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Abstract

We found a series of continued fractions for zeta(3) parametrized
by some family of pairs of sequences F, G. Two members of this series
are present here; they are different from Apéry-Nesterenko continued
fraction.

Introduction

Let is given a difference equation

xν+1 − bν+1xν − aν+1xν−1 = 0,(1)

with ν ∈ N0. We denote by

{Pν(b0, a1, b1, ..., aν , bν)}+∞
ν=−1

and

{Qν(b0, a1, b1, ..., aν , bν)}+∞
ν=−1

the solutions of this equation with initial values

P−1 = 1, Q−1 = 0, P0(b0) = b0, Q0(b0) = 1.(2)

Then {
Pν(b0, a1, b1, ..., aν , bν)

Qν(b0, a1, b1, ..., aν , bν)

}+∞

ν=0

1 Short version
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is sequence of convergents of continued fraction

b0 +
a1|
|b1

+ ... +
aν |
|bν

+ ... .

According to the famous result of R. Apéry [1],

ζ(3) = lim
ν→∞

vν

uν

,(3)

where {uν}+∞
ν=1 and {vν}+∞

ν=1 are solutions of difference equation

(ν + 1)3xν+1 − (34ν3 + 51ν2 + 27ν + 5)xν + ν3xν−1 = 0,(4)

with initial values u0 = 1, u1 = 5, v1 = 0, v1 = 6. The equality (4) is equivalent
to the equality

ζ(3) = b∨0 +
a∨

1 |
|b∨1

+
a∨

2 |
|b∨2

+ ... +
a∨

ν |
|b∨ν

+ ...(5)

with

b∨0 = 0, b∨1 = 5, a∨
1 = 6, b∨ν+1 = 34ν3 + 51ν2 + 27ν + 5, a∨

ν+1 = −ν6,

where ν ∈ N. Yu.V. Nesterenko in [3] has offered the following expansion the
number 2ζ(3) in continuous fraction:

2ζ(3) = 2 +
1|
|2 +

2|
|4 +

1|
|3 +

4|
|2 ...,(6)

with
b0 = b1 = a2 = 2, a1 = 1, b2 = 4,

b4k+1 = 2k + 2, a4k+1 = k(k + 1), b4k+2 = 2k + 4, a4k+2 = (k + 1)(k + 2)

for k ∈ N,

b4k+3 = 2k + 3, a4k+3 = (k + 1)2, b4k+4 = 2k + 2, a4k+4 = (k + 2)2

for k ∈ N0. The halved of 4n − 2-th convergent of continued fraction (6)
is equal to n-th convergent of continuous fraction (5). Elementary proof of
Yu.V. Nesterenko expansion can be found in [9]. Making use of the method
developed in our papers [7] – [8], we have found the followng expansions of the
Number ζ(3) in contiuous fractions :

Theorem A. The following equalities hold

2ζ(3) = b
(∗1)
0 +

a
(∗1)
1 |
|b(∗1)

1

+ ... +
a

(∗1)
ν |
|b(∗1)

ν

+ ...,(7)
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2ζ(3) = b
(∗0)
0 +

a
(∗0)
1 |
|b(∗0)

2

+ ... +
a

(∗0)
ν |
|b(∗0)

ν

+ ...,(8)

with b
(∗1)
0 = 3, a

(∗1)
1 = −81, a

(∗1)
ν = −(ν − 1)3ν3(4ν2 − 4ν − 3)3 for ν ≥ 2,

b(∗1)
ν = 4(68ν6 − 45ν4 + 12ν2 − 1) for ν ≥ 1,

a(∗0)
ν = −(ν2−ν)3(4ν2−4ν−3)(8ν4+16ν3−8ν−3)(8ν4−48ν3+96ν2−72ν+13)/81

for ν ≥ 2, b
(∗0)
0 = 7/3, a

(∗0)
1 = −13/3, b

(∗0)
ν = 4(136ν8−504ν6 +305ν4−84ν2 +

9)/9 for ν ≥ 1.
I give here a sketch of proof of Theorem A. My research based on the results

about difference systems connected with Mejer’s functions; I have talk about
these results on conference in memory of professor N.M.Korobov (see [8]).

Sketch of proof of Theorem A

Step 1. Auxiliary functions.

Let z satisfies to the following conditions,

|z| > 1,−3π/2 < arg(z) ≤ π/2, log(z) = ln(|z|) + i arg(z),(9)

and δ is the following differentiation z ∂
∂z

. Let α is nonnegative integer. My
first auxiliary function is a finite sum

f ∗∨
α,1(z, ν) := f ∗

α,1(z, ν) :=

ν+α∑
k=0

(z)k

(
ν + α

k

)2(
ν + k

ν

)2

.(10)

Let us consider the rational function given by the equality

R(α, t, ν) =

(
ν∏

j=1

(t − j)

)/(
ν+α∏
j=0

(t + j)

)
.(11)

My second and fourth auxiliary function are sums of the following series

f ∗
α,2(z, ν) =

+∞∑
t=1

z−t((ν + α)!/ν!)2(R(α, t, ν))2,(12)

f ∗
α,4(z, ν) = −

+∞∑
t=1

z−t (ν + α)!2

ν!2

(
∂

∂t
(R2)

)
(α, t, ν).(13)
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Finally my third auxiliary function is defined as follows:

f ∗
α,3(z, ν) = (log(z))f ∗

α,2(z, ν) + f ∗
α,0,4(z, ν).(14)

We consider also the functions fα,k(z, ν), k = 1, 2, 3, 4 connected with previ-
ous functions by means of the equalities

fα,k(z, ν) = (ν!/(ν + α)!)2f ∗
α,k(z, ν)(15)

where k = 1, 2, 3, 4, ν ∈ N0. After expanding of the following rational function
((ν + α)!/ν!)2(−t)r(R(α, t, ν))2 into partial fractions relatively t, and some
transformations we come to the equality

δrf ∗
α,2+j(z, ν) − j(log(z))δrf ∗

α,2(z, ν) =(16) (
2∑

i=1

(1 − j + ij)β
∗(r)
α,i (z; ν)Li+j(1/z)

)
− β

(r)
α,3+j(z; ν),

where δ is operator z ∂
∂z

, j = 0, 1, r = 0, 1, 2, 3, |z| > 1, α ∈ N, s ∈ Z,

Ls(1/z) =
∞∑

n=1

1/(znns)(17)

are polylogarithms and β
∗(r)
α,0,i(z; ν), β

∗(r)
α,0,3+j(z; ν) are polynomials of z with ra-

tional coefficients.

Step 2. Pass to the difference system

The considered auxiliary functions f∨
α,k(z, ν) are generalized hypergeometric

functions known as Mejer’s functions. They satisfy the following differential
equation

Dα(z, ν, δ)f∨
α,k(z, ν) = 0,(18)

where ν ∈ [0, +∞) ∩ Z, k ∈ K0 = {1, 2, 3},
Dα(z, ν, δ) = z(δ − ν − α)2(δ + ν + 1)2 − δ4.(19)

is differential operator with differentiation δ := z ∂
∂z

. It follows from the general
properties of the Mejer functions that

(δ + ν + 1)2fα,k(z, ν) = (δ − ν − 1 − α)2fα,k(z, ν + 1),(20)

where ν ∈ [0, +∞) ∩ Z, k ∈ K0. Since,

(1 − 1/z)−1Dα(z, ν, δ) = δ4 −
4∑

k=1

bα,kδ
k−1,
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we can in standard way come to the differential system

δXα,k(z; ν) = Bα(z; ν)Xα,k(z; ν),(21)

where k = 1, 2, 3, |z| > 1, ν ∈ N0,

Bα(z; ν) =

⎛
⎜⎜⎝

0 1 0 0
0 0 1
0 0 0 1

bα,1(z; ν) bα,2(z; ν) bα,3(z; ν) bα,4(z; ν)

⎞
⎟⎟⎠ ,

Xα,k(z; ν) =

⎛
⎜⎜⎝

f ∗
α,k(z, ν)

δf ∗
α,k(z, ν)

δ2f ∗
α,k(z, ν)

δ3f ∗
α,k(z, ν)

⎞
⎟⎟⎠

where k = 1, 2, 3, |z| > 1. In view of (19),

Dα(z,−ν − α − 1, δ) = Dα(z, ν, δ).(22)

Therefore we can put

Xα,k(z;−ν − 1 − α) = Xα,k(z; ν),(23)

where ν ∈ N0 and consider Xα,k(z; ν) on

ν ∈ M∗∗∗
α = ((−∞,−1 − α] ∪ [0, +∞) ∩ Z,

Finally, we use the equations (18), (20) and (21) to obtain the following dif-
ference system.

Theorem 1. The column Xα,k(z; ν) satisfies to the equation

ν5Xα,k(z; ν − 1) = A∗
α(z; ν)Xα,k(z; ν),(24)

where ν ∈ M∗
α = (−∞,−1 − α] ∪ [1, +∞)) ∩ Z, k = 1, 2, 3, |z| > 1; A∗

α(z; ν)
is 4 × 4-matrix, all elements of which are polynomials in Q[z, ν, α]. Moreover,
all these polynomials have degree 1 relatively z, and the matrix A∗

α(z; ν) can be
represented in the form

A∗
α(z; ν) = A∗

α(1; ν) + (z − 1)V ∗
α (ν),

where the matrix V ∗
α (ν) does not depend from z.

Exact expressions of elements of the matrix A∗
α(z; ν) can be found in [10].

Here we consider the case α = 1. In this case elements of the matrix A∗
1(z; ν)

are polynomials in Q[z, ν]. Exact form of the matrix A∗
1(1; ν) we specify below

(see (32)). The matrix A∗
α(z; ν) has the following property:

−ν5(ν + α)5E4 = A∗
α(z;−ν − α)Aα,∗ (z; ν),(25)

where E4 is the 4 × 4 unit matrix, z ∈ C, ν ∈ C. The equality (25) was very
helpful for us, when we check our calculations.
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Step 3. Reducing the obtained system to the difference
system of second order in he case α = 1.

This is key moment in our research, it leads to our results. In the case
α = 1, situation simplifies. The above system in this case is reducible and our
task can be reduced to the consideration of system of second order. Let

τ = τ1(ν) = ν + 1, μ = μ1(ν) = (ν + 1)2.(26)

then

1

z
Dα(z, ν, δ) = (1 − 1/z)δ4 +

3∑
k=0

rα,k+1(ν)δk,(27)

where
r1(ν) = μ1(ν)2 = (ν + 1)4 = τ 4, r2(ν) = 0,

r3(ν) = −2μ1(ν) = −2(ν + 1)2, r4(ν) = 0,

and let us consider the row

R(ν) = (r1(ν), r2(ν), r(ν), r4(ν)).(28)

Let E4 denotes 4× 4-unit matrix, and let C(ν) is result of replacement of 1-th
row of the matrix E4 by the row in (28). Let further D(ν) denotes the adjoint
matrix to the matrix C(ν). Then

C(ν)D(ν) = μ2E4, C(−ν − 2) = C(ν), D(−ν − 2) = D(ν).(29)

Let me to introduce the matrix A∗∗
1 (z, ν), which is connected with above matrix

A∗
1(z, ν). All elements this matrix A∗∗

1 (z, ν) are polynomials in Q[z, ν] and they
have degree 1 relatively z also. So, this matrix A∗∗

1 (z, ν) can be represented
also in the form

A∗∗
1 (z; ν) = A∗∗

1 (1; ν) + (z − 1)V ∗∗
1 (ν),(30)

where the matrix V ∗∗
1 (ν) does not depend from z, and

A∗∗
1 (1; ν) =

⎛
⎜⎜⎝

(ν + 1)4ν5 0 0 0
a∗∗

1,2,1(1; ν) a∗∗
1,2,2(1; ν) a∗∗

1,2,3(1; ν) 0
a∗∗

1,3,1(1; ν) a∗∗
1,3,2(1; ν) a∗∗

1,3,3(1; ν) 0
a∗∗

1,4,1(1; ν) a∗∗
1,4,2(1; ν) a∗∗

1,4,3(1; ν) (ν + 1)4ν5

⎞
⎟⎟⎠(31)

with
a∗∗

1,2,1(1; ν) = −τ2(τ − 1)(2τ − 1)(6τ 2 − 4τ + 1),

a∗∗
1,2,2(1; ν) = τ 5(τ − 1)(τ 3 + 2(2τ − 1)3),
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a∗∗
1,2,3(1; ν) = −3τ4(τ − 1)(2τ − 1)3,

a∗∗
1,3,1(1; ν) = τ 2(τ − 1)2(2τ − 1)(4τ 2 − 3τ + 1),

a∗∗
1,3,2(1; ν) = −2τ5(τ − 1)2(2τ − 1)(τ 3 − (τ − 1)3),

a∗∗
1,3,3(1; ν) = τ 4(τ − 1)2((τ − 1)3 + 2(2τ − 1)3),

a∗∗
1,4,1(1; ν) = −τ2(τ − 1)3(2τ − 1)(2τ 2 − 2τ + 1),

a∗∗
1,4,2(1; ν) = τ 5(τ − 1)3(2τ − 1)(4τ 2 − 5τ + 3),

a∗∗
1,4,3(1; ν) = −τ4(τ − 1)3(2τ − 1)(6τ 2 − 8τ + 3).

I describe now the connection between matrices A∗∗
1 (z; ν) and A∗

1(z; ν). We
have

(ν(ν + 1))4A∗
1(z, ν) = D(ν − 1)A∗∗

1 (z, ν)C(ν),(32)

A∗∗
1 (z, ν) = C(ν − 1)A∗

1(z, ν)D(ν).(33)

Let

Y1,k(z; ν) =

⎛
⎜⎜⎝

y1,1,k(z; ν)
y1,2,k(z; ν)
y1,3,k(z; ν)
y1,4,k(z; ν)

⎞
⎟⎟⎠ = C(ν)X1,k(z; ν),(34)

where k = 1, 2, 3, |z| > 1, ν ∈ M∗∗∗
1 = ((−∞,−2] ∪ [0, +∞)) ∩ Z. Then

Y1,k(z;−ν − 2) = Y1,k(z; ν),(35)

μ1(ν)2ν5Y1,k(z; ν − 1) = A∗∗
1 (z, ν)Y1,k(z; ν), where(36)

k = 1, 2, 3, |z| > 1, ν ∈ M∗
1 = ((−∞,−2] ∪ [1, +∞)) ∩ Z. Replacing in (36)

ν ∈ M∗
1 by ν := −ν − 2 ∈ M∗∗

1 = ((−∞,−3] ∪ [0, +∞)) ∩ Z,

and taking in account (35) we obtain the equality

μ1(ν)2(ν + 2)5Y1,k(z; ν + 1) = −A∗∗
1 (z,−ν − 2)Y1,k(z; ν),(37)

where k = 1, 2, 3, |z| > 1, ν ∈ M∗∗
1 = ((−∞,−3] ∪ [0, +∞)) ∩ Z.

We will tend z ∈ (1, +∞) to 1. Therefore we must study the behavior of
our auxiliary functions, when we tend z ∈ (1, +∞) to 1. Then

trR(1, t, ν)2 =

(
ν∏

j=1

(t − j)2

)/(
ν+1∏
j=0

(t + j)2

)
= tr−4 + tr−5O(1) (t → ∞)
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tr
(

∂

∂t
(R2)

)
(1, t, ν) = tr−5O(1) (t → ∞)

for r = 0, 1, 2, 3, 4. Therefore

(z − 1)δrf1,2(z, ν) =

+∞∑
t=1

z−t(−t)r(R(α, t, ν))2 = (z − 1)O(1) ln(1 − 1/z) → 0 (z → 1 + 0)

for r = 0, 1, 2, 3,
(z − 1)δ4f1,2(z, ν) =

+∞∑
t=1

z−t(−t)4(R(α, t, ν))2 = 1 + (z − 1)O(1) ln(1 − 1/z) → 1 (z → 1 + 0)

(z − 1)δrf1,4(z, ν) =

−
+∞∑
t=1

z−t(−t)r

(
∂

∂t
(R2)

)
(1, t, ν) = (z − 1)O(1) → 0 (z → 1 + 0)

for r = 0, 1, 2, 3, 4 and

(z − 1)δrf1,3(z, ν) = (z − 1)(log(z))δrf1,2(z, ν)+

(z − 1)rδr−1f1,2(z, ν) + (z − 1)δrf1,4(z, ν) → 0 (z → 1 + 0)

for r = 0, 1, 2, 3, 4. Clearly,

y1,j+1,k(z, ν) = δjf1,k(z, ν) for j = 1, 2, 3 k = 1, 2, 3, |z| > 1, ν ∈ N0.

Further we have

y1,1,k(1, ν) := lim
z→1+0

y1,1,k(z, ν) = − lim
z→1+0

(1 − 1/z)δ4f1,k(z, ν) =(38)

(k − 1)(k − 3), where k = 1, 2, 3, , ν ∈ N0.

If we consider the second and third equations in (36) with k = 1, 3 and
tend z ∈ (1, +∞) to 1, then, in view of (38) and (31), we obtain equations

μ1(ν)2ν5δif1,0,k(1, ν − 1) =
2∑

j=1

a∗∗
1,0,i+1,j+1(1; ν)(δjf1,0,k)(1, ν)(39)

where i = 1, 2, k = 1, 3, ν ∈ M∗
1 = ((−∞,−2] ∪ [1, +∞)) ∩ Z. Let are given

F = {F (ν)}+∞
ν=−∞ and G = {G(ν)}+∞

ν=−∞ such that

F (−ν − 2) = F (ν), G(−ν − 2) = G(ν), F (ν) ∈ Q, G(ν) ∈ Q
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for ν ∈ Z. Then, in view of (35),

y∗∗
F,G,k(z,−ν − 2) = y∗∗

F,G,k(z, ν) := F (ν)δf1,0,k(1, ν) + G(ν)δ2f1,0,k(z, ν)

for k = 1, 3, ν ∈ M∗∗∗
1 = ((−∞,−2] ∪ [0, +∞)) ∩ Z. Let

a∗∗∗
F,G,j(z; ν) = F (ν − 1)a∗∗

1,0,2,j(1, ν) + G(ν − 1)a∗∗
1,0,3,j(1, ν)

for j = 1, 2, 3 and ν ∈ M∗
1 = ((−∞,−2] ∪ [1, +∞)) ∩ Z. In view of (39),

2∑
j=1

a∗∗∗
F,G,j+1(1; ν)(δjf1,0,k)(1, ν) = μ1(ν)2ν5y∗∗∗

F,G(z, ν − 1),(40)

for k = 1, 3, ν ∈ M∗
1 = ((−∞,−2] ∪ [1, +∞)) ∩ Z. Replacing in (40)

ν ∈ M∗
1 by ν := −ν − 2 ∈ M∗∗

1 = ((−∞,−3] ∪ [0, +∞)) ∩ Z,

and taking in account the equality (35) we obtain the equalities

2∑
j=1

a∗∗∗
F,G,j+1(1;−ν − 2)(δjf1,0,k)(1, ν) = −μ1(ν)2(ν + 1)5y∗∗

F,G(z, ν + 1),(41)

where k = 1, 3 and ν ∈ M∗∗
1 = ((−∞,−3] ∪ [0, +∞)) ∩ Z. Let


wF,G,j(ν) =

⎛
⎝ a∗∗∗

F,G,j+1(1;−ν − 2)
F (ν)(2 − j) + G(ν)(j − 1)

a∗∗∗
F,G,j+1(1; ν − 1)

⎞
⎠ ,

where j = 1, 2, ν ∈ M∗∗∗∗
1 = ((−∞,−3] ∪ [1, +∞)) ∩ Z, WF,G(ν) =

(

wF,G,1(ν) 
wF,G,2(ν)

)
=

⎛
⎝a∗∗∗

F,G,2(1;−ν − 2) a∗∗∗
F,G,3(1;−ν − 2)

F (ν) G(ν)
a∗∗∗

F,G,2(1; ν) a∗∗∗
F,G,3(1; ν)

⎞
⎠ ,

Y ∗∗∗
k (ν) =

(
δf1,0,k(1, ν)
δ2f1,0,k(1, ν)

)
, Y ∗∗∗∗

F,G,k(ν) =

⎛
⎝−μ1(ν)2(ν + 2)5y∗∗

F,G,k(z,−ν − 3)
y∗∗

F,G,k(z, ν)
μ1(ν)2ν5y∗∗

F,G(z, ν − 1)

⎞
⎠

for k = 1, 3, ν ∈ M∗∗∗∗
1 = ((−∞,−3] ∪ [1, +∞)) ∩ Z. In view of (40) – (41),

Y ∗∗∗∗
F,G,k(ν) = WF,G(ν)Y ∗∗∗

k (ν).

Let further


wF,G,3(ν) =

⎛
⎝wF,G,3,1(ν)

wF,G,3,2(ν)
wF,G,3,3(ν)

⎞
⎠ = [
wF,G,1(ν), 
wF,G,2(ν)]
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is vector product of 
wF,G,1(ν) and 
wF,G,2(ν), and let w̄F,G,3(ν) = (
wF,G,3(ν))t

is the row conjugate to the column 
wF,G,3(ν). Then we have the following
equalities for the scalar products (
wF,G,3(ν), 
wF,G,j(ν)) :

w̄F,G,3(ν)
wF,G,j(ν) = (
wF,G,3(ν), 
wF,G,j(ν)) = 0,

where j = 1, 2 and ν ∈ M∗∗∗∗
1 = ((−∞,−3] ∪ [1, +∞)) ∩ Z. Therefore

w̄F,G,3(ν)WF,G(ν) =
(
0 0

)
,(42)

where ν ∈ M∗∗∗∗
1 = ((−∞,−3] ∪ [1, +∞)) ∩ Z. In view of (39) (41) and (42),

w̄F,G,3(ν)Y ∗∗∗∗
F,G,k(ν) = w̄F,G,3(ν)WF,G(ν)Y ∗∗∗

k (ν) = 0,

where k = 1, 3 and ν ∈ M∗∗∗∗
1 = ((−∞,−3] ∪ [1, +∞)) ∩ Z.

So, for given F and G we came to difference equation of second order,
which leads to our results. First we take F (ν) = 1 and G(ν) = 0 for all ν ∈ Z.
Then we obtain the first expansion specified in Theorem A. After that we take
F (ν) = 1/3 and G(ν) = 2/3 for all ν ∈ Z Then we obtain the second expansion
specified in Theorem A.
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[1] R.Apéry, Interpolation des fractions continues
et irrationalite de certaines constantes,
Bulletin de la section des sciences du C.T.H., 1981, No 3, 37 – 53;

[2] Oskar Perron. Die Lehre von den Kettenbrüche.
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