

δ�(x) = −2τ

5
∂g(0)

p2
ε

p2
0

(1 + 4ξ−2) + δ�0 − δ�2

4
,

(F3)

δ�(x) = −8τ

15
∂g(0)

p2
ε

p2
0

(1 − ξ−2)x + δ�0 + δ�1

2
x.

Solving Eqs. (F3) in a self-consistent way, we find

δ�0 = −6

5
τ (1 + 4ξ−2)∂g(0)

p2
ε

p2
0

,

δ�2 = −2

5
τ (1 + 4ξ−2)∂g(0)

p2
ε

p2
0

,

δ�1 = − 8

15
τ (1 − ξ−2)∂g(0)

p2
ε

p2
0

.

(F4)

From the last equations, we easily recover Eqs. (E5).

2. Long-range disorder

Expanding in the scattering angle, we have

(n − n′)n0 = (1 − cos θ ′) cos θ + sin θ ′ sin θ cos ϕ

≈ θ ′ sin θ cos ϕ,

(n − n′)2 = 2 − 2 cos θ ≈ θ ′2,

do′ = sin θ ′dθ ′dϕ ≈ θ ′dθ ′dϕ.

(F5)

Next, we extend the upper limit of integration over θ ′ to +∞,
and we obtain

Im �(ε,pεn)

= − nimpε
2u2

0

4πv3
‖p

6
0ξ

2

∫ 2π

0

dϕ

2π

⎛
⎝1 + σxθ

′ cos ϕ

1 + σyθ
′ sin ϕ

1 − σz
θ ′2
2

⎞
⎠ ∫ ∞

0

θ ′dθ ′

2
g

×
(

p2
ε θ

′2

p2
0

[(1 − ξ−2) sin2 θ cos2 ϕ + ξ−2]

)

= − 1

2τ (nn0)
+ σn

2

(
1

τ (nn0)
− 1

τtr(nn0)

)
. (F6)

In addition to (24), we will need one more scattering time:

1

τtr0 (ε)
= nimpε

2u2
0

2πξ 2v3
‖p

6
0ξ

2

∫
d�
4π

g′
pε(n−n′),n0

(1 − cos θnn′) cos2 ϕ

(F7)

(see Fig. 6 for the definition of the angle ϕ). To obtain
the explicit formulas for all scattering times, we expand the
argument of g′

pε(n−n′),n0
and integration domain d�.
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Introducing the notation

1

τ0(ε)
= κ2 ε2nimpg0u

2
0

8πv3
‖p

6
0

,

(F8)
�(θ ) ≡ �(nn0) = [(ξ 2 − 1) sin2 θ + 1]1/2,

where g0 is defined after Eq. (45), we obtain results for the
cross sections:

1

τ (nn0)
= 1

τ0

1

�(nn0)
,

1

τtr0

= κ2ξ 2

4

g1

g0τ0

1

�3(nn0)
, (F9)

1

τtr(nn0)
= 1

τtr0 (nn0)
[�2(nn0) + 1].

[Here g1 is defined after Eq. (32).] As one can see from the
expression for Im � (F6), the Green’s function retains its
simple structure (23). One needs to pay particular attention
to the fact that the scattering time is now a function of
the direction of the incoming particle with respect to the
anisotropy axis. Now we plug the Green’s functions (23) and
ansatz (38) into the Dyson equation (37). The most obvious
step in solving the Dyson equation (37) is to take the zero
order in the κ expansion and to set n′ = n in the peaked
integrand. One immediately arrives at an algebraic equation
for all the constants. Despite the fact that one is able to
immediately obtain some of the vertices—I1 = 1, I5 = I7 =
0—we also obtain a meaningless equation I2 = I3 = 1 + I2

and the vertices I4, I6 remain undefined. This is a signature
of the fact that one needs to take the next term in the κ

expansion. The κ expansion in turn leads to the emergence of
the derivatives of functions I in the structure of the equation.

We use the commutation relation and find (1 + nσ )σ (1 +
nσ ) = 2n(1 + nσ ):

(1 + n′σ )I(1 + n′σ )

= 2(I1 + I2 + I3 + I5n′n0)n(1 + n′σ )

+ 2(I4 + +I6 + I7n′n0)n0(1 + n′σ ).

(F10)

Whenever necessary, we expand

n′ = n + δn,

I (n′n0) = I (nn0 + δnn0)

= I (nn0) + n0δn∂nn0I (nn0)

+ (n0δn)2

2
∂2

nn0
I (nn0) + · · · . (F11)

Next, we perform the integration over angles:

nimpu
2
0ε

4v3
‖p

6
0ξ

2π

∫
d�′

4π
g′

pε(n−bn′),n0
δn = − n

2τtr
,

nimpu
2
0ε

2

4v3
‖p

6
0ξ

2π

∫
d�′

4π
g′

pε(n−bn′),n0
δnαδnβ

(F12)

= 1

τtr0

[�2δαβ − (ξ 2 − 1)n0αn0β − ξ 2nαnβ

+ (ξ 2 − 1)(nn0)(n0αnβ + nαn0β)].

The Dyson equation is split into seven differential equations.
In terms of �(x) and �(x), we rewrite it as follows:

I1

(
2

τ
− 1

τtr

)
= 1 + 2�2

τtr
�,

I2

(
2

τ
− 1

τtr

)
= �

(
1

τ
− 1

τtr

)
− x�′

(
2

τtr0

+ 1

τtr

)

+ 1

τtr0

�′′(1 − x2) + I5
x

τ
,

I3

(
2

τ
− 1

τtr

)
= �

(
1

τ
− 2

τtr
− 2ξ 2

τtr0

)
− x�′

(
4

τtr0

+ 1

τtr

)

+ 1

τtr0

�′′(1 − x2) + I5
x

τ
,

I4

(
2

τ
− 1

τtr

)
= 2

τtr0

[�(ξ 2 − 1)x + �′] + �

(
1

τ
− 1

τtr

)

− x� ′
(

2

τtr0

+ 1

τtr

)
+ 1

τtr0

� ′′(1 − x2),

I5

(
2

τ
− 1

τtr

)
= 2

τtr0

[�(ξ 2 − 1)x + �′],

I6

(
2

τ
− 1

τtr

)
= 2

τtr0

�′ + 1

τ
� − x

τtr
� ′ + 1

τtr0

� ′′(1 − x2),

(
2

τ
− 1

τtr

)
I7 = − 2

τtr0

�(ξ 2 − 1) + 2

τtr0

� ′. (F13)

Summing up the equations, we obtain (45).
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