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Abstract

We prove the formul& (a,b) = K (a| C(a,b)) +C (bla,C (a,b)) +O(1) that expresses the plain com-
plexity of a pair in terms of prefix-free and plain conditibsamplexities of its components.

The well known formula from Shannon information theory stathatH (&,n) = H(&) + H(n|&).
Hereé, n are random variables ardl stands for the Shannon entropy. A similar formula for altdonic
information theory was proven by Kolmogorov and LevVin [5Hasays that

C(a,b) =C(a)+ C(bla)+O(logn),

wherea andb are binary strings of length at masendC stands for Kolmogorov complexity (as defined
initially by Kolmogorov [4]; now this version is usually dat plain Kolmogorov complexity). Informally,
C(u) is the minimal length of a program that produeegndC (u|v) is the minimal length of a program
that transforms to u; the complexityC (u,v) of a pair(u,v) is defined as the complexity of some standard
encoding of this pair.

This formula implies that(a: b) = 1(b: a) + O(logn) wherel (u: v) is the amount of information in
u aboutv defined as<C (v) — C(v|u); this property is often called “symmetry of information”h& term
O(logn), as was noted in [5], cannot be replaceddy). Later Levin found ar©(1)-exact version of this
formula that uses the so-callpdefix-freeversion of complexity:

K(a,b) =K (a)+K(bla,K(a))+ O(1);

this version, reported in[2], was also discovered by Chdii]. In the definition of prefix-free complexity
we restrict ourselves to self-delimiting programs: regdinprogram from left to right, the interpreter
determines where it ends. See, eld., [7] for the definitionispaoofs of these results.

In this note we provide a somewhat similar formula for plaamplexity (also withO(1)-precision):

Theorem 1.
C(a,b) =K (a|C(a,b)) + C(bja,C(a,b)) +0O(1).

Proof. The proof is not difficult after the formula is presented. Khénequality is a generalization of the
inequalityC (x,y) < K(x) + C(y) and can be proven in the same way. Assume phiata self-delimiting
program that map8 (a,b) to a, andq is a (not necessarily self-delimiting) program that mapsdC (a, b)
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to b. The natural idea is to concatengt@ndq; sincep is self-delimiting, giverpgone may find wher@
ends andj starts, and then ugeto geta andq to getb. However, this idea needs some refinement: in both
cases we need to kno@/(a, b) in advance; one may use the lengthpofas a replacement for it, but since
we have not yet proven the equality, we have no right to do so.

So more caution is needed. Assume thatthi@eequality is nottrue an@ (a, b) exceedX (a|C(a,b))+
C(bja,C(a,b)) by somed. Then we can concatenate prefix-free descriptioaf d (that has length
O(logd)), thenp and ther. Now we have enough information: first we fiddthenC (a,b) =|p|+|q| +d,
thena, and finallyb. ThereforeC(a,b) does not excee®(logd) + |p| + |q| + O(1), therefored <
O(logd) + O(1) andd = O(1). The<-inequality is proven.

Let us prove the reverse inequality. In this proof we use tierpretation of prefix-free complexity
as the logarithm of a priori probability (see, e.@l, [7] faatails). Ifn= C(a,b) is given, one can start
enumerating all pairgx,y) such thatC(x,y) < n; there are at most"2! of them and the paita, b) is
among them. For fixes, for each pair(x,y) in this enumeration we add 2! to the probability ofx; in
this way we approximate (from below) the semimead(pen) = Ny2-"~1. Therefore, we get an upper
bound forK (a|n):

K (aln) < —logP(ajn) + O(1) = n—log,Na+ O(1),

whereN; is the number of/'s such thaiC(a,y) < n. On the other hand, givemandn, we can enumerate
all thesey, andb is among them, sb can be described by its ordinal number in this enumerati@mnefore

C(bla,n) <logyNa+0O(1).
Summing these two inequalities, we get the desired result. O
We can now get several knov(1)-equalities for complexities as corollaries of Theotém 1.

e Recall thatC(a,C(a)) = C(a), andK (a,K (a)) = K(a) (the O(1)-additive terms are omitted here
and below), since the shortest programda@lso describes its own length.

¢ For emptyb we getC(a) = K (a|C(a)), see alsa [3.16].
e For emptya we getC(b) = C(b|C (b)), see alsd [3,16].

e The last two equalities imply th& (u|C (u)) = K (u]C (u)).
The direct proof for last three statements is also easy. dw $hatC (a) < C(a|C(a)), assume that
some progranp mapsC (a) to a and isd bits shorter thai€ (a). Then we add a prefid of length
O(logd) that describesd in a self-delimiting way, and note thdtp determines firs€ (a) and then
a, sod < O(logd) 4+ O(1) andd = O(1). To show thaK (a]C(a)) < C(a|C(a)) we note that in the
presence o€ (a) every program of lengtl® (a) can be considered as a self-delimiting one, since its
length is known.

Levin also pointed out that (a) can be defined in terms of prefix-free complexity as a minimal
such thaK (ali) <i. (Indeed, fori = C(a) both sides differ byD(1), and changing right hand side
by d, we change left hand side If¥(logd), so the intersection point is unique up@g1)-precision.
In other termsK (ali) =i+ O(1) impliesC(a) =i+ 0O(1).)

e More generally, we may let be some fixed computable functionlufif a= f(b), we getC(b) =
K(f(b)|C(b))+C(b[f(b),C(b)).

One can also see that Theore 1 can be formally derived frormkeesults mentioned above. To
show that
C(bja,C(a,b)) =C(a,b) —K(a]C(a,b))
we need to show that the right hand sigdeC (a,b) —K (a] C(a, b)) satisfies the equality (b|a, C(a,b),i) =
i with O(1)-precision, which implie€ (b|a,C(a,b)) =i. (We omit allO(1)-terms, as usual.) In the con-
dition of the last inequality we may replacéy K (a]C(a,b)) sinceC(a,b) is already in the condition.
Therefore, we need to show that

K (bla,C(a,b),K (a]C(a,b))) = C(a,b) —K(a|C(a,b))



or
K (bla,C(a,b),K (a]C(a,b)))+K(aC(a,b)) =C(a,b).

But the sum in the left hand side equ#l$a, b| C(a,b)) due to the formula for prefix complexity of a pair
(a,b) relativized to the conditioi€ (a,b), and it remains to note th&t (a,b|C(a,b)) = C(a,b). (This
alternative proof was suggested by Peter Gacs.)

We can obtain a different version of Theorem 1:

Proposition 1.
C(a,b) =K (aC(a,b)) +C(bla,K (a]C(a,b))) +O(1).

Proof. Indeed, the<-inequality can be shown in the same way as<hmequality in the proof of Theo-
rem[l, hence it remains to show theinequality. Letp be a program of lengtl® (b|a,C (a,b)) that com-
putesb givenaandC (a,b). (The progranp is not assumed to be self-delimiting.) Knowipgwe can also
computeb givena andK (a]C(a,b)). First, we computép| + K (a|C(a,b)), and this sum equals(a,b)
(Theorent ). Then, usingagain, we computb. HenceC (bla,C(a,b)) > C(bja,K (a]C(a,h))). O

One may complain that Theordm 1 is a bit strange since it ussfix{free complexity in one term
and plain complexity in the second (conditional) part. As hewe already noted, one cannot Wsen
both parts:C(a,b) can exceed eve@ (a) + C(b) by a logarithmic term. One may then ask whether it
is possible to exchange plain and prefix-free complexithmtivo terms we have and prove tliata, b)
equals something like

C(alC(a,b))+K(bja,C(a,b)).

It turns out that it is not possible: even the inequalitfa, b) < C(a) + K (bja) + O(1) is not true. At first it
seems that one could concatenate a self-delimiting prograt produceb givena and a (plain) program
p that produces, in the hope that the endpoint gftan be reconstructed, and then the rest islowever,
this idea does not work: the progranis self-delimiting only whera is known; to knowa we need to have
p, and to knowp we need to know whergends, so there is a vicious circle here.

Let us show that the problem is unavoidable and that for ifiynimany pairgx,y) we have

C(x,y) > C(x)+ K (y|x) +logn— 2loglogn— O(1),

wheren = |x| + |y| is the total length of both strings. To construct such a peiin = 2 for somek, and
choose a string of lengthn and a natural numbér< n such thatC(r,i) > n+logn. (For everyn, there
aren2" pairs(r,i), so one of them has high complexity.)

Letx=rjy...riandy=ri;1...rn. Note thalC (x,y) = C(r,i) > n+lognand thatC (x) <i. Furthermore,
K (y[x) < K(y|x,n)+ K (n). HereK (y|x,n) < |y| = n—i, sincex andn determindy| andK (y | |y|) < |y|;
on the other hand (n) < 2loglogn

There is still some chance to get a formula for the plain cexipl of a pair(x,y) that involves only
plain complexities, assuming that we add some conditioménléft hand side, i.e., to get some formula
of the typeC(a,b|?) =?. Unfortunately, the best result in this direction that wanaged to get is the
following observation:

Proposition 2. For all x,y there exists gunique up to @1)-precisior) pair (k,1) such that Gx|l) = k,
C(y|x,k) =I. For such a pair we have ¢|l) =k, C(y|x,k) = | and this implies Cx,y|k,1) = C(x,y|k) =
C(x,y|l) =1 +k (all with O(1)-precision.

Proof. The pair in question is a fixed point &f: (k1) — (C(X|I),C(y|x,k)). It exists and is unique since
F maps points at distanakinto points at distanc®(logd). (Here “distance” means geometric distance
between points iZ2.)

1As a byproduct of this example and the discussion above welwda thatK (x|y) cannot be defined as minimal prefix-free
complexity of a program that mapsto x: the valueK (y|x) can be smaller than m{K(p) : U (p,x) =y}, whereU is the universal
function. Indeed, in this case we would have the inequdifx,y) < C(x) + K (y|x), since the prefix-free description of a program
that mapscto y and a shortest description feican be concatenated into a description of the pay).



Using the relativized version of the statem@tz) = C(z C(z)), we conclude tha€ (x/k,I) = k and
C(y|x,k,1) =1. Letus prove now that (x,y|k,l) = k+1. Indeed, the standard proof of Kolmogorov—-Levin
theorem shows that for anyy, k', |’ such that

CxylK,I") <K+l

we have either
C(XK,I") <K or C(yxK,I")<I.

Hence ifC (xk,1) = k andC (y|x, k,I) = | for somek andl, we haveC (x,y|k,1) > k+ I (otherwisek and
| can be decreased to get a contradiction). By concatena#oobtain also tha€ (x,y|k,1) < k+1, so
C(x,ylk 1) =k+1 (all equations withD(1)-precision).

It remains to show thaE (x,y|k,|) = k+ I implies C(x,y|k) = k+1 and, similarly,C(x,y|l) = k+1.
Indeed, a program of length+1 that mapgk,l) to (x,y), can be used to map(or ) to (x,y): knowing
the length of the program and one of the valuek ahdl, we reconstruct the other value. O

Remark 1. One can ask what can be said about pdk’sl’) such that Gx|I’) <k and C(y|x, k') <I’. The

pair (k,1) given by the theorem is not necessarily coordinate-wiseémaih for example, taking a large

k' that contains full information about y we may lét2 0. Indeed, Gx|0) < k' (since k is large) and
C(y|x,k') <0 (since kdeterminesy). However, to get some decreasé(compared to k) or'l(compared

to I) we need to change the other parameter by an expongnbager quantity, since the information
distance between i and is O(log|i —i’|). The change in the other parameter should be its increase,
otherwise we could repeat the arguments exchanging k and gaha contradiction (each of two changes
could not be exponentially big compared to the other one).
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