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Abstract: The structure of a cotangent bundle is investigated for quantum linear groups
GLq(n) and SLq(n). Using a q-version of the Cayley-Hamilton theorem we construct
an extension of the algebra of differential operators on SLq(n) (otherwise called the
Heisenberg double) by spectral values of the matrix of right invariant vector fields. We
consider two applications for the spectral extension. First, we describe the extended
Heisenberg double in terms of a new set of generators — the Weyl partners of the spec-
tral variables. Calculating defining relations in terms of these generators allows us to
derive SLq(n) type dynamical R-matrices in a surprisingly simple way. Second, we
calculate an evolution operator for the model of the q-deformed isotropic top introduced
by A.Alekseev and L.Faddeev. The evolution operator is not uniquely defined and we
present two possible expressions for it. The first one is a Riemann theta function in the
spectral variables. The second one is an almost free motion evolution operator in terms
of logarithms of the spectral variables. The relation between the two operators is given
by a modular functional equation for the Riemann theta function.

1. Introduction

A notion of a Heisenberg double over the quantum group has been formulated and
attracted substantial researcher’s interest in the early 90-s [AF.91,S,SWZ.92,SWZ.93].
From the algebraic point of view it is a smash product algebra (see [M]) of the quantum
group (or, the quantized universal enveloping algebra) and its dual Hopf algebra (see
[D.86,FRT]). In the differential geometric interpretation it may be viewed as an algebra
of quantized differential operators over a group or, equivalently, as an algebra of quan-
tized functions over a cotangent bundle of the group. Since the group’s cotangent bundle
serves a typical phase space for integrable classical dynamics, it is natural to attach
the same role to the Heisenberg double over the quantum group for quantum physical
models. As a test example, a model of the q-deformed isotropic top was suggested in
[AF.91,AF.92]. A discrete time evolution in this model is given by a series of automor-
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phisms of the Heisenberg double. It turns out however that finding an explicit expression
for the model’s evolution operator is not just a technical problem.1 The automorphisms
defining the evolution by no means can be treated as inner ones in the original algebra
and so, for a proper realization of the q-top one needs an appropriate extension of the
Heisenberg double.

Also stimulated by the invention of quantum groups were general studies of the
algebras whose generators satisfy quadratic relations (see [PP] and references therein)
and investigations of minor identities for matrices over noncommutative rings [GR.91,
GR.92,KL]. These two lines of research are meeting together in the theory of the so-
called quantum matrix algebras [H,IOP.99] whose structure theory can be developed
in a full analogy with the usual matrix analysis. In particular, one can define quantum
versions of the matrix trace and determinant [FRT], introduce notions of a spectrum
and a power of the quantum matrix, and formulate the Cayley-Hamilton theorem (see
[GPS.97,IOP.99,OP.05] and references therein).

A remarkable fact about quantum matrix algebras is that their most known exam-
ples — the RTT algebra [FRT] and the reflection equation algebra [KS] — serve as
the building blocks for a construction of the quantum group differential geometry in
general [SWZ.92] and so, also for the Heisenberg double. It is the aim of the present
paper to apply the structure results on the quantum matrix algebras for investigation
of the dynamics of the isotropic q-top. Following [AF.91,S,SWZ.92] we begin with a
definition of the Heisenberg double as a smash product algebra of a pair of quantum
matrix algebras. These are the RTT algebra, playing the role of quantized functions over
a group, and the reflection equation algebra, interpreted as quantized right invariant dif-
ferential operators over a group. We then consider a central extension of the reflection
equation algebra by the spectrum of it’s generating matrix of quantized right invari-
ant vector fields, and define a proper (non-central) extension of the whole Heisenberg
double by these spectral variables. Finally, after the spectral extension is made, the evo-
lution of the isotropic q-top becomes an inner automorphism of the Heisenberg double.2

Constructing the evolution operator is then straightforward.
The paper is organized as follows. In the next section we recall some facts about

the universal R-matrix and the R-matrix techniques. We are mainly discussing the case
of (numeric) R-matrices of type GLq(n). These type R-matrices are later on used for
description of the cotangent bundles (or, the Heisenberg doubles) over quantum linear
groups.

In Sect. 3 we introduce the RTT algebra, the reflection equation algebra and define
their smash product algebra — the Heisenberg double. We are describing the algebras of
the two linear types — GLq(n) and SLq(n). For the reflection equation algebra we for-
mulate in these cases the Cayley-Hamilton theorem and use it for the spectral extension
of the Heisenberg double. This is the first main result of the paper (see theorem 3.27).

The Heisenberg double is initially defined in terms of the quantized right invariant
vector fields. In order to demonstrate the left-right symmetry of the Heisenberg double,
in subsection 3.4 we describe it using quantized left invariant vector fields. We also
derive explicit relations between the spectra of the matrices of left and right generators,
see corollaries 3.17 and 3.34. To keep clearness of a presentation some technical lemmas
are moved from this subsection to appendix B.

1 This problem was suggested to the authors by L.D. Faddeev in summer of 1996, during the Alushta
conference “Nonlocal, nonrenormalizable field theories”.

2 Strictly speaking, one has to extend the algebra by a formal power series in the spectral variables.
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The spectral extension suggests yet another distinguished generating set for the Hei-
senberg double, namely, the one which satisfy the simplest possible – Weyl algebraic –
relations with the spectral variables. In the subsection 3.5 we derive defining relations for
this set, see theorem 3.36. Quite expectantly, the relations involve dynamical R-matrices
whose dynamical arguments are the spectral variables (see corollary 3.37). Surprising
facts are that the dynamical R-matrices are coming in pairs, and that they are derived by
solving a simple system of (at most three) linear equations.

Section 4 is devoted to solving a dynamical problem for the isotropic q-top. This is
our second main result. Noticing that an evolution operator of the model is not uniquely
defined, we derive two different expressions for it. The first one is given in terms of the
Riemann theta function whose matrix of periods is proportional to Gram matrix of the
lattice A∗

n−1, see relations (4.3.4), (4.3.5). This solution converges for |q| < 1, or for q
a rational root of 1. The second solution converging for arbitrary values of q is given
in terms of logarithms of the spectral variables, see (4.4.2), (4.4.3). The idea for the
logarithmic substitution (that means passing from Weyl type to Heisenberg type com-
mutation relations) was suggested to authors by L.D. Faddeev (for argumentation see
[F.94,F.95]). The evolution in the logarithmic variables reduces to an almost free motion.
A relation between the two solutions is given then by a modular functional equation for
Riemann theta function (4.4.4).

Concluding the introduction we would like to mention a number of open problems
which, in our opinion, deserve further investigation.

First of all, it is straightforward to formulate a problem of spectral extension for the
Heisenberg doubles over orthogonal and symplectic quantum groups and over quan-
tum linear supergroups. Technical prerequisites for this were developed, respectively,
in [OP.05] and [GPS.05,GPS.06]. As well, it would be interesting to construct spectral
extensions for the cases of real quantum groups. We believe that a correct setting for this
problem is suggested in [AF.92].

Another interesting problem is an extension of a modular double construction [F.95,
F.99] (see also [KLS,GKL]) for the case of Heisenberg double over quantum group.
A starting point for investigation here would be a modular functional relation (4.4.4)
between the two evolution operators constructed in section 4. Riemann theta function
standing in the denominator in this relation could be considered as an evolution operator
for the modular dual Heisenberg double.

At last, an observation that a ribbon element serves a q-top evolution operator on the
smash product algebra of a ribbon Hopf algebra with it’s dual Hopf algebra (see exam-
ple 4.3) could open a way for the spectral extension of a quasi-triangular Hopf algebra. A
partial step in this direction is made in appendix A, where pairing of the quasi-triangular
Hopf algebra with its dual Hopf algebra is extended for the set of spectral variables, see
corollary A.2.

2. R-Matrices

In this introductory section we collect some necessary information about R-matrices and
an R-matrix technique.

2.1. Universal R-matrix. First, we recall a few basic notions from the theory of quasi-
triangular Hopf algebras [D.86,D.89] and ribbon Hopf algebras [RT] (for review see
[ChP,KSch]).
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Let A be a Hopf C-algebra supplied with a unit 1 : C → A, a counit ε : A → C, a
product m : A ⊗ A → A, a coproduct � : A → A ⊗ A, and an antipode S : A → A
mappings subject to standard axioms.

A Hopf algebra A is called almost cocommutative if there exists an invertible ele-
ment R ∈ A ⊗ A that intertwines the coproduct � and the opposite coproduct �op (in
Sweedler’s notation: �op(x) = x(2) ⊗ x(1) if �(x) = x(1) ⊗ x(2))

R�(x) = �op(x)R ∀ x ∈ AR. (2.1.1)

In this case the element R is called a universal R-matrix, and the corresponding almost
cocommutative Hopf algebra is denoted as AR. The algebra AR is called quasi-trian-
gular if additionally R satisfies relations

(� ⊗ id)R = R13R23 , (id ⊗ �)R = R13R12 , (2.1.2)

where R12 = R ⊗ 1, R23 = 1 ⊗ R, and R13 = ∑
i ai ⊗ 1 ⊗ bi for R = ∑

i ai ⊗ bi .
Relations (2.1.1), (2.1.2) together imply an equality

R12R13R23 = R23R13R12 , (2.1.3)

which is called the Yang-Baxter equation.
In the almost cocommutative case an element u := m(S ⊗ id)(R21) ∈ AR is

invertible. In terms of u the square of the antipode is expressed as

S2(x) = u x u−1 ∀ x ∈ AR . (2.1.4)

In the quasi-triangular case one has following formulas:

S(u) = m(id ⊗ S)(R12) , u−1 = m(id ⊗ S2)(R21) ,

�(u) = (R21R12)
−1 u ⊗ u , R (u ⊗ u) = (u ⊗ u)R . (2.1.5)

An element uS(u) = S(u)u (in the almost cocommutative case) belongs to the cen-
ter of AR. A central extension of the quasi-triangular Hopf algebra AR by a so-called
ribbon element υ such that

υ2 = uS(u) , �(υ) = (R21R12)
−1 υ ⊗ υ (2.1.6)

is called a ribbon Hopf algebra. The ribbon element also fulfills relations

ε(υ) = 1 , S(υ) = υ , R (υ ⊗ υ) = (υ ⊗ υ)R .

Throughout this paper our basic reference example of the quasi-triangular Hopf alge-
bra AR is the quantized universal enveloping algebra Uq(g) of a complex Lie algebra
g = sl(n) [D.86,J.85,J.86].
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2.2. Braid groups and their R-matrix representations. In the rest of the section we intro-
duce standard notation and recall basic results on R-matrix representations of the braid
groups.

The braid group Bk in Artin’s presentation is given by a set of generators {σi }k−1
i=1 and

relations

σiσi+1σi = σi+1σiσi+1 ∀ i = 1, 2, . . . , k − 1, (2.2.1)

σiσ j = σ jσi ∀ i, j : |i − j | > 1 . (2.2.2)

Let V be a finite dimensional C-linear space. For any operator X ∈ End(V ⊗2) and
for all integer i > 0, j > 0 denote

Xi := I ⊗(i−1) ⊗ X ⊗ I ⊗( j−1) ∈ End(V ⊗(i+ j)) , (2.2.3)

where I ∈ Aut(V ) is the identity operator.3 We also use notation Xi j for an operator in
End(V ⊗k), 1 ≤ i �= j ≤ k, acting as X in component spaces V with labels i and j and
as identity in the rest. In these notations Xi i+1 ≡ Xi .

An operator R ∈ Aut(V ⊗ V ) satisfying equality

R1 R2 R1 = R2 R1 R2 , (2.2.4)

is called an R-matrix. Any R-matrix generates representations ρ
R

of the braid groups Bk ,
k = 2, 3, ...,

ρ
R
: Bk → Aut(V ⊗k), ρ

R
(σi ) = Ri , 1 ≤ i ≤ k − 1.

By a slight abuse of notation we assign the same symbol ρ
R

to the R-matrix represen-
tations of the braid groups Bk for different values of index k. This should not cause
problems as the braid groups admit a series of monomorphisms commuting with ρ

R
,

Bk ↪→ Bk+1 : σi 	→ σi ∀i = 1, . . . k − 1. (2.2.5)

Definition 2.1. An R-matrix R is called skew invertible if there exists an operator
�

R
∈ End(V ⊗2) such that

Tr(2) R12�R23 = Tr(2)�R12 R23 = P13 . (2.2.6)

Here by Tr(i) we denote trace operation in i th space, and by P — the permutation
operator: P(u ⊗ v) = v ⊗ u ∀ u, v ∈ V .

With any skew invertible R-matrix R we associate a pair of operators D
R
, C

R
∈ End(V )

D
R1 = Tr(2)�R12 , C

R2 = Tr(1)�R12 , (2.2.7)

which, by (2.2.6), satisfy equalities

Tr(2) R12 D
R2 = I1 , Tr(1)CR1 R12 = I2 . (2.2.8)

Further properties of the operators D
R

and C
R

are summarized below.

3 Strictly speaking a proper notation for the l.h.s. of (2.2.3) would be, say, X (i+ j)
i . We use the shortened

notation Xi since a dependence on j is not critical for our considerations. All formulas below make sense if
the index j is large enough. A minimal possible value for j in each case is obvious from the context.
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Proposition 2.2 [Is.04,O]. Let R be a skew-invertible R-matrix. The operators D
R

and
C

R
(2.2.7) satisfy equalities

D
R1 I2 = Tr(3)D

R3 R±1
2 P12 R∓1

2 , C
R3 I2 = Tr(1)CR1 R±1

1 P23 R∓1
1 ,

R12 D
R1 D

R2 = D
R1 D

R2 R12 , R12 C
R1 C

R2 = C
R1 C

R2 R12 . (2.2.9)

Let W be a C-linear space. For any skew invertible R-matrix R we define an R-trace
map4 Tr

R
: EndW (V ) → W ,

Y 	→ Tr
R
(Y ) := Tr (D

R
Y ) , Y ∈ EndW (V ) .

Following properties of the R-trace are simple consequences of the relations given
in Proposition 2.2.

Corollary 2.3. Let R be a skew invertible R-matrix. For any operator Y ∈ EndW (V )

the R-trace associated with R satisfies relations

Tr
R
(2)(Rε

12 Y1 R−ε
12 ) = I1 Tr

R
(Y ), (2.2.10)

where ε = ±1 and the symbol Tr
R
(i) denotes taking the R-trace in ith space.

For an element x (k) ∈ C[Bk] denote X (k)
R

:= ρR(x (k)) ∈ End(V ⊗k). The following
cyclic property

Tr
R
(1, . . . , k)

(
X (k)

R
Y (k)

)
= Tr

R
(1, . . . , k)

(
Y (k) X (k)

R

)

is fulfilled for any k ≥ 1 and Y (k) ∈ EndW (V ⊗k), and for all x (k) ∈ C[Bk].
Example 2.4. Permutation P: P(u ⊗ v) := v ⊗ u ∀ u, v ∈ V , is the skew invertible
R-matrix. The Identity operator I ⊗2 is the R-matrix which is not skew invertible.

Example 2.5. Assume that the quasi-triangular Hopf algebra AR admits a representation

ρV : AR → End(V ).

As follows from the Yang-Baxter equation (2.1.3) an operator

R := ηP (ρV ⊗ ρV )(R), (2.2.11)

satisfies relation (2.2.4). Here the scaling factor η ∈ {C \ 0} is introduced for the sake
of future convenience.

The R-matrix (2.2.11) is skew invertible, its skew inverse matrix is given by formula
(see, e.g., [O], Sect. 4.1.2)

�
R

= η−1 P (ρV ⊗ ρV )((id ⊗ S)R).

The matrices D
R

and C
R

associated with the R-matrix (2.2.11) are:

D
R

= η−1 ρV (u) , C
R

= η−1 ρV (S(u)) . (2.2.12)

Both, they are invertible and their properties (2.2.9) are descending from (2.1.5).

4 This map is often called a quantum trace or, shortly, a q-trace. In our opinion, the name R-trace is more
appropriate to it.
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2.3. Hecke algebras and Hecke type R-matrix. An A-type Hecke algebra Hk(q) is a
quotient algebra of the group algebra C[Bk] (2.2.1), (2.2.2) by relations

(σi − q1)(σi + q−11) = 0 ∀ 1 ≤ i ≤ k − 1.

Under the following conditions on the parameter q:

[k] iq := (qi − q−i )/(q − q−1) �= 0 ∀i = 2, 3, . . . , k, (2.3.1)

the algebra Hk(q) is isomorphic to the group algebra of the symmetric group C[Sk] and,
hence, semisimple. It’s irreducible representations as well as its central idempotents are
labeled by a set of partitions λ � k. We are particularly interested in a series of idem-
potents corresponding to the one dimensional representations λ = (1k), k = 1, 2, . . . .
These idempotents – we denote them as a(k) – admit a recursive construction (see, e.g.,
[HIOPT], Sect. 1, or [GPS.97], Sect. 2.3, or [TW], Lemma 7.2)

a(1) = 1, a(k) = (k − 1)q

kq
a(k−1)

(
qk−1

(k − 1)q
1 − σk−1

)

a(k−1) (2.3.2)

= (k − 1)q

kq
a(k−1)↑1

(
qk−1

(k − 1)q
1 − σ1

)

a(k−1)↑1 ∀ k = 2, 3, . . . , (2.3.3)

where we use the symbol x (k)↑1 ∈ Hk+1(q) for an image of the element x (k) ∈ Hk(q)

under the following algebra monomorphism (cf. with (2.2.5)):

Hk ↪→ Hk+1 : σi 	→ σi+1 ∀i = 1, . . . k − 1 .

The idempotents a(k) obey relations

a(k)σi = σi a
(k) = −q−1a(k) ∀ i = 1, 2, . . . , k − 1 , (2.3.4)

a(k)a(i)↑ j = a(i)↑ j a(k) = a(k) , if i + j ≤ k . (2.3.5)

An R-matrix R satisfying the quadratic minimal characteristic identity is called a
Hecke type R-matrix. By an appropriate rescaling of R one always can turn its charac-
teristic identity to a form

(R − q I )(R + q−1 I ) = 0 . (2.3.6)

In this case the corresponding representations ρR become representations of the Hecke
algebras Hk(q),

ρ
R
: Hk(q) → Aut(V ⊗k), ρ

R
(σi ) = Ri , 1 ≤ i ≤ k − 1. (2.3.7)

We reserve a special notation for the R-matrix images of idempotents a(k):

A(k) := ρ
R
(a(k)) , A(k)↑1 := ρ

R
(a(k)↑1) ∀ k ≥ 1 . (2.3.8)

We also put A(0) := 1. The elements A(k) will be further referred to as k-antisymmet-
rizers.

Remark 2.6. The R-matrix analogues of relations (2.3.2)–(2.3.5) have been described in
the literature (see [J.86,G]) even earlier than their algebraic prototypes.
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2.4. GLq(n) type R-matrix.

Definition 2.7. Consider a Hecke type R-matrix R. Assume that the parameter q in its
characteristic identity (2.3.6) satisfies conditions [n] (2.3.1), so that antisymmetrizers
A(2), . . . , A(n) are well defined. R is called a GLq(n) type R-matrix if two conditions

A(n)

(
qn

nq
I − Rn

)

A(n) = 0 (2.4.1)

and

rk A(n) = 1 (2.4.2)

are fulfilled.

Remark 2.8. Assuming (n + 1)q �= 0, the condition (2.4.1) is equivalent to A(n+1) = 0.
For generic values of q, assuming validity of (2.4.1), the condition (2.4.2) is equivalent
to demanding skew invertibility of R (see [G], Props. 3.6 and 3.10).

Proposition 2.9 [G,Is.04]. Let R be a skew invertible R-matrix of the type GLq (n). Then
C

R
and D

R
are invertible and the following relations are fulfilled:

D
R

C
R
= C

R
D

R
= q−2n I, (2.4.3)

Tr
R
(k) A(k) = q−n (n + 1 − k)q

kq
A(k−1) ∀ k = 1, 2, . . . , n, (2.4.4)

A(n)
n∏

i=1

(D
R
)i =

n∏

i=1

(D
R
)i A(n) = q−n2

A(n). (2.4.5)

Example 2.10. Consider the case AR is the quantized universal enveloping algebra
Uqsl(n). Let V be a vector representation of Uqsl(n), dim V = n. In this case formula
(2.2.11) with the scaling factor chosen as η = q1/n gives a standard Drinfeld-Jimbo’s
R-matrix R◦ of the GLq(n) type (see [KSch], Sect. 8.4.2):

R◦ =
n∑

i, j=1

qδi j Ei j ⊗ E ji + (q − q−1)
∑

i< j

Eii ⊗ E j j . (2.4.6)

Here (Ei j )kl := δikδ jl , i, j = 1, . . . , n, is a standard basis of n × n matrix units. Via
the so-called twist procedure (for details see [R.90]) R◦ gives rise to a multiparametric
family of GLq(n) type R-matrices,

R f := F R◦F−1 =
n∑

i, j=1

qδi j
fi j

f j i
Ei j ⊗ E ji + (q − q−1)

∑

i< j

Eii ⊗ E j j ,

∀ fi j ∈ {C \ 0}. (2.4.7)

Here F := ∑n
i, j=1 fi j Eii ⊗ E j j is a twisting R-matrix. In what follows we use these

particular R-matrices for illustration purposes. Their corresponding matrices DR◦ and
DR f are

DR◦ = DR f =
n∑

i=1

q2(i−n)−1 Eii .
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Remark 2.11. Generally speaking, a GLq(n) type R-matrix can be realized in a tensor
square of space V whose dimension is different from n. Examples of the R-matrices
for any dim V ≥ n are given in [G], in Sect. 4. In what follows we do not assume any
relation between the parameter n in Definition 2.7 and the dimension of the space V ,
unless it is stated explicitly.

3. Quantized Functions on a Cotangent Bundle Over Matrix Group

In this section we recall the definition of a quantum group cotangent bundle and develop
in linear cases – GLq(n) and SLq(n) – basic techniques for its structure investigation.

3.1. Quantized functions over matrix group (RTT algebra).

Definition 3.1 [D.86,FRT]. Let R be a skew invertible R-matrix. An associative unital
algebra generated by a set of matrix components ‖T i

j ‖dim V
i, j=1 satisfying relations

R12 T1 T2 = T1 T2 R12 (3.1.1)

is denoted as F[R] and called an RTT algebra. The RTT algebra is endowed in a
standard way with the coproduct and the counit

�(T i
j ) =

∑

k

T i
k ⊗ T k

j , ε(T i
j ) = δi

j . (3.1.2)

Let further extend the RTT algebra by a set of inverse matrix components ‖(T −1)i
j‖dim V

i, j=1 :
∑

k

T i
k (T −1)k

j =
∑

k

(T −1)i
k T k

j = δi
j 1 . (3.1.3)

The extended algebra can be endowed with the antipode mapping

S(T i
j ) = (T −1)i

j , so that (see [R.89]): S2(T ) D
R

= D
R

T . (3.1.4)

The resulting Hopf algebra is further denoted as FG[R].
Example 3.2. Consider the quasi-triangular Hopf algebra AR together with its represen-
tation ρV (see Example 2.5). For any x ∈ AR denote ‖ρV (x)i

j‖ a matrix of the operator
ρV (x) in a certain basis in the space V .

Let A∗
R be the dual Hopf algebra and let 〈·, ·〉 denote a non degenerate pairing between

AR and A∗
R. Consider two matrices of linear functionals on AR — T i

j and (T −1)i
j —

such that

〈T i
j , x〉 = ρV (x)i

j , 〈(T −1)i
j , x〉 = ρV (S(x))i

j ∀ x ∈ AR . (3.1.5)

It is easy to see that these functionals satisfy conditions of Definition 3.1 (for details see,
e.g., [B]), the numeric R-matrix R in (3.1.1) in this case is given by (2.2.11), relation
(3.1.4) for the square of antipode descends from (2.1.4). The functionals T i

j and (T −1)i
j

generate a Hopf subalgebra in A∗
R.

In case AR is a universal enveloping algebra Ug of some Lie algebra g, the dual Hopf
algebra (Ug)∗ can be treated as Fun(G) ≡ FG, where G is a formal group corresponding
to g. Therefore, heuristically we can treat the RTT algebras FG[R] and F[R] as algebras
of quantized functions over the matrix group and matrix semigroup, respectively. Here
the term matrix refers to a matrix form of the coproduct (3.1.2); the term quantized
means that relations (3.1.1) in general define a noncommutative product.
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In the rest of the subsection we describe a construction of the inverse matrix T −1 for
the RTT algebra associated with the GLq(n) type R-matrix.

Consider an element

det
R

T := Tr(1, . . . , n)

(
A(n)T1T2 . . . Tn

)
. (3.1.6)

By the definition of the coproduct (3.1.2) and due to the rank 1 condition (2.4.2) the
element det

R
T is group-like

�(det
R

T ) = det
R

T ⊗ det
R

T ,

and it satisfies relations

A(n) T1T2 . . . Tn = T1T2 . . . Tn A(n) = A(n) det
R

T .

Therefore, it is natural to call detR T a determinant of the matrix T .

Proposition 3.3 [G]. Let R be a skew invertible GLq(n) type R-matrix. The following
relation is satisfied in the corresponding RTT algebra F[R]:

(det
R

T ) T = (O
R
T O

R

−1) det
R

T ,

where O
R
, O

R

−1 ∈ Aut(V ) are mutually inverse matrices:

O
R1 = nq Tr(2, . . . , n +1)

(
P1 P2 . . . Pn A(n)

)
, (3.1.7)

(O
R

−1)1 = nq Tr(2, . . . , n +1)

(
A(n) Pn . . . P2 P1

)
,

(recall that Pi are permutation operators acting in components spaces Vi ⊗ Vi+1).

Corollary 3.4. In the assumptions of Proposition 3.3 consider an extension of the RTT
algebra F[R] by an element (det

R
T )−1 subject to relations

(det
R

T )−1 T = (O
R

−1T O
R
)(det

R
T )−1 , det

R
T (det

R
T )−1 = (det

R
T )−1 det

R
T = 1 .

In the extended algebra the inverse matrix T −1 satisfying relations (3.1.3) is given by
formula

(T −1)1 = qn(n−1)nq Tr
R
(2, . . . , n)

(
T2 . . . Tn A(n)

)
(det

R
T )−1 .

The resulting Hopf algebra is called a GLq(n) type RTT algebra and denoted as
FGLq (n)[R].

Assume additionally that for the R-matrix R the corresponding matrix O
R

(3.1.7) is
scalar: O

R
∝ I . In this case R is called the R-matrix of SLq(n) type. In the correspond-

ing RTT algebra FGLq (n)R the element det
R

T is central. A quotient of this algebra by
relation det

R
T = 1 is called SLq(n) type RTT algebra and denoted as FSLq (n)[R].
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Remark 3.5. For a skew invertible GLq(n) type R-matrix R consider a system of equa-
tions

R12 N1 N2 = N1 N2 R12 , N n ∝ O
R

for some N ∈ Aut(V ).

Note that a consistency condition for these equations — R12 O
R1 O

R2 = O
R1 O

R2 R12 —
is satisfied (see [OP.05]). By any solution N of these equations one can construct the
SLq(n) type R-matrix

R̃12 := N1 R12 N−1
1 = N−1

2 R12 N2 . (3.1.8)

Example 3.6. For the R-matrices described in Example 2.10 one has

OR◦ = −I , OR f = −∑n
i=1

(∏
j �=i f j i/ fi j

)
Eii .

So, R◦ is SLq(n) type, while R f is SLq(n) type only if ∀ i = 1, . . . , n : ∏
j �=i ( f j i/ fi j )

= n √
1. Taking a diagonal nth root O1/n

R f of the diagonal matrix OR f one finds the

SLq(n) type R-matrix associated with R f :

R̃ f = R f̃ , where f̃i j := ∏
k �=i, j ( fi j f jk fki )

1/n , so that OR f̃ = −I .

3.2. Quantized right invariant vector fields (reflection equation algebra).

Definition 3.7 [KS]. Let R be a skew invertible R-matrix. An associative unital algebra
LG[R] generated by a set of matrix components ‖Li

j‖dim V
i, j=1 satisfying relations

L1 R12L1 R12 = R12L1 R12L1 (3.2.1)

is called a reflection equation algebra or, shortly, RE algebra. The RE algebra LG[R]
is naturally endowed with a structure of left coadjoint FG[R]-comodule algebra

δ�(Li
j ) =

∑

k,m

T i
k (T −1)m

j ⊗ Lk
m . (3.2.2)

Example 3.8. [FRT]. In notations of Examples 2.5, 3.2 consider the following AR-valued
matrices

L (+)i
j = 〈id ⊗ T i

j , R〉 , L (−)i
j = 〈S(T i

j ) ⊗ id ,R〉 = 〈T i
j ⊗ id ,R−1〉,

((L (+))−1)i
j = 〈id ⊗ T i

j , R−1〉, ((L (−))−1)i
j = 〈T i

j ⊗ id, R〉. (3.2.3)

As a consequence of the Yang-Baxter equation (2.1.3) components of these matrices
satisfy relations

R12 L (±)

2 L (±)

1 = L (±)

2 L (±)

1 R12 , R12 L (+)

2 L (−)

1 = L (−)

2 L (+)

1 R12 , (3.2.4)

where R is given by (2.2.11). By (2.1.2), the elements
(
(L (±))±1

)i
j generate a Hopf

AR-subalgebra

�(L (±)i
j ) =

∑

k

L (±)i
k ⊗ L (±)k

j , ε(L (±)i
j ) = δi

j , S(L (±)i
j ) = ((L (±))−1)i

j .
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Consider a composite matrix L with components

Li
j := q(n− 1

n )
∑

k

((L (−))−1)i
k L (+)k

j = q(n− 1
n )〈id ⊗ T i

j ,R21R12〉 , (3.2.5)

where our choice of a numeric factor qn− 1
n is argued in Appendix A. By (3.2.4), com-

ponents of L satisfy reflection equation (3.2.1), where R is given by (2.2.11). Note that
an AR-subalgebra generated by the elements Li

j (3.2.5) does not carry a natural Hopf
algebra structure. Instead, it obeys a coadjoint comodule algebra structure (3.2.2) with
respect to the Hopf A∗

R-subalgebra generated by the components of the matrices T and
T −1 (3.1.5).

Let us comment on a geometric interpretation of the RE algebra. In [FRT] the matrices
L(±) were used to develop an RTT type description for the quantized universal envel-
oping algebra Uqg. Consider the case g = sl(n) and let V be its vector representation.
The corresponding GLq(n) type R-matrix R is given in Example 2.10. Making a linear
change of generators Li

j → �i
j :

Li
j = δi

j + (q − q−1)� i
j , (3.2.6)

and using the Hecke condition (2.3.6) the reflection equation (3.2.1), for q2 �= 1, can be
equivalently rewritten as

�1 R12�1 R12 − R12�1 R12�1 = R12�1 − �1 R12 . (3.2.7)

In a “classical” limit q → 1 the R-matrix (2.4.6) tends to the permutation and Eqs. (3.2.7)
go into commutation relations for the basis of generators of the Lie algebra gl(n),

[�1, �2] = P12(�1 − �2) . (3.2.8)

Classically we can treat ‖�i
j‖p

i, j=1 as a basis of right invariant vector fields on GL(n).
Transformation of these basic fields under the left transition by a group element t ∈GL(n)

is given by formula (cf. with (3.2.2))

δ�(t) : �i
j 	→

n∑

k,m=1

t i
k �k

m (t−1)m
j , where t i

j := ρV (t)i
j .

Extrapolating this interpretation to a “quantum” case q �= 1 we call ‖Li
j‖n

i, j=1 a basis
of quantized right invariant vector fields over the matrix group.

It is technically convenient to introduce the notation

L1 := L1 , Lk+1 := Rk Lk R−1
k , (3.2.9)

L1 := L1 , Lk+1 := R−1
k Lk Rk ∀ k ≥ 1.

In terms of these R-copies Lk , Lk of the matrix L the reflection equation (3.2.1) can be
equivalently written in any of the following forms:

Rk Lk Lk+1 = Lk Lk+1 Rk , Rk Lk+1 Lk = Lk+1 Lk Rk ∀ k ≥ 1 . (3.2.10)

Taking into account commutativity relations

Ri Lk = Lk Ri , Ri Lk = Lk Ri ∀ i, k : k �= i, i + 1 , (3.2.11)
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one sees that the R-copies Lk (Lk) of the matrix L in the RE algebra LG[R] formally
satisfy the same relations as the usual copies Tk (T −1

k ) of the matrix T (T −1) in the RTT
algebra FG[R].

Matrix monomials in two different series of the R-copies satisfy relations

L1 L2 . . . Lk = Lk . . . L2 L1 ∀ k ≥ 1 . (3.2.12)

For k = 2 the equality (3.2.12) is identical to the reflection equation (3.2.1). For k > 2
this equality follows by induction on k. Note that monomials (3.2.12) transform covari-
antly under the left coadjoint coaction (3.2.2),

δ�

(
L1 . . . Lk

) = (
T1 . . . Tk ⊗ 1)(1 ⊗ L1 . . . Lk

)
(S(T1 . . . Tk) ⊗ 1) . (3.2.13)

The following proposition goes back to Theorem 14 from [FRT] (see also [Is.04],
Prop. 5).

Proposition 3.9. Let R be a skew invertible R-matrix. For an element x (k) ∈ C[Bk]
denote

ch(x (k)) := Tr
R
(1 . . . k)

(
X (k)

R
L1 L2 . . . Lk

)
, (3.2.14)

where X (k)
R

:= ρR(x (k)) ∈ End(V ⊗k). Consider a linear subspace Ch[R] ⊂ LG[R]
spanned by the unity and by elements ch(x (k)) ∀k ≥ 1 and ∀x (k) ∈ C[Bk]. The space
Ch[R] is a subalgebra of the center of the RE algebra LG[R]. It is called a character-
istic subalgebra of the RE algebra LG[R]. The characteristic subalgebra is invariant
with respect to the left FG[R] coadjoint coaction (3.2.2).

Proof. In a setting of the quasi-triangular Hopf algebras these statements were proved in
[D.89,R.89] (see there Sect. 3 and Sect. 4, respectively). Below we prove the proposition
in the RE algebra setting.

Consider an arbitrary element ch(x (k)) of the characteristic subalgebra. We first prove
the following version of the formula (3.2.14):

ch(x (k)) I1 = Tr
R
(2, . . . , k + 1)

(
X (k)↑1

R
L2 L3 . . . Lk+1

)

= Tr
R
(2, . . . , k + 1)

(
X (k)↑1

R
Lk+1 . . . L3 L2

)
. (3.2.15)

Here the first equality results from a calculation

Tr
R
(2, . . . , k + 1)

(
X (k)↑1

R
L2 . . . Lk+1

)

= Tr
R
(2, . . . , k + 1)

(
X (k)↑1

R
R1 · · · Rk L1 . . . Lk R−1

k · · · R−1
1

)

= Tr
R
(2, . . . , k + 1)

(
R1 · · · Rk (X (k)

R
L1 . . . Lk) R−1

k · · · R−1
1

)

= . . . = Tr
R
(1, . . . , k)

(
X (k)

R
L1 L2 . . . Lk

)
,

where in the last line we applied (2.2.10) k times. To prove the second equality in (3.2.15)
we first use the relation (3.2.12) and then perform similar transformations.
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With the use of (3.2.15) and (3.2.12) checking centrality of ch(x (k)) is straightfor-
ward:

L1 ch(x (k)) = Tr
R
(2, . . . , k + 1)

(
X (k)↑1

R
L1L2 L3 . . . Lk+1

)

= Tr
R
(2, . . . , k + 1)

(
X (k)↑1

R
Lk+1 . . . L2 L1

)
= ch(x (k)) L1 .

The invariance of ch(x (k)) under the left FG[R] coadjoint coaction follows immedi-
ately from (3.2.13) together with the relation (3.1.4) for the square of antipode. ��

Consider a series of elements of the RE algebra LG[R],
pi := Tr

R
(Li ) , i = 1, 2, . . . . (3.2.16)

Further on they are called power sums. The following calculation

L1 pi = Tr
R
(2)L1 R12Li

1 R−1
12 = Tr

R
(2) R−1

12 Li
1 R12L1 = pi L1 ,

proves centrality of the power sums. Here in the first and the last equalities we use for-
mula (2.2.10), and the second equality is a consequence of (3.2.1). Actually, the power
sums belong to the characteristic subalgebra Ch[R]:

pi = ch(σi−1 . . . σ2 σ1) ,

which is verified by a following transformation:

ch(σi−1 . . . σ2 σ1) = Tr
R
(1, . . . , i)

(
L1 . . . Li (Ri−1 . . . R1)

)

= Tr
R
(1, . . . , i)

(
L1 . . . Li−1 (Ri−1 . . . R1)L1(R−1

1 . . . R−1
i−1) (Ri−1 . . . R1)

)

= Tr
R
(1, . . . , i − 1)

(
L1 . . . Li−1

(
Tr

R
(i) Ri−1

)
(Ri−2 . . . R1)L1

)

= Tr
R
(1, . . . , i − 2)

(
L1 . . . Li−2

(
Tr

R
(i − 1) Ri−2

)
(Ri−3 . . . R1)L2

1

)

= . . . = Tr
R
(Li ) = pi .

Here we repeatedly expand the notation L j = (R j−1 . . . R1)L1(R−1
1 . . . R−1

j−1) for
j = i, . . . , 2, and use (2.2.8).

Let R be a skew invertible R-matrix of the Hecke type. Assuming that conditions
[k] (2.3.1) are fulfilled consider a series of elements ai ∈ Ch[R], i = 0, 1, . . . k, in the
corresponding Hecke type RE algebra LG[R],

a0 := 1 , ai := ch(a(i)) = Tr
R
(1, . . . , i)

(
A(i)L1 . . . Li

)
∀ 1 ≤ i ≤ k , (3.2.17)

where notations a(i), A(i) were explained in (2.3.2), (2.3.8). The elements ai are called
elementary symmetric functions.

Definition 3.10. Let R be a skew invertible GLq(n) type R-matrix. A central extension
of the corresponding RE algebra LG[R] by an element a−1

n : ana−1
n = 1 is called

GLq(n)type RE algebra and denoted as LGLq (n)[R]. A quotient of this algebra by a
relation

an = q−1 1 (3.2.18)

is called SLq(n) type RE algebra and denoted as LSLq (n)[R].
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Remark 3.11. An actual value of a numeric factor in the right-hand side of (3.2.18) is not
relevant for the definition. Our choice allows avoiding numeric factors later in formula
(4.1.1) (see the proof of Proposition 4.1).

Consider realization of the RE algebra LSLq (n)[R] as a subalgebra in the quasi-trian-
gular Hopf algebra AR (see Example 3.8). In this case the condition (3.2.18) is consistent
with the pairing 〈·, ·〉 of the dual Hopf algebras AR and A∗

R only for the chosen normal-
izations (3.2.5) for L and η = q1/n for R (2.2.11). This point is explained in Appendix
A, see (A.3).

Remark 3.12. The GLq(n) type R-matrix R and its SLq(n) partner R-matrix R̃ (3.1.8)
define identical RE algebras.

In the theorem below we describe Cayley-Hamilton and Newton identities specific
to the GLq(n) type and Hecke type RE algebras.

Theorem 3.13. Let R be a skew invertible R-matrix of the Hecke type. Assume that the
conditions [k] (2.3.1) are fulfilled. Then in the corresponding RE algebra LG[R] the
following Cayley-Hamilton-Newton identities [IOP.98,IOP.99]

iq Tr
R
(2, . . . , i)(A(i)L2L3 . . . Li )=(−1)i+1

i−1∑

j=0

(−q) j a j Li− j−1
1 ∀ 2≤ i ≤ k (3.2.19)

take place. Multiplying by L1 from the left and taking the R-trace Tr
R
(1) of these iden-

tities one obtains Newton relations for the sets of power sums {pi }i≥1 and the set of
elementary symmetric functions {ai }i≥0 [GPS.97],

iq ai + (−1)i
i−1∑

j=0

(−q) j a j pi− j = 0 ∀ 1 ≤ i ≤ k . (3.2.20)

Both sets {1, p j } j≥1 and {a j } j≥0 in this case generate the characteristic subalgebra
Ch[R].

Assume additionally that R is an R-matrix of the GLq(n) type. Then the finite set
{ai }n

i=0 generates the characteristic subalgebra of the RE algebra LGLq (n)[R], and fol-
lowing Cayley-Hamilton identity is fulfilled [GPS.97]:

n∑

i=0

(−q)i ai Ln−i = 0 . (3.2.21)

This identity leads, in particular, to an invertibility of the matrix L:

L−1 = q−1 a−1
n

n−1∑

i=0

(−q)−i an−i−1 Li .

Remark 3.14. One can introduce generating functions a(x), p(x) for the elementary
symmetric functions and for the power sums

a(x) :=
∑

i≥0

ai xi , p(x) :=
∑

i≥1

pi xi .
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The Newton relations (3.2.20) can be written as a finite difference equation for the
generating functions

a(qx) p(−x) = a(q−1x) − a(qx)

q − q−1 .

For the GLq(n) type RE algebra we now construct its central extension by roots of
the characteristic polynomial (3.2.21).

Definition 3.15. Denote Sn a C-algebra of polynomials in n pairwise commuting invert-
ible indeterminates µ±1

α and their differences (µα − µβ)±1, α, β = 1, . . . , n, α �= β.
Let R be a skew invertible R-matrix of the GLq(n) type, LGLq (n)[R] be the corre-

sponding RE algebra, and Ch[R] be its characteristic subalgebra. Consider a mono-
morphism Ch[R] ↪→ Sn defined on generators as 5

ai 	→ ei (µ1, . . . , µn) :=
∑

1≤ j1<···< ji ≤n

µ j1µ j2 . . . µ ji ∀ i =0, 1, . . . , n , (3.2.22)

where ei are the elementary symmetric functions of their arguments. The map (3.2.22)
defines naturally a structure of, say, left Ch[R]-module on Sn. A central extension of
the algebra LGLq (n)[R],

LGLq (n)[R] := LGLq (n)[R] ⊗

ChR

Sn :
aα = eα(µ1, . . . , µn) , Li

j µα = µα Li
j ∀ i, j = 1, . . . , dim V, ∀α = 1, . . . , n ,

(3.2.23)

is called a (semisimple) spectral completion of LGLq (n)[R]. A quotient of this algebra
by relations

an =
n∏

α=1

µα = q−1 .

is called a (semisimple) spectral completion of LSLq (n)[R] and denoted as LSLq (n)[R].
Variables µα are called spectral variables.

Remark 3.16. Assuming that the spectral variables µα are invariants of the coadjoint
coaction, the algebra LGLq (n)[R] (LSLq (n)[R]) inherits the structure of left coadjoint
FGLq (n)[R]- (FSLq (n)[R]-) comodule algebra.

Corollary 3.17. In the spectrally completed algebra LGLq (n)[R] the characteristic iden-
tity (3.2.21) assumes a factorized form

n∏

α=1

(L − qµα I ) = 0 . (3.2.24)

5 When defining the map (3.2.22) we implicitly assume an algebraic independence of the elements ai ,
i = 1, . . . , n. Otherwise, we should impose the same algebraic conditions on functions ei (µ1, . . . , µn).
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One can construct a resolution of the matrix unity

Pα :=
n∏

β=1
β �=α

(
L − qµβ I

)

q(µα − µβ)
: Pα Pβ = δαβ Pα ,

n∑

α=1

Pα = I , (3.2.25)

so that

L Pα = Pα L = qµα Pα . (3.2.26)

Remark 3.18. In papers [GS.99,DM.01,DM.02,GS.04] the factorized form of the Cay-
ley-Hamilton identity and the projectors Pα were used to construct explicitly quantized
semisimple coadjoint orbits of GL(n) and line bundles over them.

3.3. Quantized differential operators over matrix group (Heisenberg double).

Definition 3.19 [AF.91,S]. Let R, T and L be as described in Definitions 3.1 and 3.7.
A Heisenberg double (HD) algebra DG[R, γ ] of the two algebras FG[R] and LG[R]
is an associative unital algebra generated by the components of the matrices T and L
subject additionally to a permutation relation

γ 2 T1L2 = R12L1 R12T1 , where γ ∈ {C\0} . (3.3.1)

The HD algebra carries structures of left and right FG[R]-comodule algebra, respec-
tively,

δ�(T
i
j ) =

∑

k

T i
k ⊗ T k

j , δ�(Li
j ) =

∑

k,m

T i
k (T −1)m

j ⊗ Lk
m ; (3.3.2)

δr (T
i
j ) =

∑

k

T i
k ⊗ T k

j , δr (Li
j ) = Li

j ⊗ 1 . (3.3.3)

Example 3.20. The Heisenberg double is closely related to a smash product of two mutu-
ally dual Hopf algebras (see, e.g., [M]). Namely, given a pair AR and A∗

R their smash
product algebra AR�A∗

R is a linear space AR ⊗ A∗
R supplied with a multiplication

(x � u)(y � v) := 〈u(1), y(2)〉 (xy(1) � u(2)v) , (3.3.4)

where x, y ∈ AR, u, v ∈ A∗
R, and symbols (x � u), (y � v) denote elements of AR�A∗

R.
Let us calculate in the settings of Examples 3.2, 3.8 the smash product of the elements

(T i
j �1) = T i

j and (1 � L (±)i
j ) = L (±)i

j ,

T1 L (+)

2 = L (+)

2 〈T1, L (+)

2 〉 T1 = η−1 L (+)

2 P12 R12 T1 ,

T1 L (−)

2 = L (−)

2 〈T1, L (−)

2 〉 T1 = η L (−)

2 P12 R−1
12 T1 ,

wherefrom it follows that the smash product of T1 and L2 ∝ (L (−)−1L (+))2 is given by
(3.3.1) with γ = η. However, we stress that in general one can keep γ independent
of the normalization η of the R-matrix at the price of losing universality of formulas.
Indeed, the multiplication in the smash product algebra is given by (3.3.4) universally
for any pair of its elements, while the relation (3.3.1) in the HD algebra is written for
the generators L and T only.
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Now we consider a geometric interpretation of the HD algebra. Applying the sub-
stitution Li

j → �i
j (3.2.6) and taking the “classical” limit q → 1 in relation (3.3.1) we

find

[T1, �2] = (
P12 − γ ′ I12

)
T1 , (3.3.5)

where we used the Hecke condition (2.3.6) in a form R2 = I + (q − q−1)R and

assumed additionally R
q→1−→ P (which is true for the Drinfeld-Jimbo R-matrix (2.4.6))

and γ ≡ γ (q) = 1 + (q − q−1)
γ ′
2 + o(q − q−1). The commutation relations (3.3.5),

(3.2.8) are realized by operators

�i
j =

n∑

k=1

gi
k

∂

∂g j
k

, T i
j = |g|−γ ′

gi
j , where gi

j := ρV (g)i
j , g ∈ GL(n) ,

|g| := det ‖gi
j‖ .

These are, respectively, right invariant vector fields and properly normalized coordinate
functions on GL(n). Together they generate an algebra of differential operators over
GL(n)6.

Extrapolating the classical picture we can treat DG[R, γ ] as an algebra of quantized
differential operators over the matrix group or, equivalently, as quantized functions over
the cotangent bundle of a matrix group (see [AF.91,AF.92,SWZ.92,IP]). The form of
the substitution (3.2.6) suggests that the quantized vector fields Li

j possess properties
of finite difference operators rather than of the differential operators. In particular, they
do not satisfy the classical Leibniz rule when acting on functions (see (3.3.1)).

The next proposition describes an action of the characteristic subalgebra on quantized
functions in the Hecke case.

Proposition 3.21. Let R be a skew invertible Hecke type R-matrix. Assume that the con-
ditions [k] (2.3.1) are satisfied, so that the elementary symmetric functions
ai ∈ Ch[R] ⊂ DG[R, γ ], 0 ≤ i ≤ k, (3.2.17) are well defined. Then relations

γ 2i T ai = ai T − (q2 − 1)

i∑

j=1

(−q)− j ai− j (L j T ) ∀ 0 ≤ i ≤ k (3.3.6)

are fulfilled for the Hecke type HD algebra DG[R, γ ].
Proof. For any operator Y ∈ EndW (V ⊗i ), where W is an arbitrary C-linear space, we
denote

Y ↑1 := (P1 P2 . . . Pi )Y (P1 P2 . . . Pi )
−1 . (3.3.7)

For any R-matrix R we define series of operators Ji , Zi ,

J1 := I , Ji+1 := Ri Ji Ri ∀ i ≥ 1 , Zi :=
i∏

j=1

J j . (3.3.8)

6 Imposing conditions γ ′ = 1/n, det T = 1, Tr � = 0 one can make a reduction to a subalgebra of
differential operators over SL(n).
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Remark 3.22. Elements J j , 1 ≤ j ≤ i , are R-matrix realizations of a remarkable set of
Jucys-Murphy elements in the braid group Bi :

j1 := 1 , j j+1 := σ j j j σ j ∀ j = 1, . . . , i − 1 .

These elements generate a commutative subgroup in Bi and their product zi := ∏i
j=1 j j

is a central element in Bi . For their applications and for historical references see, e.g.,
[OP.01].

With these notations permutation relations (3.2.1), (3.3.1) can be suitably written for
arbitrary R-copies of the matrix L:

(Li Ji )(L j J j ) = (L j J j )(Li Ji ), (3.3.9)

γ 2 T1(Li Ji )
↑1 = (Li+1 Ji+1) T1 = Ri (Li Ji ) Ri T1 ∀ i, j ≥ 1 . (3.3.10)

Here the second equality follows from the recursive definitions of Li+1 and Ji+1, while
the first equality can be easily proved by induction on i .

Next, we prepare a suitable expression for ai (3.2.17):

ai = Tr
R
(1, . . . , i)

(
L1 . . . Li A(i)

)
= qi(i−1) Tr

R
(1, . . . , i)

(
L1 . . . Li Zi A(i)

)

= qi(i−1) Tr
R
(1, . . . , i)

(
(L1 J1) . . . (Li Ji ) A(i)

)
. (3.3.11)

Here we substituted Zi A(i) = q−i(i−1) A(i) in the first line and used a commutativity
relation

Li J j = J j Li ∀ i, j : i > j (3.3.12)

in the second line. By relabelling the subscript indices of the R-traces we then recast
(3.3.11) in a following form7

I1 ai = qi(i−1) Tr
R
(2, . . . , i + 1)

(
(L1 J1) . . . (Li Ji ) A(i)

)↑1
. (3.3.13)

Now we are ready to permute T1 and ai . Substituting expression (3.3.13) for ai and
using relations (3.3.10) and (3.3.12) we calculate

γ 2i T1 ai = γ 2i T1 (I1 ai ) = qi(i−1)γ 2i Tr
R
(2, . . . , i + 1)T1

(
(L1 J1) . . . (Li Ji ) A(i)

)↑1

= qi(i−1)Tr
R
(2, . . . , i + 1)

(
(L2 J2) . . . (Li+1 Ji+1) A(i)↑1

)
T1

= qi(i−1)Tr
R
(2, . . . , i + 1)

(
(L2 . . . Li+1) Zi+1 A(i)↑1

)
T1 .

To continue the calculation we need the following formula:

Zi+1 A(i)↑1 = A(i)↑1 Zi+1 A(i)↑1 = q−i(i−1)
(

q2 A(i)↑1 − q−i (q2 − 1)(i + 1)q A(i+1)
)

,

7 Notice a similarity of the formula (3.3.13) with the relation (2.2.10). The role of the R-matrices R±ε is
now played by the permutation matrix P (see (3.3.7)).
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which follows by a combination of the definitions (2.3.3), (2.3.8), (3.3.8), and relations
(2.3.4), (2.3.5), (2.3.6). So we finish the calculation

γ 2i T1 ai = Tr
R
(2, . . . , i + 1)

[
(L2 . . . Li+1)

(
q2 A(i)↑1 − q−i (q2 − 1)(i + 1)q A(i+1)

)]
T1

= q2ai T1 + (−q)−i (q2 − 1)

i∑

j=0

(−q)− j a j

(
Li− j T

)

1

= ai T1 − (q2 − 1)

i∑

j=1

(−q)− j ai− j (L j T )1 . (3.3.14)

Here we calculate the first summand in the second line taking into account the equality

(L2 . . . Li+1) A(i)↑1 = (R1 . . . Ri )(L1 . . . Li ) A(i)(R1 . . . Ri )
−1,

and using i times formula (2.2.10). For calculation of the second summand we use the
Cayley-Hamilton-Newton identity (3.2.19). Thus (3.3.6) is proved. ��
Remark 3.23. For the set of power sums (3.2.16) the permutation relations with T i

j in
the Hecke case read

γ 2i T pi = pi T + (q − q−1)2
i−1∑

j=1

(2 j)q

2q
pi− j (L j T ) + (q − q−1)

(2i)q

2q
(Li T ) .

One can derive this formula applying the R-trace Tr
R
(2) to an equality γ 2i T1(L2)

i =
(RL1 R)i T1 and taking into account relations

(RL1 R)i = R(L1)
i R + (q − q−1)

i−1∑

j=1

R2 j (L1)
i− j R(L1)

j ,

R2 j = 2−1
q

(
(q2 j−1 + q−2 j+1)I + (q2 j − q−2 j ) R

)
.

These relations, in turn, follow inductively from the Hecke condition (2.3.6) and the
reflection equation (3.2.1). Note that in this case there is no need to impose restrictions
(2.3.1) on q.

Proposition 3.24. Let R be a skew invertible GLq(n) type R-matrix. An extension of the
corresponding HD algebra DG[R, γ ] by the elements (det

R
T )−1 and (an)−1, satisfying

relations

γ 2n L (det
R

T )−1 = q2(det
R

T )−1 (O
R
L O

R

−1) , (3.3.15)

γ 2n (an)−1 T = q2T (an)−1 , (3.3.16)

in addition to those given in Definitions 3.4 and 3.10, is called GLq(n) type HD algebra
and denoted as DGLq (n)[R, γ ].

Let R be a skew invertible SLq(n) type R-matrix. In the corresponding HD algebra
DG[R, γ ] let us restrict the parameters by condition γ n = q and take a quotient by
relations det

R
T = 1 and an = q−11. The quotient algebra is called SLq(n) type HD

algebra and denoted as DSLq (n)[R].
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Remark 3.25. Notice consistency of the SLq(n) reduction condition γ n = q with the
parameter restrictions η = q1/n in Example 2.10 and γ = η in Example 3.20.

Proof. Relations (3.3.15) and (3.3.16) should be consistent with permutation relations
for det

R
T and an in the algebra DG[R, γ ]. Permutation relations for an with T were in

fact derived in the first line of the calculation (3.3.14) (put i = n and take into account
that A(n+1) = 0 in the GLq(n) case). The permutation relation for det

R
T with L can be

derived by the same method as for det
R

T with T (see [G], Sect. 5, or [Is.04], calculation
(3.5.39)). Given these results the consistency is obvious.

In the SLq(n) case (O
R
∝ I , γ n = q) the elements det

R
T and an are central. Hence,

DSLq (n)[R] is consistently defined. ��
Corollary 3.26. In the GLq(n) type HD algebra elements of the characteristic subal-
gebra satisfy the following commutation relations with det

R
T :

γ 2nk det
R

T ch(x (k)) = q2k ch(x (k)) det
R

T ∀ x (k) ∈ Hk(q), k = 1, 2, . . . .

Proof. A proof is a direct calculation of permutation of ch(x (k)) (3.2.14) and det
R

T
exploiting relations (3.3.15) and properties of the matrix O

R
(3.1.7),

R12 O
R1 O

R2 = O
R1 O

R2 R12 , O
R

D
R

= D
R

O
R
.

The latter relations are proved in [OP.05], Sect. 5.3. ��
Theorem 3.27. Let R be a skew invertible GLq(n) (SLq(n)) type R-matrix. An exten-
sion of the corresponding HD algebra DGLq (n)[R, γ ] (DSLq (n)[R]) by the algebra Sn
of polynomials in mutually commuting indeterminates µ±1

α , (µα − µβ)±1 satisfying
relations (3.2.23) together with

γ 2 (Pβ T ) µα = q2δαβ µα (Pβ T ) ∀α, β = 1, . . . , n , (3.3.17)

or, equivalently,

γ 2 T µα = µα T + (q2 − 1)µα (PαT ) ,

is called a (semisimple) spectral completion of the GLq(n) (SLq(n)) type HD algebra
and denoted as DGLq (n)[R, γ ] (DSLq (n)[R]).
Remark 3.28. To avoid problems with permutations of (µα−µβ)−1 with Pσ T one could
assume invertibility of all elements (µα − q2kµβ) ∀α �= β, k ∈ Z. Further on we will
not make such permutations and so we don’t impose the corresponding restrictions.

Remark 3.29. Assuming that the spectral variables µα are invariants of both left and
right coactions, the algebra LGLq (n)[R, γ ] (LSLq (n)[R]) inherits the structures of left
and right FGLq (n)[R]- (FSLq (n)[R]-) comodule algebra (see Definition 3.19).

Remark 3.30. Note that relation (3.3.17) is typical for Weyl algebra generators. In fact
there are many ways to combine from the elements (Pβ T )i j a set of n generators satis-
fying Weyl relations with the spectral variables µα . One such possibility is used later in
Sect. 4.4.
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Proof. We have to check consistency of relations (3.3.17), (3.3.6) with the conditions
ai = ei (µ1, . . . , µn) ≡ ei (µ) for 1 ≤ i ≤ n. Denote ei (µ

/α) := ei (µ)|µα=0 . We have

ei (µ) = ei (µ
/α) + µα ei−1(µ

/α) ⇒ ei (µ
/α)=

i∑

j=0

(−µα) j ei− j (µ) . (3.3.18)

Using relations (3.3.17), (3.3.18), (3.2.25) and (3.2.26) we calculate

γ 2i T ei (µ) = γ 2i
n∑

α=1

(PαT )
(
ei (µ

/α) + µα ei−1(µ
/α)

)

=
n∑

α=1

(
ei (µ

/α) + q2µα ei−1(µ
/α)

)
(PαT )

=
n∑

α=1

⎛

⎝ei (µ) + (q2 − 1) µα

i−1∑

j=0

(−µα) j ei− j−1(µ)

⎞

⎠ (PαT )

=
⎛

⎝ei (µ) − (q2 − 1)

i∑

j=1

(−L/q) j ei− j (µ)

⎞

⎠
n∑

α=1

(PαT )

= ei (µ) T − (q2 − 1)

i∑

j=1

(−q)− j ei− j (µ) (L j T ) ,

which coincides with (3.3.6) under identification ei (µ) = ai . ��
Corollary 3.31. In the completed GLq(n) type HD algebra DGLq (n)[R, γ ] the following
permutation relations hold:

γ 2n det
R

T µα = q2 µα det
R

T ∀ α = 1, 2, . . . , n . (3.3.19)

Proof. Using formulas (3.1.6), (3.2.25), (3.3.17) we can permute det
R

T and µα:

γ 2ndet
R

T µα = γ 2n
n∑

β1,...,βn=1

Tr(1, . . . , n)

(
A(n)(Pβ1 T )1 . . . (Pβn T )n

)
µα

= µα

n∑

β1,...,βn=1

q2
∑n

j=1 δαβ j Tr(1, . . . , n)

(
A(n)(Pβ1 T )1 . . . (Pβn T )n

)
. (3.3.20)

Assuming that

Tr(1, . . . , n)

(
A(n)(Pβ1 T )1 . . . (Pβn T )n

)
= 0 , if there exists a pair i, j : βi = β j ,

(3.3.21)

we conclude that for any nonzero summand in (3.3.20) the coefficient q2
∑n

j=1 δαβ j equals
q2, and therefore we can complete the calculation

γ 2n det
R

T µα =q2µα

n∑

β1,...,βn=1

Tr(1, . . . , n)

(
A(n)(Pβ1 T )1 . . . (Pβn T )n

)
=q2 µα det

R
T .
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It remains to prove the assumption. First, we note that conditions on βi in (3.3.21)
stand that there exists an integer σ : 1 ≤ σ ≤ n, and σ �= βi ∀ i . Therefore, any projector
Pβi in (3.3.21) contains the factor (L − qµσ I ). Using relations (3.3.10), (3.3.17) we
can move all such factors to the left side of the expression. Thus we obtain

left hand side of (3.3.21) ∝ Tr(1, . . . , n)

(
A(n)

{∏n
j=1

(
L j J j −qµσ I )

}
. . .

)
.

(3.3.22)

Next, we note that the expression in braces is a symmetric function in a commuting set
of matrices L j J j (see (3.3.9)) which by relations

Ri (Li Ji )(Li+1 Ji+1) = (Li Ji )(Li+1 Ji+1)Ri , Ri (Li Ji + Li+1 Ji+1)

= (Li Ji + Li+1 Ji+1)Ri ,

and by (3.2.11) together with the same formulas for Jk commutes with Ri , i = 1, . . . ,

n − 1, and so with A(n). Hence, using relations A(n) = (A(n))2 and rkA(n) = 1 we

can separate a left factor κ := Tr(1, . . . , n)

(
A(n)

∏n
j=1

(
L j J j − qµσ I )

)
in (3.3.22). This

factor we now calculate explicitly.
Taking into account relations (2.4.5), (3.3.9), (3.3.12) and A(n) Ji = q−2(i−1) A(n) we

transform the expression for κ:

κ = qn Tr
R
(1, . . . , n)

(
A(n)∏n

j=1

(
L j − q2 j−1µσ I )

)
. (3.3.23)

Expanding this expression in powers of L and noticing that (2.4.4) assumes

Tr
R
(k + 1, . . . , n) A(n) = qn(k−n) (k)q !(n−k)q !

(n)q ! := qn(k−n)
(n

k

)−1 we find that kth order mono-
mials

Tr
R
(1, . . . , n)

(
A(n)Li1

. . . Lik

)
= Tr

R
(1, . . . , n)

(
A(n)L1 . . . Lk

)
= qn(k−n)

(n
k

)−1
q ak

are equal to each other for any choice of indices 1 ≤ i1 < . . . ik ≤ n. Their corresponding
coefficients in (3.3.23) sum up to

(−q−1µσ )n−k
∑

1≤i1<...in−k≤n

q2
∑n−k

r=1 ir = qn(n−k)
(n

k

)
q(−µσ )n−k ,

and so we obtain

κ = qn
n∑

k=0

ak(−µσ )n−k = qn
n∏

α=1

(µα − µσ ) = 0 ,

where we took (3.2.23) into account. ��
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3.4. Quantized left invariant vector fields. In a classical differential geometry of the Lie
groups one uses two global bases on tangent bundles – the bases of right and left invari-
ant vector fields. In previous sections we discussed quantization of the right invariant
vector fields only and defined the HD algebra DG[R, γ ] in their terms. To demonstrate
a left-right symmetry of the whole construction we now describe the HD algebra using
a set of left invariant generators. We also find explicit relations between the spectra of
left and right invariant vector fields in both the GLq(n) and the SLq(n) cases.

In the assumptions of Definition 3.19 consider a matrix M whose components belong
to DG[R, γ ]:

Mi
j :=

∑

k,m

(T −1)i
k Lk

m T m
j . (3.4.1)

Taking into account transformation properties of the matrix elements Mi
j with respect

to the left and right FG[R]-coactions (3.3.2) and (3.3.3),

δ�(Mi
j ) = 1 ⊗ Mi

j , δr (Mi
j ) =

∑

k,m

(T −1)i
k T m

j ⊗ Mk
m , (3.4.2)

we shall call them a basis of quantized left invariant vector fields over the matrix group.
One can give the presentation of the HD algebra DG[R, γ ] in terms of generators T i

j

and Mi
j , and relations

∗
R12 T2 T1 = T2 T1

∗
R12 ,

∗
R12 M1

∗
R12 M1 = M1

∗
R12 M1

∗
R12 , (3.4.3)

γ −2 M2 T1 = T1
∗
R12 M1

∗
R12 , (3.4.4)

where we denote

∗
R12 := (P R−1 P)12 = (R21)

−1 . (3.4.5)

Necessary technical data about
∗
R are collected in Lemma B.1 in Appendix B.

By (3.4.3), the entries of matrix M generate yet another RE subalgebra LG[ ∗
R] in the

HD algebra DG[R, γ ]. By (3.4.2), the subalgebra LG[ ∗
R] is a right coadjoint FG[R]-

comodule algebra. We also notice a nontrivial but quite expected property of the quan-
tized left and right invariant vector fields — their mutual commutativity,

M1 L2 = L2 M1 .

In the rest of this section we investigate the characteristic subalgebra Ch[ ∗
R] ⊂

LG[ ∗
R]. In particular, we shall see that Ch[ ∗

R] = Ch[R] for the DG[R, γ ]-subalgebras

LG[ ∗
R] and LG[R].

It is suitable to introduce
∗
R-copies of the matrix M (cf. with (3.2.9))

M∗
1

:= M1 , M ∗
k+1

:= ∗
Rk M∗

k

(
∗
Rk)

−1 , (3.4.6)
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and
∗
R-matrix realizations of the Jucys-Murphy elements (cf. with (3.3.8) and remark 3.22)

∗
J 1 := I ,

∗
J k+1 := ∗

Rk
∗
J k

∗
Rk ∀ k ≥ 1 . (3.4.7)

In their terms the relations (3.4.3), (3.4.4) can be written as (cf. with (3.2.10), (3.3.10))
∗
R M∗

k

M ∗
k+1

= M∗
k

M ∗
k+1

∗
R ,

γ −2

(

M∗
k

∗
J k

)↑1

T1 = T1

(

M ∗
k+1

∗
J k+1

)

. (3.4.8)

We now assume that the R-matrix
∗
R is skew invertible8 and introduce two generating

sets in the characteristic subalgebra Ch[ ∗
R] ⊂ LG[ ∗

R]: the power sums
∗
pk ,

∗
pk := Tr∗

R
(Mk) , k = 1, 2, . . . ,

and, assuming additionally that conditions [k] (2.3.1) are fulfilled, the elementary sym-

metric functions
∗
ai ,

∗
a0 := 1 ,

∗
ai := Tr∗

R (1, . . . , i)

(
∗
A(i) M∗

1

M∗
2

. . . M∗
i

)

∀ 1 ≤ i ≤ k . (3.4.9)

Proposition 3.32. Let R be a skew invertible Hecke type R-matrix and D
R

be invert-
ible. Assume that conditions [k] (2.3.1) are satisfied. Then for two sets of elements in

Ch[R] ⊂ DG[R, γ ] — ai (3.2.17) and
∗
ai (3.4.9) — the following relations are satisfied

∗
ai = γ 2i ai ∀ 0 ≤ i ≤ k .

Proof. We transform the expression (3.4.9) for
∗
ai in the following way:

∗
ai = Tr∗

R (1, . . . , i)

(

M∗
1

. . . M∗
i

∗
A(i)

)

= q−i(i−1) Tr∗
R (1, . . . , i)

(

(M∗
1

∗
J 1) . . . (M∗

i

∗
J i )

∗
A(i)

)

.

Here we used formulas
∗
J k

∗
A(i)= q2(k−1) ∗

A(i) ∀ 1 ≤ k ≤ i , and M∗
i

∗
J k = ∗

J k M∗
i

∀ 1 ≤ k < i , (3.4.10)

which, in turn, follow from (B.3), (3.4.6), (3.4.7).
Then we apply Lemma B.2 from Appendix B and use the relations (B.6) to move

∗
A(i) leftwards

∗
ai =q−i(i−1) γ i(i+1) Tr∗

R (1, . . . , i)Tr
R
(i + 1, . . . , 2i)

(

ϒ
(i)
P ϒ

(2i)
P (LT )i . . . (LT )1ϒ

(2i)
∗
R

∗
A(i)↑i ×

× (Ti . . . T1)
−1ϒ

(2i)
P ϒ

(i)
P

)
.

Here matrices ϒ
(∗)∗ are defined in (B.4).

8 This is indeed the case if R is skew invertible and D
R

is invertible (see Lemma B.1 in Appendix B).
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Next, we permute
∗
A(i)↑i with ϒ

(2i)
∗
R

and cancel terms ϒ
(i)
P ϒ

(2i)
P on the left and

ϒ
(2i)
P ϒ

(i)
P on the right. The latter cancellation exchange the R-traces Tr

R
and Tr∗

R
:

∗
ai = q−i(i−1) γ i(i+1) Tr

R
(1, . . . , i)Tr∗

R (i + 1, . . . , 2i)
(

(LT )i . . . (LT )1
∗
A(i) ϒ

(2i)
∗
R

(Ti . . . T1)
−1

)

.

In the resulting expression all the R-traces Tr∗
R (i + 1, . . . , 2i) can be evaluated with the help

of Lemma B.3. So, we continue

∗
ai = qi(i−1) γ i(i+1) Tr

R
(1, . . . , i)

(
(LT )i . . . (LT )1

∗
A(i) (Ti . . . T1)

−1
)

= qi(i−1) γ i(i+1) Tr
R
(1, . . . , i)

(
(LT )1 . . . (LT )i (T1 . . . Ti )

−1 A(i)
)

.

Here in the first line we used formula (B.14) and (3.4.10); in the second line we applied
formula (B.2) and then, moved the two terms ϒ

(i)
P , respectively, to the left and to the right

and cancelled them under the R-traces Tr
R
(1, . . . , i). Finally, using repeatedly permutation

relations (3.3.10) and then formula (3.3.11) we complete the transformation

∗
ai = qi(i−1) γ i(i+1) Tr

R
(1, . . . , i)

(

(LT )1 . . . (LT )i−1

(
(L1 J1)

↑1T −1
1

)↑(i−2)

(T1 . . . Ti−2)
−1 A(i)

)

· · · = qi(i−1) γ 2i Tr
R
(1, . . . , i)

(
(L1 J1) . . . (Li Ji )A(i)

)
= γ 2i ai .

��
Remark 3.33. For the sets of power sums pi and

∗
pi one can prove following recurrent

relations:

∗
pi = γ 2i pi − (q − q−1)

i−1∑

k=1

γ 2k pk
∗
pi−k .

Corollary 3.34. Let R be a skew invertible R-matrix of the GLq(n) type (in which case
D

R
is invertible, see Proposition 2.9). Then for the matrix M (3.4.1) generating the RE

algebra LGLq (n)[ ∗
R] ⊂ DGLq (n)[R, γ ] the following Cayley-Hamilton identity is valid:

n∑

i=0

(−1/q)i ∗
ai Mn−i =

n∑

i=0

(−γ 2/q)i ai Mn−i = 0 .

In the spectrally completed algebra LGLq (n)[ ∗
R] ⊂ DGLq (n)[R, γ ] this identity assumes

a completely factorized form

n∏

α=1

(

M − γ 2µα

q
I

)

= 0 . (3.4.11)
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With the factorized characteristic identity (3.4.11) one can construct yet another res-
olution of matrix unity (cf. with (3.2.25))

Sα :=
n∏

β=1
β �=α

(
M − γ 2q−1µβ I

)

γ 2q−1(µα − µβ)
: Sα Sβ = δαβ Sα ,

n∑

α=1

Sα = I , (3.4.12)

so that

M Sα = Sα M = γ 2q−1µα Sα .

The relation between the two sets of projectors Pα and Sα is explained in the following
proposition.

Proposition 3.35. In the spectrally completed algebra DGLq (n)[R, γ ] (DSLq (n)[R]) one
has

PαT Sβ = δαβ PαT or, equivalently, PαT = T Sα . (3.4.13)

Proof. Taking into account relations T M = LT , (3.2.26) and (3.3.17) one finds

PαT M = Pα LT = qµα(PαT ) = (PαT )γ 2q−1µα .

Hence, in view of (3.4.12),

PαT Sβ = PαT
∏

σ �=β

γ 2q−1(µα − µσ )

γ 2q−1(µβ − µσ )
.

In case α �= β the factor with σ = α in the product vanishes. In case α = β (and so,
σ �= α) all the terms in the product are equal to 1. So, the relation above reduces to the
first equality in (3.4.13). ��

3.5. Derivation of dynamical R-matrix. In [AF.91] A.Alekseev and L.Faddeev used the
dynamical R-matrix in their construction of the Heisenberg double algebra. Namely,
they observed an appearance of the classical dynamical r-matrix in the Poisson rela-
tions for certain classical variables and then, by postulating a quantum counterpart of
those relations, they derived defining formulas (as in Definition 3.19) for the algebra
DG[R, γ ].

In this section we aim to explain an origin of the dynamical R-matrix in the context
of the HD algebras. We show that the dynamical R-matrix – R(µ)αβ – appears in the
permutation relations for matrix components of the matrices

W α := PαT = T Sα , (3.5.1)

and the arguments of the dynamical R-matrix are just the spectral variables µα . In a
sense, we solve an inverse problem to that considered in [AF.91].

Recall the definition of two projectors associated with the Hecke type R-matrix (see
(2.3.6))

A(2) = q I − R1

q + q−1 , S(2) = q−1 I + R1

q + q−1 . (3.5.2)

These projectors, called the antisymmetrizer and the symmetrizer, serve for suitable
separation of the different eigenspaces of R.
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Theorem 3.36. In the completed HD algebra DGLq (n)[R, γ ] (DSLq (n)[R]) the matrices
W α (3.5.1) satisfy relations

S(2)
{

W α
1 W β

2 + W β
1 W α

2

}
A(2) = A(2)

{
W α

1 W β
2 + W β

1 W α
2

}
S(2) =0 ∀α, β, (3.5.3)

S(2)
{
(µβ −q2µα)W α

1 W β
2 +(µα − q2µβ)W β

1 W α
2

}
S(2) =0 ∀α �= β,

(3.5.4)

A(2)
{
(µα − q2µβ)W α

1 W β
2 + (µβ − q2µα)W β

1 W α
2

− (q4 − 1) µα ϕαβ W α
1 W α

2 − (q4 − 1) µβ ϕβα W β
1 W β

2

}
A(2) = 0 ∀α �= β,

(3.5.5)

where ϕαβ := ∏
σ �=α,β

µσ −q2µα

µσ −µβ
. Relations (3.5.3)–(3.5.4) and (3.3.17) (together with

the appropriate conditions on the spectral variables µα) define the algebra
DGLq (n)[R, γ ] (DSLq (n)[R]) in terms of generators W α , µα , α = 1, . . . , n.

Proof. Consider the product W α
1 W β

2 , where α �= β. With the help of (3.3.17) and (3.3.10)
we can reorder terms of the product in a following way:

W α
1 W β

2 = (L1 − qµβ)(L2 J2 − q3µα)

q2(µα − µβ)(µβ − q2µα)
W αβ

12 ,

W αβ
12 :=

∏

σ �=α,β

(L1 − qµσ )(L2 J2 − qµσ )

q2(µα − µσ )(µβ − µσ )
T1T2.

Here factor W αβ
12 commutes with the R-matrix R12, which follows by the same argu-

ments as in the proof of Corollary 3.31, see below (3.3.22). We now extract symmetric
and antisymmetric parts of the product using projectors (3.5.2),

S(2)W α
1 W β

2

= S(2)
L1L2 J2 + q4µαµβ I − q2(µβ+µα)

q+q−1 (L1 + L2 J2) + µβ−q2µα

q+q−1 (L1 − L2)

q2(µα − µβ)(µβ − q2µα)
W αβ

12 ,

(3.5.6)

A(2)W α
1 W β

2

= A(2)
L1L2 J2 + q4µαµβ I − µβ+q4µα

q+q−1 (L1 + L2 J2) + q2(µβ−q2µα)

q+q−1 (L1 − L2)

q2(µα − µβ)(µβ − q2µα)
W αβ

12 .

(3.5.7)

Here we separated linear in L terms with the opposite symmetry properties

R1(L1 + L2 J2) = (L1 + L2 J2)R1 , R1(L1 − L2) = −(L1 − L2)R−1
1 , (3.5.8)

which was done by the use of relation

q3µα L1 + qµβ L2 J2 = q(I + R−2
1 )

(q + q−1)2

{
(µβ R2

1 + q2µα I )(L1 + L2 J2)

+ (q2µα − µβ)(L1 − L2)
}

.
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The symmetry properties (3.5.8) imply, in particular, that the only term contributing
to expressions A(2)W α

1 W β
2 S(2) and S(2)W α

1 W β
2 A(2) is the one proportional to (L1 −

L2), while the terms (L1L2 J2), I and (L1 + L2 J2) contribute to S(2)W α
1 W β

2 S(2) and

A(2)W α
1 W β

2 A(2).
It is now straightforward to check that formulas (3.5.3) and (3.5.4) follow from rela-

tions (3.5.6), (3.5.7). To check formula (3.5.5) one needs also similar expression for the
product W α

1 W α
2 :

W α
1 W α

2 = L1L2 J2 + q2µ2
β I − qµβ(L1 + L2 J2)

q2ϕαβ(µα − µβ)(q2µα − µβ)
W αβ

12 ,

and an analogous formula for W β
1 W β

2 . Here the factor ϕαβ was defined in the proposition.
It remains to check that defining relations for the algebras DGLq (n)[R, γ ] and

DSLq (n)[R] can be derived from (3.5.3)–(3.5.5) and (3.3.17). It is convenient to check
relations for the matrices T and LT :

R1T1T2 = T1T2 R1, R1(LT )1(LT )2 = (LT )1(LT )2 R1,

γ 2T1(LT )2 = R1(LT )1T2 R1. (3.5.9)

For GLq(n) and SLq(n) types HD algebras, where T is invertible, these formulas imply
(3.2.1) and (3.3.1). Substituting expressions

T = ∑n
α=1W α, LT = q

∑n
α=1 µαW α,

one can easily prove that the first two relations (3.5.9) follow from (3.5.3) and (3.3.17).
Checking the last formula in (3.5.9) is also straightforward, although more lengthy. To
this end one has to use the whole set of relations for W ’s and to take into account the
identity

∑
α �=β ϕαβ = 1 . ��

Corollary 3.37. Relations (3.5.3)–(3.5.5) can be equivalently written as

S(2)

⎡

⎣W α
1 W β

2 R1 −
n∑

α′,β ′=1

RS(q;µ)
α β

α′β ′ W α′
1 W β ′

2

⎤

⎦ = 0 , (3.5.10)

A(2)

⎡

⎣W α
1 W β

2 R1 −
n∑

α′,β ′=1

R A(q;µ)
α β

α′β ′ W α′
1 W β ′

2

⎤

⎦ = 0 , (3.5.11)

where n2 × n2 matrix RS(q;µ) has the following nonzero components:

RS αα

αα = q, RS αβ

αβ = − (q − q−1)µβ

µα − µβ

, RS αβ

βα = q−1µα − qµβ

µα − µβ

∀α �= β,

and n2 × n2 matrix R A(q;µ) has nonzero components at the same places as RS with
values R A(q;µ) = RS(−q−1;µ), and the additional nonzero components

R A αα

βα = −R A αα

αβ = (q4 − 1) µα ϕαβ

q(µα − µβ)
∀α �= β.
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Both matrices RS/A(q;µ) ≡ RS/A(µ) satisfy the dynamical Yang-Baxter equation:

R (µ)12 R
(
∇1(µ)

)23
R (µ)12 = R

(
∇1(µ)

)23
R (µ)12 R

(
∇1(µ)

)23
. (3.5.12)

Here superscript labels denote endomorphism spaces for the spectral indices, e.g.,
R(µ)

α1α2
β1β2

≡ R(µ)12, and ∇1 is a diagonal finite shift operator,

∇1 = diag{∇α} n
α=1 : ∇α(µβ) := q2δαβ γ −2µβ . (3.5.13)

Proof. Apply the symmetrizer S(2) and the antisymmetrizer A(2) from the right to both
sides of the equalities (3.5.10), (3.5.11). The resulting projections are easy to compare
with (3.5.3)–(3.5.5).

To prove the dynamical Yang-Baxter equation for the matrices R A(q;µ) and RS(q;µ)

we consider, respectively, the following cubic terms:

A(3)W α
1 W β

2 W σ
3 and S(3)W α

1 W β
2 W σ

3 .

Here the 3-antisymmetrizer A(3) = ρ
R
(a(3)) is the R-matrix realization of the idempotent

a(3) (see (2.3.2), (2.3.3)), and the 3-symmetrizer S(3) is a similar projector which differs
from A(3) by substitution q ↔ −q−1 in the formulas (2.3.2), (2.3.3). Now applying
two equal operators R1 R2 R1 and R2 R1 R2 from the right side to these terms and using
relations (3.5.10), (3.5.11) and (3.3.17) one eventually proves (3.5.12) for R A/S(q;µ).

��
Remark 3.38. The dynamical R-matrix RS(q;µ) was constructed in [F.90,AF.91,Is.95].
A review on the dynamical Yang-Baxter equation and the dynamical R-matrices is given
in [ES]. It is surprising that in our approach the dynamical R-matrices R A/S(q;µ),
being the solutions of the nonlinear finite difference equation (3.5.12), are calculated by
solving a system of (at most three) linear equations.

In concluding of the section we comment how relations (3.5.10) can be reduced to
dynamical quadratic relations considered in [F.90,AF.91]. Recall that a (Hecke type)
quantum plane V[R] is an algebra generated by components of vector {xi }dim V

i=1 subject
to relations

x〈1|x〈2| A(2) = 0 ⇔ x〈1|x〈2| S(2) = x〈1|x〈2| . (3.5.14)

In the tensor product algebra V[R] ⊗ DGLq (n)[R, γ ] consider a rectangular matrix

�α
i := ∑dim V

j=1 x j ⊗ W α
j i , α = 1, . . . n , i = 1, . . . , dim V .

As a consequence of (3.5.10), (3.5.14) the matrix components of � fulfill relations

�
|1〉
〈1| �

|2〉
〈2| R12 = RS(q;µ)12 �

|1〉
〈1| �

|2〉
〈2| . (3.5.15)

Assume additionally that i) dim V = n, and ii) the quantum plane admits a one dimen-
sional representation χ : V[R] → C (note that both these conditions are satisfied for
the R-matrices from Example 2.10).

It is the square matrix χ(�) ∈ DGLq (n)[R, γ ] whose dynamical quadratic relations
(3.5.15) were introduced in [F.90,AF.91] and also investigated in [HIOPT,FHIOPT].
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4. Discrete Time Evolution on Quantum Group Cotangent Bundle

4.1. Automorphisms of the Heisenberg double algebra. In this section we investigate a
sequence of automorphisms on the HD algebra DG[R, γ ]. These automorphisms were
introduced by A. Alekseev and L. Faddeev [AF.91,AF.92], who interpreted them as a dis-
crete time evolution of a q-deformed quantum isotropic Euler top. The automorphisms
θk : DG[R, γ ] → DG[R, γ ] are given on generators

{T, L} θk−→ {T (k), L(k)} , ∀ k = 0, 1, 2, . . . ,

T (0) := T , T (k + 1) := LT (k) = Lk+1 T , L(k) := L . (4.1.1)

It is easy to see (cf. (3.5.9)) that the map θ agrees with the defining relations (3.1.1),
(3.2.1), (3.3.1) of the algebra DG[R, γ ]. Less obvious is its consistency with the SLq(n)

type reduction conditions.

Proposition 4.1. The map θ (4.1.1) defines an automorphism of the algebra DSLq (n)[R].
Proof. It is necessary to check that det

R
(LT ) = 1 in the SLq(n) case. To this end, we

use formula

(LT )1(LT )2 . . . (LT )k = γ −k(k−1)Zk
(
L1L2 . . . Lk

)
(T1T2 . . . Tk)

to separate matrices L and T in the expression for det
R
(LT ). This formula follows from

(3.3.1), (3.2.10), (3.2.11) and (3.3.8) by induction on k.
The calculation of det

R
(LT ) proceeds as follows:

detR LT := Tr(1, . . . , n)

(
A(n)(LT )1 . . . (LT )n

)

= γ n(n−1)Tr(1, . . . , n)

(
A(n)Z (n)L1 . . . LnT1 . . . Tn

)

= (γ q)−n(n−1) Tr(1, . . . , n)

(
A(n)L1 . . . Ln

)
Tr(1, . . . , n)

(
A(n)T1 . . . Tn

)

= qnγ −n(n−1) Tr
R
(1, . . . , n)

(
A(n)L1 . . . Ln

)
det

R
T

= (
qγ −n)n−1

q an det
R

T , (4.1.2)

and so, under conditions det
R

T = 1, an = q−11, γ n = q we have det
R
(LT ) = 1.

Here in the second line we substituted A(n)Zn = q−n(n−1) A(n) and used the condition
rk A(n) = 1; in the last line we applied (2.4.5) and the definitions of det

R
T and an . ��

In what follows we will investigate the automorphisms (4.1.1) for HD algebras of the
types DGLq (n)[R, γ ] and DSLq (n)[R]. A key point for their dynamical interpretation is
the possibility to write down the following ansatz:

T (k + 1) = L T (k) = (qan)1/n � T (k)�−1 , where � ∈ Ch[R] . (4.1.3)

Here the dynamical process – evolution – is thought of as an inner HD algebra automor-
phism, and � plays a role of the evolution operator. As the evolution keeps L unchanged,
it is natural to assume that � belongs to the center of the RE algebra generated by the
matrix L . More specifically, we will look for � as a formal power series in spectral
variables µα , α = 1, . . . , n, which we denote as Ch[R]. We also note that the condition
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� ∈ Ch[R] makes the ansatz manifestly covariant with respect to both left and right
coactions (3.3.2), (3.3.3).

Factor (qan)1/n in the ansatz (4.1.3) becomes trivial for the SLq(n) type HD alge-
bra. In the GLq(n) case one adds this scaling factor to make the ansatz consistent with
the evolution of det

R
T , see (4.1.2). One assumes the following relation for the newly

introduced element a1/n
n (cf. with (3.3.16)):

T a1/n
n = (

qγ −n)2/n
a1/n

n T . (4.1.4)

Then, consistency of (4.1.3) and (4.1.2) results in commutativity of det
R

T with �:

det
R

T � = � det
R

T , (4.1.5)

which again trivializes in the SLq(n) case.

Remark 4.2. The action of the automorphisms θk on T can be equally treated as multi-
plications by powers of the left invariant matrix M :

T (k + 1) = T (k) M = T Mk , M(k) = M .

The relation (3.4.1) between L and M would no more be valid if one would treat them as
quantized right and left invariant Lie derivatives acting on the quantized external algebra
of differential forms over the matrix group. In this case one would have a two-parametric
series of automorphisms:

{T, L , M} θ(k,m)−→ {Lk T Mm, L , M} , ∀ k ≥ 0, m ≥ 0 .

Example 4.3. Let us show that in the ribbon Hopf algebra setting the ribbon element
υ ∈ AR generates the evolution (4.1.3) in the smash product algebra AR� A∗

R . For
this we first have to specify pairing for the ribbon element. Using Definition (2.1.6) and
relations (2.2.12), (2.4.3) and setting η = q1/n as in Example 2.10 we calculate

〈T, υ2〉 = 〈T, uS(u)〉 = ρV (u) ρV (S(u)) = η2 D
R

C
R

= q2( 1
n −n) I .

Therefore, taking into account centrality of the ribbon element υ in AR, it is natural to
define

〈T, υ〉 = q( 1
n −n) I .

Using this formula and relations (2.1.6), (3.2.5), (3.3.4) we now calculate conjugation
of the matrix T with the ribbon element

υ T υ−1 = (υ ⊗ id) 〈id ⊗ T, �(υ−1)〉 T=(υ ⊗ id) 〈id ⊗ T, (υ−1 ⊗ υ−1)R21R12〉 T

= 〈T, υ−1〉 〈id ⊗ T, R21R12〉 T = LT .

Note that the defining relations for the evolution operator � (as a function of the spectral
variables µα) and for the ribbon element υ both admit multiple solutions. 9 Therefore,
the problem of finding an explicit expression of the ribbon element υ in terms of spectral
variables µα demands further investigations.

9 The ribbon element is defined modulo the central factor z ∈ AR: z2 = 1 , S(z) = z , ε(z) = 1 , �(z) =
z ⊗ z . For the evolution operator �(µ) different solutions are constructed in the next sections.
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4.2. Equations for the evolution operator �. Using the results of Sect. 3 it is straight-
forward to derive equations for �. We consider in detail, the evolution in the SLq(n)

type HD algebra. In this case we assume

�=�(µ1, . . . , µn) , where an =∏n
α=1 µα =q−1 and γ = q−1/n . (4.2.1)

Applying from the left the projector Pα to both sides of (4.1.3) we obtain

qµα (PαT ) = �(PαT )�−1 , ∀α = 1, . . . , n .

Multiplying this equality by � from the right and permuting � with PαT in the left-hand
side with the help of (3.3.17) we finally get

qµα �(q−2/nµ1, . . . , q2−2/nµα, . . . , q−2/nµn) (PαT ) = �(µ1, . . . , µn) (PαT ) .

We state the result in the following proposition:

Proposition 4.4. For the Heisenberg double algebra DSLq (n)[R] the evolution operator
�(µα) in (4.1.3), (4.2.1) is a solution of equations

qµα �
(∇α(µβ)

) = �(µβ) ∀α = 1, . . . , n , (4.2.2)

where ∇α are finite shift operators introduced in (3.5.13). In the SLq(n) case their
actions are

∇α(µβ) := q2Xαβ µβ , Xαβ := δαβ − 1

n
∀α, β = 1, . . . , n . (4.2.3)

The n × n matrix X is a Gram matrix for the set of vectors �e ∗
α ∈ Q

n, α = 1, . . . , n :

�e ∗
α := 1

n
(−1, . . . ,−1
︸ ︷︷ ︸
(α−1) times

, n −1,−1, . . . ,−1 ) , Xαβ = 〈�e ∗
α , �e ∗

β 〉 .

X is positive semi-definite of rank n − 1 (
∑n

α=1 �e ∗
α = 0 ).

For the Heisenberg double algebra DGLq (n)[R, γ ] the evolution operator � is suit-
ably parameterized by variables z := (qan)1/n and να ,

να := µα(qan)−1/n , such that
∏n

α=1 να = q−1 , να det
R

T = det
R

T να ∀α .

The evolution equations for �(ν1, . . . , νn; z) read

qνα �(∇α(νβ); (qγ −n)2/n z) = �(να; z) ∀α = 1, . . . , n , (4.2.4)

where shift operators ∇α are defined as in (4.2.3). Since
∏n

α=1 ∇α = 1, this system is
consistent provided that �(νβ; q2γ −2n z) = �(νβ; z) (cf. with (4.1.5)). Demanding
that � does not actually depend on z one reduces (4.2.4) to (4.2.2).

Proof. The SLq(n) case is already considered. Taking into account relations (4.1.4) and
(3.3.19) a derivation of the evolution equations in the GLq(n) case is the same. ��

In the next two subsections we will construct particular solutions of the SL-type
evolution equations (4.2.2).
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4.3. Solution in case |q| < 1. Let us look for the solution of (4.2.2) as a series in µα .
Taking into account condition (4.2.1) we exclude one dependent variable, say µn , from
the expansion

�(µα) =
∑

�k∈Z
n−1

c(�k) µ
k1
1 µ

k2
2 . . . µ

kn−1
n−1 , (4.3.1)

where Z
n−1 = {(k1, . . . , kn−1) : ki ∈ Z}, and the coefficients c(�k) are C-valued func-

tions on Z
n−1. Substitution of (4.3.1) into (4.2.2) gives conditions on the coefficients:

c(�k + �εα) = q

(
1+ 2

n

∑n−1
β=1 A∗

αβkβ

)

c(�k) ∀α = 1, . . . , n − 1. (4.3.2)

Here �εα := ( 0, . . . , 0
︸ ︷︷ ︸
(α−1) times

, 1, 0, . . . , 0), and A∗
αβ := n Xαβ is a (n − 1) × (n − 1) positive-

definite matrix.
The general solution to (4.3.2) is

c(�k) = q
1
n

{
(�k, A∗ �k)+(�1 �k)

}

, (4.3.3)

where we choose normalization c(�0) = 1 and use notation (�k, A∗ �k)=∑n−1
α,β=1 kα A∗

αβ

kβ, and �1 = (1, . . . , 1) , so that (�1, �k)=∑n−1
α=1 kα .

Remark 4.5. The matrix A∗
αβ is a Gram matrix of a lattice A∗

n−1 dual to the root lattice

An−1 (see [CS], Chap. 4, Sect. 6.6). The corresponding quadratic form (�k, A∗ �k) is often
referred to as Voronoi’s principal form of the first type.

The ansatz (4.3.1) gives a particular solution (4.3.3) of the evolution equations; we
denote it �(1). Introducing a parameterization,

q = exp(2π i τ), q1/nµα = exp(2π i zα) :
n−1∑

α=1

zα = 0,�αβ = 2τ

n
A∗

αβ = 2τ (δαβ − 1

n
) , (4.3.4)

we can write �(1) as a Riemann theta function θ(�z,�) (see [Mum])

�(1)(µα) = θ(�z,�) =
∑

�k∈Z
n−1

exp
{
π i (�k, � �k) + 2π i (�k , �z)

}
. (4.3.5)

Here τ is a modular parameter and � is a matrix of periods. Expression (4.3.5) con-
verges either if |q| < 1, or if q is a rational root of unity, in which case the series can be
truncated.

Remark 4.6. One can present formula (4.3.5) in a manifestly covariant form:

�(1) ≡ �(1)(�z, A∗
n−1, τ ) =

∑

�k∈A∗
n−1

exp
{

2π i
τ

n
〈 �k, �k〉 + 2π i 〈�k , �z〉

}
.

Here vectors �k = ∑n−1
α=1 kαe∗

α label vertices of the lattice A∗
n−1, and �z = ∑n−1

α=1 zαeα ,
where eα = εα − εn , α = 1, . . . , n − 1, (see the line below (4.3.2)) are basic vectors of
the root lattice An−1: 〈e∗

α, eβ〉 = δαβ .
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In the simplest SLq(2) case the evolution operator �(1) becomes the Jacobi theta
function:

�(1)(µ1) =
∑

k∈Z

q
1
2 k(k+1)µk

1 =
∑

k∈Z

exp(π i k2τ + 2π i kz1) = θ3(z1; q) ,

or, in a multiplicative form

�(1)(µ1) =
∞∏

n=1

(1 − qn)(1 + qnµ1)(1 + qn−1/µ1) .

4.4. Solution for arbitrary q. In this section we derive yet another particular solution
of the evolution equations (4.2.2), the one which is well defined for arbitrary values
of q. The idea of such a solution was proposed in L.D. Faddeev’s lectures on two-
dimensional integrable quantum field theory [F.94] (see also [F.95]). We use heuristic
arguments inspired by considerations in [AF.91]. For the moment we assume dim V = n,
so that the range of the indices α and i, j in the projectors Pα

i j , Sα
i j is the same. Consider

the following n × n matrices:

Ui j :=
n∑

k=1

uik Pα=i
k j , Vi j :=

n∑

k=1

Sα= j
ik vk j ,

where the only restriction for the auxiliary parameters ui j and vi j is their commutativity
with the spectral variables µα ,

[ui j , µα] = [vi j , µα] = 0 ∀ i, j, α .

As a result of the Cayley-Hamilton identities (3.2.24), (3.4.11) we have matrix relations

U L = q DU , MV = γ 2q−1 V D , where D := diag{µ1, . . . , µn} .

Moreover, by (3.4.13), matrix Q := U T V is diagonal

Q = diag{w1, . . . , wn} , where wi :=
(

u Pi T v
)

i i
,

and, by (3.3.17), wi satisfy the following permutation relations with µ j and z j :

wi µ j = q2δi j γ −2 µ j wi ⇔ wi z j = (
z j + 2τ(δi j − 1/n)

)
wi , (4.4.1)

where in the latter formula we used the SLq(n) type condition γ = q1/n .
Assuming invertibility of the matrices U and V we can write diagonal decompositions

for the matrices L , M and T ,

L = q U DU−1 , M = γ 2q−1 V DV −1 , T = U−1 QV −1 ,

which after substitution into the ansatz (4.1.3) reduce the evolution equations to the
following form:

q DQ = � Q �−1 ⇔ qµiwi = �wi �−1 .
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Taking into account (4.4.1) these equations clearly have the following solution:

�(2)(zα) := exp

(

−π i

2τ

∑n
β=1 z2

β

)

. (4.4.2)

Now, it is easy to check that the function �(2) fulfills the evolution equations (4.2.2)
without additional assumptions we made for the derivation. Written in the independent
variables �z = {z1, . . . , z p−1} it reads

�(2)(�z) = exp

⎛

⎝−π i

τ

∑

1≤α≤β≤n−1

zαzβ

⎞

⎠ = exp
{
−π i (�z, �−1�z)

}
, (4.4.3)

where the inverse matrix of periods is

�−1
αβ = 1

2τ
(δαβ + 1) = 1

2τ
Aαβ ,

and Aαβ = 〈eα, eβ〉 is the Gram matrix for the root lattice An−1 (see Remark 4.6). Let
us stress that the logarithmic change of variables µα 	→ zα (4.3.4) which was rather
superficial in the case of �(1), is inevitable for the derivation of �(2).

Finally, we comment on the relation between the two evolution operators �(1) =
θ(�z, �) and �(2). The relation is based on a functional equation for the Riemann theta
function:

θ(�−1�z, −�−1) = (det (�/i))
1
2 exp

{
π i(�z, �−1�z)

}
θ(�z, �) ,

which is the special case of a more general modular functional equation (for derivation
and generalization see [Mum], Chap. 2, Sect. 5). With our particular matrix of periods
� (4.3.5) we find

�(2)(�z) = 1√
n

(
2τ

i

) n−1
2 θ(�z, �)

θ(�−1�z, −�−1)
. (4.4.4)

Note that the theta function in the denominator – θ(�−1�z, −�−1) – commutes with
the elements of DSLq (n)[R] and can be thought as an evolution operator on a ‘modular
dual’ quantum cotangent bundle [F.99].

Appendix A. Pairing Between Spectral Variables and Quantized Functions

Here we calculate pairing of the elementary symmetric functions ai (3.2.17) with the
generators of quantized functions T i

j . We assume that T and ai are realized respectively,
as elements of dual quasi-triangular Hopf algebras A∗

R and AR. We further extend this
pairing also for the spectral variables µα .
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For the calculation we use formula

〈T1, L2〉 = η−2q(n− 1
n ) R2

12, (A.1)

which follows from the definitions (2.2.11), (3.1.5), (3.2.3), (3.2.5).

Proposition A.1. Let ai (3.2.3), (3.2.5) and T (3.1.5) be elements of the dual quasi-tri-
angular Hopf algebras, respectively, AR and A∗

R. Assume that the R-matrix R (2.2.11)
is GLq(n) type with scaling parameter η = q1/n as in Example 2.10. Then

〈T, ai 〉 = q−3i/n n−1
q

(
n

i

)

q

{
nq + qn+1 − qn−2i+1

}
I. (A.2)

Proof. The calculation proceeds as follows:

〈T1, ai 〉 = 〈T1, Tr
R
(2, . . . , i + 1)

(
A(i)L1 . . . Li

)↑1〉
= qi(n− 3

n ) Tr
R
(2, . . . , i + 1)

(
A(i)↑1(J2 . . . Ji+1)(J−1

1 . . . J−1
i )↑1

)

= qi(n− 3
n ) Tr

R
(2, . . . , i + 1)

(
R1 . . . Ri A(i) Ri . . . R1

)

= qi(n− 3
n )

{
q−n (n + 1 − i)q i−1

q Tr
R
(2, . . . , i)

(
R1 . . . Ri−1 A(i−1) Ri−1 . . . R1

)

+ (q − q−1) q−(n+2)(i−1) n−1
q

(n
i

)
q I1

}

. . . = qi(n− 3
n )

(n
i

)
q

{
q−in +(q − q−1) q−(n+2)(i−1)n−1

q (1 + q2 +· · · + q2(i−1))
}

I1.

Here in the first line we substituted an expression for ai similar to (3.3.13). In the second

line we evaluated the pairing using formulas 〈T1, (Li )
↑1〉 = η−2q(n− 1

n ) Ji+1(J−1
i )↑1 fol-

lowing from (A.1). In the third line we first, used the cyclic property of the R-trace to eval-
uate the term (J−1

1 . . . J−1
i )↑1 on (A(i))↑1, and then rearranged the product J2 . . . Ji+1 =

Zi+1 = J †
2 . . . J †

i+1, where J †
1 := I, J †

k+1 := Ri−k+1 J †
k Ri−k+1, and evaluated the term

J †
2 . . . J †

i on (A(i))↑1. After that we recollected terms in the product: (A(i))↑1 J †
i+1 =

R1 . . . Ri A(i) Ri . . . R1. In the fourth line we substituted Ri = R−1
i + (q −q−1)I for one

of Ri s and used formulas (2.2.8) and (2.2.10) to evaluate Tr
R
(i + 1). Then, in the summand

which is proportional to (q − q−1) all the R-traces can be evaluated with the help of
(2.4.4). Omission points in the fifth line stand for similar evaluations of Tr

R
(i) . . . Tr

R
(2);

the resulting expression coincides with (A.2). ��
For an relation (A.2) simplifies to

〈T, an〉 = q−1 I , (A.3)

which obviously agrees with (3.2.18). So, we checked a consistency of the normaliza-

tions qn− 1
n in (3.2.5) and η = q1/n for the Drinfeld-Jimbo R-matrices with the SLq(n)

reduction condition (3.2.18).

Corollary A.2. In the conditions of Proposition A.1 the pairing 〈·, ·〉 can be extended
for the spectral variables (3.2.22):

〈T, µα〉 = q(2α+2δαn−n− 3
n −1) I, α = 1, . . . , n. (A.4)
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Proof. Let us rescale the spectral variables µ̃α := q
3
n −2δαn µα . For rescaled variables

(A.4) reads

〈T, µ̃α〉 = q(2α−n−1) I. (A.5)

Using the q-binomial identity qi
(n−1

i

)
q + qi−n

(n−1
i−1

)

q
= (n

i

)
q , it is straightforward to

derive from (A.5) pairings of the elementary symmetric functions ei (µ̃) by induction on
n: 〈T, ei (µ̃)〉 = (n

i

)
q . Using (3.3.18) it is then straightforward to derive pairings for

elementary symmetric functions in original spectral variables — 〈T, ei (µ)〉 — which
under the identification ai 	→ ei (µ) coincide with (A.2). ��

Appendix B. Three Lemmas for Subsection 3.4

Here we collect some technical results which are used for establishing the relation
between the spectra of the left and right invariant vector fields.

Lemma B.1. a) If the R-matrix R is skew invertible then the following four statements
are equivalent: i) the matrix D

R
is invertible; ii) the matrix C

R
is invertible; iii) the

R-matrix R−1 is skew invertible; iv) the R-matrix
∗
R := P R−1 P is skew invertible.

One has

D∗
R

= C
R−1 = (D

R
)−1 , C∗

R
= D

R−1 = (C
R
)−1 . (B.1)

b) Let R be the Hecke type R-matrix generating representations ρ
R

(2.3.7) of the alge-

bras Hk(q). Then the R-matrix
∗
R is Hecke type as well, and ρ∗

R
are representations

of the algebras Hk(q−1). If additionally the parameter q satisfies conditions [k]
(2.3.1) so that the idempotent a(k)|q↔q−1 ∈ Hk(q−1), (see (2.3.2)) is well defined,
then

∗
A(k) := ρ∗

R
(a(k)|q↔q−1) = ϒ

(k)
P A(k) ϒ

(k)
P , (B.2)

∗
Ri

∗
A(k) = −q

∗
A(k) , ∀ i = 1, . . . , k − 1 . (B.3)

Here ϒ
(k)
P = (ϒ

(k)
P )−1 is a particular R = P case of an operator ϒ

(k)
R ∈ Aut(V ⊗k),

defined inductively for any R-matrix R,

ϒ
(1)
R := 1 , ϒ

(k+1)
R := (R1 R2 . . . Rk) ϒ

(k)
R = ϒ

(k)
R (Rk . . . R2 R1) ∀ k = 2, 3, . . . .

(B.4)

This operator performs reflection of the indices of the R-matrices,

Ri ϒ
(k)
R = ϒ

(k)
R Rk−i ∀ i, k : 1 ≤ i < k . (B.5)

The particular element ϒ
(k)
P enjoys also relations

Ri ϒ
(k)
P = ϒ

(k)
P (P R P)k−i ∀ i, k : 1 ≤ i < k , ∀ R-matrix R, (B.6)

Mi ϒ
(k)
P = ϒ

(k)
P Mk−i+1 ∀ i, k : 1 ≤ i ≤ k , ∀ M ∈ EndW (V ) , (B.7)

where W is an arbitrary C-linear space.
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Proof. The first equality in both formulas (B.1) is proved in a more general setting in
[OP.05], Lemma 3.6 c). The second equality is proved in [Is.04], Sect. 3.1, Proposition 2.
Relations (B.5) and (B.6) for matrices ϒ

(k)
R , ϒ

(k)
P follow directly from (2.2.4) and from

equalities

R1 P2 P1 = P2 P1 R2 , R2 P1 P2 = P1 P2 R1 . (B.8)

Equalities (B.7) are obvious. Relations (B.3) are byproducts of (B.2) and (2.3.4). The
second equality in (B.2) follows from (2.3.2), (2.3.3), (B.6), and the Hecke relation for
∗
R:

∗
R = P R P − (q − q−1)I . ��

Lemma B.2. Let M be a matrix of left invariant vector fields for the Hecke type HD
algebra DG[R, γ ]. For any i ≥ 1 and j ≥ 0 one has

(

M∗
1

∗
J 1

)(

M∗
2

∗
J 2

)

. . .

(

M∗
i

∗
J i

)

Ii+1,...,i+ j (B.9)

= γ i(i+1) Tr
R
(i + j + 1, . . . , 2i + j)

(

ϒ
(i+ j)
P ϒ

(2i+ j)
P (LT )i . . . (LT )1ϒ

(2i)
∗
R

(Ti . . . T1)
−1ϒ

(2i+ j)
P ϒ

(i+ j)
P

)

,

where Ii+1,...,i+ j is the identity operator acting in the component spaces V with labels
i + 1, . . . , i + j .

Proof. Consider the following sequence of transformations:

M∗
1

∗
J 1 = M1 = (T −1LT )1 = Tr

R
(2)

(
T −1

1 R1L1T1

)
= γ 2 Tr

R
(2)

(
L2T −1

1 R−1T1

)

= γ 2 Tr
R
(2)

(
(LT )2 R−1

1 T −1
2

)
= γ 2 Tr

R
(2)

(

P1(LT )1
∗
R1 T −1

1 P1

)

. (B.10)

Here in the first line we transform the underlined expressions using (3.3.1) and (3.1.1),
and in the last line we apply the definition (3.4.5). Relation (B.10) reproduces formula
(B.9) for i = 1 and j = 0. By a repeated application of formula (cf. with (2.2.10))

Tr
R
( j + 1)(Pj X Pj ) = I j Tr

R
( j)(X) ∀ X ∈ EndW (V ⊗ j ), (B.11)

we can rewrite it as (B.9) with i = 1 and arbitrary j > 0,
(

M∗
1

∗
J 1

)

I2,... j+1 = γ 2 Tr
R
( j + 2)

(

(Pj+1 . . . P1)(LT )1
∗
R1 T −1

1 (P1 . . . Pj+1)

)

.

(B.12)

In a similar way, for any value of i relations, (B.9) with j > 0 follow from that with
j = 0 by a repeated application of (B.11). Therefore, it is enough to consider the case
j = 0.

Using relations (B.12) and (B.8) we can rewrite an expression M∗
i

∗
J i in the following

way
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M∗
i

∗
J i = (

∗
Ri−1 . . .

∗
R1) M1 (

∗
R1 . . .

∗
Ri−1)

= γ 2 Tr
R
(i + 1)

(

(Pi . . . P2 P1)(LT )1 (
∗
Ri . . .

∗
R2

∗
R1

∗
R2 . . .

∗
Ri ) (T1)

−1(P1 P2 . . . Pi )

)

.

(B.13)

Now we are ready to prove formula (B.9) by induction on i . Assuming that (B.9) with
j = 1 is valid for the product of (i − 1) factors we transform the product of i factors,

(

M∗
1

∗
J 1

) (

M∗
2

∗
J 2

)

. . .

(

M∗
i

∗
J i

)

= γ (i−1)i Tr
R
(i + 1, . . . 2i − 1)

(
ϒ

(i)
P ϒ

(2i−1)
P (LT )i−1 . . . (LT )1

× ϒ
(2i−2)
∗
R

(Ti−1 . . . T1)
−1ϒ

(2i−1)
P ϒ

(i)
P

) (

M∗
i

∗
J i

)

.

Next, we apply formulas (B.6), (B.7) to move the last factor (M∗
i

∗
J i ) in this expression

left-wards. The result is

= γ (i−1)i Tr
R
(i + 1, . . . 2i − 1)

(

ϒ
(i)
P ϒ

(2i−1)
P (LT )i−1 . . . (LT )1ϒ

(2i−2)
∗
R

(Ti−2 . . . T1)
−1

×
(

T −1
1 (M∗

i

∗
J i )

↑1

)↑(i−2)

ϒ
(2i−1)
P ϒ

(i)
P

⎞

⎠ ,

where we have used identities (Ti−1)
−1 = (T −1

1 )↑(i−2) and (M∗
i

∗
J i )

↑(i−1) =

((M∗
i

∗
J i )

↑1)↑(i−2) to arrange the terms (Ti−1)
−1 and (M∗

i

∗
J i )

↑(i−1) in a suitable way.

Next, we use formula (3.4.8) for their permutation and then, in a similar way we move

term (M∗
∗
J ) to the left of all the terms (T∗)−1 :

· · · = γ (i−1)i+2(i−1) Tr
R
(i + 1, . . . 2i − 1)

(

ϒ
(i)
P ϒ

(2i−1)
P (LT )i−1 . . . (LT )1ϒ

(2i−2)
∗
R

× (M ∗
2i−1

∗
J 2i−1)(Ti−1 . . . T1)

−1ϒ
(2i−1)
P ϒ

(i)
P

)

.

Now we substitute the expression (B.13) for (M ∗
2i−1

∗
J 2i−1)

= γ i(i+1) Tr
R
(i + 1, . . . 2i)

(

ϒ
(i)
P ϒ

(2i−1)
P (LT )i−1 . . . (LT )1ϒ

(2i−2)
∗
R

(P2i−1 . . . P1)(LT )1

× (
∗
R2i−1 . . .

∗
R2

∗
R1

∗
R2 . . .

∗
R2i−1)(T1)

−1(P1 . . . P2i−1)(Ti−1 . . . T1)
−1ϒ

(2i−1)
P ϒ

(i)
P

)
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and move the term (P2i−1 . . . P1) leftwards and the term (P1 . . . P2i−1) rightwards close
to the terms ϒ

(2i−1)
P . Finally, using (B.4) we complete the calculation

= γ i(i+1) Tr
R
(i + 1, . . . 2i)

(

ϒ
(i)
P ϒ

(2i)
P (LT )i . . . (LT )1ϒ

(2i)
∗
R

(Ti . . . T1)
−1ϒ

(2i)
P ϒ

(i)
P

)

.

Here we transformed terms containing
∗
R in the following way:

ϒ
(2i−2)↑1
∗
R

(
∗
R2i−1 . . .

∗
R2

∗
R1

∗
R2 . . .

∗
R2i−1)

= ϒ
(2i−2)↑1
∗
R

(
∗
R1 . . .

∗
R2i−2

∗
R2i−1

∗
R2i−2 . . .

∗
R1)

= (
∗
R1 . . .

∗
R2i−1)ϒ

(2i−2)
∗
R

(
∗
R2i−2 . . .

∗
R1) = (

∗
R1 . . .

∗
R2i−1)ϒ

(2i−1)
∗
R

= ϒ
(2i)
∗
R

.

Lemma B.3. The operators Jk (3.3.8) and ϒ(k) (B.4) associated with a skew invertible
R-matrix R satisfy relations

Tr
R
(i + 1, . . . , 2i)ϒ

(2i)
R =

(
ϒ

(i)
R

)4 = (J1 J2 . . . Ji )
2 . (B.14)

Proof. Calculation proceeds as follows:

Tr
R
(i + 1, . . . , 2i)ϒ

(2i)
R = Tr

R
(i + 1, . . . , 2i − 1)

(
ϒ

(2i−1)
R (Tr

R
(2i) R2i−1) (R2i−2 . . . R1)

)

= Tr
R
(i + 1, . . . , 2i − 1)

(
(R1 . . . Ri−1)ϒ

(2i−1)
R (Ri−1 . . . R1)

)

. . . = (R1 . . . Ri−1)
i ϒ

(i)
R (Ri−1 . . . R1)(Ri−2 . . . R1) . . . (R2 R1)R1

= (J1 J2 . . . Ji )
(
ϒ

(i)
R

)2 =
(
ϒ

(i)
R

)4
.

Here in passing to the second line we calculated the R-trace Tr
R
(2i) with the help of (2.2.8)

and then used (B.5) to move (i −1) R-matrices to the left of the term ϒ
(2i−1)
R . Expression

in the third line results from similar calculations of the R-traces Tr
R
(2i − 1), . . . , Tr

R
(i + 1),

consecutively. Equalities in the last line result from rearranging factors of the product
(R1 . . . Ri−1)

i . ��
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