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Introduction

Every algebraic variety X carries a canonical stratification by orbits of the automorphism group Aut(X ). The aim of thispaper is to give several characterizations of this stratification when X is an affine toric variety.In the case of a complete toric variety X the group Aut(X ) is a linear algebraic group. It admits an explicit description interms of combinatorial data defining X ; see [7, 9]. The orbits of the connected component Aut(X )0 on the variety X aredescribed in [6]. It is proved there that two points x, x ′ ∈ X are in the same Aut(X )0-orbit if and only if the semigroupsin the divisor class group Cl(X ) generated by classes of prime torus invariant divisors that do not contain x and x ′respectively, coincide.
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On orbits of the automorphism group on an affine toric variety

We obtain an analogue of this result for affine toric varieties. It turns out that in the affine case one may replace thesemigroups mentioned above by the groups generated by the same classes. When X is non-degenerate, this relatesAut(X )0-orbits on X with stabilizers of points in fibres of the canonical quotient presentation π : X → X//HX
∼= X ,where HX is a quasitorus with the character group identified with Cl(X ) and X is a finite-dimensional HX -modulewhose coordinate ring is the total coordinate ring (or the Cox ring) of X ; see [7], [8, Chapter 5], or Section 4 for details.More precisely, our main result (Theorem 5.1) states that the collection of Aut(X )0-orbits on X coincides with the Lunastratification of X as the quotient space of the linear HX -action on X . In particular, in our settings the Luna stratificationis intrinsic in the sense of [14]. For connections between quotient presentations of an arbitrary affine variety, the Lunastratification, and Cox rings, see [1].In contrast to the complete case, the automorphism group of an affine toric variety is usually infinite-dimensional. Anexplicit description of the automorphism group of an affine toric surface in terms of free amalgamated products is givenin [5]. Starting from dimension three such a description is unknown. Another difference is that in the affine case theopen orbit of Aut(X )0 coincides with the smooth locus of X [4, Theorem 2.1], while for a smooth complete toric variety Xthe group Aut(X )0 acts on X transitively if and only if X is a product of projective spaces [6, Theorem 2.8].In Section 1 we recall basic facts on automorphisms of algebraic varieties and define the connected component Aut(X )0.Section 2 contains some background on affine toric varieties. We consider one-parameter unipotent subgroups in Aut(X )normalized by the acting torus (root subgroups). They are in one-to-one correspondence with the so-called Demazureroots of the cone of the variety X . Also we recall the technique developed in [4], which will be used later. In Section 3 wediscuss the Luna stratification on the quotient space of a rational G-module, where G is a reductive group. Necessaryfacts on Cox rings and canonical quotient presentations of affine toric varieties are collected in Section 4. We definethe Luna stratification of an arbitrary affine toric variety and give a characterization of strata in terms of some groupsof classes of divisors (Proposition 4.7). Our main result is proved in Section 5. We illustrate it by an example. It showsthat although the group Aut(X )0 acts (infinitely) transitively on the smooth locus X reg, it may be non-transitive on theset of smooth points of the singular locus X sing, even when X sing is irreducible. Finally, in Section 6 we prove collectiveinfinite transitivity on X along the orbits of the subgroup of Aut(X ) generated by root subgroups and their replicas(Theorem 6.1). Here we follow the approach developed in [3].

1. Automorphisms of algebraic varieties

Let X be a normal algebraic variety over an algebraically closed field K of characteristic zero and Aut(X ) be theautomorphism group. At the moment we consider Aut(X ) as an abstract group and our aim is to define the connectedcomponent of Aut(X ) following [18].
Definition 1.1.A family {φb}b∈B of automorphisms of a variety X , where the parametrizing set B is an algebraic variety, is an algebraic
family if the map B×X → X given by (b, x) 7→ φb(x) is a morphism.
If G is an algebraic group and G×X → X is a regular action, then we may take B = G and consider the algebraicfamily {φg}g∈G , where φg(x) = gx. So any automorphism defined by an element of G is included in a natural algebraicfamily.
Definition 1.2.The connected component Aut(X )0 of the group Aut(X ) is the subgroup of automorphisms that occur as member of analgebraic family {φb}b∈B with an (irreducible) rational curve as a base B such that φb0 = idX for some b0 ∈ B.
Remark 1.3.It is also natural to consider arbitrary irreducible base B in Definition 1.2, but for our purposes related to toric varietiesrational curves as bases are more suitable.
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It is easy to check that Aut(X )0 is indeed a subgroup; see [18].
Lemma 1.4.
Let G be a connected linear algebraic group and G×X → X be a regular action. Then the image of G in Aut(X ) is
contained in Aut(X )0.
Proof. We have to prove that every g ∈ G can be connected with the unit by a rational curve. By [13, Theorem 22.2],an element g is contained in a Borel subgroup of G. As any connected solvable linear algebraic group, a Borel subgroupis isomorphic (as a variety) to (K×)r×Km with some non-negative integers r and m. The assertion follows.
We denote by WDiv(X ) the group of Weil divisors on a variety X and by PDiv(X ) the subgroup of principal divisors, i.e.,PDiv(X ) = {div(f) : f ∈ K(X )×}. Then the divisor class group of X is defined as Cl(X ) = WDiv(X )/PDiv(X ). The imageof a divisor D in Cl(X ) is denoted by [D] and is called the class of D. Any automorphism φ ∈ Aut(X ) acts naturally onthe set of prime divisors and thus on the group WDiv(X ). Under this action a principal divisor goes to a principal oneand we obtain an action of Aut(X ) on Cl(X ).Recall that the local class group of X in a point x is the factor group

Cl(X, x) = WDiv(X )/PDiv(X, x),
where PDiv(X, x) is the group of Weil divisors on X that are principal in some neighbourhood of the point x. Wehave a natural surjection Cl(X ) → Cl(X, x). Let us denote by Clx (X ) the kernel of this homomorphism, i.e., Cl(X, x) =Cl(X )/Clx (X ). Equivalently, Clx (X ) consists of classes that have a representative whose support does not contain x.We obtain the following result.
Lemma 1.5.
Assume that an automorphism φ ∈ Aut(X ) acts on Cl(X ) trivially. Then Clx (X ) = Clφ(x)(X ) for any x ∈ X.

2. Affine toric varieties and Demazure roots

A toric variety is a normal algebraic variety X containing an algebraic torus T as a dense open subset such that theaction of T on itself extends to a regular action of T on X . Let N be the lattice of one-parameter subgroups λ : K× → Tand M = Hom(N,Z) be the dual lattice. We identify M with the lattice of characters χ : T → K×, and the pairing
N×M → Z is given by (λ, χ) 7→ 〈λ, χ〉, where χ(λ(t)) = t〈λ,χ〉.

Let us recall a correspondence between affine toric varieties and rational polyhedral cones. Let σ be a polyhedral conein the rational vector space NQ = N⊗ZQ and σ∨ be the dual cone in MQ. Then the affine variety
Xσ = SpecK[σ∨∩M]

is toric and any affine toric variety arises this way, see [8, 11]. The T -orbits on Xσ are in order-reversing bijection withfaces of the cone σ . If σ0 � σ is a face, then we denote the corresponding T -orbit by Oσ0 . In particular, Oσ is a closed
T -orbit and for the minimal face 0 � σ , the corresponding orbit is O0 = T ⊆ Xσ .An affine variety X is called non-degenerate if any regular invertible function on X is constant. If X is toric, thiscondition means that there are no non-trivial decompositions T = T1×T2 and X = X0×T2, where X0 is an affine toricvariety with acting torus T1. If X = Xσ , then X is non-degenerate if and only if the cone σ spans NQ or, equivalently,the cone σ∨ is pointed.Let us consider for a moment the case of an arbitrary toric variety X . Recall that X contains a finite number of prime
T -invariant divisors D1, . . . , Dm. (In the affine case they are in bijection with rays of the cone σ .) It is well known that
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the group Cl(X ) is generated by classes of these divisors. Let us associate with a T -orbit O on X the set of all prime
T -invariant divisors D(O) = {Di1 , . . . , Dik } that do not contain O. Denote by G(O) the subgroup of Cl(X ) generated bythe classes of divisors from D(O).
Proposition 2.1.
Let X be a toric variety and x ∈ X. Then Clx (X ) = G(T ·x).
Proof. Take a class [D] ∈ Cl(X ) with a T -invariant representative D. By definition, [D] is contained in Clx (X ) if andonly if it contains a representative D′ ∈ WDiv(X ) whose support does not pass through x. In particular, D′ = D+div(h)for some h ∈ K(X ). Consider the decomposition D′ = D′+ − D′−, where D′+ and D′− are effective. This allows to dealwith only the case where D′ is effective.Suppose that [D] ∈ Clx (X ). We claim that there exists a T -invariant effective divisor D′′ ∈ [D] whose support does notpass through x. Assume this is not the case and consider the vector space

H0(X,D′) = {
f ∈ K(X )× : D′ + div(f) ≥ 0} ∪ {0}.

Then H0(X,D) = hH0(X,D′) and the subspace H0(X,D) in K(X ) is invariant with respect to the action (t · f)(x) =
f(t−1 · x). It is well known that H0(X,D) is a rational T -module. We can transfer the structure of rational T -module to
H0(X,D′) by the formula

t ◦ f = h−1t · (hf) for any t ∈ T , f ∈ H0(X,D′).
Then a function f ∈ H0(X,D′) is T -semiinvariant if and only if the divisor D′ + div(f) is T -invariant. Since D′ iseffective, the support of D′ + div(f) passes through x if and only if f(x) = 0. By our assumption, this is the case for all
T -semiinvariants in H0(X,D′). But any vector in H0(X,D′) is a sum of semiinvariants. Thus the support of any effectivedivisor in [D] contains x. This is a contradiction, because the support of D′ does not pass through x.Since D′′ is a sum of prime T -invariant divisors not passing through x, the class [D], and thus the group Clx (X ), iscontained in the group G(T ·x). The opposite inclusion is obvious.
Lemma 2.2.
Let X be an affine toric variety. Then Aut(X )0 is in the kernel of the action of Aut(X ) on Cl(X ).
Proof. Let {φb}b∈B be an algebraic family of automorphisms with φb0 = idX for some b0 ∈ B. We may assume that
B is an affine rational curve. In particular, Cl(B) = 0. Consider the morphism Φ: B×X → X given by (b, x) 7→ φb(x).We have to show that for any divisor D in X the intersections of Φ−1(D) with fibres {b}×X are linearly equivalentto each other. The torus T acts on the variety B×X via the action on the second component. It is well known thatevery divisor on B×X is linearly equivalent to a T -invariant one. Every prime T -invariant divisor on B×X is eithervertical, i.e., is a product of a prime divisor in B and X , or horizontal, i.e., a product of B and a prime T -invariant divisorin X . Every vertical divisor is principal. So the divisor Φ−1(D) plus some principal divisor div(f) is a sum of horizontaldivisors. Restricting the rational function f to every fibre {b}×X we obtain that the intersections of Φ−1(D) with fibresare linearly equivalent to each other.
Our next aim is to present several facts on automorphisms of affine toric varieties. Denote by σ (1) the set of rays of acone σ and by vτ the primitive lattice vector on a ray τ.
Definition 2.3.An element e ∈ M is a called a Demazure root of a polyhedral cone σ in NQ if there is a τ ∈ σ (1) such that 〈vτ , e〉 = −1and 〈vτ′ , e〉 ≥ 0 for all τ ′ ∈ σ (1) \ {τ}.
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Let R = R(σ ) be the set of all Demazure roots of a cone σ . For any root e ∈ R denote by τe (resp. ve) the ray τ (resp.primitive vector vτ ) with 〈vτ , e〉 = −1. Let Rτ be the set of roots e with τe = τ. Then
R = ⋃

τ∈σ (1)Rτ .

One can easily check that every set Rτ is infinite.
Example 2.4.Let σ be the positive orthant in the space NQ = Qn, where N is the lattice Zn. For every ray τi generated by the ithstandard basis vector the set Rτi consists of the vectors (a1, . . . , ai−1, −1, ai+1, . . . , an), aj ∈ Z≥0, in the dual lattice
M = Zn.
With any root e one associates a one-parameter subgroup He in the group Aut(X ) such that He

∼= (K,+) and He isnormalized by T , see [9, 16] or [4, Section 2] for an explicit form of He. Moreover, every one-parameter unipotent subgroupof Aut(X ) normalized by T has the form He for some root e. The following result is obtained in [4, Proposition 2.1].
Proposition 2.5.
Let e ∈ R. For every point x ∈ X \ XHe the orbit He · x meets exactly two T-orbits O1 and O2. Moreover, O2 ⊆ O1 anddimO1 = 1 + dimO2.

A pair of T -orbits (O1,O2) as in Proposition 2.5 is called He-connected. The next result is [4, Lemma 2.2].
Lemma 2.6.
Let Oσ1 and Oσ2 be two T-orbits corresponding to faces σ1, σ2 � σ. Then the pair (Oσ1 ,Oσ2 ) is He-connected if and only
if

e�σ2 ≤ 0 and σ1 = σ2 ∩ e⊥ is a facet of cone σ2.

Let AT(X ) be the subgroup of Aut(X ) generated by subgroups T and He, e ∈ R. Clearly, two T -orbits O and O′ on Xare contained in the same AT(X )-orbit if and only if there is a sequence O = O1,O2, . . . ,Ok = O′ such that for any ieither the pair (Oi,Oi+1) or the pair (Oi+1,Oi) is He-connected for some e ∈ R.This statement admits a purely combinatorial reformulation. Let Γ(O) be the semigroup in Cl(X ) generated by classesof the elements of D(O). The following result is given in [6, Lemmas 2.2-4].
Proposition 2.7.
Two T-orbits O and O′ on X lie in the same AT(X )-orbit if and only if Γ(O) = Γ(O′).
3. The Luna stratification

In this section we recall basic facts on the Luna stratification introduced in [15], see also [17, Section 6]. Let G be areductive affine algebraic group over an algebraically closed field K of characteristic zero and V be a rational finite-dimensional G-module. Denote by K[V ] the algebra of polynomial functions on V and by K[V ]G the subalgebra of
G-invariants. Let V //G be the spectrum of the algebra K[V ]G . The inclusion K[V ]G ⊆ K[V ] gives rise to a morphism
π : V → V//G called the quotient morphism for the G-module V . It is well known that the morphism π is a categoricalquotient for the action of the group G on V in the category of algebraic varieties, see [17, 4.6]. In particular, π issurjective.The affine variety X = V //G is irreducible and normal. It is smooth if and only if the point π(0) is smooth on X . In thelatter case the variety X is an affine space. Every fibre of the morphism π contains a unique closed G-orbit. For any
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closed G-invariant subset A ⊆ V its image π(A) is closed in X . These and other properties of the quotient morphismmay be found in [17, 4.6].By Matsushima’s criterion, if an orbit G ·v is closed in V , then the stabilizer Stab(v) is reductive, see [17, 4.7]. Moreover,there exists a finite collection {H1, . . . , Hr} of reductive subgroups in G such that if an orbit G · v is closed in V , thenStab(v) is conjugate to one of these subgroups. This implies that every fibre of the morphism π contains a point whosestabilizer coincides with some Hi.For every stabilizer H of a point in a closed G-orbit in V the subset
VH = {

w ∈ V : there exists v ∈ V such that G ·w ⊃ G ·v = G ·v and Stab(v) = H
}

is G-invariant and locally closed in V . The image XH = π(VH ) turns out to be a smooth locally closed subset of X . Inparticular, XH is a smooth quasiaffine variety.
Definition 3.1.The stratification X = r⊔

i=1 XHi is called the Luna stratification of the quotient space X .
Two points x1, x2 ∈ X are in the same Luna stratum if and only if the stabilizers of points from the closed G-orbitsin π−1(x1) and π−1(x2) are conjugate. In particular, if G is a quasitorus, these stabilizers should coincide.There is a unique open dense stratum called the principal stratum of X . The closure of any stratum is a union of strata.Moreover, a stratum XHi is contained in the closure of a stratum XHj if and only if the subgroup Hi contains a subgroupconjugate to Hj . This induces a partial ordering on the set of strata compatible with the (reverse) ordering on the set ofconjugacy classes of stabilizers.
4. Cox rings and quotient presentations

Let X be a normal algebraic variety with finitely generated divisor class group Cl(X ). Assume that any regular invertiblefunction f ∈ K[X ]× is constant. Roughly speaking, the Cox ring of X may be defined as
R(X ) = ⊕

[D]∈Cl(X )H
0(X,D).

In order to obtain a multiplicative structure on R(X ) some technical work is needed, especially when the group Cl(X )has torsion. We refer to [2, Section 4] for details.It is well known that if X is toric and non-degenerate, then R(X ) is a polynomial ring K[Y1, . . . , Ym], where the variables Yiare indexed by T -invariant prime divisors Di on X and the Cl(X )-grading on R(X ) is given by deg(Yi) = [Di]; see [7]and [8, Chapter 5].The affine space X = SpecR(X ) comes with a linear action of a quasitorus HX = SpecK[Cl(X )] given by the Cl(X )-grading on R(X ). The algebra of HX -invariants on R(X ) coincides with the zero weight component R(X )0 = K[X ].Assume that X is a non-degenerate affine toric variety. Then we obtain a quotient presentation
π : X → X//HX

∼= X.

Definition 4.1.Let X be a non-degenerate affine toric variety and V be a rational module of a quasitorus H. The quotient morphism
π′ : V → V//H is called a canonical quotient presentation of X , if there are an isomorphism φ : HX → H and a linearisomorphism ψ : X → V such that ψ(h·y) = φ(h) ·ψ(y) for any h ∈ HX and y ∈ X .
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A canonical quotient presentation may be characterized in terms of the quasitorus action.
Definition 4.2.An action of a reductive group F on an affine variety Z is said to be strongly stable if there exists an open denseinvariant subset U ⊆ Z such that1. the complement Z \ U is of codimension at least two in Z ;2. the group F acts freely on U;3. for every z ∈ U the orbit F ·z is closed in Z .
The following proposition may be found in [2, Remark 6.4.2 and Theorem 6.4.3].
Proposition 4.3.1. Let X be a non-degenerate toric variety. Then the action of H = Spec(K[Cl(X )]) on X is strongly stable.2. Let H be a quasitorus acting linearly on a vector space V . Then the quotient space X = V //T is a non-degenerate

affine toric variety. If the action of H on V is strongly stable, then the quotient morphism π : V → V//T is a canonical
quotient presentation of X. In particular, the group Cl(X ) is isomorphic to the character group of H.

A canonical quotient presentation allows to define a canonical stratification on X .
Definition 4.4.The Luna stratification of a non-degenerate affine toric variety X is the Luna stratification of Definition 3.1 inducedon X by the canonical quotient presentation π : X → X .
Proposition 4.5.
Let X be a non-degenerate affine toric variety. Then the principal stratum of the Luna stratification on X coincides with
the smooth locus X reg.
Proof. As was pointed out above, points of the principal stratum are smooth on X . Conversely, the fibre π−1(x) overa smooth point x ∈ X consists of one HX -orbit and HX acts on π−1(x) freely; see [2, Proposition 6.1.6]. This shows that
x is contained in the principal stratum.
Now we assume that X is a degenerate affine toric variety. Let us fix a point x0 in the open T -orbit on X and considerthe closed subvariety X0 = {x ∈ X : f(x) = f(x0)}, where f runs through all invertible regular functions on X . Then X0is a non-degenerate affine toric variety with respect to a subtorus T1 ⊆ T , and X0 depends on the choice of x0 only upto shift by an element of T . Moreover, X ∼= X0×T2 for a subtorus T2 ⊂ T with T = T1×T2. We define a Luna stratumon X as T · Y , where Y is a Luna stratum on X0. This way we obtain a canonical stratification of X with open stratumbeing the smooth locus.The following lemma is straightforward.
Lemma 4.6.
In notations as above every Luna stratum on X is isomorphic to Y ×T2, where Y is a Luna stratum on X0.

Now we present the first characterization of the Luna stratification.
Proposition 4.7.
Let X be an affine toric variety. Then two points x, x ′ ∈ X are in the same Luna stratum if and only if Clx (X ) = Clx′ (X ).
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Proof. By Lemma 4.6 we may assume that X is non-degenerate. Let π : X → X be the canonical quotient presentation.For any point v ∈ X such that the orbit HX · v is closed in X the stabilizer Stab(v) in HX is defined by the surjection ofthe character groups X(HX )→ X(Stab(v)). By [2, Proposition 6.2.2] we may identify X(HX ) with Cl(X ), X(Stab(v)) withCl(X, x), and the homomorphism with the projection Cl(X ) → Cl(X, x), where x = π(v). Thus two points v, v ′ ∈ X withclosed HX -orbits have the same stabilizers in HX , or, equivalently, the points x = π(v) and x ′ = π(v ′) lie in the sameLuna stratum on X if and only if Clx (X ) = Clx′ (X ).
5. Orbits of the automorphism group

The following theorem describes orbits of the group Aut(X )0 in terms of local divisor class groups and the Luna stratifi-cation of an affine toric variety X .We recall that Clx (X ) denotes the group of classes of divisors which have a representative whose support does notcontain x. Further, G(T · x) (resp. Γ(T · x)) is the group (resp. the semigroup) in Cl(X ) generated by classes of prime
T -invariant divisors that do not contain the orbit T · x.
Theorem 5.1.
Let X be an affine toric variety and x, x ′ ∈ X. Then the following conditions are equivalent.1. The Aut(X )0-orbits of the points x and x ′ coincide.2. G(T · x) = G(T · x ′).3. Clx (X ) = Clx′ (X ).4. The points x and x ′ lie in the same Luna stratum on X.

Proof. Implication 1.⇒ 3. follows from Lemma 1.5. Conditions 3. and 4. are equivalent by Proposition 4.7 andconditions 2. and 3. are equivalent by Proposition 2.1. So it remains to prove implication 2.⇒ 1.
Proposition 5.2.
Let X be an affine toric variety and x ∈ X. Then G(T ·x) = Γ(T ·x).
Proof. We begin with some generalities on quasitorus representations. Let K be a finitely generated abelian group.Consider a diagonal linear action of the quasitorus H = SpecK[K ] on a vector space V of dimensionm given by characters
χ1, . . . , χm ∈ K . Then we have a weight decomposition V = ⊕m

i=1 Kei, where h· ei = χi(h)ei for any h ∈ H. With anyvector v = x1e1 + · · ·+ xmem one associates the set of characters ∆(v) = {χi1 , . . . , χik } such that xi1 6= 0, . . . , xik 6= 0. Itis well known that the orbit H · v is closed in V if and only if the cone generated by χi1⊗1, . . . , χik⊗1 in KQ = K ⊗ZQis a subspace.Below we make use of the following elementary lemma.
Lemma 5.3.
Let χ1, . . . , χm be elements of a finitely generated abelian group K. If the cone generated by χ1⊗1, . . . , χm⊗1 in KQ is
a subspace, then the semigroup generated by χ1, . . . , χm in K is a group.

Let us return to the canonical quotient presentation π : X → X . By construction, the HX -weights of the linear HX -actionon X are the classes −[D1], . . . , −[Dm] in Cl(X ). Moreover, for any point v ∈ X such that HX · v is closed in X the set ofweights ∆(v) coincides with the classes of the divisors from −D(T ·x) = {−Di1 , . . . , −Dik }, where x = π(v). Since theorbit HX · v is closed in X , by Lemma 5.3 the semigroup Γ(T ·x) generated by [Di1 ], . . . , [Dik ] coincides with the group
G(T ·x) generated by [Di1 ], . . . , [Dik ], and we obtain Proposition 5.2. �

By Proposition 5.2, we have Γ(T · x) = Γ(T · x ′). Further, Proposition 2.7 implies that x and x ′ lie in the same AT(X )-orbitand thus in the same Aut(X )0-orbit. This completes the proof of Theorem 5.1.
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Remark 5.4.Condition 2. of Theorem 5.1 is the most effective in practice. It is interesting to know for which wider classes of varietiesequivalence of conditions 1. and 3. holds. The following observation is due to the referee. Let Y be a normal complete
K×-surface with Cl(Y ) = Z and a singular K×-fixed point x0; concrete examples may be found in [12, Theorem 3.23]. If
X is a factorial K×-invariant open affine neighborhood of x0, then Clx0 (X ) = 0 = Clx (X ) for any x ∈ X , but x0 is a fixedpoint of Aut(X )0.
Remark 5.5.It follows from properties of the Luna stratification that the Aut(X )0-orbit of a point x is contained in the closure of theAut(X )0-orbit of a point x ′ if and only if Clx (X ) is a subgroup of Clx′ (X ).
Let us finish this section with a description of Aut(X )-orbits on an affine toric variety X . Denote by S(X ) the image of thegroup Aut(X ) in the automorphism group Aut(Cl(X )) of the abelian group Cl(X ). The group S(X ) preserves the semigroupgenerated by the classes [D1], . . . , [Dm] of prime T -invariant divisors. Indeed, this is the semigroup of classes containingan effective divisor. In particular, the group S(X ) preserves the cone in Cl(X )⊗ZQ generated by [D1]⊗1 , . . . , [Dm]⊗1.This shows that S(X ) is finite.The following proposition is a direct corollary of Theorem 5.1.
Proposition 5.6.
Let X be an affine toric variety. Two points x, x ′ ∈ X are in the same Aut(X )-orbit if and only if there exists s ∈ S(X )
such that s(Clx (X )) = Clx′ (X ).
If X is an affine toric variety, then the group Aut(X )0 acts on the smooth locus X reg transitively; see [4, Theorem 2.1].Let X sing = X1 ∪ . . . ∪ Xr be the decomposition of the singular locus into irreducible components. One may expect thatthe group Aut(X )0 acts transitively on every subset X reg

i \
⋃
j 6=i Xj too. The following example shows that this is not thecase.

Example 5.7.Consider a two-dimensional torus T 2 acting linearly on the vector space K7:
(t1, t2) · (z1, z2, z3, z4, z5, z6, z7) = (

t1z1, t1z2, t−11 z3, t2z4, t2z5, t−11 t−12 z6, t−11 t−12 z7).
One can easily check that this action is strongly stable, and by Proposition 4.3 the quotient morphism π : K7 → K7//T 2is the canonical quotient presentation of a five-dimensional non-degenerate affine toric variety X = K7//T 2. Looking atclosed T 2-orbits on K7, one obtains that there are three Luna strata

X = (X \ Z ) ∪ (Z \ {0}) ∪ {0},
where Z = π(W ) and W is a subspace in K7 given by z4 = z5 = z6 = z7 = 0. In particular, Z is the singular locusof X . Clearly, Z is isomorphic to an affine plane with coordinates z1z3 and z2z3. So, Z is irreducible and smooth, butthe groups Aut(X )0 (and Aut(X )) has two orbits on Z , namely, Z \ {0} and {0}.
6. Collective infinite transitivity

Let X be a non-degenerate affine toric variety of dimension ≥ 2. It is shown in [4, Theorem 2.1] that for any positiveinteger s and any two tuples of smooth pairwise distinct points x1, . . . , xs and x ′1, . . . , x ′s on X there is an automorphism
φ ∈ Aut(X )0 such that φ(xi) = x ′i for i = 1, . . . , s. In other words, the action of Aut(X )0 on the smooth locus X reg is
infinitely transitive.
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Our aim is to generalize this result and to prove collective infinite transitivity along different orbits of some subgroupof the automorphism group. Let us recall some general notions from [3]. Consider a one-dimensional algebraic group
H ∼= (K,+) and a regular action H×X → X on an affine variety X = SpecA. Then the associated derivation ∂ of A islocally nilpotent, i.e., for every a ∈ A we can find n ∈ N such that ∂n(a) = 0. Any derivation of A may be viewed as avector field on X . So we may speak about locally nilpotent vector fields ∂. We use notation H = H(∂) = exp(K∂). Itis immediate that for every f ∈ Ker ∂ the derivation f∂ is again locally nilpotent [10, 1.4, Principle 7]. A one-parametersubgroup of the form H(f∂) for some f ∈ Ker ∂ is called a replica of H(∂).A set N of locally nilpotent vector fields on X is said to be saturated if it satisfies the following two conditions.1. N is closed under conjugation by elements of G, where G is the subgroup of Aut(X ) generated by all subgroups H(∂),
∂ ∈ N.2. N is closed under taking replicas, i.e., for all ∂ ∈ N and f ∈ Ker ∂ we have f∂ ∈ N.

If X = Xσ is toric, we define A(X ) as the subgroup of Aut(X ) generated by He, e ∈ R, and all their replicas. As N onecan take locally nilpotent vector fields corresponding to replicas of He and all their conjugates.
Theorem 6.1.
Let X be a non-degenerate affine toric variety. Suppose that x1, . . . , xs and x ′1, . . . , x ′s are points on X with xi 6= xj and
x ′i 6= x ′j for i 6= j such that for each i the orbits A(X ) · xi and A(X ) · x ′i are equal and of dimension ≥ 2. Then there exists
an element φ ∈ A(X ) such that φ(xi) = x ′i for i = 1, . . . , s.
The proof of Theorem 6.1 is based on the following results. Let G be a subgroup of Aut(X ) generated by subgroups
H(∂), ∂ ∈ N, for some set N of locally nilpotent vector fields and Ω ⊆ X be a G-invariant subset. We say that a locallynilpotent vector field ∂ satisfies the orbit separation property on Ω if there is an H(∂)-stable subset U(H) ⊆ Ω such that1. for each G-orbit O contained in Ω, the intersection U(H) ∩ O is open and dense in O;2. the global H-invariants K[X ]H separate all one-dimensional H-orbits in U(H).
Similarly we say that a set of locally nilpotent vector fields N satisfies the orbit separation property on Ω if it holds forevery ∂ ∈ N.
Theorem 6.2 ([3, Theorem 3.1]).
Let X be an irreducible affine variety and G ⊆ Aut(X ) be a subgroup generated by a saturated set N of locally nilpotent
vector fields, which has the orbit separation property on a G-invariant subset Ω ⊆ X. Suppose that x1, . . . , xs and
x ′1, . . . , x ′s are points in Ω with xi 6= xj and x ′i 6= x ′j for i 6= j such that for each i the orbits G · xi and G · x ′i are equal and
of dimension ≥ 2. Then there exists an element g ∈ G such that g · xi = x ′i for i = 1, . . . , s.
Proof of Theorem 6.1. Let us take G = A(X ) and Ω = X . In order to apply Theorem 6.2, we have to checkthe orbit separation property for one-parameter subgroups in A(X ). By [3, Lemma 2.8], it suffices to check it for thesubgroups He, e ∈ R.
Proposition 6.3.
Let e be a root of a cone σ ⊆ NQ of full dimension and X = Xσ be the corresponding affine toric variety. Then for any
two one-dimensional He-orbits C1 and C2 there is an invariant f ∈ K[X ]He with f�C1 = 0 and f�C2 = 1.

Proof. Let Re be a one-parameter subgroup of T represented by the vector ve ∈ N. Then K[X ]He = K[X ]Re ;see [4, Section 2.4]. Moreover, the subgroup Re normalizes but not centralizes He in Aut(X ) and every one-dimensional
He-orbit C ∼= A1 is the closure of an Re-orbit; see [4, Proposition 2.1]. In particular, every one-dimensional He-orbit con-tains a unique Re-fixed point. Since the group Re is reductive, every two Re-fixed points can be separated by an invariantfrom K[X ]Re . This shows that any two one-dimensional He-orbits can be separated by an invariant from K[X ]He . �

This completes the proof of Theorem 6.1.
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It follows from the proof of [4, Theorem 2.1] that the group A(X ) acts (infinitely) transitively on the smooth locus of anon-degenerate affine toric variety X . In particular, the open orbits of A(X ) and Aut(X )0 on X coincide. The examplebelow shows that this is not the case for smaller orbits.
Example 6.4.Let Xσ be the affine toric threefold defined be the cone

σ = cone(τ1, τ2, τ3), vτ1 = (1, 0, 0), vτ2 = (1, 2, 0), vτ3 = (0, 1, 2).
We claim that all points on one-dimensional T -orbits of X are A(X )-fixed. Indeed, suppose that a point x on a one-dimensional T -orbit is moved by the subgroup He for some root e. Then x belongs to a union of two He-connected
T -orbits. Assume, for example, that the T -orbit of x corresponds to the face cone(τ1, τ2) and the pair of He-connected
T -orbits includes the T -fixed point on X . By Lemma 2.6, we have

〈(1, 0, 0), e〉 = 0, 〈(1, 2, 0), e〉 = 0, 〈(0, 1, 2), e〉 = −1.
These conditions imply 〈(0, 0, 1), e〉 = −1/2, a contradiction. If the pair of He-connected T -orbits includes the two-dimensional orbit, then either

〈(1, 0, 0), e〉 = 0, 〈(1, 2, 0), e〉 = −1, or 〈(1, 0, 0), e〉 = −1, 〈(1, 2, 0), e〉 = 0.
In both cases we have 〈(0, 1, 0), e〉 = ±1/2, a contradiction. Other possibilities may be considered in the same way.
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