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Abstract Propagating kink waves are ubiquitously observed in solar magnetic wave guides.
We consider the possibility that these waves propagate without reflection although there
is some inhomogeneity. We briefly describe the general theory of non-reflective, one-
dimensional wave propagation in inhomogeneous media. This theory is then applied to
kink-wave propagation in coronal loops. We consider a coronal loop of half-circle shape
embedded in an isothermal atmosphere, and assume that the plasma temperature is the same
inside and outside the loop. We show that non-reflective kink-wave propagation is possi-
ble for a particular dependence of the loop radius on the distance along the loop. A viable
assumption that the loop radius increases from the loop footpoint to the apex imposes a
lower limit on the loop expansion factor, which is the ratio of the loop radii at the apex and
footpoints. This lower limit increases with the loop height; however, even for a loop that
is twice as high as the atmospheric scale height, it is small enough to satisfy observational
constraints. Hence, we conclude that non-reflective propagation of kink waves is possible in
a fairly realistic model of coronal loops.

Keywords Corona · Coronal magnetic loops · Waves · Wave reflection

1. Introduction

Standing transverse oscillations of coronal magnetic loops were one of the first wave phe-
nomena observed in the solar corona with the new generation of spacecraft (Aschwanden
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et al., 1999; Nakariakov et al., 1999). These oscillations were interpreted as fast kink oscil-
lations of magnetic tubes (for a review see Ruderman and Erdélyi, 2009; Terradas, 2009).
Recently, observations of transverse perturbations propagating along the magnetic field were
reported. These propagating perturbations were detected with the Solar Optical Telescope
(SOT) onboard Hinode in prominence fibrils (Okamoto et al., 2007) and chromospheric
spicules (De Pontieu et al., 2007; He et al. 2009a, 2009b), and with the X-ray Telescope
(XRT) onboard Hinode in soft X-ray jets (Cirtain et al., 2007). Similar perturbations were
observed in coronal loops by the Coronal Multi-Channel Polarimeter (COMP: Tomczyk
et al., 2007).

An important property of the observed propagating transverse perturbations is that they
mainly propagate upwards, with the amplitude of the upward-propagating perturbations
much larger than those of the downward-propagating perturbations. In the application to
open wave guides, such as spicules, this property is considered as evidence that perturba-
tions are generated in the lower parts of the solar atmosphere and then propagate in the
upper part of the chromosphere and corona. For closed wave guides, such as coronal mag-
netic loops, it is considered as evidence that there is sufficiently strong damping, so that
there is no wave reflected from the end of the wave guide opposite to the one where the
propagating wave is driven.

Both of these statements describe definitely necessary conditions for the absence of
downward-propagating waves. However, they are not sufficient. When the wavelength of
a wave propagating in an inhomogeneous wave guide is of the order of the characteristic
length of inhomogeneity, as is the case in all of the observations mentioned above, then,
in general, there is sufficiently strong wave reflection from the inhomogeneity. However,
there are some exceptions. For particular forms of the propagation-speed variation along the
wave guide, waves can propagate without reflection even in strongly inhomogeneous wave
guides. Such non-reflective wave propagation along inhomogeneous wave guides has been
studied in applications to plasma physics (Ginzburg, 1970), oceanography (Brekhovskih,
1980; Vlasenko, 1987; Vlasenko et al., 2003; Didenkulova, Pelinovsky, and Soomere, 2008;
Grimshaw, Pelinovsky, and Talipova, 2010), acoustics (Ibragimov and Rudenko, 2004), and
atmospheric science (Petrukhin, Pelinovsky, and Batsyna, 2011). Recently, the theory of
non-reflective wave propagation has been applied to solar physics. Petrukhin, Pelinovsky,
and Talipova (2012) studied non-reflective vertical propagation of acoustic waves in the so-
lar atmosphere, while Cally (2012) investigated non-reflective propagation of Alfvén waves.

The aim of this article is to extend the theory of non-reflective wave propagation to fast
kink oscillations in magnetic tubes that are inhomogeneous in the longitudinal direction.
The article is organised as follows: In the next section we formulate the problem and write
down the governing equations. In Section 3 we briefly describe the general theory of one-
dimensional non-reflective wave propagation in inhomogeneous media. In Section 4 we
apply the general theory to propagating kink waves in coronal loops. Section 5 contains the
summary of the results obtained and our conclusions.

2. Problem Formulation

We consider the propagation of fast kink waves along a straight thin magnetic tube in the
cold-plasma approximation. It is assumed that the plasma density varies along the tube, but
does not vary in the radial direction. Hence, in cylindrical coordinates [r , ϕ, z] with the
z-axis coinciding with the tube axis, the density is given by

ρ =
{

ρi(z), r < R(z),

ρe(z), r > R(z).
(1)

Author's personal copy



Non-reflective Propagation of Kink Waves in Coronal Magnetic Loops 419

Here R(z) is the tube radius, which can also vary along the tube. In the thin-tube approxi-
mation, plane polarised kink waves are described by

∂2(η/R)

∂t2
− c2

k

∂2(η/R)

∂z2
= 0, (2)

where η is the tube-axis displacement,

c2
k = 2B2

μ0(ρi + ρe)
, (3)

B the magnetic-field magnitude, and μ0 the magnetic permeability of free space. Due to the
magnetic-flux conservation, B and R are related by

B(z)R2(z) = const. (4)

Equation (2) was first derived by Dymova and Ruderman (2005) for a particular case where
R = const, and was then generalised for the case with variable R by Ruderman, Verth, and
Erdélyi (2008). It is used here to study the non-reflective propagation of kink waves.

3. General Theory

In this section we briefly describe the general theory of non-reflective wave propagation.
Since it is relevant for any wave equation with a variable phase speed, we drop the subscript
k. We seek the solution to Equation (2) in the form

u(z, t) ≡ η(z, t)/R(z) = A(z)Φ
(
τ(z), t

)
, (5)

where, at present, A(z), τ(z), and Φ(τ, t) are unknown functions. Obviously, any function
u(z, t) can be written in this form, so this representation does not impose any restriction on
the solution. Substituting Equation (5) in Equation (2), we obtain

A
∂2Φ

∂t2
− c2A

(
dτ

dz

)2
∂2Φ

∂τ 2
= c2

(
2

dA

dz

dτ

dz
+ A

d2τ

dz2

)
∂Φ

∂τ
+ c2 d2A

dz2
Φ. (6)

Now we consider this equation as an equation for Φ and define the unknown functions A(z)

and τ(z) in such a way that this equation reduces to the Klein–Gordon equation. First of all,
we take

dτ

dz
= 1

c
, τ (z) =

∫
dz

c(z)
, (7)

where, for definiteness, we have chosen the plus sign corresponding to the wave propagation
in the positive z-direction. To obtain the Klein–Gordon equation we also need to eliminate
the first term on the right-hand side of Equation (6). For this we put

2
dA

dx

dτ

dz
+ A

d2τ

dz2
= 0. (8)

Integrating this equation we obtain

A(z) = A0c
1/2(z), (9)

where A0 is a constant. Since u is defined as the product of A and Φ , we can take A0 = 1
without loss of generality. As a result, we reduce Equation (6) to the variable-coefficient
Klein–Gordon equation

∂2Φ

∂t2
− ∂2Φ

∂τ 2
= c2

A

d2A

dz2
Φ. (10)
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So far, we have not made any assumptions about c(z), so the derivation of Equation (10) is
absolutely general. We see that the wave equation with variable phase speed can always be
reduced to the Klein–Gordon equation with one variable coefficient.

Now we would like to have the Klein–Gordon equation with constant coefficients. Hence,
we impose the condition

c2 d2A

dz2
= βA. (11)

Then Equation (10) reduces to

∂2Φ

∂t2
− ∂2Φ

∂τ 2
= βΦ. (12)

Substituting Equation (9) in this equation, we arrive at the equation for c:

2c
d2c

dz2
−

(
dc

dz

)2

= 4β. (13)

To obtain the general solution to this equation we introduce p = dc/dz and consider p as a
function of c. Substituting this expression in Equation (13), we obtain

dp2

dc
− p2

c
= 4β

c
. (14)

The solution to this linear equation is straightforward:

p2 = 4(Mc − β), (15)

where M is an arbitrary constant. Substituting this result in the relation p = dc/dz and
integrating the obtained equation, we obtain∫

dc√
Mc − β

= ±2z. (16)

Now we consider two cases.

i) M �= 0. In this case Equation (16) reduces to

c = M(z + N)2 + β

M
, (17)

where N is an arbitrary constant. For a symmetric profile, i.e. when c(z) is an even
function, we have N = 0. Since c > 0, β < 0 when M < 0, while β can have arbitrary
sign when M > 0.

ii) M = 0. In this case β < 0, and Equation (16) reduces to

c = ±2
√|β|(z + N). (18)

We see that we can have the Klein–Gordon equation with constant coefficients when c(z) is
either a linear or a quadratic function.

Note that, when β = 0, Equation (12) is the wave equation with constant coefficients,
which admits the well-known D’Alambert solution. When β �= 0, Equation (12) has a so-
lution in the form of monochromatic wave, Φ ∝ exp[i(kτ − ωt)], where ω2 = k2 − β , so
the wave is dispersive. When β < 0, there is the cut-off frequency ωc = √−β , while waves
with arbitrary frequencies can propagate when β > 0.
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4. Application to Wave Propagation in Coronal Loops

In this section we consider the application of the general theory to the kink-wave propagation
in coronal loops. We adopt a very popular model of a coronal loop, which is a coronal
loop with the half-circle shape embedded in an isothermal atmosphere. We assume that the
temperature is the same inside and outside the loop, which implies that the ratio of densities
inside the loop [ρi] and outside the loop [ρe] is constant, ρi/ρe = ζ > 1. The density is
related to the height [h] in the solar atmosphere by

ρi = ρf exp(−h/H), (19)

where H is the atmospheric scale height and ρf is the density at the footpoints. The height
in the atmosphere is related to the length along the loop counted from one of the footpoints
by

h = L

π
sin

πz

L
, (20)

where L is the loop length. Substituting this result in Equation (19), we obtain

ρi = ρf exp

(
− L

πH
sin

πz

L

)
. (21)

Using this equation and Equation (4), we transform Equation (3) to

ck = cf

(
Rf

R(z)

)2

exp

(
L

2πH
sin

πz

L

)
, cf = Bf

√
2ζ

μ0ρf(ζ + 1)
, (22)

where Bf, Rf, and cf are the magnetic-field magnitude, the radius of the loop cross-section,
and the kink speed at the footpoints. We assume that the velocity profile is symmetric with
respect to the loop apex point that corresponds to z = L/2. Then, to have non-reflective
kink-wave propagation, we need to take the velocity profile given by Equation (17) with
N = −L/2. Comparing Equations (17) and (22), we arrive at the expression for R(z),

λ(z) ≡ R(z)

Rf
=

√
M2L2 + 4β

M2(2z − L)2 + 4β
exp

(
L

4πH
sin

πz

L

)
, (23)

where we have used the condition R(0) = Rf to express cf in terms of M and β . The condi-
tion ck(z) > 0 for z ∈ [0,L] is satisfied when either

M > 0, β > 0, (24)

or

M < 0, 4β < −M2L2. (25)

We make the viable assumption that λ(z) monotonically increases when z ∈ [0,L/2] and
monotonically decreases when z ∈ [L/2,L]. This condition reduces to

sgn(β)

{
8H(2z − L) − cos

πz

L

[
(2z − L)2 + 4β

M2

]}
< 0, z ∈ [0,L/2]. (26)

It is obvious that this condition is satisfied when β > 0. When M and β satisfy condi-
tion (25), it is easy to show that the condition (26) is equivalent to

β < −1

4
LM2(L + 8H). (27)
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Obviously, this inequality is stronger than the second inequality in Equation (25).
The loop expansion factor [λ0 = λ(0)] is given by

λ0 =
√

1 + M2L2

4β
exp

(
L

4πH

)
. (28)

It is straightforward to see that the dependence of λ on the dimensionless length along the
loop [Z = z/L] is determined by two dimensionless parameters: M2L2/β and the ratio of
the loop height to the atmospheric scale height [κ = L/πH ]. Using Equation (28) we obtain

M2L2

β
= 4λ2

0e−κ/2 − 4. (29)

Substituting this result in Equation (23), we rewrite it in terms of dimensionless variables,

λ(Z) = λ0√
λ2

0 − eκ/2)(2Z − 1)2 + eκ/2
exp

(
κ

4
sin(πZ)

)
. (30)

It follows from Equation (29) that β > 0 when λ0 > eκ/4, and β < 0 otherwise. In the latter
case the inequality (27) reduces to

λ0 >
eκ/4

√
1 + πκ/8

≡ λm. (31)

It is easy to show that λm > 1. Hence, in our model, the loop expansion factor can take any
value from the interval (λm,∞). The quantity λm is an increasing function of κ . It varies
approximately from 1.036 to 1.234 when κ increases from 1/2 to 2. Hence, we can have
quite realistic expansion factors that do not exceed 1.5 in our model even for large coronal
loops with a height of the apex point above the atmospheric scale height.

If we take a monochromatic solution of Equation (12), the displacement of the loop axis
in accordance with Equations (5) and (9) is given by

η(t, z) = CR(z)c
1/2
k (z) exp

[
i
(
kτ(z) − ωt

)]
, (32)

where C is a constant. Hence, the oscillation amplitude [a(z)] is proportional to R(z)c
1/2
k (z).

Then, using Equation (22), we obtain

a(z) = af exp

(
L

4πH
sin

πz

L

)
, (33)

where af = a(0).
When λ0 > eκ/4, we have β > 0, and there is no cut-off frequency. For λ0 < eκ/4 the

cut-off frequency is ωc = √−β . We express ωc in terms of the loop parameters. Using
Equation (17) with z = 0 and N = −L/2, and Equation (29), we obtain

M2 = c−2
f λ4

0β
2e−κ .

Eliminating M from this equation and Equation (29), we find β and obtain

ωc = 2cfeκ/4

Lλ2
0

√
eκ/2 − λ2

0. (34)

The cut-off frequency [ωc] takes the highest value when λ0 = λm. This value is given by

ωcM = 2cfeκ/4

Lλ2
m

√
eκ/2 − λ2

m = cf

4H

√
1 + 8

πκ
. (35)
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Figure 1 The dependence of the
dimensionless radius of the loop
cross-section [λ] on the length
along the loop [z] for κ = 1/2.
Since the loop is symmetric, only
half of the loop is shown. The
solid, dashed, dotted, and
dash–dotted curves correspond to
λ0 = 1.036, 1.2, 1.5, and 2. The
value λ0 = 1.036 is close to λm.

When κ varies from 1/2 to 2, the dimensionless quantity ωcMH/cf decreases from 0.617 to
0.377. If we take as typical coronal values H = 60 Mm and cf = 1000 km s−1, we obtain a
value for the shortest cut-off period 2π/ωcM that is between 10 and 17 minutes. We see that
the shortest cut-off period is longer than the typical periods of observed propagating waves
in coronal loops, although, quite rarely, oscillations with periods longer than ten minutes are
observed (e.g. Aschwanden et al., 2002).

Schrijver, Aschwanden, and Title (2002) described 17 events with transverse oscillations
of coronal loops observed with the Transition Region and Coronal Explorer (TRACE). As-
chwanden et al. (2002) presented the study of the geometrical parameters of the loops in-
volved in these oscillations. The lengths of all but one of these loops vary from 72 Mm
to 200 Mm. If we assume that the loops have a half-circle shape, the heights of their apex
points vary from 23 Mm to 127 Mm. If, in addition, we take the atmospheric scale height in
the corona to be equal to 60 Mm, we obtain κ between 0.4 and 2.1. Hence, we have chosen
κ = 1/2, 1, and 2 as representative values. One coronal loop studied by Aschwanden et al.
(2002) was extremely large: 582 Mm long. However, the shape of this loop was very differ-
ent from a half-circle, so we disregarded it. In Figures 1, 2, and 3 the dependence of λ on
z/L is shown for various values of κ and λ0.

To complete this section, we add that standing kink waves in coronal loops with the
quadratic velocity profile symmetric with respect to the loop apex point have been studied
by Dymova and Ruderman (2006).

5. Summary and Conclusions

We have studied the non-reflective propagation of fast kink waves along magnetic-flux tubes
in the solar atmosphere. We restricted our analysis to kink oscillations of straight thin flux
tubes in cold plasma. The density was assumed not to vary across the tube cross-section, but
both the density and cross-section radius were allowed to vary along the tube. To describe
the kink oscillations we used the wave equation derived by Ruderman, Verth, and Erdélyi
(2008).

We briefly described the general theory of one-dimensional wave propagation in inhomo-
geneous media and showed that the wave equation with a variable phase speed can always be
reduced to the Klein–Gordon equation with one variable coefficient. Moreover, we showed
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Figure 2 The dependence of the
dimensionless radius of the loop
cross-section [λ] on the length
along the loop [z] for κ = 1.
Since the loop is symmetric, only
half of the loop is shown. The
solid, dashed, dotted, and
dash–dotted curves correspond to
λ0 = 1.09, 1.2, 1.5, and 2. The
value λ0 = 1.09 is close to λm.

Figure 3 The dependence of the
dimensionless radius of the loop
cross-section [λ] on the length
along the loop [z] for κ = 2.
Since the loop is symmetric, only
half of the loop is shown. The
solid, dashed, dotted, and
dash–dotted curves correspond to
λ0 = 1.24, 1.4, 1.7, and 2. The
value λ0 = 1.24 is close to λm.

that this Klein–Gordon equation has constant coefficients if the dependence on the phase
speed on the spatial variable is either linear or quadratic.

The general theory was applied to fast kink-wave propagation along coronal magnetic
loops. We considered magnetic loops with a half-circle shape in an isothermal atmosphere.
We assumed that loops are symmetric with respect to the apex point, and that the depen-
dence of the kink speed on the distance along the loop is quadratic. This assumption dictates
the dependence of the loop cross-section radius on the distance along the loop. Our model
contains two free parameters: the ratio of the loop height to the atmospheric scale height
κ , and the loop expansion factor λ0, which is the ratio of the loop cross-section radii at the
apex and footpoints.

We made the viable assumption that the loop cross-section radius increases with the
height. This assumption imposes the restriction that λ0 has to be larger than the lowest
values λm > 1, which is a monotonically increasing function of κ . This value is not very
high. Even for κ = 2 we have λm ≈ 1.234, therefore our model can describe quite realistic
coronal loops. We plot the dependence of the loop cross-section radius on the length along
the loop for various values of κ and λ0. An interesting property of our model is that there
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is a cut-off frequency when λ0 < eκ/4, while there is no cut-off frequency when λ0 > eκ/4.
For typical coronal-loop parameters the cut-off period is longer than the typical periods of
observed propagating kink waves.

It is important to note that the condition that the Klein–Gordon equation has constant
coefficients is a sufficient condition for having non-reflective wave propagation, but it is not a
necessary condition. Recently, Cally (2012) investigated the propagation of Alfvén waves in
the solar atmosphere. He showed that even the atmosphere with the exponentially increasing
Alfvén speed is transparent for Alfvén waves, and the total absorption of Alfvén wave energy
at infinity is possible. He also showed that the same is true for a power-law profile of the
Alfvén speed. Although Cally (2012) considered Alfvén waves, his analysis is applicable to
any type of waves that are described by the wave equation. An important distinctive property
of waves described by the Klein–Gordon equation with constant coefficients is that they can
propagate without changing shape. Only the wave amplitude changes with the distance from
the wave driver. There are other differences related to the appearance of oscillating wakes
in the case of a general wave profile. However, discussing these differences is beyond the
scope of our article.
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