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TUNNEL SPLITTING OF THE SPECTRUM AND BILOCALIZATION

OF EIGENFUNCTIONS IN AN ASYMMETRIC DOUBLE WELL

E. V. Vybornyi∗

We consider the one-dimensional stationary Schrödinger equation with a smooth double-well potential.

We obtain a criterion for the double localization of wave functions, exponential splitting of energy levels,

and the tunneling transport of a particle in an asymmetric potential and also obtain asymptotic formulas

for the energy splitting that generalize the well-known formulas to the case of mirror-symmetric potential.

We consider the case of higher energy levels and the case of energies close to the potential minimums. We

present an example of tunneling transport in an asymmetric double well and also consider the problem

of tunnel perturbation of the discrete spectrum of the Schrödinger operator with a single-well potential.

Exponentially small perturbations of the energies occur in the case of local potential deformations con-

centrated only in the classically prohibited region. We also calculate the leading term of the asymptotic

expansion of the tunnel perturbation of the spectrum.

Keywords: tunneling, quasi-intersection of energy levels, one-dimensional Schrödinger equation, semi-
classical approximation

1. Introduction

Interest in quantum tunneling is seen in many fields of contemporary physics (see, e.g., [1], [2]). One
of the basic tunneling models is one-dimensional motion in a potential field with the shape of a generally
asymmetric double well. The problem of investigating the spectrum and wave functions analytically in the
case of a potential with two wells has a rich history: the first qualitative results were already obtained back
in 1927 [3].

We consider the semiclassical asymptotic behavior of the wave functions of the one-dimensional sta-
tionary Schrödinger equation

(
−�

2 d2

dx2
+ V (x)

)
ψ = Eψ, 0 < � � 1,

where � is the small parameter of the semiclassical approximation.
We assume that the smooth real potential V (x) has the shape of a double well (see Fig. 1), i.e., the

classical region of particle motion (V (x) < E) consists of two finite intervals. There is a potential barrier
between the two wells, and the energy E is not near the potential barrier peak. We assume that the energy
spectrum is discrete near E. It is known that in the case of a mirror-symmetric potential, this spectrum
consists of pairs of exponentially close points and the corresponding eigenfunctions are symmetric and
antisymmetric [4]. This results in the effect of tunneling transport when a particle initially located in one
of the wells can be discovered in the other well with a probability close to unity after a certain time.
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Fig. 1

An analogue of this result for a symmetric well was also obtained in the multidimensional case, namely,
the asymptotic behavior of the splitting of the lower energy level is known [5].

Here, we study the case of an asymmetric potential V (x). Such potentials are interesting from the
physical standpoint (see [1], [6]), and the problem is significantly more complicated in the asymmetric case.
But numerical calculations demonstrate that the double localization of eigenfunctions still occurs [1], [7], [8].

Considering numerically solved examples, we see that the spectrum of an operator with a double-well
potential near the energy E, with a certain accuracy, consists of points E� and Er corresponding to the
spectra of the Schrödinger operator separately considered in the left and right potential wells. Let ψ�,r

be the wave functions localized in the respective left and right potential wells. If E� and Er are close to
each other, then the spectrum of the operator with a double-well potential contains a pair of close points
or, as is usually said, the energy levels are quasidegenerate. The corresponding eigenfunctions in the first
approximation then have the form of linear combinations of the functions ψ� and ψr.

One of the methods used to determine the splitting value and the form of the eigenfunctions in the case
of quasidegeneration is based on considering the restriction of the operator Ĥ to the subspace spanned by the
two vectors ψ� and ψr and subsequently diagonalizing Ĥ. This method, called the two-level approximation,
is widely used in quantum mechanics problems (see the references in [2]). The matrix elements 〈Ĥψi, ψj〉,
i, j = �, r, are calculated in this method, the desired splitting value is determined as the distance between
the eigenvalues of this matrix, and its eigenvectors approximate the coefficients of the linear expansion of
the eigenvectors of Ĥ in the system of eigenfunctions ψ�,r.

Because the subspace to which the operator is restricted is not invariant, this method gives only
an approximate result whose accuracy depends on the proximity between this subspace and an invariant
subspace, i.e., on the choice of ψ� and ψr. A general mathematical justification of this method can be found
in [9], [10]. This method in a somewhat modified form is presented in the appendix here along with some
useful theorems from the theory of linear operators. Different modifications of this method were used to
calculate the tunnel splitting of energy levels in the asymmetric case in [10]–[13].

In [10], [11], it was proposed to take the solution of the Schrödinger equations in a neighborhood Ω�

of the left well not intersecting the right well as ψ� and E� and to impose the Dirichlet conditions on the
boundary of the domain Ω�. The wave function ψr and the energy Er are chosen similarly. It was shown
that such a choice permits obtaining sufficiently exact expressions for the energies of the initial equations
in terms of the solution of the Dirichlet problem for separate wells if sufficiently large neighborhoods Ωi,
i = �, r, are considered. These neighborhoods must intersect and contain the “center” of the potential
barrier. This method was used in [10] to obtain the asymptotic behavior of the splitting of a pair of lower
energy levels in the case of a multidimensional asymmetric potential (without any explicit expression for
the amplitude) in terms of the energies E� and Er of the separate wells.
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Here, we show that such a choice of domains Ωi is not only a sufficient but also a necessary condition
for the applicability of the two-level approximation method (see Secs. 6 and 7). Therefore, as shown in
Sec. 7, the choice of the functions ψ�,r used in [13] leads to a false result because the domains Ωi are chosen
to be nonintersecting. We simultaneously note the inaccuracy arising in [12] because the usual distance
on the straight line was used to determine the center of the asymmetric barrier. In fact, it is necessary to
determine the potential barrier center from the standpoint of the action in the instanton sense.1

In addition to permitting the calculation of the splitting of energy levels, the two-level approximation
method permits determining the coefficients of the approximate expansion of the eigenfunctions of Ĥ in ψ�

and ψr. Because the eigenfunctions are determined up to a normalizing factor and are orthogonal, it suffices
to know the asymptotic behavior of the probabilities P�(�) and Pr(�) to find the particle in the left and
right wells for a pair of eigenfunctions. A wave function is said to be bilocalized if both the probabilities
Pi(�) significantly differ from zero for sufficiently small �, i.e., if Pi(�) = pi + O(�) and pi > 0. It is easy to
show that if one eigenfunction is bilocalized, then the other is also bilocalized. The effect of eigenfunction
bilocalization is closely related to the value of the tunnel splitting of energy levels.

In [16], for two lower energy levels in a multidimensional potential, it was proved that if both the
probabilities P�,r(�) have a positive lower limit as � → 0, then the splitting value Δ satisfies the estimate
Δ = O(e−S/�). This estimate was refined in [10] for a pair of lower energy levels.

Our main result here is the proof of a criterion for the double localization of eigenfunctions (Theo-
rem 1) demonstrating that there is a relation between the amplitude of the energy level splitting and the
probabilities p� and pr. The theorem also proves a relation to the formula for the splitting of energy levels
in terms of the solution of the spectral problem obtained separately for the right and left wells (a formula
in the spirit of [10]). The corresponding formulas for the splitting are

Δ =
δ

2
√

p�pr

(
1 + O(�)

)
,

Δ =
√

(Er − E�)2 + δ2
(
1 + O(�)

)
.

Here,

δ = 2�
2

(
ψ�

dψr

dx
− ψr

dψ�

dx

)
x=c

,

where c is the center of the potential barrier from the standpoint of the instanton action.
The asymptotic formula for δ for higher energy levels (see Sec. 2) has the form

δ = �

√
ω�ωr

π
exp

(
−1

�

∫ xr

x�

|p| dx

)(
1 + O(�)

)
.

The formula for δ in the case of lower energy levels is given in Sec. 3.
The result obtained for higher energy levels is consistent with the result obtained in [4] for a symmetric

potential; our result generalizes the result obtained in the case without any symmetry in [4].
The splitting amplitude for lower energy levels can be expressed in terms of the solution of the varia-

tional system for the instanton (see Sec. 3). A similar method was used in [17] for a pair of lower energies
of the Schrödinger operator with a multidimensional symmetric potential.

In Sec. 6, we consider the problem of tunnel perturbations of the discrete spectrum of the Schrödinger
operator with a single-well potential. The problem is to estimate the perturbation of the energy E0 of
the Schrödinger operator with a potential V (x) to which a function f(x) localized only in the classically

1Or in the sense of the Agmon metric [10], [14], [15].
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forbidden region is added. It is not assumed that f(x) is small in this case. We obtain the formula for the
leading term of the asymptotic expansion of the tunnel perturbation

E − E0 = 〈f(x)ψ0, ψ0〉
(
1 + o(1)

)
,

where ψ0 is the wave function corresponding to the energy E0.
In Sec. 7, we prove that the problem of tunnel perturbation of the spectrum of a single-well potential is

equivalent to the problem of the deformation of one side of the potential barrier of a double-well potential.
In the case of deformation where the support of f(x) is between the center of the potential barrier and the
turning point, the double localization of eigenfunctions is destroyed, and the splitting satisfies the formula

Δ = 〈f(x)ψi, ψi〉
(
1 + o(1)

)
,

where i = � or i = r for the deformation of the left or the right side of the barrier.
The problem of the deformation of one side of the potential barrier of a symmetric double-well potential

for a pair of lower energy levels was considered in [18]. It was shown that a similar deformation destroys
the double localization of eigenfunctions and the splitting value satisfies the estimate

Δ = exp
(
−2S + o(1)

�

)
,

where S is the action in the sense of an instanton between the turning point and the support of f(x). A
multidimensional generalization of this result was given in [15].

Our formula easily implies the estimates given in [18]. The obtained formula permits calculating not
only the logarithmic limit but also the value of the splitting amplitude for specific functions f(x).

2. Splitting value and the tunneling amplitude

In this section, we consider the case of higher energy levels. We assume that the energy E is greater
than the minimums of the double-well potential and less than the peak of the potential barrier. The fact
that the potential has two wells means that the equation V (x) = E has four simple roots, i.e., turning
points, and V (x) > E + e for sufficiently large x and some e > 0.

We assume that there is a potential barrier between the turning points x� and xr, i.e., V (x) > E for
x� < x < xr. The point c is determined by the formula

∫ c

x�

|p(x)| dx =
∫ xr

c

|p(x)| dx,

where p(x) =
√

E − V (x). The point c is the center of the potential barrier from the standpoint of the
instanton action. We assume that points a and b are chosen such that

x� < a < c < b < xr.

We introduce two smooth potentials V�,r (see Fig. 2) satisfying the two conditions

V�(x) ≡ V (x) for x ≤ b, Vr(x) ≡ V (x) for x ≥ a

and
V�(x) > E + e for x ≥ b, Vr(x) > E + e for x ≤ a
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Fig. 2

for some e > 0.
We introduce the Schrödinger operators with the potentials V�,r as

Ĥi = −�
2 d2

dx2
+ Vi(x), i = �, r.

The potentials V�,r are single-well potentials for the energy E because the classical region of a particle
motion in each of the potentials V�,r(x) is an interval. Therefore, the well-known results of the semiclassical
analysis [4], [19] listed below hold for the spectra of the operators Ĥi.

I. The spectrum of the operator Ĥi near the energy E is discrete and nondegenerate. The distance
between neighboring points of the spectrum is of the order of �.

II. Let Ei belong to the spectrum of the operator Ĥi, i = �, r, and be close to E. Let ψi be the
corresponding normalized eigenfunction. Then the asymptotic formulas

ψ�(x) =
C�√
|p|

exp
(
−1

�

∫ x

x�

|p| dx

)(
1 + O(�)

)
,

ψr(x) =
Cr√
|p|

exp
(
−1

�

∫ xr

x

|p| dx

)(
1 + O(�)

)

are uniform in x ∈ [a, b], and these asymptotic expansions are differentiable.

III. The normalization constants C�,r can be chosen as

Ci =
1
2

√
ωi

π
, i = �, r,

where ωi is the classical frequency of oscillations in the potential well Vi(x) for the energy E.

Results I and II are general and hold for an arbitrary single-well potential, while assertion III holds only in
the case of higher energy levels.

The operators Ĥ�,r actually describe the left and right potential wells of the initial operator Ĥ . It
is easy to show (see the proof of Theorem 1 below) that the spectrum of the operator Ĥ near E can be
obtained with an exponential accuracy when the spectra of Ĥ� and Ĥr are combined. If the energy E� is
exponentially close to the energy Er, then the effect of the energy level quasidegeneration can arise in the
case of such a combination. If there is no quasidegeneration, then the function ψ� or ψr can be chosen as an
approximate eigenfunction of Ĥ . If the energy levels are quasidegenerate, then the spectrum of Ĥ contains
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a pair of exponentially close points of the spectrum, and the eigenfunctions approximately have the form
of linear combinations of the functions ψ� and ψr.

Let ψ be an eigenfunction of Ĥ . The probabilities P�,r(�) of discovering a particle in the left or right
potential wells can be calculated as integrals of |ψ(x)|2 for x < c for the left well and for x > c for the right
well. The normalization condition for the wave functions implies the relation

P�(�) + Pr(�) = 1.

We can therefore take the probability ratio Pr(�)/P�(�) as a quantity indicating where the wave function
is concentrated.

We say that the wave function ψ has double localization if there is a number μ > 0 such that

Pr(�)
P�(�)

= μ2 + O(�).

The probabilities P�,r(�) to find a particle in either the left or right potential well are then significantly
different from zero and satisfy the asymptotic formulas

P�(�) = p�

(
1 + O(�)

)
=

1
1 + μ2

(
1 + O(�)

)
,

Pr(�) = pr

(
1 + O(�)

)
=

μ2

1 + μ2

(
1 + O(�)

)
.

As is shown below in Sec. 4, the particle dynamics in the potential with two wells strongly depends on
the value of μ.

We set

δ(�) = 4�C�Cr exp
(
−1

�

∫ xr

x�

|p|dx

)
.

The quantity δ(�) is the characteristic scale of exponential smallness for the tunnel effects in the double-well
potential.

In the following theorem, we formulate a criterion for the resonant tunneling and obtain a relation
between the splitting value Δ of the energy level, the tunneling amplitude μ, and the distance between E�

and Er.

Theorem 1. For a fixed nonnegative number λ, the following three conditions are equivalent:

1. The operator Ĥ has a bilocalized eigenfunction near the energy E, and the tunneling amplitude

satisfies the formula

μ =
√

1 + λ2 ± λ.

2. Near the energy E, the spectrum of the operator Ĥ contains a pair of exponentially close points such

that the distance between them satisfies the asymptotic formula

Δ =
√

1 + λ2δ(�)
(
1 + O(�)

)
.

3. The distance between the points Ei satisfies the asymptotic formula

|Er − E�| = δ(�)
(
λ + O(�)

)
.
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We first make several remarks and then prove the theorem.
This theorem generalizes the results obtained in the symmetric case. All three conditions are then

obviously satisfied and λ = 0 in the case of a symmetric potential. The splitting then satisfies the Landau–
Lifshits asymptotic formula

Δ =
ω�

π
exp

(
−1

�

∫ xr

x�

|p| dx

)(
1 + O(�)

)
.

In the general case, the number λ, just as μ, quantitatively characterizes the double localization of
eigenfunctions. The number λ can uniquely be expressed in terms of μ because the plus sign is taken in
the formula in condition 1 if μ > 1 and the minus sign is taken if μ < 1. There are two values μ = μ1,2 and
μ1 = μ−1

2 for each fixed λ. Two different values of μ correspond to a pair of eigenfunctions for a pair of close
eigenvalues of Ĥ. The existence of one bilocalized eigenfunction with μ = μ1 therefore implies that there is
a second eigenfunction with the inverse exponent μ = μ2 = μ−1

1 . If one eigenfunction is more localized in
the left well (μ1 > 1), then the other is more localized in the right well (μ2 > 1), and conversely.

If λ = 0, then μ = 1, and tunneling transport occurs (see Sec. 4). For λ = 0, the splitting value satisfies
the asymptotic formula

Δ = �

√
ω�ωr

π
exp

(
−1

�

∫ xr

x�

|p| dx

)(
1 + O(�)

)
.

For an arbitrary λ ≥ 0, the value δ(�) can be calculated by the formula

δ(�) = 2�
2

[
ψ�

dψr

dx
− ψr

dψ�

dx

]
x=c

,

which directly follows from the definition of δ and the asymptotic behavior of ψ�,r(x).
Eliminating the constant λ from conditions 1 and 2 in Theorem 1, we can obtain the equation relating

the energy level splitting Δ to the tunneling amplitude μ:

Δ =
1
2

(
μ +

1
μ

)
δ(�)

(
1 + O(�)

)
.

We express μ in terms of p�,r, substitute the obtained expression for δ(�), and obtain

Δ =
δ(�)

2
√

p�pr

(
1 + O(�)

)
,

Δ =
�

2π

√
ω�ωr

p�pr
exp

(
−1

�

∫ xr

x�

|p| dx

)(
1 + O(�)

)
.

The quantity μ+μ−1 = (p�pr)−1/2 is independent of any of the two eigenfunctions for which it is calculated.
The last formulas clearly show how fast the double localization of eigenfunctions disappears as the

splitting Δ increases, i.e., one of the probabilities p�,r tends to zero. The minimal splitting Δ ≈ δ(�)
corresponds to the maximal bilocalization p� = pr = 1/2, and conversely.

We also note that Theorem 1 can be used to analyze tunneling in the case where the potential depends
on �. It is then necessary to recalculate the quantity δ(�). Such a dependence can implicitly arise if the
potential depends on an external parameter.

Proof of Theorem 1. Let a′ and b′ be independent of � and

x� < a < a′ < c < b′ < b < xr.

100



We introduce two smooth cutoff functions σ�,r(x) such that the conditions are satisfied:

σ�(x) ≡

⎧⎨
⎩

1, x ≤ b′,

0, x ≥ b,
σr(x) ≡

⎧⎨
⎩

1, x ≥ a′,

0, x ≤ a.

Then the intersection of the supports of the functions σ�,r is embedded in [a, b] and necessarily contains the
interval [a′, b′] and hence the point c. It follows from the definition of V�,r that

σi(x)[V (x) − Vi(x)] ≡ 0, σi(x)[Ĥ − Ĥi] = 0, i = �, r,

where σi(x) in the second equality is understood as the operator of multiplication by a function.
We first prove that any of the three conditions leads to quasidegeneration, i.e., there are energies Ei

in the spectrum of the Ĥi, i = �, r, such that the distance between them is exponentially small.
We assume that condition 1 is satisfied, ψ is the corresponding eigenfunction of Ĥ , and E is the

corresponding eigenvalue. Let

ui =
σiψ√

pi
, i = �, r.

Then

‖u�‖2 =
1
p�

∫ b

−∞
|σ�ψ|2 dx = 1 +

1
p�

∫ b

c

|σ�ψ|2 dx ≈ 1

because ψ is bilocalized by condition 1 and the integral over the interval [c, b] is exponentially small and
hence p� > 0. We similarly have

‖ur‖ ≈ 1.

We show that ui are quasimodes for the operators Ĥi with an exponential accuracy. Interchanging the
operators of differentiation and multiplication by the function σi(x), we easily obtain the discrepancy

(Ĥi − E)ui =
−�

2

√
pi

(
σ′′

i + 2σ′
i

d

dx

)
ψ.

Because the supports of the functions σ′
i(x) and σ′′

i (x) are embedded in the interval [a, b] where the function
ψ(x) and its derivative are exponentially small, we see that ui are quasimodes for Ĥi with an exponential
accuracy. We thus have proved that condition 1 implies that the spectrum is quasidegenerate.

We assume that condition 2 is satisfied, there are exponential split eigenvalues E1,2 of Ĥ , and ψ1,2 are
the corresponding eigenfunctions. We can assume that ψ1,2 are not bilocalized because condition 1 would
otherwise be satisfied and this would imply quasidegeneration. The functions ψ1,2 cannot be localized in
one well, because this contradicts their orthogonality. For definiteness, we assume that ψ1 is localized in
the left well and ψ2 is localized in the right well. We then write ψ�,r and E�,r instead of ψ1,2 and E1,2.

Let ui = σiψi. Then ui are quasimodes for Ĥi with an exponential accuracy, i.e.,

‖ui‖ ≈ 1, (Ĥi − Ei)ui = −�
2

(
σ′′

i + 2σ′
i

d

dx

)
ψi.

We see that quasidegeneration follows from condition 2.
We now assume that condition 3 is satisfied. Then quasidegeneration obviously occurs because δ(�) is

exponentially small.
We have just proved that if any of the three conditions in the theorem is satisfied, then quasidegener-

ation occurs. Let at least one of the conditions in this theorem be satisfied for some λ. Quasidegeneration
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hence occurs. Let Ei be eigenvalues of Ĥi and ψi be the corresponding eigenfunctions, i = �, r. The quantity
|Er − E�| is hence exponentially small.

We introduce the orthonormal functions

u�(x) = γ1σ�(x)ψ�(x), ur(x) = γ2

(
σr(x)ψr(x) + γ3σ�(x)ψ�(x)

)
,

〈ui, uj〉 = δij , i, j = �, r.

Because the functions ψi(x), i = �, r, are normed, we obtain

γ1,2 = 1 + O(�).

The orthogonality condition for u1 and u2 implies

0 = 〈u�, ur〉 = γ1γ2

∫ b

a

σ�σrψ�ψr dx + γ2γ3γ
−1
1 , γ3 = O(δ(�)).

We calculate the asymptotic behavior of the discrepancy to show that ui are quasimodes for Ĥ :

(Ĥ − E�)u� =
[
−�

2 d2

dx2
, σ�(x)

]
γ1ψ�(x) + σ�(x)γ1(Ĥ� − E�)ψ�(x) =

= �σ′
�(x)2C�

√
|p| exp

(
−1

�

∫ x

x�

|p| dx

)(
1 + O(�)

)
,

(Ĥ − Er)ur = −�σ′
r(x)2Cr

√
|p| exp

(
−1

�

∫ xr

x

|p| dx

)(
1 + O(�)

)
.

We introduce the notation

ε = max
[
C� exp

(
−1

�

∫ b′

x�

|p| dx

)
, Cr exp

(
−1

�

∫ xr

a′
|p| dx

)]
.

The quantity ε is exponentially small, and ε2 is moreover exponentially less than δ(�). We obtain the
estimates

‖(Ĥ − Ei)ui‖ = O(ε), i = �, r.

Hence, u� and ur are indeed quasimodes.
We now assume that

|Er − E�| = O(ε).

We can then use Theorem 6 (see the appendix). In what follows, we show that if the last relation does not
hold, then all three conditions in the theorem are not satisfied.

We introduce the notation L(�) = (Er − E�)/δ. The quantity L is introduced just as in condition 3
of the theorem, but we do not assume that this condition (the existence of the limit of L(�) as � → 0) is
satisfied. Let E = (E� + Er)/2. We then have the estimate

‖(Ĥ − E)ui‖ ≤ ‖(Ĥ − Ei)ui‖ +
|Er − E�|

2
‖ui‖ = O(ε), i = �, r.
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All conditions in Theorem 6 are hence satisfied. We calculate the matrix elements mi,j = 〈(Ĥ −
E)ui, uj〉, i, j = �, r, as

m�,� =
E� − Er

2
+ O(ε2), mr,r =

Er − E�

2
+ O(ε2),

m�,r = 2�C�Cr

∫ b

b′
σ′

�(x) exp
(
−1

�

∫ xr

x�

|p| dx

)(
1 + O(�)

)
dx = − δ

2
(
1 + O(�)

)
.

Hence,

m =
δ

2

(
−L −1

−1 L

)(
1 + O(�)

)
+ O(ε2).

The eigenvalues m of the matrix are equal to

μ1,2 = ± δ

2

√
1 + L2.

The corresponding eigenvectors have the form

(
−1

L +
√

1 + L2

)
,

(
L +

√
1 + L2

1

)
,

where the factor 1 + O(�) is omitted for clarity. We determine the quantities

Ẽ1 = E + μ1 =
Er + E�

2
+

δ

2

√
1 + L2,

Ẽ2 = E + μ2 =
Er + E�

2
− δ

2

√
1 + L2.

By Theorem 6, we can construct the quasimodes ũi for the energies Ẽi such that

∥∥(Ĥ − Ẽi)ũi

∥∥ = O

(
ε2

�

)
.

Their leading terms up to normalization are equal to

v1 = −u� +
(
L +

√
1 + L2

)
ur, v2 =

(
L +

√
1 + L2

)
u� + ur.

Each of the O(ε2/�)-neighborhoods of the energies Ẽ1 and Ẽ2 therefore contains one point of the spectrum
of Ĥ. The distance between these points can be estimated as

Δ =
√

1 + L2 δ
(
1 + O(�)

)
+ O

(
ε2

�

)
=

√
1 + L2 δ

(
1 + O(�)

)
.

The quantity O(ε2/�) can be omitted because the ratio ε2/δ is exponentially small. The smallness of ε2/δ

is ensured by the choice of the point c.
It follows from Theorem 5 (see the appendix) that the eigenfunction φi of Ĥ corresponding to a point

of the spectrum close to Ẽi satisfies the asymptotic formula

φi = vi(x) + O(�∞).
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The eigenfunction φi is therefore bilocalized only if there is a number λ such that

L(�) = λ + O(�).

Then the quantity μ corresponding to φ1 can be written as

μ =
√

1 + λ2 − λ

and corresponding to φ2 can be written as

μ =
√

1 + λ2 + λ.

The obtained results hold under the assumption that one of the conditions in the theorem is satisfied
and |Er − E�| = O(ε). To prove the equivalence of all three conditions, we show that condition 3 implies
conditions 1 and 2, and conversely.

We assume that condition 3 is satisfied, i.e., L(�) = λ + O(�). It follows from the obtained formulas
for μ and Δ that conditions 1 and 2 are satisfied.

We assume that condition 1 with some λ is satisfied. Because λ is uniquely determined by the number
μ (recall that λ ≥ 0), we have

|L(�)| =
|Er − E�|

δ(�)
= λ + O(�),

and hence condition 3 is satisfied.
Condition 2 similarly implies condition 3 because if condition 2 is satisfied, then the quantity λ is

uniquely determined by the ratio Δ/δ.
All the above reasonings were based on the assumption that

|Er − E�| = O(ε).

We show that if this is not the case, then none of the three conditions in the theorem is satisfied. Condition 3
is not satisfied, because it implies |Er − E�| = O(ε).

Let ui = σi(x)ψi(x), i = �, r. Then

‖(Ĥ − Ei)ui‖ = O(ε), i = �, r.

It follows from Theorem 4 (see the appendix) that there is an eigenvalue Ẽi of Ĥ such that

|Ei − Ẽi| = O(ε), i = �, r.

The corresponding eigenfunctions have the asymptotic behavior (see Theorem 5)

ψ̃i = ui + O(εΔ−1),

where Δ is the distance between two close points of the spectrum of Ĥ . The estimate

Δ = |E� − Er| + O(ε)

is obvious. The ratio Δ/δ is hence unbounded, and condition 2 is not satisfied.
We assume that the double localization occurs. The double localization implies the existence of a limit

μ2 
= 0 for the probability ratio pr(�)/p�(�). Because the ratio Δ/ε is unbounded, the functions ψ̃i are
close to ui for a small �. We see that the limit of the probability ratio, if it exists, is equal to either zero
or infinity, which contradicts the definition of double localization. The proof of the theorem is complete.
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3. The case of energy close to the potential minimum

An analogue of Theorem 1 holds for lower energy levels. It is only necessary to recalculate Ci and
correspondingly change δ(�). We must also distinguish the cases where both the local minimums of the
potential V (x) correspond to the same energy and where the values of V (x) at the local minimums are
different. As an example, we consider the case of coinciding values of V (x) at the local minimum points.

Let ξ1,2 be the coordinates of two nondegenerate local minimums of a double-well potential V (x). We
assume that

V (ξi + x) = ω2
i x2

(
1 + O(x)

)
, i = 1, 2.

If the nth level E
(n)
� of the left well is close to the mth level E

(m)
r of the right well in this case, then δ

satisfies the asymptotic formula

δ = 4�

√
ω1ω2√
πn!m!

(
2
�

)n+m/2

J
n+1/2
1 J

m+1/2
2 exp

(
−1

�

∫ ξ2

ξ1

√
V (x) dx

)(
1 + O(�)

)
,

where

J1 =
√

ω1 lim
t→ξ1+0

{
(t − ξ1) exp

(
ω1

∫ c

t

dx√
V (x)

)}
,

J2 =
√

ω2 lim
t→ξ2−0

{
(ξ2 − t) exp

(
ω2

∫ t

c

dx√
V (x)

)}
.

If the conditions in Theorem 1 are satisfied, then |E(m)
r − E

(n)
� | is exponentially small, and the first

terms of the expansion of these energies in � hence coincide:

ω1(2n + 1) = ω2(2m + 1).

The ratio of the oscillation frequencies of the classical particle in the left and right wells is hence a rational
number. The origination of tunnel effects in a double-well potential is therefore often called the resonant

tunneling. This term is not quite good, because the rationality of the frequency ratio is only a weak
necessary condition for effects such as tunneling transport and the double localization of eigenfunctions.

Following the method presented in [17], we express the limits J1 and J2 in terms of the asymptotic
behavior of the solution of the variational system.

We consider the Hamilton system determining an instanton,

q̇ = 2p, ṗ = V ′(q),

with the boundary conditions q(−∞) = ξ1, q(0) = c, and q(∞) = ξ2. This system is obtained by changing
the sign of the potential. The instanton can be given by the implicit formula

2t =
∫ q

c

dx√
V (x)

.

We consider the corresponding variational system

z̈ = 2V ′′(q(t))z,

z(±∞) = 0, z(0) = 1.
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Its solution has the form

z(t) =

√
V (q(t))
V (c)

.

We investigate the asymptotic behavior of the solution of the variational system as t → −∞:

z(t) ∼ 1√
V (c)

ω1(q − ξ1).

The definition of J1 implies

q − ξ1 ∼ J1ω
−1/2
1 exp

(
ω1

∫ q

c

dx√
V (x)

)
, z(t) ∼ J1

√
ω1√

V (c)
e2ω1t.

We similarly obtain the asymptotic behavior of the solution of the variational system as t → ∞:

z(t) ∼ J2

√
ω2√

V (c)
e−2ω2t.

We have thus determined the relation between the limits J1,2 and the asymptotic behavior of the solution
of the variational system for the instanton.

4. Dynamics of a particle in the case of resonant tunneling

We consider the operator

Ĥ = −�
2 d2

dx2
+ V (x),

where V (x) is a smooth real function with the shape of a double potential well.
We consider the dynamics of a particle in a double-well potential for energy close to a pair of quaside-

generate stationary energy levels. We assume that the conditions in Theorem 1 are satisfied, two energy
levels E1,2 of the operator Ĥ are exponentially close to each other, and the corresponding eigenfunctions
ψ1,2 are bilocalized.

With the orthogonality condition for the functions ψi taken into account, we obtain (see the proof of
Theorem 1)

ψ1 = u� + μur + O(�∞), ψ2 = μu� − ur + O(�∞),

where u�,r are concentrated only in the respective left and right potential wells.
We consider the Cauchy problem with the initial state localized in the left well:

i�
∂u

∂t
= Ĥu, u|t=0 = u�.

The solution of this Cauchy problem with an accuracy of O(�∞) has the form

u =
1

1 + μ2
(e−iE1t/�ψ1 + μe−iE2t/�ψ2).

We substitute the expressions for ψ1 and ψ2 and obtain

u =
e−iE1t/�

1 + μ2

(
u� + μur + e−(i/�)(E2−E1)tμ(μu� − ur)

)
=

=
e−iE1t/�

1 + μ2

(
(μ2e−(i/�)(E2−E1)t + 1)u� + μ

(
1 − e−(i/�)(E2−E1)t

)
ur

)
.
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The total tunneling transport means that there is an instant t = T when the solution is concentrated
in the well other than the well where the initial condition is concentrated. The total transport therefore
occurs if the coefficient of u� vanishes. Because μ is a positive number, we obtain μ = 1. Only a partial
transport arises for positive values μ 
= 1.

We can see that the transport is a periodic process and the transport half-period T is the time of the
particle transport into the other potential well. The quantity T is exponentially large and has the form

T =
π�

E2 − E1
.

We use the formulas for μ and Δ in Theorem 1 to obtain the maximal probability of finding the particle in
the right well

max
t

Pr(t) =
(

δ

Δ

)2

+ O(�∞).

5. Examples of asymmetric transport

A fourth-degree polynomial is a classical example of the double-well potential. We can use special
functions to study the exact solution in this case (see [7]).

We consider the operator Ĥ with the potential

V (x, s) = (x − 1)2(x + 1)2 + sx,

where s is a parameter characterizing the asymmetry. We study the spectrum of Ĥ near E, where 0 < E < 1.
The parameter s varies in the range (0, s0), where s0 = s0(E) is chosen such that the equation V (x, s0) = E

has four simple roots. The case of higher energy levels is hence considered.
Just as in Sec. 2, we introduce the operators Ĥi and constants c = c(s) and δ = δ(s, �). We assume

that E
(n)
i are points of the spectrum of Ĥi, i = �, r. The quantum numbers n = n(�) are chosen such that

E
(n)
i are near E. The energy levels E

(n)
i and the corresponding eigenfunctions depend continuously on s

for a fixed small �.
For s = 0, the operator Ĥ� differs from Ĥr by the change of x to −x. This implies that E

(n)
� = E

(n)
r .

It follows from Theorem 1 that the eigenfunctions are bilocalized. As the parameter s increases, the energy
level E

(n)
� decreases, and E

(n)
r increases with an accuracy of O(�2). This follows because they approximately

satisfy the Planck–Bohr–Sommerfeld discretization rule [4]. The continuous dependence on s implies that
there is an s1 such that

E
(n+1)
� = E(n)

r for s = s1.

If s = s1, then the eigenfunctions of Ĥ corresponding to the eigenvalues with numbers 2n and 2n + 1 are
bilocalized, and transport occurs. A similar example can also be considered in the case of lower energies.

6. Tunnel perturbation of the spectrum

In this section, we determine the asymptotic behavior of a perturbation of the discrete spectrum of
the Schrödinger operator with a single-well potential and with an added perturbed potential completely
concentrated outside the region of motion of the classical particle. We consider the problem in a neighbor-
hood of a certain energy. Obviously, the spectrum perturbation is exponentially small even for a nonsmall
perturbing potential (for the energy in question). The main goal is to obtain the leading term of the
asymptotic expansion. We assume that after the perturbation is added, the potential remains a single-well
potential for the given energy.
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We assume that the initial single-well potential V (x) and the corresponding operator Ĥ0 are given.
Let E0 be an eigenvalue of Ĥ0 and ψ0 be the corresponding wave function. Let (x1, x2) be the region of
classical motion, i.e., V (x) < E0 for x ∈ (x1, x2). To the initial operator, we add a perturbation in the form
of a continuous function f(x) completely localized in the classically forbidden region:

Ĥ = Ĥ0 + f(x), supp f(x) = [a, b], x2 < a < b.

The wave function ψ0(x) for x ∈ [a, b] satisfies the WKB expansion

ψ0(x) =
C√
|p|

exp
(
−1

�

∫ x

x2

|p| dx

)(
1 + O(�)

)
.

Therefore, ∥∥(Ĥ − E0)ψ0

∥∥2 = ‖f(x)ψ0‖2 =
∫ b

a

f2(x)ψ2
0(x) dx = ε2,

and ε satisfies the estimate
ε ≤ C1e

−S/�,

where S is the action in the sense of an instanton from the turning point to the support of f(x):

S =
∫ a

x2

√
V (x) − E dx.

This estimate implies that Ĥ has a spectrum point E such that the distance from this point to E0 is
exponentially small (does not exceed ε). If the potential for energies close to E0 remains a single-well
potential after the addition of f(x), then ψ0 can be considered an approximation of the eigenfunction of Ĥ

(see Theorem 5) because the distance between neighboring levels for an operator with a single-well potential
has the order �.

We determine the next term of the expansion of E in ε. Because we do not assume that the function
f(x) is small, the formulas of the usual perturbation theory are inapplicable. We only have the weak
estimate |E − E0| ≤ ε.

To construct the asymptotic behavior of the energy E, we proposed using the perturbation theory to
seek the spectrum of Ĥ , where the unperturbed operator is not the operator Ĥ0 but a certain specially
constructed operator. These ideas are close to the ideas used to prove Theorem 6.

Theorem 2. Let f(x) → 0 as x → a. Then the energy E of the operator Ĥ satisfies the asymptotic

formula

E − E0 = 〈f(x)ψ0, ψ0〉
(
1 + o(1)

)
.

Proof. Let Π be the operator of projection on ψ0, and let Π′ = 1 − Π. We consider the operators

A = Ĥ0 + Π′f(x)Π′, B = f(x)Π + Πf(x) − Πf(x)Π,

which satisfy the relations

A + B = Ĥ0 + f(x) = Ĥ, ‖B‖ = O(ε),

Aψ0 = E0ψ0, Bψ0 = f(x)ψ0.
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If we assume that V +f(x) remains a single-well potential for energies close to E0, then the operator Ĥ has
a unique point E of the spectrum that is exponentially close to E0, and the other points of the spectrum
are at a distance of the order of �. To seek the asymptotic behavior of E, we therefore need to apply the
formula of the perturbation theory for an isolated point of the spectrum:

E = E0 + 〈Bψ0, ψ0〉 +
+∞∑
k=1

〈Bψ0, φk〉2
E0 − λk

+ O

(
ε3

�2

)
,

where ψ0, φ1, φ2, . . . is the orthonormal set of eigenfunctions of the operator A and E0, λ1, λ2, . . . are the
corresponding eigenvalues. The terms of the sum for which the energy λk is close to E0 do not contribute
to the asymptotic behavior, because the corresponding functions φk are exponentially small on the support
of f(x). Therefore,

E = E0 + 〈f(x)ψ0, ψ0〉 + O(ε2).

It remains to prove that

ε2 = 〈f(x)ψ0, f(x)ψ0〉 = o(〈f(x)ψ0, ψ0〉).

These estimates hold because only a small neighborhood of a contributes to the integral 〈f(x)ψ0, f(x)ψ0〉
and the function f(x) is small in this neighborhood.

Theorem 2 permits obtaining several important consequences.

Corollary 1. The formula for the leading term of the asymptotic expansion coincides with the formula

in the classical perturbation theory, but the value of the correction can be much greater than the small

parameter ε and significantly depends on how the function f(x) tends to zero as x → a.

Corollary 2. The estimate

E − E0 = exp
(
−2S + o(1)

�

)

holds.

The simple perturbation theory gives the significantly weaker estimate

|E − E0| ≤ ε = exp
(
−S + o(1)

�

)

and does not permit calculating the order of the error.

7. Application of the tunnel perturbation method

As shown in Sec. 6, a variation in the potential in the classically forbidden region leads to an exponen-
tially small perturbation of the spectrum. These corrections are rather interesting if the problem contains
an exponential quasidegeneration of the spectrum because a small perturbation of the energies can then
result in a significant variation in the eigenfunctions and hence in the system dynamics. The simplest
example of such a system is the double-well potential. With the results in Sec. 2 taken into account, we can
reduce studying the double-well potential to studying a pair of single-well potentials to which Theorem 2
is applicable.
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We first consider the influence of the potential barrier deformation on the tunneling. We use the
obtained results to construct a counterexample to [13] and then independently prove the correctness of
condition 3 in Theorem 1 relying on the estimates in Corollary 2.

We consider the influence of the potential barrier deformation on the resonant tunneling in the double-
well potential. We assume that the double-well potential V (x) satisfies the requirements of Theorem 1,
E1,2 is a pair of quasidegenerate eigenvalues of the operator Ĥ , and the corresponding eigenfunctions are
bilocalized. To the potential V , we add a function f(x) such that the support of f(x) lies between the
potential barrier center and the turning point. For definiteness, we assume that the perturbation occurs on
the right-hand side of the barrier.

We then use the results in Theorems 1 and 2 to prove the following theorem.

Theorem 3. In the case of a smooth deformation of one side of the potential barrier, the right side

for definiteness, the double localization of eigenfunctions is destroyed, and the splitting value satisfies the

formula

Δ = 〈f(x)ψr, ψr〉
(
1 + o(1)

)
.

A similar problem in the case of a symmetric potential was considered in [18], where only the exponent
such as in the estimate in Corollary 2 was obtained.

We now use the formula for the tunnel perturbation to show that the results presented in [13] are not
true.

The double-well asymmetric potential for energies close to the equilibriums of the potential was con-
sidered in [13]. It was assumed that the potential is exactly quadratic in a neighborhood of the domains
of classical motion, i.e., in some finite neighborhoods of the potential minimums. The splitting can be
calculated by the two-level approximation method. As the potentials of the left and right potential wells,
we take oscillators with the corresponding frequencies.

The error is that under such a choice of the potentials of the left and right potential wells, the result
obtained for the splitting turns out to be less than the error of this method. This approach implies that the
localization of the eigenfunctions and the transport existence are independent of the choice of the smooth
part of the potential barrier connecting the domains where the potential is quadratic. Similar calculations
lead to a false result because the potential barrier deformation outside the domains where the potential is
quadratic destroys the tunneling (Theorem 3). The splitting is exponentially greater than that obtained
in [13]. As a counterexample, we can consider any symmetric double-well potential satisfying all conditions
in [13] with an asymmetric perturbation of the potential barrier added to this potential.

We further consider an independent proof that the conditions in Theorem 1 are well posed using the
formula for the tunnel perturbation of the spectrum. Condition 3 in Theorem 1 is formulated in terms of
the spectra of the operators Ĥ�,r with single-well potentials V�,r(x). It follows from the conditions imposed
on the potentials V�,r that the choice of W�,r is not unique. Otherwise, the chosen potentials W�,r can
differ from the initial potentials V�,r only in the classically forbidden region. As follows from Theorem 1,
the condition for the existence of a number λ such that |Er − E�| = δ(�)

(
λ + O(�)

)
is independent of the

freedom in choosing V�,r and characterizes the double-well potential V . We prove this directly using the
formula for the tunnel perturbation.

Let

K̂i = −�
2 d2

dx2
+ Wi(x), i = �, r.

We assume that the eigenvalues E�,r of Ĥ�,r satisfy condition 3 in Theorem 1, i.e., there is a λ such that

‖Er − E�‖ = δ(�)
(
λ + O(�)

)
.
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Let ψ�,r be the eigenfunctions corresponding to the eigenvalues E�,r. We must prove that the operators K̂�,r

have eigenvalues k�,r that are close to E�,r and satisfy the condition

|kr − k�| = δ(�)
(
λ + O(�)

)
.

We introduce the notation
fi(x) = Wi(x) − Vi(x), i = �, r.

Then the conditions imposed on the potentials Vi and Wi imply

f�(x) ≡ 0 for x ≤ b, fr(x) ≡ 0 for x ≥ a.

We set

S� =
∫ b

x�

|p(x)| dx, Sr =
∫ xr

a

|p(x)| dx.

Applying the estimate in Corollary 2, we obtain

ki − Ei = exp
(
−2Si + o(1)

�

)
.

Because the points a and b are chosen such that a < c < b and the point c is the center of the potential
barrier from the action standpoint, ∫ c

x�

|p| dx =
∫ xr

c

|p| dx,

we see that |ki − Ei| is exponentially less than δ(�). Therefore,

|kr − k�|
δ

=
|Er − E�|

δ
+ O(�) = λ + O(�),

as required.

Appendix: Several theorems in the theory of linear operators

The following assertions are widely known.

Lemma 1 (norm of resolvent). Let Γ be a Hilbert space, and let an operator A be self-adjoint. In

this case, if λ /∈ Spectre(A), then

‖(A − λ)−1‖ =
1

d(λ, Spectre(A))
,

where d is the distance on the line.

Lemma 2. Let Γ be a Hilbert space, and let an operator A be self-adjoint. If a quasimode u such

that

‖u‖ = 1, ‖(A − λ)u‖ ≤ ε

is given, then

d(λ, Spectre(A)) ≤ ε.
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Theorem 4 (equality between the number of modes and the number of quasimodes). If a self-adjoint

operator A in a Hilbert space Γ has n orthonormal quasimodes

〈ui, uj〉 = δij , ‖(A − λ)ui‖ ≤ ε, i, j = 1, 2, . . . , n,

then there are at least n orthogonal eigenfunctions ψk of A with eigenvalues in an ε-neighborhood of λ:

(A − λk)ψk = 0, |λ − λk| ≤ ε, k = 1, 2, . . . , n.

Theorem 5 (expansion of a quasimode). Let Γ be a Hilbert space, and let an operator A be self-

adjoint. Let a quasimode u ∈ Γ such that ‖u‖ = 1 and ‖(A−λ)u‖ ≤ ε be given. If the interval (λ−ε, λ+ε)
contains only one point of the spectrum of A,

Aψ = μψ, |λ − μ| < ε,

then the quasimode u has the expansion

u = 〈u, ψ〉ψ + ũ, ‖ũ‖ ≤ ε

d
,

where d is the distance from λ to the spectrum of A with the point μ taken into account.

Remark 1. It is meaningful to use Theorem 5 in the case where it is known that d � ε. This theorem
can suggest the form of the exact eigenfunction.

The following theorem is practically identical to a theorem proved in [9]; only the statement and the
proof are somewhat different.

Theorem 6. Let a self-adjoint operator A be given in a Hilbert space Γ. Let the following conditions

be satisfied:

1. The set of n orthonormal quasimodes of the operator A is given,

〈ui, uj〉 = δij , ‖(A − λ)ui‖ ≤ ε, i, j = 1, 2, . . . , n.

2. Let d be the distance from λ to the spectrum of A with the n closest points not taken into account

(the number of points is counted with the multiplicity taken into account). The estimate

d >
√

2nε

holds.

3. The eigenvalues μi and the corresponding eigenvectors zi, i = 1, n, of the matrix with the elements

Vij = 〈(A − λ)ui, uj〉, i, j = 1, 2, . . . , n,

are determined. The eigenvectors zi are chosen orthonormal.
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Then there exist yi ∈ Γ such that

yi = vi + wi, i = 1, 2, . . . , n,

vi =
n∑

j=1

zj
i uj , ‖wi‖ ≤

√
2nε

d −
√

2nε
,

‖(A − λ − μi)yi‖ ≤ 4nε2

d −
√

2nε
.

Remark 2. If d � ε, then condition 2 is satisfied automatically, and calculating the eigenvalues of
the matrix V permits obtaining the spectrum of A up to O(ε2/d).

Proof of Theorem 6. It follows from the first condition of this theorem that the interval contains at
least n points of the spectrum of the operator A, and it follows from the second condition of this theorem
that their number does not exceed n. We let ψi denote the eigenfunctions of A corresponding to the
eigenvalues λi in this interval. Then d is the distance from the point λ to the spectrum of A without the
points λi, i = 1, . . . , n, taken into account.

Let E be the operator of orthonormal projection on the linear span of the vectors ui, i = 1, . . . , n, and
let E′ = I − E. We need to determine the operators

V = (A − λ)E + E(A − λ) − E(A − λ), A0 = A − V.

We show that V is a finite-dimensional operator. Let u1, . . . , un, . . . , ur be an orthonormal basis in the
space formed by the set of vectors u1, . . . , un, (A−λ)u1, . . . , (A−λ)un. Let a function φ ∈ Γ be orthogonal
to all ui, i = 1, r. Then

‖E(A − λ)φ‖2 = 〈E(A − λ)φ, E(A − λ)φ〉 = 〈(A − λ)E(A − λ)φ, φ〉 = 0

because the function φ is orthogonal to the image of (A − λ)E. The dimension of the operator E(A − λ)
therefore does not exceed r ≤ 2n. The other terms in the definition of V are obviously finite-dimensional.

We prove that ‖V ‖ ≤
√

2nε. Obviously,

‖(A − λ)E‖ ≤
√

nε.

We need to estimate the norm of E(A − λ). Because E(A − λ) is dual to (A − λ)E, we have

‖E(A − λ)‖ ≤
√

nε.

Let φ ∈ Γ and ‖φ‖ = 1. Then

‖V φ‖2 = ‖E′(A − λ)Eφ + E(A − λ)φ‖2 ≤ 2nε2 + 2〈E′(A − λ)Eφ, E(A − λ)φ〉 = 2nε2.

We show that λ is an isolated point of multiplicity n of the spectrum of A0. The definition of A0 and
the fact that Eui = ui, i = 1, n, imply

(A0 − λ)ui = (A − λ)ui − V ui = 0, i = 1, 2, . . . , n.

Because ‖V ‖ ≤
√

2nε, any eigenfunction of A is a quasimode of A0, and conversely. The operator A0

therefore has precisely n spectral points on the interval
(
λ− d +

√
2nε, λ + d−

√
2nε

)
with the multiplicity
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taken into account. Otherwise, there is a contradiction to condition 2 in this theorem. From Lemma 1, we
obtain

‖(A0 − λ)−1E′‖ ≤
(
d −

√
2nε

)−1
.

Hence, we represent the operator A as the sum of A0 and a small finite-dimensional operator V . The
spectrum and the eigenvectors A0 near the point λ are known. The corrections to the eigenvectors and
eigenvalues of A can be obtained using the perturbation theory in the case of the isolated degenerate
eigenvalue λ.

Let vi such that Evi = vi be the eigenfunctions of the operator EV E. There are n of such functions
vi because EV E is finite-dimensional of dimension n:

EV vi = μivi, ‖vi‖ = 1, i = 1, 2, . . . , n.

Let wi = −(A0 − λ)−1E′V vi. It follows from the definitions of vi and wi that

A0vi = A0Evi = λvi,

(V − μi)vi = (E′ + E)(V − μi)vi = E′V vi, (A0 − λ)wi = −E′V vi,

|μi| ≤ ‖V ‖ ≤
√

2nε, ‖V − μi‖ ≤ ‖V ‖ + |μi| ≤ 2
√

2nε,

‖wi‖ = ‖(A0 − λ)−1E′V vi‖ ≤ ‖(A0 − λ)−1E′‖ ‖V ‖ ‖vi‖ ≤
√

2nε

d −
√

2nε
,

‖(A − λ − μi)(vi + wi)‖ = ‖(A0 − λ + V − μi)(vi + wi)‖ =

= ‖(V − μi)wi‖ ≤ ‖(V − μi)‖ ‖wi‖ ≤ 4nε2

d −
√

2nε
.

We have thus proved that vi + wi are quasimodes with the eigenvalues λ + μi, where i = 1, 2, . . . , n.
We can seek vi and μi using the matrix elements of the operator V in the basis containing the vectors

ui, i = 1, 2, . . . , n. Then

Vi,j = 〈V ui, uj〉 = 〈(A − λ)Eui, uj〉 = 〈(A − λ)ui, uj〉.

The eigenvectors of this matrix are coefficients of the expansion of the vector vi in the vectors uj, and
precisely μi, i = 1, 2, . . . , n, are the eigenvalues. The proof of the theorem is complete.
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