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The random long wave runup on a beach of constant slope is studied in the framework of the rigorous
solutions of the nonlinear shallow water theory. These solutions are used for calculation of the statistical
characteristics of the vertical displacement of the moving shoreline and its horizontal velocity. It is shown
that probability characteristics of the runup heights and extreme values of the shoreline velocity coincide in
the linear and nonlinear theory. If the incident wave is represented by a narrow-band Gaussian process, the
runup height is described by a Rayleigh distribution. The significant runup height can also be found within
the linear theory of long wave shoaling and runup. Wave nonlinearity nearshore does not affect the Gaussian
probability distribution of the velocity of the moving shoreline. However the vertical displacement of the
moving shoreline becomes non-Gaussian due to the wave nonlinearity. Its statistical moments are calculated
analytically. It is shown that the mean water level increases (setup), the skewness is always positive and
kurtosis is positive for weak amplitude waves and negative for strongly nonlinear waves. The probability of
the wave breaking is also calculated and conditions of validity of the analytical theory are discussed. The
spectral and statistical characteristics of the moving shoreline are studied in detail. It is shown that the
probability of coastal floods grows with an increase in the nonlinearity. Randomness of the wave field
nearshore leads to an increase in the wave spectrum width.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Giant surface waves approaching the coast frequently cause
extensive coastal flooding, destruction of coastal constructions and
loss of lives. Such waves can be generated by various phenomena:
strong storms and cyclones, underwater earthquakes, high-speed
ferries, aerial and submarine landslides. The most recent examples
of such events are the catastrophic tsunami in the Indian Ocean,
which occurred on 26 December 2004 (Lay et al., 2005;
Rabinovich and Thomson, 2007) and hurricane Katrina (28 August
2005) in the Atlantic Ocean (Kim et al., 2008). The rogue waves
frequently reported in the World Ocean including the North Sea
may induce the unusual and short-lived catastrophic flooding on
the coast (Didenkulova et al., 2006a; Kharif et al., 2009). The huge
storm in the Baltic Sea on 9 January 2005, which produced
unexpected long waves in many areas of the Baltic Sea (Tõnisson
et al., 2008), and the influence of unusually high surge created by
long waves from high-speed ferries in Tallinn Bay (Soomere, 2007;
Torsvik et al., 2009), should also be mentioned as examples of
regional marine natural hazards connected with extensive runup
of certain types of waves.

The prediction of possible flooding and properties of the water
flow on the coast is an important practical task for physical
oceanography and coastal engineering. That explains the multitude
of empirical formulas describing runup characteristics available in
the engineering literature (see, for instance, Le Mehaute et al., 1968;
Stockdon et al., 2006). For the most part these formulas are specific
for different geographic areas due to local characteristics of wave
regimes (wind direction, coastal effects of wave refraction and
diffraction). Numerical simulation of these processes should be
carried out within fully-nonlinear Euler or Navier–Stokes equations
including effects of wave breaking and dissipation in the near-
bottom boundary layer (Liu et al., 1995; Kennedy et al., 2000; Choi
et al., 2007, 2008; Fuhrman and Madsen, 2008). In the case of an
irregular incoming wave field such simulations are costly and
complicated and have only been undertaken with the use of
empirical assumptions (Massel, 1989).

This situation improves in the case of long non-breaking waves,
when the basic hydrodynamical model is based on nonlinear
shallow water theory. Analytical rigorous solutions of the nonlin-
ear shallow water system for wave runup are available for a beach
of constant slope in the vicinity of the shoreline (Carrier and
Greenspan, 1958). Using the Carrier–Greenspan approach various
solutions of the nonlinear problem have been obtained and
actively used in the study of runup of different incident wave
shapes: sine wave (Carrier and Greenspan, 1958; Pelinovsky and
Mazova, 1992; Massel and Pelinovsky, 2001; Madsen and
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Fuhrman, 2008), cnoidal wave (Synolakis et al., 1988), soliton
(Pedersen and Gjevik, 1983; Synolakis, 1987; Kânoğlu, 2004), sine
pulse (Mazova et al., 1991), Lorentz pulse (Pelinovsky and Mazova,
1992), Gaussian pulse (Carrier et al., 2003; Kânoğlu and Synolakis,
2006), N-waves (Tadepalli and Synolakis, 1994), nonlinear de-
formed waves (Didenkulova et al., 2006b), symmetrical bell-
shaped waves (Didenkulova et al., 2008b) and “characterized
tsunami waves” (Tinti and Tonini, 2005). Nevertheless, all these
solutions are deterministic.

However real long wave records are irregular, and even tide-
gauge records of tsunami waves, which have deterministic origin,
show an irregular structure of the wave field, determined by
processes of wave diffraction, refraction and scattering: see Fig. 1,
which demonstrates the tide-gauge record of the 1883 Krakatau
tsunami in South Georgia Island in the Atlantic (Pelinovsky et al.,
2005). These effects are even more apparent for infragravity and
edge waves and storm surges (Rabinovich, 1993). The numerous
experimental studies of wave runup on a beach in natural
conditions also demonstrate an irregular character (Bowen et al.,
1968; Huntley et al., 1977; Guza and Thornton, 1980; Holman and
Sallenger, 1985; Holman, 1986; Raubenneimer and Guza, 1996;
Raubenneimer et al., 2001).

The first attempt to study the runup of irregular waves on a beach
of constant slope in the context of nonlinear shallowwater theory has
beenmade in Didenkulova et al. (2008a), exploring the statement that
extreme runup characteristics (maximum runup and rundown
heights and maximum runup and rundown velocities of the
shoreline) in linear and nonlinear theories coincide (Carrier and
Greenspan, 1958; Synolakis, 1991; Didenkulova et al., 2007, 2008b). It
follows from this statement that statistical distributions of extreme
runup characteristics can be found from the linear theory. It has been
shown in Didenkulova et al. (2008a) that for an incident wave field
represented by narrow-band Gaussian process, extreme runup
characteristics can be described by the Rayleigh distribution even in
the nonlinear problem.

In this manuscript we study detailed statistical characteristics of
the moving shoreline (vertical displacement and horizontal
velocity). The main result here is that the statistical moments of
the vertical displacement of the moving shoreline are modified by
the wave nonlinearity in the nearshore zone. The paper is
organized as follows. The rigorous solutions describing the
nonlinear dynamics of the moving shoreline in the context of the
nonlinear-shallow water theory are given in Section 2. It is shown
that extreme values of the runup height in linear and nonlinear
theories coincide, and therefore, the statistical distribution of runup
heights does not change in consequence of wave nonlinearity. In
the case of the narrow-band Gaussian processes the runup height

distribution is described by the Rayleigh law. Statistical moments
of runup characteristics (vertical displacement and velocity) are
calculated in Section 3. The wave nonlinearity perturbs the
moments of the displacement of the moving shoreline being
away of a Gaussian distribution: the mean water level on the coast
increases, the skewness grows monotonically with an increase in
wave amplitude. The kurtosis is positive for weak amplitude waves
and negative for large amplitude waves. In Section 4 statistical
characteristics of the narrow-band dynamics of the moving
shoreline are studied. The probability characteristics of the wave
breaking are also calculated here and conditions for validity of the
analytical theory are discussed. The probability of the narrow-band
runup process resulting in coastal floods is studied in Section 5. It
is shown that the probability grows with an increase in the
nonlinearity. In particular, the probability of unusual and short-
lived catastrophic flooding (freak wave appearance) is three times
larger for nonlinear than for linear waves. Spectral characteristics
of the runup of the monochromatic wave with random amplitudes
and phases are analyzed in Section 6. It is shown that nonlinearity
intensifies the generation of high harmonics and leads to the
increase in the runup spectrum width. The main results are
summarized in Section 7.

2. Theoretical model and distributions of extreme
runup characteristics

We use the 1D nonlinear shallow water theory for describing
runup of irregular waves on a beach. The basic equations are

∂η
∂t +

∂
∂x h + ηð Þu½ � = 0;

∂u
∂t + u

∂u
∂x + g

∂η
∂x = 0 ð1Þ

where η(x, t) is water displacement, u(x, t) is depth-averaged velocity,
h(x) is unperturbed water depth, g is gravity acceleration, x is a
coordinate, directed onshore, and t is time. The geometry of the
problem is presented in Fig. 2. Using the hodograph transformation
Carrier and Greenspan (1958) found rigorous analytical solutions to
the problem of wave runup on a beach of constant slope h(x)=−αx.
These solutions describe the wave field nearshore, including the
moving shoreline which determines the destructive power of the
wave impact on the beach. For the moving shoreline, the Carrier and
Greenspan method can be reduced to a two-step approach, described
in detail in Pelinovsky and Mazova (1992) and Didenkulova et al.
(2007, 2008b).

At the first step the linearized Eq. (1) is solved for given
characteristics of the incident wave, and the wave field (vertical
water displacement R(t) and horizontal velocity U(t)) at the
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Fig. 1. The tide-gauge record of the 1883 Krakatau tsunami in South Georgia Island.
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Fig. 2. The geometry of the problem.
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unperturbed shoreline (x=0) is defined. These characteristics are
related by Didenkulova et al. (2007)

U =
1
α
dR
dt

ð2Þ

At the second step we find characteristics of the moving shoreline
(vertical water displacement r(t) and horizontal velocity u(t)) in the
nonlinear problem with the use of a simple Riemann transformation
of time (Pelinovsky and Mazova, 1992; Didenkulova et al., 2007,
2008b)

u tð Þ = U t +
u
αg

� �
ð3Þ

r tð Þ = R t +
u
αg

� �
− u2

2g
ð4Þ

It is evident that functions r(t) and u(t) satisfy the same
kinematical relation (Eq. (2)). Solutions (3)–(4) are valid for both
deterministic and random functions R(t) and U(t), which are
determined by characteristics of the incident wave in the framework
of the linear theory (it reduces to the variable-coefficient wave
equation). The theory of linear differential equations with determin-
istic coefficients and random initial and boundary conditions is well
developed. That is why we do not analyze the influence of linear
shoaling and runup on the probability characteristics of the random
water waves here assuming the statistical properties of functions R(t)
and U(t) to be known.

A schematic example of linear and nonlinear motions of the
shoreline for modulated wave packet is presented in Fig. 3 (the
envelope frequency is 5 times less than the carrier frequency) in non-
dimensional variables. The nonlinear velocity wave has the shape of a
Riemann wave and differs strongly from the linear solution. The
nonlinear vertical displacement r(t) has a longer duration of runup
and a shorter duration of the rundown stages than a linear one. Also
the difference is larger for waves of large amplitude.

It follows from Eqs. (3) and (4) that extreme runup characteristics
in linear (R(t) and U(t)) and nonlinear (r(t) and u(t)) theories
coincide (Carrier and Greenspan, 1958; Synolakis, 1991; Didenkulova
et al., 2007). This fact has been used by Didenkulova et al. (2008a)
where the random long wave runup on a beach within linear shallow
water theory has been studied. Since this problem is linear, statistical
properties of the wave field (type of distribution) do not change. For
example, if initial wave field is represented by a Gaussian stationary
random process, then the functions R(t) and U(t) are also represented
by Gaussian random processes, which should also be stationary from
the physical point of view. When the incident wave field has a
narrow-band spectrum, the height distributions of the incident wave
and functions R(t) and U(t) are described by Rayleigh distributions

(Massel, 1996). At the same time the processes of wave shoaling and
runup affect the parameters of the distribution. For example, the
significant runup height at the beach, Rs, for a narrow-band process is
the same as for a deterministic sine wave (Carrier and Greenspan,
1958; Synolakis, 1991; Didenkulova et al., 2007)

Rs =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πω0L

c0

s
As; c0 =

ffiffiffiffiffiffiffiffi
gh0

q
; h0 = L0 =α ð5Þ

where As is a significant amplitude, defined by the standard deviation
of the incident wave field As≈2σ, L0 is a distance from the point
where the incident wave field is defined (measured) to the shoreline,
and ω0 is a central frequency of the incident wave spectrum.

Thus, the Rayleigh probability distribution function P(R) and
probability density function f(R) for runup heights Rup have a form

P Rup

� �
= exp −2

Rup

Rs

� �2 !
; f Rup

� �
= 4

Rup

R2
s
exp −2

Rup

Rs

� �2 !
ð6Þ

It is obvious, that the same distribution (Eq. (6)) can be obtained
for rundown heights Rdown for the narrow-band process.

It follows from the coincidence of the runup heights in linear and
nonlinear theories, that the distribution of the real (nonlinear) runup
heights (extremes of r(t)) are described by the same Eqs. (5) and (6).
This was the main result of Didenkulova et al. (2008a).

3. Statistical moments of the moving shoreline

As it was shown above distribution of the extreme runup values
can be found from the linear theory. At the same time statistical
characteristics of the moving shoreline (vertical displacement and
horizontal velocity) require nonlinear theory.

Here we will calculate statistical moments of the velocity of the
moving shoreline, assuming the process to be ergodic and using time
averaging

b un
N =

1
T
∫T

0
un tð Þdt = 1

T
∫T

0
Un t +

u
αg

� �
dt; n = 1;2;3… ð7Þ

where T is the time of the record (the length of the realization). It is
convenient to introduce new variable

τ = t +
u tð Þ
αg

ð8Þ

In this case

dτ = dt 1 +
1
αg

du
dt

� �
ð9Þ

t

R
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(t
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U
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)

Fig. 3. Water displacement (left) and horizontal velocity (right) in nonlinear (solid lines) and linear (dashed lines) problems for modulated wave packet.
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and du /dt in Eq. (9) can be found exactly from Eq. (3)

du
dt

=
dU = dτ

1− gαð Þ−1dU = dτ
ð10Þ

Substituting Eq. (10) into Eq. (9) gives us the final expression for dt

dt = 1− gαð Þ−1dU = dτ
h i

dτ ð11Þ

and integral (7) becomes explicit

b un
N =

1
T
∫T

0
Un τð Þ 1− 1

gα
dU
dτ

� �
dτ ð12Þ

In the case of the stationary random process the second term in
Eq. (12) does not contribute into the integral, and

b un
N = bUn

N ð13Þ
as a result, the nonlinearity of the wave field nearshore does not
change the statistical moments of the velocity of the moving
shoreline, and distribution of u(t) is Gaussian if the incident wave,
described by Gaussian distribution. It is important to point out that
our results for velocity of the moving shoreline are similar to known
results for Riemannwaves in nonlinear acoustics, which are described
by Eq. (3) in time and space (Gurbatov et al., 1991).

Similar transformations can be done for statistical moments of the
vertical displacement of the moving shoreline r(t). The first moment
can be found from Eq. (4) with the use of Eq. (11)

b r N =
1
T
∫T

0
R t +

u
gα

� �
dt−b u2

N

2g

=
1
T
∫T

0
R τð Þdτ− 1

gαT
∫T

0
R τð Þ dU

dτ
dτ−bU2 N

2g

ð14Þ

Since R(t) is defined with respect to the mean sea level and the
mean sea level is constant in the linear theory, we can assume it to be
zero. In this case the first term in Eq. (14) is zero. The second term in
Eq. (14) can be integrated by parts, and the final expression for the
mean displacement of the moving shoreline is

b r N =
bU2

N

2g
ð15Þ

It follows from Eq. (15) that the nonlinearity leads to an increase in
themean sea level at the coast (setup) for any distribution of the wave
field. This effect has been noticed in experimental studies of longwave
runup on a beach (Bowen et al., 1968; Huntley et al., 1977;
Raubenneimer and Guza, 1996; Dean and Walton, 2009). Wave
periods in these studies varied from 10 s to 20 min. The wave setup on
a beach has been pointed out for all wave periods.

Using the same procedure the secondmoment of the displacement
of the moving shoreline can be found. After several mathematical
manipulations the expression it reduces to the following form

b r2 N = b R2
N −bU4 N

12g2
+

b RU2 N

g
ð16Þ

Since in the Gaussian case the functions R(t) and U(t) do not
correlate, the third term in Eq. (16) splits into bRU2N=bRNbU2N=0
and the second term can be expressed through the standard deviation
bU4N=3bU2N2. Eq. (16) transforms to

b r2 N = b R2
N −bU2N2

4g2
= σ2

R−brN2 ð17Þ

where σR is a standard deviation of water level oscillations at the
shoreline in the linear theory. Eq. (17) demonstrates that the

nonlinearity reduces the second moment of the vertical displacement
of the moving shoreline. The second central moment (variance) of the
vertical displacement of the moving shoreline is defined as

σ2
r = br2 N −brN2 = σ2

R−2brN2 ð18Þ

Omitting mathematical manipulations and again using assump-
tions of the Gaussian stationary process we can write expressions for
skewness and kurtosis in the final form

s =
b r−br Nð Þ3 N

σ3
r

=
8brN3

σ2
R−2brN2

	 
3=2 ð19Þ

k =
b r−br Nð Þ4 N

σ4
r

−3 =
brN2 4σ2

R−23brN2
� �
σ2
R−2brN2

	 
2 ð20Þ

It follows from Eq. (19) that the skewness is always positive. The
kurtosis can be positive or negative depending on the wave field
parameters. It demonstrates the non-Gaussianity of the vertical
displacement of the moving shoreline.

The statistical characteristics of the moving shoreline have been
measured by Huntley et al. (1977) at two Canadian beaches. Beach
1 was located 50 km northeast of Halifax and had a slope of 0.07.
Beach 2 was on the Gulf of Saint Lawrence coast of Cape Breton
Island and a slope of 0.12. For both beaches they have found that
the skewness is positive (equal to 0.2) and kurtosis is negative
(equal to −0.6) demonstrating that the runup process is not
Gaussian.

It follows from Eqs. (17)–(20) that the first four moments of r(t)
can be expressed through standard deviations σR and σU of the
random Gaussian functions R(t) and U(t), which do not correlate with
each other. In practice, the displacement of the moving shoreline R(t)
is usually measured and the shoreline velocity U(t) is computed using
Eq. (2). Thus, standard deviations σR and σR' (U=dR /dt) are assumed
to be known. As a result, Eqs. (17)–(20) can be expressed in a non-
dimensional form with the use of single parameter

Brσ =
σ2
R′

gα2σR
;

br N
σR

=
Brσ
2

;
σr

σR
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−Br2σ

2

s
ð21Þ

s =
Br3σ

1− Br2σ
2

h i3=2 ; k =
Br2σ 1− 23

16Br
2
σ

h i
1− Br2σ

2

h i2 ð22Þ

The physical interpretation of the parameter Brσ will be discussed
in the next section.

It should be noted here that Eqs. (21) and (22) do not use any
assumptions on spectral characteristics of the water waves.

4. Statistical characteristics of the narrow-band Gaussian process

Further simplifications can be achieved for narrow-band process-
es. In this case the rigorous expression for standard deviation of dR(t)/
dt through the correlation function K(t) (Kendall and Stuart, 1969)

dR
dt

� �2� �
= bR2

N
d2K
dτ2

j
τ=0

ð23Þ

can be reduced to

σR′ ≈ω0σR ð24Þ

As a result, all statistical moments can be expressed through the
significant runup height (Rs=2 σR) which is widely used in physical
oceanography and ocean engineering [we have used it in the Rayleigh
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distribution (Eq. (6))]. It is also convenient to re-express the
parameter Brσ

Br =
ω2Rs

gα2 ð25Þ

which is close to the theoretical breaking parameter used in the theory
of longwave runup of regular waves on a beach BrCG=ω2R/gα2, where
ω and R is a frequency and runup height of an monochromatic wave
(Carrier and Greenspan, 1958). It reflects the nonlinearity of waves:
BrCGbb1 corresponds to linear waves and increase in BrCG corresponds
to increase in the nonlinearity (wave amplitude) until BrCG=1,which is
the case of the first breaking of a sine wave. However, for the random
wave field the situation is principally different. We do not have
information about individual waves and know only general statistics of
the entire wave field. Moreover in this field there is always a nonzero
probability to get a high-amplitudewavewith BrCGN1. It is logical that if
the probability of wave breaking is low or in other words if there are
only a few such breaking waves we still can apply the shallow water
model to describe the total wave field. So, here the breaking parameter
Br [Eq. (25)] is a statistical parameter only and themain information on
wave breaking is contained in the probability function ofwave breaking
that is discussed below.

It is evident that

Br = 2Brσ ð26Þ

Final expressions for statistical moments of runup characteristics
in the case of narrow-band process are:

b r N =
ω2

0R
2
s

8gα2 =
BrRs

8
; σ2

r =
R2
s

4
1−Br2

8

 !
ð27Þ

s =
Br

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−Br2 =8

q
0
B@

1
CA

3

; k =
Br2 1−23 Br=8ð Þ2
� �
4 1−Br2 =8
	 
2 ð28Þ

Plots of the mean value, standard deviation, skewness and kurtosis
Eqs. (27) and (28) of the displacement of the moving shoreline for the
runup of narrow-band Gaussian irregular waves on a beach are
presented in Fig. 4 as functions of Br.

As it has been pointed out in the previous section the mean value
and skewness are always positive and increase with an increase in
breaking parameter, while the standard deviation decreases. The
kurtosis is positive for waves of weak amplitude and grows until
k≈0.27 (Br = 4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2= 19

p
≈1:3), then it decreases to zero (Br = 8 =ffiffiffiffiffiffi

23
p

≈1:7), starts to be negative and continue its rapid decrease down
to minus infinity. These conclusions are in agreement with experi-
mental results by Huntley et al. (1977), who obtained values 0.2 for
skewness and −0.6 for kurtosis. As it follows from Fig. 4 strongly
nonlinear waves (with large values of Br) should have positive
skewness and negative kurtosis. The experimental value of kurtosis
corresponds to Br=1.9 in our theory, that is also close to the value of
the breaking parameter Br=2.5, estimated in (Huntley et al., 1977). It
should be noted that the theoretical number BrCG=1 indicating the
first wave breaking, which for a regular monochromatic wave occurs
at the wave trough (Fig. 3), is not the best characteristics for
characterizing wave breaking in natural conditions. Concentrating in a
small area of the wave body usually this kind of wave breaking is not
visible in the natural conditions. That is also why Huntley et al. (1977)
considered these waves as non-breaking.

It should be mentioned, that the solutions obtained are valid only
for non-breaking waves. Eqs. (3) and (4) for large values of amplitude
give an ambiguous solution that physically means wave breaking.
Since waves of large amplitude always exist in the irregular wave
field, the obtained results cannot be valid for large values of Br. Some
restrictions on Br follow from Eqs. (27) and (28), where the dispersion
becomes zero for Br =

ffiffiffi
8

p
≈2:8 and skewness and kurtosis tend to

infinity, which does not have physical interpretation.
Necessary conditions for the validity of the shallow water theory

for irregular wave field can be obtained estimating the probability of
wave breaking. One of the conditions comes from Eq. (10), when the
denominator in Eq. (10) is zero, in other words when the random
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Fig. 4. Statistical moments of the runup characteristics of narrow-band Gaussian irregular waves.
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process dU/dt reaches the level of gα. In the case of a narrow-band
Gaussian incident wave field, the function dU/dt also is Gaussian with
a standard deviation ω0σU=ω0

2σR/α. In this case the probability that
dU/dtNgα (let us call it a notional probability of the wave breaking) is
simply

PBr =
1ffiffiffiffiffiffi
2π

p ∫
∞

1=Br

exp − ξ2

2

 !
dξ = 1−Φ 1= Brð Þ ð29Þ

where Φ is the standard Normal distribution function. The depen-
dence of the notional probability of the wave breaking (Eq. (29)) on
the parameter Br is shown in Fig. 5.

It follows from Fig. 5 that probability of wave breaking increases
with an increase in parameter Br and tends to the limiting value 0.5,
which means that only waves with positive values of dU/dt can
break. It is important to mention that probability of wave breaking is
small (below 5%) for Brb0.6, therefore effects of wave breaking can
be neglected in calculations of the statistical moments for these
values of Br.

5. Probability of coastal floods for the narrow-band
Gaussian process

As has been shown above, the velocity of the moving shoreline can
still be described by the Gaussian distribution if the wave field
offshore is also described by the normal distribution. At the same time
the displacement of the moving shoreline differs from the Gaussian
distribution. If the deviation is weak (small values of the parameter
Br), its probability density function can be found by a perturbation
technique based on the Gram–Charlier series of Type A (Kendall and
Stuart, 1969; Massel, 1996). A Gram–Charlier expansion of the
probability density function of displacement f(r) is of the form

f rð Þ = 1ffiffiffiffiffiffi
2π

p
σr

exp − r−b r Nð Þ2
2σ2

r

 !(
1 +

s
3!

H3
r−b r N

σr

� �

+
k
4!

H4
r−b r N

σr

� �
+ :::

) ð30Þ

where H(ρ) are the Hermite polynomials

H3 ρð Þ = ρ3−3ρ; H4 ρð Þ = ρ4−6ρ2 + 3 ð31Þ

This representation is used in oceanography for water waves,
when the wave field is close to Gaussian (Massel, 1996). We note that
there are several ways to represent perturbations of the Gaussian
distribution, for example the Gram–Charlier series based on direct
expansion in orthogonal polynomials or Edgeworth's series based on a
similar expansion resting on a Fourier transformation (Kendall and

Stuart, 1969). Both approaches lead to Eq. (30) if only two terms of the
series expansion are used.

Introducing non-dimensional displacement ξ and its probability
density function w

ξ =
r
Rs

; w ξ;Brð Þ = f rð ÞRs ð32Þ

and using Eqs. (27) and (28) the density w can be represented as
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ffiffiffiffiffiffiffi
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where

Ψ = 2ξ−Br
4
; Σ = 1−Br2

8
ð34Þ

The probability density function w is shown in Fig. 6 for several
values of the parameter Br. It is evident from Fig. 6 that w becomes
asymmetric and shifts towards large values of shoreline displacement
ξ with an increase in parameter Br. This again demonstrates that the
process of wave runup prevails over the wave rundown even in the
case when the incident wave is symmetrical with respect to the
horizontal axis. The amplitude of the central peak also grows when
the breaking parameter increases, suggesting that nonlinear waves
will cause higher flooding at the coast.

Given an approximation to the probability density function, an
approximation to the survivor function (the probability of exceeding a
specific level) can be found

W ξ;Brð Þ = ∫
∞

ξ

w z;Brð Þdz ð35Þ

Results are shown on Fig. 7. It can be seen from Fig. 7 that the
probability of appearance of high waves at the coast increases with an
increase in breaking parameter. Some quantitative information on the
exceedance probability of the displacement of the moving shoreline
for different values of breaking parameter is presented in Table 1.
There is a three-fold increase in the probability of exceedance of the
level r=2 Rs, when Br reaches 0.6. We note here that the case rN2 Rs
corresponds to the case of unexpected short-lived high waves (so-
called freak or rogue waves), which can appear both in the open sea
and in the coastal zone (Kharif et al., 2009). In this connection an
important result here is that the probability of freak wave appearance
grows with an increase in nonlinearity, being for example three times
larger for waves with Br=0.6 than for linear waves.
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Fig. 5. Probability of wave breaking as a function of wave breaking parameter Br.
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Fig. 6. Probability density function of the displacement of the moving shoreline for
Br=0 (solid line), Br=0.3 (dashed line) and Br=0.6 (dash-dotted line).
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An increase in theprobability of the large values of r(t) togetherwith
invariance of extreme values (runup and rundown heights) can be
interpreted as an increase in the total time during which wave runups
exceed a specific level. For example, if we talk about a one-day storm,
the duration of wave exceedance of the level Rs is 30 min for linear
waves and about 45 min for nonlinearwaves with Br=0.6. At the same
time exceedance of the level 2 Rs (“rogue wave” level) is 3 s only for
linear waves and 8 s for nonlinear waves. The exceedance of the level 2
Rs corresponds to appearance of rogue waves, which usually happen
suddenly and last for a very short time. Nearshore such waves are often
observed as large amplitude water splashes. Their descriptions can be
found in (Didenkulova et al., 2006a,b; Kharif et al., 2009).

A general conclusion is that the probability of coastal floods or
wave overtopping grows with the nonlinearity.

6. Spectral analysis of runup characteristics

If the wave approaching the coast is a monochromatic wave with
random amplitudes and phases, functions R(t) and U(t) can be
represented in the form

R tð Þ = R sin ω0t + ϕ−π
2

� �
;U tð Þ = V sin ω0t + ϕð Þ ð36Þ

where amplitudes R, V=ω0R /α and phase ϕ are random. For the
Gaussian process, the phase ϕ is distributed uniformly in the range
[0, 2π]

W ϕð Þ = 1
2π

ð37Þ

and amplitudes R and V have Rayleigh distributions (Eq. (6)).
The spectral representation of Eq. (3) is extensively used in

nonlinear acoustics (Gurbatov et al., 1991) and also for the long sea
surface waves (Zahibo et al., 2008); u(t) is represented as the Bessel–
Fubini series

u tð Þ = ∑Vn sin nω0t + ϕn½ �; where

Vn
2gα
ω0n

Jn
ω0nV
gα

� �
=
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nαBr
Jn nBr

R
Rs

� �
ð38Þ

Jn being a Bessel function of the n-th order. The vertical dis-
placement of the moving shoreline can be found by integration of
Eq. (38):

r tð Þ = R0 + ∑Rn sin nω0t + ϕn−
π
2

h i
; Rn =

2Rs

n2Br
Jn nBr

R
Rs

� �
ð39Þ

In the series (39) again the phase ϕ is distributed uniformly and
the amplitude of the linear displacement R is distributed by the
Rayleigh law (Eq. (6)). The zero harmonic R0 in Eq. (39) represents the
mean water level and can be calculated from Eq. (15):

R0 =
V2

4g
=

ω2
0R

2

4gα2 =
BrR2

4Rs
ð40Þ

If the breaking parameter Br is small, the spectral amplitudes Rn
can be expressed by the asymptotic expression

Rn

Rn0
=

R
Rs

� �n

ð41Þ

where

Rn0 =
Rs

nn!
nBr
2

� �n−1
ð42Þ

Using asymptotic Eqs. (41) and (42), we can find the approximat-
ed distributional properties and moments of the spectral amplitudes
analytically. Since from Eq. (39) the spectral amplitude Rn is a function
of R, its probability density function and distribution function follow
from those of R by

f Rnð Þ = f Rð Þ dR
dRn

; P Rnð Þ = P Rð Þ ð43Þ

where in the right-side of Eq. (43) R is expressed in terms of Rn with
the use of Eq. (39). As has been indicated above, P(R) and f(R) are the
Rayleigh distribution function and probability density function
respectively [Eq. (6)].

In the limit of weakly nonlinear waves (Eq. (41)) the probability
density function (Eq. (43)) simplifies to

f Rnð Þ = 4
nRn0

Rn

Rn0

� �2−n
n

exp −2
Rn

Rn0

� �2=n� �
ð44Þ

If n=1 Eq. (44) represents a classical Rayleigh distribution; for the
second harmonic (n=2) it is the exponential distribution. If nN2 the
probability density function decreases monotonically with the wave
amplitude and has a singularity in Rn=0. This asymptotic analysis is
illustrated in Fig. 8 for Br=0.1 for n=1, …, 4. Here Rn0 is determined
by

Rn0 =
2Rs

n2Br
Jn nBrð Þ ð45Þ

The same features of the probability density function can be also
observed for all values of the parameter Br≤0.6.

A similar analysis can be carried out for the distribution function of
Rn. In the limit of waves of weak nonlinearity it is described by

P Rnð Þ = exp −2
Rn

Rn0

� �2=n� �
ð46Þ

The distribution function decreases with the spectral amplitude
slower for higher numbers of harmonics (Fig. 9, left). This is also true
for waves of moderate amplitude (Fig. 9, right), when Eqs. (39) and
(45) are used. With an increase in the breaking parameter the
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Fig. 7. Survivor function for the displacement of the moving shoreline for Br=0 (solid
line), Br=0.3 (dashed line) and Br=0.6 (dash-dotted line).

Table 1
Exceedance probability for the displacement of the moving shoreline.

Br=0 Br=0.3 Br=0.6

r=Rs 2.28·10−2 2.66·10−2 3.05·10−2

r=2 Rs 3.17·10−5 4.87·10−5 8.73·10−5

r=3 Rs 9.87·10−10 2.86·10−9 7.39·10−9
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amplitude of the first harmonics slightly differs from the Rayleigh
distribution. It can be seen in Fig. 9 (right) for waves with Br=0.5.
Thus, we may conclude that the probability of appearance of spectral
harmonics decay with amplitude slower for higher harmonics.

The probability distribution of the zero harmonics R0 coincides
with the distribution of the second harmonics R2 in the limiting case of
weakly nonlinear waves (exponential distribution) and is not shown
in Figs. 8 and 9.

The randomness of the wave field nearshore influences the mean
values of the spectral amplitudes. In the case of weekly nonlinear
waves they can be calculated explicitly from Eq. (41)

Rn

Rn0

� �
= 4∫∞

0
ζn + 1 exp −2ζ2

� �
dζ =

m!
2m n = 2mffiffiffi

π
2

r
m + 1ð Þ!!

23m n = 2m + 1

8>><
>>:

ð47Þ

The mean values of spectral amplitudes increase with n. It follows
that on average nonlinearity increases spectral amplitudes and leads
to an increase in the wave spectrum width.

The same effects should also take place for narrow-band (or more
precisely, for any one-peak spectrum) Gaussian processes: the
nonlinearity leads to the generation of high and low-frequency
components and, therefore, increases the spectrum width. For
example, spectral broadening of the Riemann waves has been studied
in nonlinear acoustics (Pelinovskii, 1976).

7. Conclusion

The runup of random long non-breaking waves on a beach of
constant slope is studied in the context of nonlinear shallow water
theory. The exact analytical solutions obtained with the use of the
hodograph transformation allow study of the processes of shoaling
and runup of random (irregular) waves assuming that the incident
wave field is represented by a Gaussian stationary process.

Attention is concentrated on the nonlinear dynamics of the
moving shoreline. It is shown that the probability characteristics of
the runup heights and extreme values of the shoreline velocity
coincide in the linear and nonlinear theory, and therefore nonlinearity
does not influence the amplitude characteristics of the runup process.
If the incident wave field is represented by a narrow-band Gaussian
process, the runup height (amplitude) is described by a Rayleigh
distribution. Thus the significant runup height can also be found
within the linear theory of long wave shoaling in the coastal zone.

The moments of the runup distribution are calculated analytically.
Wave nonlinearity nearshore does not influence the probability
distribution of the horizontal velocity of the moving shoreline and
its moments, and it can be described by a Gaussian distribution.
However the vertical displacement of the moving shoreline becomes
non-Gaussian. In the case of a narrow-band process its statistical
moments are studied in relation to the breaking parameter Br. It is
shown that the mean water level increases with an increase in Br
(setup), while the standard deviation decreases. The skewness is
always positive and grows with Br. The kurtosis is positive for waves
of weak amplitude and grows until k≈0.27 (Br≈1.3), then it
decreases to zero (Br≈1.7), starts to be negative. These conclusions
are in agreement with experimental results by Huntley et al. (1977),
who obtained values 0.2 for skewness and −0.6 for kurtosis. The
experimental value of kurtosis corresponds to Br=1.9 in our theory,
which is also close to the value of the breaking parameter Br=2.5
estimated in Huntley et al. (1977).

The probability of wave breaking as a function of the breaking
parameter Br is also calculated. It does not exceed 5% for Brb0.6.

The probability density function of the vertical displacement of the
moving shoreline is found with the use of the Gram-Charlier series. It
is shown that the probability of coastal floods grows with an increase
in the nonlinearity. An important result here is that the exceedance of
the level r=2 Rs, which corresponds to the case of freak or rogue
waves (Kharif et al., 2009), increases by a factor of 3 in comparison to
the linear theory, when Br reaches 0.6.

An increase in the probability of large values of r(t) together with
an insensitivity of extreme values (runup and rundown heights) to
nonlinearity can be interpreted as an increase in the duration of wave
runup stage. For example, if we talk about one-day storm, the
duration of wave exceedance of the level Rs is 30 min for linear waves
and about 45 min for nonlinear waves with Br=0.6. At the same time
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Fig. 8. Probability density function of overtone amplitudes of the displacement of the
moving shoreline for Br=0.1, n=1 (solid line), n=2 (dashed line), n=3 (dash-dotted
line), n=4 (dotted line).
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exceedance of the level 2 Rs (“rogue wave” level) is 3 s only for linear
waves and 8 s for nonlinear waves. The exceedance of the level 2 Rs
corresponds to appearance of rogue waves, which usually happen
suddenly and last for a very short time. Nearshore such waves are
often observed as large amplitude water splashes. Their descriptions
can be found in Didenkulova et al. (2006a,b) and Kharif et al. (2009).

The spectral characteristics of the moving shoreline when the
approaching wave is a monochromatic wave with random amplitudes
and phases are also studied. In particular, the probabilities of spectral
amplitudes are calculated. In the limiting case of weakly nonlinear
waves the first harmonic is described by the Rayleigh distribution, the
second harmonic by an exponential distribution, and higher harmo-
nics by probability density functions with a singularity at R=0. It is
shown that the distribution functions decrease with the spectral
amplitude slower for higher harmonics. Randomness of the wave field
nearshore leads to an increase in the wave spectrum width.
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