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Abstract
In this paper we suggest generalizations of elliptic integrable tops to matrix-
valued variables. Our consideration is based on the R-matrix description
which provides Lax pairs in terms of quantum and classical R-matrices. First,
we prove that for relativistic (and non-relativistic) tops, such Lax pairs with
spectral parameters follow from the associative Yang–Baxter equation and
its degenerations. Then we proceed to matrix extensions of the models and
find out that some additional constraints are required for their construction.
We describe a matrix version of the 2 reduced elliptic top and verify that the
latter constraints are fulfilled in this case. The construction of matrix
extensions is naturally generalized to the monodromy preserving equation. In
this way we get matrix extensions of the Painlevé VI equation and its
multidimensional analogues written in the form of non-autonomous elliptic
tops. Finally, it is mentioned that the matrix valued variables can be replaced
by elements of noncommutative associative algebra. At the end of the paper
we also describe special elliptic Gaudin models which can be considered as
matrix extensions of the (2 reduced) elliptic top.

Keywords: elliptic integrable systems, noncommutative integrable systems,
Euler–Arnold tops, Painlevé VI equation
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1. Introduction and summary

Noncommutative generalizations of integrable systems have a long history that started from
the non-abelian generalization of the Toda model proposed by Polyakov6. The incomplete list
of papers devoted to this subject is [13, 17, 33, 36, 37] and references therein. The gen-
eralization means a passage in the equations of motion to the variables taking values in
associative algebras, possibly with additional structures. This can be treated as quantization of
the original system. On the other hand, in this way one can pass from the classical finite-
dimensional Hamiltonian systems to corresponding field theories. Our construction of the
noncommutative integrable systems is based on the associative Yang–Baxter equation for
(quantum) R-matrices. We will show that the existence of this equation governs the integr-
ability of the related top-like system. Then it is mentioned that any such R-matrix can be
simply generalized to that corresponding to the matrix-valued extension of the initial top.
Finally, we prove that this extension is indeed integrable under the additional reduction
procedure.

In this paper we describe a noncommutative generalization of the integrable Euler–
Arnold tops related to the group SL N ,( ). The simplest example of the latter is given by the
Euler top:

=S S J S, , 1.1˙ [ ( )] ( )

å ås s= =
a

a a
a

a a a
= =

S
ı

S J S
ı

S J
1

2
,

1

2
, 1.2

1

3

1

3

( ) ( )

where sa are the Pauli matrices, = -ı 1 , J J J, ,1 2 3—arbitrary constants (inverse components
of the inertia tensor written in principle axes) and S S S, ,1 2 3( )—the dynamical variables
(components of the angular momentum vector). The model is Hamiltonian. Its phase space is
parameterized by the aS variables treated as coordinates on *su 2( ) Lie coalgebra, where the
Poisson–Lie structure is defined:

åe= =a b abg g
a

a a
=

S S S H J S, ,
1

2
. 1.3

1

3
2{ } ( )

The Hamiltonian equations =a aS H S,˙ { } are equivalent to (1.1). In what follows we deal
with the complexified version of the Euler equation and its generalizations, i.e. ÎaS ,

ÎaJ and *su 2( ) is replaced by * sl 2,( ).
The Euler–Arnold generalizations of (1.1) correspond to higher rank Lie algebras (or

groups). It means that = åa a aS S T , where aT{ }—some basis in the Lie algebra g. Such
dynamical type systems were introduced by Arnold [1], and were shown to be Liouville
integrable in some particular cases [11, 30, 34]. We focus on elliptic integrable systems which
appeared originally for many-body systems of Calogero–Moser type [38]. The construction of
its solutions [19] requires the Lax pair with spectral parameter z living on an elliptic curve

  tS = Åt with moduli τ, Im t > 0. For the top-like systems, such Lax pairs were
constructed for continuous and discrete XYZ models by Sklyanin [44, 45] and then were
generalized to the Gaudin type models and to higher rank cases [9, 35, 42] using the Belavin–
Drinfeld elliptic r-matrix [6]. Later, both types of elliptic models (the many-body systems and
the elliptic tops) were unified [22] by the Symplectic Hecke correspondence (the classical
analogue of the IRF-vertex correspondence [5]). The classification of general elliptic models,
including those of mixed types for simple Lie groups, can be found in [21].

6 See appendix by Krichever in paper [12].
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Elliptic topslN is a generalization of the Euler one (1.1) for the case ÎS NMat ,( ):

 
å å= = =

a a
a a

= Î ´ ¹
S S J S S E S T S, , , 1.4

i j

N

ij ij
, 1 ; 0N N

˙ [ ( )] ( )

å w w
a a t

= = - =
+

a
a a a a a a

¹
J S T S J J E

N
, , , 1.5

0
2

1 2( ) ( ) ( )

where a ¹ 0 is a short notation for a a a= ¹, 0, 01 2( ) ( ), the set Ta{ } is a higher rank
analogue of the Pauli matrices basis in NMat ,( ) (see (A.2)–(A.8)), and E2 is the second
Eisenstein elliptic function (A.13). The absence of a = 0 term in (1.4) means that =Str 0.

The (inverse) inertia tensor J depends on only one complex parameter—the moduli τ of
the elliptic curve. In fact, one can multiply J(S) by an arbitrary constant and shift all the
components aJ by another one constant (the latter does not effect equations of motion). Thus
we have three parameters, and in this sense the elliptic sl 2,( ) top (in this case wa{ } is the set
of half-periods t t+0, 2, 1 2 2, 1 2{ }) coincides with the complexified Euler top.

The Lax equations

=L z S L z S M z S, , , , 1.6˙ ( ) [ ( ) ( )] ( )

written for the Lax pair with the spectral parameter z

å åj w w= =
a

a a a a
a

a a a a
¹ ¹

L z T S z M z T S f z, , , 1.7
0 0

( ) ( ) ( ) ( ) ( )

are equivalent to (1.4)–(1.5) identically in z. The functions entering (1.7) are given in (A.25),
(A.26). Let us also write down equations of motion (1.4) in components aS (i.e. equations as
coefficient behind aT )7:

å k k a= - ¹a
b g b g a

b g g b b g g
+ =

S S S J , 0, 1.8
, :

, ,
˙ ( ) ( )

where kb g, are structure constants defined by relations k=b g b g b g+T T T, (A.4).

Relativistic elliptic glN top is a deformation of (1.4)–(1.5). It generalizes the non-relativistic
top in the same way as the (elliptic) Ruijsenaars–Schneider model [43] generalizes the
Calogero–Moser model. The Lax equation (1.6) is written for the Lax pair

å åj j w= = - Îh

a
a a a

h h

a
a a a a

¹
L z T S z M z T S z S N, , , Mat , , 1.9

0

( ) ( ) ( ) ( ) ( ) ( )

where η is the deformation parameter and jh za{ ( )} is the set of functions (A.23). It provides
the equations of motion

= hS S J S, , 1.10˙ [ ( )] ( )

å h w w= = + -h

a
a a a

h
a
h

a a
¹

J S T S J J E E, , 1.11
0

1 1( ) ( ) ( ) ( )

where E1—is the first Eisenstein function (A.12). For the rank 1 matrix S this model is gauge
equivalent to the elliptic Ruijsenaars–Schneider model. In the limit h  0 (1.10)–(1.11) turn
into (1.4)–(1.5). Similarly to (1.8) we have the following equations of motion written in
components aS :

7 In N = 2 case equations (1.8) coincides with (1.1) up to redefinition (A.8) and the factor ı1 2 as in (1.2).
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å k k a= - ¹ =a
b g b g a

b g g b b g g
h

+ =
S S S J S, 0; 0. 1.12

, :
, , 0

˙ ( ) ˙ ( )

The relativistic top also has an η-independent description, which at the level of equations of
motion coincides with the non-relativistic one8. Substitution

j h w a ¹ a a a aS S S S, for 0 and 1.130 0( ) ( )

transforms (1.12) into (1.8). It can be easily verified if one represents g
hJ using (A.11) as

h w j h w=g
h

g g g gJ f , ,( ) ( ). Then η is cancelled out from the equations of motion in the same
way as spectral parameter z is cancelled out from the Lax equations (1.6) providing (1.8).

R-matrix formulation. The (non)relativistic classical tops can be described in terms of
quantum R-matrices [23]. In the elliptic case9 we deal with the Baxter–Belavin GLN R-matrix
[4] written in the form:
   

 
å j= - = - Ä Î

Î ´
-

ÄR z z R z z z z T T N, Mat , , 1.14
a

a a a12 1 2 12 1 2 1 2
2

N N

( ) ( ) ( ) ( ) ( )

It satisfies the quantum Yang–Baxter equation
     =R z z R z z R z z R z z R z z R z z, , , , , , 1.1512 1 2 13 1 3 23 2 3 23 2 3 13 1 3 12 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )

and the unitarity condition which for (1.14) is as follows:

  = Ã - Ã - ÄR z z R z z N N z z, , 1 1. 1.1612 1 2 21 2 1
2

1 2( ) ( ) ( ( ) ( )) ( )
The construction of the (non)relativistic tops uses coefficients of local expansions near  = 0
(the classical limit)


  = Ä + + +R z r z m z O

1
1 1 1.1712 12 12

2( ) ( ) ( ) ( ) ( )

and near z = 0:

  = + + +R z
N

z
P R z R O z , 1.1812 12 12

, 0
12

, 1 2( ) ( ) ( )( ) ( )

= + +r z
N

z
P r O z , 1.1912 12 12

0( ) ( ) ( )( )

where P12 is the permutation operator (A.6). The coefficient r z12 ( ) from expansion (1.17) is
the classical Belavin–Drinfeld r-matrix [6] (B.2). Explicit expressions for the coefficients are
given in (B.2)–(B.6).

The elliptic top (1.4)–(1.7) is formulated in terms of R-matrix data as follows:

= = Ä =J S m S S S Str 0 , 1 , tr 0, 1.202 12 2 2( ) ( ( ) ) ( ) ( )

= =L z S r z S M z S m z S, tr , , tr . 1.212 12 2 2 12 2( ) ( ( ) ) ( ) ( ( ) ) ( )
Similarly, for the relativistic elliptic top (1.9)–(1.11) we have:

= -h hJ S R r Str , 1.222 12
, 0

12
0

2( ) (( ) ) ( )( ) ( )

= = -h h hL z S R z S M z S r z S, tr , , tr , 1.232 12 2 2 12 2( ) ( ( ) ) ( ) ( ( ) ¯ ) ( )

8 This is because the relativistic top is a quasi-classical version of the one site spin chain, due to the fact that the
elliptic top admits a bi-Hamiltonian structure consisting of linear and quadratic Poisson r-matrix structures. See
details in [16, 23].
9 See [24] and references therein for the rational and trigonometric cases.
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where S̄ is a traceless part of S. Details can be found in [23, 24]. hM has no explicit
dependence on η. We keep this notation to emphasize that it is the M-matrix of the relativistic
model.

2 reductions in elliptic tops. To pass to the noncommutative version of the defined above
elliptic tops, we will need to impose some constraints. They can be described for the elliptic
tops as the 2 reduction. The idea of reduction provided by some finite groups in the classical
integrable systems was proposed by Aleksander Mikhailov [32]. It allows one to construct
non-trivial integrable systems starting from some trivial or known integrable systems.

The 2 reduction under consideration is simply written in terms of coordinates on the
phase space aS . The corresponding constraints are

a=a a-S S for all 1.24( )
for non-relativistic tops and

j h w j h w
a=

-
¹a

a a

a

a a

-

-

S S

, ,
, for all 0 1.25

( ) ( )
( )

in the relativistic case. Some details of the reduction are given in the appendix. Let us just
mention here that in the N = 2 case (which is the Euler top (1.1)–(1.3)) the reduction is trivial
since the constraints (1.24) and (1.25) are identities. Indeed, sº =a a a-T T and ºa a-S S .
The arguments wa are half-periods t t +2, 1 2, 1 2( ) , therefore, using (5.4) and (5.5), it is
easy to show that j h w j h w= -a a a a-, ,( ) ( ). As we will see below in the reduced case, one
can replace commuting variables by non commuting variables.

The classical r-matrix structure on the reduced phase space turns into the classical
reflection equation [46]. Two important examples of such type reduction were described in
[51] and [28]. The first one is the BC1 Calogero–Inozemtsev model [15] described by
equation

ån w= Ã¢ +
=

u

t
u

d

d
. 1.26

a
a a

2

2
0

3
2 ( ) ( )

The second example is the Zhukovsky–Volterra gyrostat [49]. It generalizes the Euler top
(1.1) to a non-zero external field

n¶ = + ¢S S J S S, , , 1.27t [ ( )] [ ] ( )

where n n s¢ = å ¢a a a=1
3 , and n n n¢ ¢ ¢, ,1 2 3( ) plays the role of a constant external field (gyrostatic

momentum in the classical case and magnetic field in the quantum case). The Lax pair for
(1.27) generalizes (1.7) in the following way:

⎛
⎝⎜

⎞
⎠⎟å

å

s j w
n

j w

s
j w j w j w

j w

= +
¢

=-

a
a a a a

a

a a

a
a a

a a

=

=

L z
ı

S z
z

M z
ı

S
z z z

z

1

2
,

,
,

1

2

, , ,

,
. 1.28

ZV

ZV

1

3

1

3
1 1 2 2 3 3

( ) ( )
( )

( )
( ) ( ) ( )

( )
( )

The models (1.26) and (1.27) are gauge equivalent at the level of Lax pairs. An explicit
change of variables n n= ¼S S u u, , , ,a a 0 3( ˙ ) was obtained in [28]. The constants n¢a from
(1.27) are linear combinations of na from (1.26) with τ-dependent coefficients (see (1.32) and
(1.33)). The fourth (missing) constant in (1.27) appears as the value of (Casimir
function) n¢ = + +S S S0

2
1
2

2
2

3
2.
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Painlevé VI equation as a non-autonomous top. The Painlevé VI equation is the top
equation in the hierarchy of the classification of non-linear ODE of second order possessing
the Painlevé property. It depends on four constants and can be defined as the monodromy
preserving condition for a linear differential system with meromorphic coefficients defined on
P1. Equivalently, it can be formulated in elliptic form [31, 39]. Then it takes the form of a
non-autonomous version of the Calogero–Inozemtsev system BC1 (1.26):

åt
n w= Ã¢ +

=

u
u

d

d
, 1.29

a
a a

2

2
0

3
2 ( ) ( )

while the monodromy preserving condition is of the form:

p
¶ - ¶ =tL w

ı
M w L w M w

1

2
, . 1.30w( ) ( ) [ ( ) ( )] ( )

Equation (1.29) is non-autonomous since wÃ¢ +u a( ) depends on moduli τ in both explicit
(through its dependence on wa) and implicit (through definition (A.13) of ℘-function) ways.
Similarly, one can define the non-autonomous version of the Zhukovsky–Volterra gyrostat
(1.27)

n¶ = + ¢tS S J S S, , . 1.31[ ( )] [ ] ( )
The latter model is non-autonomous due to τ-dependence of the components of (inverse)
inertia tensor aJ (1.5) and the τ-dependence entering n¢a:

⎛
⎝⎜

⎞
⎠⎟n t n t j w j w w p w w

J
J w

¢ = = - = - - ¶
¢

a a a a a a a a a tc c z z i, , , exp 2
0

,

1.32

a a
a

2

( ) ˜ ( ) ( ) ( ) ( ) ( )
( )

( )

n n n n n n n n n n

n n n n n n n n n n

= + + + = + - -

= - + - = - - +

, ,

, , 1.33

0
1
2 0 1 2 3 1

1
2 0 1 2 3

2
1
2 0 1 2 3 3

1
2 0 1 2 3

˜ ( ) ˜ ( )

˜ ( ) ˜ ( ) ( )

where the set of na consists of τ-independent constants from (1.29). Equations (1.29) and
(1.31) are again (as in the autonomous case) gauge equivalent. The corresponding change of
variables t n n= ¼S S u u, , , , ,a a 0 3( ˙ ) is given in [28]. In this sense equation (1.31) is also a
form of the Painlevé VI equation10. The Lax pair generating (1.31) through (1.30) is (almost)
the same as in the autonomous case:

ås j w n j w w= = + -

= +
a

a a a a a a a a
=

L w L w
ı

S w w

M w M w E w L w

1

2
, , ,

. 1.34

PVI ZV

PVI ZV ZV

1.32

1

3

1

( ) ( ) ( ( ) ˜ ( ))

( ) ( ) ( ) ( ) ( )

( )

It is an example of the so-called classical Painlevé–Calogero correspondence [20], claiming
that properly defined Lax pairs for elliptic non-relativistic models describe both integrable
mechanics through the Lax equation (1.6) and the monodromy preserving equation through
(1.30). The proof of this fact is based on the heat equation (A.17) for the Kronecker function.
In a general (Euler–Arnold) case the heat equation holds for R-matrices (1.17):




p p¶ = ¶ ¶ ¶ = ¶t tı R z R z ı r z m z2 , 2 . 1.35z z12 12 12 12( ) ( ) ( ) ( ) ( )

In the slN case, substitution of the Lax pair (1.7) into (1.8) leads to the non-autonomous
Euler–Arnold top

10 See also [29] for interrelations between elliptic forms of the Painlevé VI.
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¶ =tS S J S, , 1.36[ ( )] ( )

which can be considered as a multidimensional analogue of Painlevé equations.

Purpose of paper:
1. Lax equations from associative Yang–Baxter equation. The quantum Baxter–

Belavin R-matrix (1.14)–(1.16) can be interpreted as the matrix generalization of the Kro-
necker function (A.9) [25–27, 40]. Similarly to this scalar function, the R-matrix satisfies
relations which are matrix analogues of the elliptic function identities and properties. The
most important for our purposes (see also appendix) are:

• the associative Yang–Baxter equation [40] (analogue of the Fay identity (A.18)):

     = + = -h h h h- -R R R R R R R R z z, , 1.37ab ab a b12 23 13 12 23 13 ( ) ( )

• skew-symmetry (analogue of  f f= - - -z z, ,( ) ( ) and = - -E z E z1 1( ) ( )):
 = - - = - - = --R z R z r z r z m z m z, , , 1.3812 21 12 21 12 21( ) ( ) ( ) ( ) ( ) ( ) ( )

In section 2 it is shown that Lax equations with Lax pairs of the relativistic (1.23) or non-
relativistic (1.21) top are equivalent to equations of motion (1.10) or (1.4) with the inverse
inertia tensors (1.22) or (1.20) respectively. We do not explicitly use the elliptic function
identities. Our derivation is valid for any R-matrices (1.14)–(1.19) satisfying also
(1.37), (1.38).

2. Matrix extensions of tops. A direct meaning of a matrix extension is that (the scalar,
-valued) variables of a model are replaced by noncommutative MMat ,( ) matrices. See
examples in [36]. When M = 1 we come back to the initial system. The matrix extension can
be thought of as a noncommutative version of a model. It is then described by non-
commutative (double) Poisson brackets [17]. The appearance of matrix variables also pro-
vides additional GLM symmetry: this group acts on all matrix variables by conjugation. The
corresponding Poisson algebra and its quantization was studied in [3]. The double brackets
formalism is not used in our paper. Our aim is to get the equations of motion for matrix
extensions by generalizing the Lax pairs.

The set of variables (or the coordinates on the phase space) in the elliptic glN top
  aÎ Î ´aS , N N{ } should be replaced by the set of matrices  Îa MMat ,{ ( )}:

    
 
å a = Î Î ´a a

a
a a

a

Î ´
S T MMat , , , 1.39N N

M M

˜ ( ) ( )
˜

˜
˜

where   aÎ Î ´aT MMat , , M M{ ˜ ( ) ˜ }˜ is the basis (A.2) in MMat ,( ). We will use tildes
for ‘matrix’ or ‘noncommutative’ space11. It becomes ‘scalar’ or ‘commutative’ when M = 1.
The space NMat ,( ) is an auxiliary space. It coincides with the matrix space of Lax
equations (1.6) or the matrix form of equations of motion (1.7) of initial (scalar) models.

A natural way to get generalizations of the construction of Lax pairs (1.23), (1.21) to
matrix-valued variables is to consider the following  ÄNMMat , 2( ) -valued R-matrix:

11 The noncommutativity means that    ¹a b b a, and we do not imply any constraints for any a inside
noncommutative space.
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= Äh hR z R z P , 1.40
12,12 12 12( ) ( ) ˜ ( )˜ ˜ ˜ ˜

where hR z12 ( ) is the same  ÄNMat , 2( ) -valued R-matrix in auxiliary space as in (1.23), while
P12˜ ˜ ˜ is the permutation operator in noncommutative space. It is easy to see that hR z

12,12
( )˜ ˜ is

indeed an R-matrix in the sense of the quantum Yang–Baxter equation (1.15) and unitarity
condition (1.16). Moreover, it satisfies the associative Yang–Baxter equation (1.37) as well.
However it has a different to (1.17) classical limit (it starts not from  ´- 1 1NM NM

1 ). For this
reason the general construction of the Lax pairs does not work for matrix extensions in the
same way as the scalar case. To overcome this, problem additional constraints are required.
The first one is that

 = S1 , 1.41M0 0 ( )
i.e. the matrix extension of the S0 variable should also be scalar. This condition obviously
needs to be preserved by dynamics (equations of motion). The latter provides another
constraint. With these constraints the generalization of the construction of Lax pairs works for
the R-matrix (1.40) and provides equations of motion

  = J, , 1.4211 11 1 11
˙ [ ( )] ( )˜ ˜ ˜

where the inertia tensor J acts in auxiliary space only.
We will show that the above mentioned constraints are fulfilled for matrix extensions of

2 reduced elliptic tops. It means that similarly to (1.24) we set  =a a- . In this case one
obtains

    å k k a= - ¹a
b g b g a

b g b g g b g b g
+ =

J , 0. 1.43
, :

, ,
˙ ( ) ( )

where w= -g gJ E2 ( ). In the scalar case M = 1 the latter equations coincide with (1.8). The
same holds true for the relativistic top (1.12) and 2-reduction constraints (1.25).

Remark 1. In this construction one can replace the algebra MMat ,( ) by an arbitrary
associative noncommutative algebra with a well defined trace functional and the permutation
operator acting on the basis of the algebra. For example, one can take the infinite group of the
quantum torus, its trigonometric and rational degenerations, or their quasi-classical limits to
the algebras of vector fields.

Remark 2. Our results allow one to define the equations of motion in the Hamiltonian form
using double Poisson brackets [10, 18, 47], as was done in [2, 3, 36]. It is straightforward to
construct the ‘classical’ r̃ -matrix by means of the classical r-matrix (1.17) and the
permutation operator in MMat ,( ) and consider the classical reflection equation defined by
r̃ . It leads the double Poisson brackets for the Lax operators hL z,( ) in terms of the r̃ -matrix.
Furthermore, it opens a way to quantize the noncommutative tops by means of the R-matrix
(1.40) and the quantum reflection equation.

At the end of the paper we also describe a special elliptic Gaudin model with equations of
motion

å a= ¹a

b g a

b g
g

+ =
A A A J, 0, 1.44˙ [ ] ( )

where aA{ } is a set of -N 12 matrices of size N×N with constraints =a a-A A .
Equation (1.44) reproduces the elliptic top equations of motion (1.8) via reduction

a
a aA T S ( =a a-S S ).
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3. Matrix extensions of Painlevé equations. Finally, we construct the noncommutative
generalization of the Painlevé VI equation. The non-commutative generalizations of the
Painlevé II–IV equations were considered before in [7, 8, 37, 41]. Here we identify the non-
commutative Painlevé VI equation with the non-commutative non-autonomous Zhukovsky–
Volterra gyrostat (1.31):

      
t

w w n n= + - + ¢ - ¢a b g g b b g b g g bE E
d

d

1

2
, 1.452 2( )( ( ) ( )) ( )

These equations take the form (1.31) for N = 1. Our construction allows one to define the Lax
pair for the Painlevé VI equation using the same Lax operators as for the autonomous case.

2. Lax pairs from associative Yang–Baxter equation

In this section we do not use explicit forms of Lax pairs but only the properties of the
underlying R-matrices. Our current purpose is to show that the Lax equations with the R-
matrix forms of the Lax pairs of integrable tops (1.21), (1.23) are equivalent to equations of
motion (1.4), (1.10) with the corresponding inertia tensors (1.20), (1.22) due to additional
properties of the R-matrix (1.37), (1.38). Below we prove these statements for relativistic and
non-relativistic tops separately.

Proposition 2.1. Suppose that the quantum R-matrix entering the Lax pair of the relativistic
top (1.23) satisfies not only (1.15)–(1.19) but also the associative Yang–Baxter
equation (1.37) and the skew-symmetry property (1.38). Then the Lax equations (1.6) with
the Lax pair (1.23) are equivalent to equations of motion of the relativistic top (1.10) with
(inverse) inertia tensor hJ (1.22).

Proof. Let us verify that the Lax equations

=h h hL z S L z S M z S, , , , 2.1˙ ( ) [ ( ) ( )] ( )

with hL and hM (1.23) are fulfilled on equations of motion

= = -h h hS S J S J S R r S, , tr 2.22 12
, 0

12
0

2
˙ [ ( )] ( ) (( ) ) ( )( ) ( )

identically in spectral parameter z, i.e.

= "h h h hL z S J S L z S M z S z, , , , , , . 2.3( [ ( )]) [ ( ) ( )] ( )

The left-hand side (lhs) of (2.3) is equal to12

= -

=- -

h h h h

h h h

L z S J S R z S R r S

R z R S S R z r S S

, , tr ,

tr , tr , , 2.4
1 2,3 12 2 23

, 0
23

0
3

2,3 12 23
, 0

2 3 2,3 13 23
0

2 3

( [ ( )]) { ( )[ ( ) ]}
{[ ( ) ] } {[ ( ) ] } ( )

( ) ( )

( ) ( )

where we have used = -r r23
0

32
0( ) ( ) (B.8). To simplify the right-hand side (rhs) of (2.3), notice

that S̄ in (1.23) can be replaced by S since the scalar part of hM does not give any input to
h hL M,[ ]. In fact S̄ in (1.23) is used in order to match the elliptic definition (1.9). This question

will become nontrivial in the case of matrix valued variables.
Let us write down (B.11) with =z 03 , which is a consequence of the associative Yang–

Baxter equation (1.37):

12 The index 1 in (2.4) is the number of the tensor component corresponding to the matrix space NMat ,( ) of
equation (2.3). We sometimes omit this index where it is obvious (for example, in the lhs of (1.20)–(1.23)). The
components 2,3 are under trace.
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- = - +h h h hR z r z z R z z R z R z r z, , , 2.513 1 12 1 2 12 1 2 23 2 13 1 23 2[ ( ) ( )] [ ( ) ( )] [ ( ) ( )] ( )

and consider the limit z 02 (together with renaming z z1 ≔ ):

= + - ¶h h h h hR z r z R z R R z r R z NP, , , , 2.6z13 12 12 23
, 0

13 23
0

12 23[ ( ) ( )] [ ( ) ] [ ( ) ] [ ( ) ] ( )( ) ( )

The simple pole at =z 02 cancels out due to + =h hR z P R z P, , 012 23 13 23[ ( ) ] [ ( ) ] by definition
of the permutation operator. From (1.23) and (2.6) we conclude that

= -

= - - =

h h h

h h h h h

L z S M z S R z r z S S

R z R S S R z r S S L z S J S

, , , tr ,

tr , tr , , , .

2.7

1 2,3 13 12 2 3

2,3 12 23
, 0

2 3 2,3 13 23
0

2 3
2.4

1

[ ( ) ( )] {[ ( ) ( )] }

{[ ( ) ] } {[ ( ) ] } ( [ ( )])
( )

( ) ( ) ( )

Here we used that ¶ =hR z NP S Str , 0z2,3 12 23 2 3{[ ( ) ] } since =P S S, 023 2 3[ ] . In this way we
finished the proof of (2.3) as an identity in z on the equations of motion (2.2). Conversely,
(following [23]) one can easily obtain the equations of motion (2.2) from the Lax
equations (2.1) by taking the residue of both parts of (2.1) at z = 0. ,

Let us remark that in [23] we did not prove (2.3), i.e. the Lax equations are identities in
the spectral parameter on the equations of motion. Instead, the following indirect argument
was used: we know that (2.3) holds true in the elliptic case. Other cases are degenerations of
the elliptic one. A degeneration procedure can be performed at the level of the Lax equation
as well as at the level of the equations of motion. That is, we used explicit elliptic formulae to
argue that the Lax equations are identities in z. The above given proof (2.1)–(2.7) is more
general. It does not use any explicit form. It is direct and based on the associative Yang–
Baxter equation only.

Let us now prove a similar statement for the non-relativistic top.

Proposition 2.2. Suppose that quantum R-matrix entering (through expansion (1.17)) the
Lax pair of the non-relativistic top (1.21) satisfies not only (1.15)–(1.19) but also the
associative Yang–Baxter equation (1.37) and the skew-symmetry property (1.38). Then the
Lax equations (1.6) with the Lax pair (1.21) (with =Str 0) are equivalent to equations of
motion of the non-relativistic top (1.4) with (inverse) inertia tensor J (1.20).

Proof. In this case = =S NStr 00 . Let us verify that the Lax equations

=L z S L z S M z S, , , , 2.8˙ ( ) [ ( ) ( )] ( )
with L and M (1.21) are fulfilled on the equations of motion

= =S S J S J S m S, , tr 0 2.92 12 2
˙ [ ( )] ( ) ( ( ) ) ( )

identically in spectral parameter z, i.e.

= "L z S J S L z S M z S z, , , , , , . 2.10( [ ( )]) [ ( ) ( )] ( )

The lhs of (2.10) equals

= =L z S J S r z S m S m r z S S, , tr , 0 tr 0 , . 2.111 2,3 12 2 23 3 2,3 23 12 2 3( [ ( )]) { ( )[ ( ) ]} {[ ( ) ( )] } ( )

To simplify the rhs of (2.10) we use (B.12). Write it down for =z 03

- = -
+ - +

m z r z z r z z m z
m z z r z m z r z

, ,
, ,

13 1 12 1 2 12 1 2 23 2

12 1 2 23 2 13 1 23 2

[ ( ) ( )] [ ( ) ( )]
[ ( ) ( )] [ ( ) ( )]

and consider the limit z 02 (with renaming z z1 ≔ ). The simple pole at =z 02 cancels out
due to + =m z P m z P, , 012 23 13 23[ ( ) ] [ ( ) ] and we have:
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= - ¶

+ +

m z r z r z m m z NP

m z r m z r

, , 0 ,

, , . 2.12
z13 12 12 23 12 23

12 23
0

13 23
0

[ ( ) ( )] [ ( ) ( )] [ ( ) ]
[ ( ) ] [ ( ) ] ( )( ) ( )

Now we can compute

= =

=

L z S M z S r z m z S S m r z S S

L z S J S

, , , tr , tr 0 ,

, , .

2.13

1 2,3 12 13 2 3
2.12

2,3 23 12 2 3

2.11
1

[ ( ) ( )] {[ ( ) ( )] } {[ ( ) ( )] }

( [ ( )])
( )

( )

( )

In the equality via (2.12) we used that ¶ =m z NP S Str , 0z2,3 12 23 2 3{[ ( ) ] } due to =P S S, 023 2 3[ ]
and

+ =m z r m z r S Str , , 02,3 12 23
0

13 23
0

2 3{([ ( ) ] [ ( ) ]) }( ) ( )

because the expression +m z r m z r, ,12 23
0

13 23
0[ ( ) ] [ ( ) ]( ) ( ) is skew symmetric with respect to

«2 3 due to the property = -r r23
0

32
0( ) ( ).

Conversely, we can obtain the equations of motion (2.9) from the Lax equations (2.8) by
taking the residue at z = 0 of both its sides. ,

3. Matrix valued tops

In the paragraph below, we argue why the construction of section 2 cannot be directly
generalized to matrix extensions of the tops models. It appears that matrix variables are not
arbitrary but satisfy some constraints. Then we mention that these constraints are fulfilled for
2 reduced models and describe their matrix extensions.

General construction and constraints. A general idea of matrix extension is to replace
scalar variables ÎaS by matrix valued variables  Îa MMat ,( ) (1.39). The initial scalar
variables of a top model aS were themselves arranged into the matrix valued variable

= å Îa a aS T S NMat ,( ) (the residue of the Lax matrix). Therefore, we deal with the
following matrix variable:

     åå åÎ  = = Ä = Ä Î
a a

a a a
a

a
a aS N T T T NMMat , Mat , , 3.1

N M

11( ) ˜ ( ) ( )˜
˜

˜
˜

where indices 1, 1̃ stand for NMat ,( ) and MMat ,( ) tensor components respectively;
likewise it is used in R-matrix notations.

Recall that the Lax matrix of the integrable top was defined as (1.21)
=h hL z S R z S, tr2 12 2( ) ( ( ) ). The latter means that for a given R-matrix written in standard basis

of NMat ,( ) as

å h= Äh

=
R z E E R z, 3.2

i j k l

N

ij kl ijkl12
, , , 1

( ) ( ) ( )

the corresponding Lax matrix (1.23) is of the form:

å h=h

=
L z S E S R z, , . 3.3

i j k l

N

ij kl ijlk
, , , 1

( ) ( ) ( )

J. Phys. A: Math. Theor. 49 (2016) 395202 A Levin et al

11



A natural way to get a matrix generalization is to consider the following expression:

å å h= Ä = Ä Ä Äh h

= =
R z R z P E E E E R z, , 3.4

i j k l

N

m n

M

ij kl mn nm ijkl12,12 12 12
, , , 1 , 1

( ) ( ) ˜ ˜ ˜ ( ) ( )˜ ˜ ˜ ˜

where Emn˜ is the standard basis in MMat ,( ) and P12˜ ˜ ˜ is the permutation operator
in  ÄMMat , 2( ) .

First, notice that this expression is again a quantum R-matrix. It satisfies the quantum
Yang–Baxter equation

     =R z z R z z R z z R z z R z z R z z, , , , , , 3.5
12,12 1 2 13,13 1 3 23,23 2 3 23,23 2 3 13,13 1 3 12,12 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

due to the Yang–Baxter equation for hR z12 ( ) (1.15) and =P P P P P P12 13 23 23 13 12˜ ˜ ˜ ˜ ˜ ˜˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ . The unitarity
condition (1.16) is fulfilled as well:

  = Ã - Ã - Ä Ä ÄR z z R z z N N z z, , 1 1 1 1 . 3.6N N M M12,12 1 2 21,21 2 1
2

1 2( ) ( ) ( ( ) ( )) ( )˜ ˜ ˜ ˜

Moreover, the R-matrix (3.4) satisfies the associative Yang–Baxter equation (1.37):

     = + = -h h h h- -R R R R R R R R z z, 3.7
ab ab ab ab a b12,12 23,23 13,13 12,12 23,23 13,13 , ,

( ) ( )˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

because of (1.37) and = =P P P P P P12 23 13 12 23 13˜ ˜ ˜ ˜ ˜ ˜˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜. Such type quantum and classical R-matrix
structures were considered in [3] and [14].

Second, similarly to (3.3), the Lax matrix corresponding to the R-matrix (3.4)

    å åh= = Ä =h h

= =
L z R z E R z E, tr , , 3.8

i j k l

N

ij kl ijlk kl
m n

M

kl
mn

mn2,2 12,12 22
, , , 1 , 1

( ) ( ( ) ) ( ) ˜ ( )˜ ˜ ˜ ˜

is exactly the matrix generalization of (3.3).
Therefore, we could expect to have a direct generalization (to the matrix case) of the Lax

pairs construction via the associative Yang–Baxter equation described in section 2. However,
we will see that it does not work in the same way. The reason is that the R-matrix (3.4) does
not satisfy the local expansion of the classical limit (1.17). Indeed, near  = 0


 = Ä Ä + +R z P r z O

1
1 1 , 3.9N N12,12 12 12,12( ) ˜ ( ) ( ) ( )˜ ˜ ˜ ˜ ˜ ˜

i.e. in contrast to (1.17) the first coefficient of the expansion (3.9) is not Ä1 1NM NM . It causes
a problem in the following way. The proofs of equivalence of the Lax equations and
equations of motion given in section 2 did not use the associative Yang–Baxter equation itself
but its degenerations (2.6) or (2.12) which appeared from (B.11). Equation (B.11) in its turn
was obtained by subtracting (B.10) from (B.9). For the R-matrix (3.4) instead of (B.9), (B.10)
we have

     = + - ¶R R R r r R R P , 3.10
12,12 23,23 13,13 12,12 23,23 13,13 13,13 12˜ ( )˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

     = + - ¶R R R r r R R P . 3.11
23,23 12,12 13,13 23,23 12,12 13,13 13,13 23˜ ( )˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

The difference between (3.10) and (3.11) contains the unwanted term 
¶ -R P P

13,13 23 12( ˜ ˜ )˜ ˜ ˜ ˜ ˜ ˜

which equals zero in the scalar case M = 1. Then we need to require that
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  
   ¶ - = ¶ - =R P P R P P P Ptr tr 0,

3.12

2,3,2,3 13,13 23 12 22 33 2,3,2,3 13 13 23 13 12 22 33{ ( ˜ ˜ ) } { ( ˜ ˜ ˜ ˜ ) }
( )

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

i.e.





   ¶ = ¶ =R P P Rtr , tr , 0 3.132,3,2,3 13 12 13 22 33 2,3 13 21 31{ [ ˜ ˜ ] } { [ ]} ( )˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

and, therefore,

 ~tr 1 , 3.14M2 21 ( )˜

that is the matrix analogue of the variable Str (or S0 in basis aT{ }) should not be an arbitrary
MMat ,( ) matrix but the one proportional to identity matrix 1M . It is easy to see that the

coefficient behind1M in (3.14) should be a constant on the equations of motion (since it equals
 Mtr21 21˜ ˜ ). Therefore, the next set of constraints is generated by

 =tr 0 3.151 11
˙ ( )˜

which means that (3.14) should be preserved by the dynamics of the equations of motion.

Equations of motion and Laxpairs. On constraints (3.14), when (3.12) is true, we have the
following equation obtained by subtracting (3.11) from (3.10):

     - - =R R R r r Rtr , , , 0, 3.162,3,2,3 12,12 23,23 13,13 12,12 23,23 13,13 22 33{([ ] [ ] [ ]) } ( )˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

It is analogous to equation S Str 2.52,3 2 3{( ( )) }, which underlied the Lax equations in the scalar
case. For a similar reason we obtain the following equations of motion in the relativistic case:

  = hJ, , 3.1711 11 1 11
˙ [ ( )] ( )˜ ˜ ˜

where

  


= - = - Ä

= -

h h h

h

J R r R r P

R r

tr tr

tr . 3.18

1 11 22 12,12
, 0

12,12
0

22 22 12
, 0

12
0

12 22

2 12
, 0

12
0

21

( ) (( ) ) (( ) ˜ )

(( ) ) ( )

˜ ˜ ˜ ˜
( )

˜ ˜
( ) ˜ ˜ ( ) ( ) ˜ ˜ ˜

( ) ( ) ˜

In the scalar case M = 1 the latter equation turns into (2.2). The Lax pair is given by

   = =h h hL z R z M z r z, tr , , tr . 3.192,2 12,12 22 2,2 12,12 22( ) ( ( ) ) ( ) ( ( ) ) ( )˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

In the non-relativistic case, the equations of motion are

  = J, , 3.2011 11 1 11
˙ [ ( )] ( )˜ ˜ ˜

where

   = = Ä =J m m P mtr 0 tr 0 tr 0 . 3.211 11 22 12,12 22 22 12 12 22 2 12 21( ) ( ( ) ) ( ( ) ˜ ) ( ( ) ) ( )˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

The Lax pair is given by

   = =L z r z M z m z, tr , , tr . 3.222,2 12,12 22 2,2 12,12 22( ) ( ( ) ) ( ) ( ( ) ) ( )˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

Let us stress again that together with (3.17) or (3.20), the constraints (3.14), (3.15) should be
fulfilled. Below we will see that these constraints are fulfilled for a special class of elliptic
matrix tops.

Matrix generalization of 2 reduced elliptic tops. We start with the non-relativistic case.
Similarly to (1.7) and following (3.22) we have the following Lax pair for the matrix elliptic
top:
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   å åj w w= Ä = Ä
a

a a a a
a

a a a a
¹ ¹

L z T z M z T f z, , , , , . 3.23
0 0

( ) ( ) ( ) ( ) ( )

The rhs of the Lax equation

  =
t

L z L z M z
d

d
, , , , 3.24( ) [ ( ) ( )] ( )

is equal to

     å j j= Ä - Ä
b g

b g b g b g b g b g b g
¹

L z M z T T z f z T T f z z, , , 3.25
, 0

[ ( ) ( )] ( ) ( ) ( ) ( ) ( )

By symmetrizing indices b and g we get (here for short we use j j w=b b bz z,( ) ( ) and the
same for bf z( ))

   

   

å j j

j j

= Ä + Ä

- Ä - Ä

b g
b g b g b g g b g b g b

b g b g b g g b g b g b

¹
T T z f z T T z f z

T T f z z T T f z z

1

2

1

2

1

2

1

2
3.26

, 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

   

   

   

å

å

å

j j

k k j w w

k k j

= Ä - Ä - =

= Ä - -

= Ä -

b g
b g b g g b g b b g g b

b g
b g b g b g g b g b b g b g

b g
b g b g b g g b g b b g g

¹

¹
+ +

¹
+ +

T T T T z f z z f z

T z E E

T z J

1

2

1

2

, 3.27

A

, 0

.20

, 0
, , 2 2

, 0
, ,

( )( ( ) ( ) ( ) ( ))

( ) ( )( ( ) ( ))

( ) ( ) ( )

( )

where w= -g gJ E2 ( ) as in (1.5) and kg b, are structure constants (A.4). Finally, equations of
motion take the form

    å k k a w= - ¹ = -a
b g b g a

b g b g g b g b g g g
+ =

J J E, 0; . 3.28
, :

, , 2
˙ ( ) ( ) ( )

In the scalar case M = 1 the latter equations coincide with (1.8).
In the above equations we did not include the a = 0 component into the Lax pair (3.23),

i.e.  = 00 , and therefore (3.14) is fulfilled. However (3.15) is not fulfilled. Indeed, for
a b g= + = 0 in (3.26) we need to use (A.22) instead of (A.20). It yields (k =b b- 1, ) the
following explicit expression for (3.15):

  å w= = ¢
b

b b b
¹

- E0 , . 3.290
0

2
˙ [ ] ( ) ( )

It is nontrivial because ¢E z2 ( ) is an odd function. A natural way to fulfill this constraint is to
set

 c a=a a-: , for all . 3.30( )
It is a matrix analogue of the 2 reduced elliptic top defined by (1.24).

The set of constraints (3.30) is preserved by dynamics (3.28):

 =a c a c- 3.31˙ ∣ ˙ ∣ ( )

since k k=b g b g- -, , and =a a-J J . Therefore, we have a well defined matrix valued elliptic
top given by the Lax pair (3.23), equations of motion (3.28) and 2 reduction
constraints (3.30).
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In the relativistic case we have the following direct generalization of (1.9):

   å åj w h j w= Ä + = - Äh

a
a a a a

h

a
a a a a

¹
L z T z M z T z, , , , , . 3.32

0

( ) ( ) ( ) ( ) ( )

The Lax equations lead to equations of motion (3.20) for matrix-variables

    å k k a h w w= - ¹ = + -a
b g b g a

b g b g g b g b g
h

a
h

a a
+ =

J J E E, 0; 3.33
, :

, , 1 1
˙ ( ) ( ) ( ) ( )

via (A.19). The constraints (3.14), (3.15) mean that

 = S 1 , 3.34M0 0 ( )
where 1M is identity M×M matrix, and

 
j h w j h w

a=
-

¹
a a

a
a a

a
-

-
1

,

1

,
, 0. 3.35

( ) ( )
( )

Let us now mention that the derivation of the equations of motion from the Lax pairs
(3.23) or (3.32) did not use  as a matrix. In fact, we can perform the same calculation
thinking of a as elements of associative and noncommutative algebra.

4. Noncommutative Painlevé VI equation

As was explained in the introduction, the Lax pair (1.7) of the non-relativistic top (1.8) also
satisfies the monodromy preserving condition (1.30) and provides in this way the non-
autonomous version of the Euler–Arnold equations (1.36). This construction is straightfor-
wardly generalized to the matrix extension of the elliptic top described by the Lax pair (3.23).
Namely, we have the following statement.

Proposition 4.1. The Lax pair

   å åj w w= Ä = Ä
a

a a a a
a

a a a a
¹ ¹

L z T z M z T f z, , , , , .
0 0

( ) ( ) ( ) ( )

where the 2 reduction condition  =a a- satisfies the monodromy preserving condition

   
t p

-
¶
¶

=L w
ı w

M w L w M w
d

d
,

1

2
, , , ,( ) ( ) [ ( ) ( )]

and provides a non-autonomous version of the matrix top equations:

  
t

= J
d

d
, , 4.111 11 1 11[ ( )] ( )˜ ˜ ˜

or

    åt
k k a w= - ¹ = -a

b g b g a
b g b g g b g b g g g

+ =
J J E

d

d
, 0; . 4.2

, :
, , 2( ) ( ) ( )

As in the scalar case, the proof is based on the heat equation p j w w¶ = ¶t a a a aı z f z2 , ,z( ) ( ).
In the same way one can define the matrix extension of the non-autonomous version of

the Zhukovsky–Volterra gyrostat13 in the N = 2 case. The constants n n n¢ ¢ ¢, ,1 2 3 are kept scalar,
i.e.

13 The autonomous version is of course well defined also. One should just replace the τ-derivative by the t-
derivative.
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 n ¢ =a b, 0. 4.3[ ] ( )

Proposition 4.2. The Lax pair from  Ä MMat 2, Mat ,( ) ( )

 

  

å

å

s j w n j w w

s
j w j w j w

j w

= = Ä + -

=- Ä +

a
a a a a a a a a

a
a a

a a

=
´

=

L w L w
ı

w w

M w
ı

w w w

w
E w L w

,
1

2
, 1 , ,

,
1

2

, , ,

,
, .

4.4

PVI ZV
M M

PVI PVI

1.32

1

3

1

3
1 1 2 2 3 3

1

( ) ( ) ( ( ) ˜ ( ))

( )
( ) ( ) ( )

( )
( ) ( )

( )

( )

provides, through substitution into the monodromy preserving condition (1.30), the following
equations

      
t

w w n n

w t w t w

= + - + ¢ - ¢

= = + =

a b g g b b g b g g bE E
d

d

1

2
,

2, 1 2, 1 2. 4.5

2 2

1 2 3

( )( ( ) ( ))

( ) ( )

where a b g =, , 1, 2, 3( ) ( ) up to cyclic permutations. In matrix form we have

  
t

n= + ¢ Ä ´J
d

d
, 1 . 4.6M M11 11 1 11[ ( ) ] ( )˜ ˜ ˜

In the scalar ( =N 1) case, equations (4.5) or (4.6) turn into the non-autonomous Zhukovsky–
Volterra gyrostat (1.31), which is known to be equivalent to the Painlevé VI equation. By this
reason we call (4.5) or (4.6) the noncommutative Painlevé VI equation. Here we should repeat
remark 1 from the end of the introduction that equation (4.5) keeps the same form if  takes
values in an arbitrary non-commutative associative algebra .

5. Special elliptic Gaudin models as matrix tops

Consider the following glN Lax pair given by N×N matrices

å åj w w= + =
a

a
a a

a

a
a a

¹ ¹
L z A A z M z A f z, , , , 5.1G G0

0 0

( ) ( ) ( ) ( ) ( )

where ÎaA NMat ,( ) is a set of glN-valued matrices with constraints

=A S1 , 5.2N
0

0 ( )

a= ¹a a-A A for all 0, 5.3( )

which are similar to (3.30). It can be viewed as a special elliptic Gaudin model. Indeed, it
follows from quasiperiodic properties

f f f t p f+ = + = -z u z u z u ıu z u1, , , , exp 2 , 5.4( ) ( ) ( ) ( ) ( ) ( )

that (for a ¹ 0)

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

j w p
a

j w

j t w p
a

j w

+ =

+ = -

a a a a

a a a a

z ı
N

z

z ı
N

z

1, exp 2 , ,

, exp 2 , . 5.5

2

1

( ) ( )

( ) ( ) ( )

Therefore, functions (sections of bundles) ja z{ ( )} are double-periodic on a ‘large’ torusS tN N,

generated by fundamental parallelogram with periods tN N, . The latter means that L zG ( ) is a
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double-periodic function on S tN N, with -N 12 simple poles at points w a a t= +aN 1 2 ,
a ¹ 0. The residues at these points are linear combinations of bA :

åk=
w b

b a
b

= ¹a

L z ARes , 5.6
z N

G

0
,

2( ) ( )

where kb a, is given by (A.4). This is why we refer to this model as a Gaudin one. The Lax
equations are equivalent to

å w a= = - ¹a

b g a

b g
g g g

+ =
A A A J J E, , , 0. 5.72
˙ [ ] ( ) ( )

These equations generalize the elliptic top equations of motion (1.8) in the following sense.
Equations (1.8) are reproduced from (5.7) via reduction

=a
a aA T S . 5.8( )

At the same time (5.3) reduces to (1.24), i.e. (5.7) can be viewed as the matrix generalization
of the 2 reduced elliptic top.

As in (3.29), the constraints (5.3) fulfill the constraint

å w= = ¢
b

b b
b

-A A A E0 , , 5.90
2

˙ [ ] ( ) ( )

which appear from the ‘zero mode’ of the Lax equations. In the same way, similarly to (3.31)
=a a-A A˙ ˙ on constraints (5.3), i.e. these constraints are preserved by dynamics.
Similar to the results of the previous section, we can easily construct non-autonomous

models generalizing (5.7) through the monodromy preserving condition (1.30). The answer is
as follows:

åt
w a= = - ¹a

b g a

b g
g g g

+ =
A A A J J E

d

d
, , , 0. 5.102[ ] ( ) ( )

It is interesting to mention that in the N = 2 case, these equations are equivalent to the
Painlevé VI equation (1.29) after reduction by the coadjoint action of ‘common’ GL 2,( ):

a a -A gA g 1. See details in [29].
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Appendix. Elliptic functions and R-matrices

The Baxter–Belavin R-matrix as well as elliptic tops uses a special basis in NMat ,( ). Let

⎜ ⎟⎛
⎝

⎞
⎠d

p
d= L = = L =- + = ´Q

ı

N
k Qexp

2
, , 1 . A.1kl kl kl k l N

N N
N N1 0 mod ( )
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Then for

⎜ ⎟
⎛
⎝

⎞
⎠  p

= = L = Î ´T T
ı

N
a a Q a a aexp , , A.2a a a

a a
N N1 2 1 21 2

1 2 ( ) ( )
due to

⎜ ⎟⎛
⎝

⎞
⎠

p
L = L

ı

N
a a Q Qexp

2
A.3a a a a

1 2 1 2 2 1 ( )

we have

⎜ ⎟
⎛
⎝

⎞
⎠k k

p
b a b a= = -a b a b a b a b+T T T

ı

N
, exp , A.4, , 1 2 2 1( ) ( )

where a b a b a b+ = + +,1 1 2 2( ). The structure constant ka b, satisfies

åk d=
a

a g gN , A.5,
2 2

,0 ( )

which is equivalent to the identity = ÄP 1 112
2 for the permutation operator P12 given by

 
å å= Ä = Ä

a
a a

Î ´
-

=
P

N
T T E E

1
. A.6

i j

N

ij ji12
, 1N N

( )

From (A.4) we obviously get

k k= = -a b a b a b a b a b b a+T T C T C, , , A.7, , , ,[ ] ( )

i.e. the set aT{ } can be also considered as a basis in glN Lie algebra. It is also called the sin-

algebra basis since =a b
b a b a-C ı2 sin

N, 2
1 2 2 1( ). Being written in such a form, it has natural

generalization to ¥gl . From the point of view of integrable systems it corresponds to
(Arnold’s type) 2D hydrodynamics.

For N = 2 we have

= - L =Q 1 0
0 1

0 1
1 0

,( ) ( )
and, therefore, aT{ } in this case is the set of Pauli matrices:

s s s s= = = - = =´T T T T1 , , , . A.800 0 2 2 10 3 01 1 11 2 ( )

A.1. Elliptic functions

The Kronecker and Eisenstein functions [48]. The following set of elliptic functions14 on
elliptic curve   tÅ with moduli τ (Im t > 0) is widely used in this paper:

The Kronecker function

f h
J J h

J h J
=

¢ +
z

z

z
,

0
A.9( ) ( ) ( )

( ) ( )
( )

14 To be exact, some of these function are not double-periodic. In this sense they are not functions but rather sections
of bundles (the Kronecker functions) or components of connections (E1-function). See the quasi-periodic properties,
e.g. in [26].
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is defined in terms of the odd Riemann theta-function

⎜ ⎟ ⎜ ⎟⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟

åJ J t p t p= = + + + +
Î

z z ı k ı z kexp
1

2
2

1

2

1

2
. A.10

k

2

( ) ( ∣ ) ( )

In rational and trigonometric cases it equals h + z1 1 and h + zcoth coth( ) ( ) respectively.
The derivative of the Kronecker function

f fº ¶ = + -f z u z u z u E z u E u, , , A.11u 1 1( ) ( ) ( )( ( ) ( )) ( )
uses the definition of the first Eisenstein function:

J J= ¢E z z z . A.121( ) ( ) ( ) ( )
It is odd. In rational and trigonometric cases it equals z1 and zcoth( ) respectively. Its
derivative

⎛
⎝⎜

⎞
⎠⎟

J
J

z
J
J

= -¶ = Ã -
¢

= +
¢

E z E z z E z z
z1

3

0

0
, and

3

0

0
A.13z2 1 1( ) ( ) ( ) ‴( )

( )
( ) ( ) ‴( )

( )
( )

is known as the second Eisenstein function. The functions Ã z( ) and z z( ) are the Weierstrass
℘- and ζ-functions.

The local expansion of the Kronecker and Eisenstein functions near z = 0:

f = + + - Ã +z u
z

E u
z

E u u O z,
1

2
, A.141 1

2 2( ) ( ) ( ( ) ( )) ( ) ( )

J
J

= +
¢

+E z
z

z
O z

1

3

0

0
. A.151

3( ) ‴( )
( )

( ) ( )

In particular, we conclude from (A.14) that

= -f u E u0, . A.162( ) ( ) ( )
The Kronecker function satisfies the heat equation

f
p

f¶ - ¶ ¶ =t u w
i

u w,
1

2
, 0. A.17u w( ) ( ) ( )

Most of the Lax equations are due to the Fay trisecant identity

f f f f f f= - + + - +z q w u z w q w q u w z u z q u, , , , , , A.18( ) ( ) ( ) ( ) ( ) ( ) ( )
and its degenerations

f f f= + + + - + +z q w q z w q E z E w E q E z w q, , , . A.191 1 1 1( ) ( ) ( )( ( ) ( ) ( ) ( )) ( )

f f f- = + -z x f z y z y f z x z x y E x E y, , , , , , A.202 2( ) ( ) ( ) ( ) ( )( ( ) ( )) ( )

   f f - = Ã - Ã = -z z z E E z, , , A.212 2( ) ( ) ( ) ( ) ( ) ( ) ( )

f f- - - = ¢ = Ã¢z x f z x z x f z x E x x, , , , . A.222( ) ( ) ( ) ( ) ( ) ( ) ( )
The definition (1.14) of the Baxter–Belavin R-matrix uses the set of N2 functions

 j j w p w f wº + = ¶ +a a a t a az z ı z z, exp 2 , , A.23( ) ( ) ( ) ( ) ( )

where

 w
a a t

w
a

a a a=
+

¶ = = Î ´a t a
N N

, , , , A.24N N
1 2 2

1 2( ) ( )
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The following notations are also used for a ¹ 0 (i.e. a a ¹, 0, 01 2( ) ( )):

j w j p w f w= = ¶a a a t a az z ı z z, exp 2 , , A.250( ) ( ) ( ) ( ) ( )

w p w w= ¶a a t a af z ı z f z, exp 2 , . A.26( ) ( ) ( ) ( )

The index a in ja and af reminds us about the exponential factor.

A.2. R-matrix structures for elliptic tops

Let us list explicit formulae for the coefficients of expansions (1.17)–(1.19). First, write down
again the Baxter–Belavin R-matrix (1.14) with both arguments in j-functions (see notations
(A.23)–(A.26)):



 
å j w= + Ä

a
a a a a

Î ´
-R z z T T, . B.112

N N

( ) ( ) ( )

Using (A.14), (A.15) we obtain the classical Belavin–Drinfeld r-matrix

åj w= Ä + Ä
a

a a a a
¹

-r z E z z T T1 1 , . B.212 1
0

( ) ( ) ( ) ( )

It satisfies the classical Yang–Baxter equation

+ + = = -r r r r r r r r z z, , , 0, B.3ab ab a b12 13 12 23 13 23[ ] [ ] [ ] ( ) ( )

due to the quantum one (1.15). The next term in (1.17):

å w= - Ã Ä + Ä

= - Ä Ã

a
a a a a

¹
-m z E z z f z T T

r z N z

1

2
1 1 ,

1

2
1 1 . B.4

12 1
2

0

12
2 2

( ) ( ( ) ( )) ( )

( ( ) ( )) ( )

The second line follows from the unitarity condition (1.16).
Using local expansion (A.14) we obtain the terms from (1.18), (1.19):

 å w p w= + + ¶ Ä
a

a t a a a-R E ı T T2 , B.512
, 0

1( ( ) ) ( )( )

å w p w= + ¶ Ä
a

a t a a a
¹

-r E ı T T2 . B.612
0

0
1( ( ) ) ( )( )

Properties and identities. The skew-symmetry (1.38) of the quantum R matrix (B.1) as
well as the unitarity (1.16) leads to

- º - = - = -r z P r z P r z m z m z, , B.721 12 12 12 12 12 21( ) ( ) ( ) ( ) ( ) ( )

 = - = --R R r r, . B.812
, 0

21
, 0

12
0

21
0 ( )( ) ( ) ( ) ( )

Various formulae relating to the coefficients follow from the associative Yang–Baxter
equation (1.37) (and the original Yang–Baxter equation (1.15)). In particular, in the limit

h  it gives:

   


= + - ¶R R R r r R R . B.912 23 13 12 23 13 13 ( )
By changing indices «1 3 (i.e. conjugating equation by P13 and renaming «z z1 3),
changing also   - and then using skew-symmetry (1.38) it transforms into

J. Phys. A: Math. Theor. 49 (2016) 395202 A Levin et al

20



   


= + - ¶R R R r r R R . B.1023 12 13 23 12 13 13 ( )
Subtracting (B.10) from (B.9) yields

   = -R R R r R r, , , . B.1112 23 13 12 13 23[ ] [ ] [ ] ( )

Taking the limit   0 and using (B.3) provides

+ = +r m m r m m, , B.1212 13 23 23 12 13[ ] [ ] ( )

or (by interchanging «1 2)

+ + + =r m m r m m, , 0. B.1312 13 23 13 12 23[ ] [ ] ( )

The latter identity was used in [25] for constructing the KZB connections. More identities for
R-matrices can be found in [27] and [50].

A.3. Z2 reduction in elliptic tops

In this paragraph we explain 2 reduction (1.24) in three ways. First, as an invariant flow of
the equations of motion (1.4). Second, from the geometry of the Euler–Arnold tops, and
finally, as a reduction of the Lax equations (1.6).

The first way is straightforward. Impose the constraints

a=a a-S S for all . C.1( )

for the non-relativistic top (1.4)–(1.8). These constraints are preserved by dynamics (1.8)
because =a a-J J and k k=b g b g- -, , . Therefore, the constraints are well defined.

The Euler–Arnold equations (1.4) define a flow on a coadjoint orbit of the group
NSL ,( ). One can pass to some 2-invariant semi-simple subgroup ÌG NSL ,inv ( ) and

consider the Euler–Arnold equations on the coadjoint orbits in the Lie coalgebra g * =inv( ) Lie
* Ginv( ). If the inverse inertia tensor J is also 2-invariant then these orbits become invariant
phase subspaces of the original phase space (1.4). In what follows we use the following
subgroup

⎧⎨⎩
*

*

  
  =

+ ´ - ´ -
+ ´ - ´ -

G
N N N

N N N

SL 2 1, SL 2 1, , even,

SL 1 2, SL 1 2, , odd,
C.2inv ( ) ( )

(( ) ) (( ) )
( )

and >N 3. For N = 3, =Ginv SL * ´2,( ) , and for N = 2 =Ginv SL 2,( ).
For the non-relativistic tops we consider the corresponding Lie algebras. The 2

reduction is provided by the second order automorphisms ς of sl N ,( ). In terms of the
generators aT (A.2) ς acts as

V a a-T T: . C.3( )
Explicitly, it is defined by the conjugation by the matrix h

 V d = L =- -
- +x hxh h: , , C.4ij i N j

1 1
, 1 ( )

where Λ is the one from (A.1). It follows from  = 1N
2 and

 L = L- . C.51 ( )
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that ς is an involution V = 12 . For the matrix Q from (A.1) we also have

⎜ ⎟⎛
⎝

⎞
⎠   

p
= L L = - =- - -h Q h Q

ı

N
Q Qexp

2
. C.6

C1 1 .5 1 ( )( )

Therefore, for the matrices aT (A.2) we obtain (C.3)

a=a a
-

-h T h T for all . C.71 ( )
Therefore, the invariant subalgebra has generators +a a-T T1

2
( ), and by imposing the

constraints

a=a a-S S for all C.8( )
we come to the invariant subalgebra

⎧⎨⎩
⎫⎬⎭g å= + =

a
a a a-S T T Lie G C

1

2
.2 . C.9inv inv( ) ( ) ( ) ( )

Since J (1.5) is also 2-invariant the reduction to Ginv is consistent with the equations of
motion.

To prove that Ginv has the form (C.2) we diagonalize h (C.4). The matrix h has m
eigenvalues l = 1 and n l = -1 + =m n N( ), where = +m N 2 1 for N even, and

= +m N 1 2( ) for N odd. Therefore, the subgroup of NSL ,( ) commuting with h has the
form (C.2).

As usual, to prove the integrability of the reduced system we represent the equations of
motion in the Lax form (1.6). Consider the Lax operator L(z) (1.7). It is a meromorphic map
from the complex plane to the Lie algebra sl N ,( ) satisfying fixed quasi-periodicities with
respect to the shifts on the lattice  tÅ . Consider the automorphism z→−z of . It
preserves the lattice  tÅ and in this waySt . Consider the equivariant maps sl N ,( )
with respect to the automorphisms ς (C.3) and the automorphism z→−z. It can be found that
the combined actions of these automorphisms preserve the quasi-periodicity conditions.
Define the Lax operator as an equivariant map15

- = -a a
-hL S z h L S z, , . C.10inv inv1( ) ( ) ( )

From (C.1) we find the equivariant Lax operator

å åj j j= + = +
a

a a a a a
a

a a a a- - -L z S z T z T S S z T
1

2

1

2
. C.11inv ( ) ( ( ) ( ) ) ( ) ( ) ( )

The operator M(z) (1.7) is a map of 0-forms to sl N ,( ) and due to (1.7), (A.11) and
(A.26) are also the equivariant map. The equivariant maps form a Lie algebra. Therefore, the
Lax equation being reduced on the equivariant operators L M,inv inv is equivalent to the
equations of motion on the constrained surface.

Put it differently, we can say that the set of constraints (C.1) is generated by involution ς

(C.4) acting on the Lax matrix:

V = - -L z S h L z S h, , . C.121( ( )) ( ) ( )

Indeed, it follows from (C.5)–(C.7) that the action of ς (C.12) on the Lax matrix (1.7) is given
as follows:

15 In fact, the Lax operator is a one-form L z dz( ) and the sign ‘−’ in the rhs of (C.10) is then absent.
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å åj w j w- = - = -
a

a a a a
a

a a a a
-

¹
-

¹
-h L z S h T S z T S z, , , , C.131

0 0

( ) ( ) ( ) ( )

where we used j w j w- = - -a a a a-z z, ,( ) ( ). Thus, condition

V = -L z S L z S, , C.14( ( )) ( ) ( )
is equivalent to (C.1).

In fact, the involution leads to decomposition

åV j w=  =
a

a a a a a


¹
-L z S L z S L z S T S S z,

1

2
, ,

1

2
, . C.15

0

( ) ( ( ) ( ( ))) ( ) ( ) ( )

Condition (C.14) or (C.1) is equivalent to =+L z S, 0( ) , and we are left with
=-L z S L z, inv( ) ( ) on the reduced phase space.

In the relativistic case we use relation to η-independent description, i.e. from (1.13) and
(C.1) we get

j h w j h w
a=

-
¹a

a a

a

a a

-

-

S S

, ,
, 0 C.16

( ) ( )
( )

and S0 is not changed. Then, similarly to the non-relativistic case, these constraints are
preserved by dynamics (1.12).
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