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INTRODUCTION

The Cr closing lemma is one well-known problem in the theory of dynamical systems. Usually,
the lemma is meant to refer to a bifurcation problem in which there is a nonclosed orbit with some
return property (for example, nontrivial recurrence or nonwandering). The problem is to perturb
the original dynamical system so as to obtain a Cr-close system that has a periodic orbit passing
through a given point. In fact, the problems obtained vary dramatically in the solution methods
as well as the difficulty level depending on the type of recurrence (chain recurrence, prolongational
recurrence, etc.), the topology on the space of considered dynamical systems, and the constraints
imposed on the admissible perturbations. There are other subtleties as well, and so various closing
lemmas should be considered at present.

Along with obviously being of interest in themselves, almost all versions of closing lemmas have
inevitably arisen when studying structural stability and also when attempting to describe residual
sets in spaces of dynamical systems. Recently the interest in these lemmas has been renewed in
connection with the Palis program [107–109], where new candidates for generic dynamical systems
are presented. The interest in closing lemmas has never faded since the beginning of the so-called
hyperbolic revolution (the term is due to Anosov [7]) at the end of the 1950s. In the last two
decades, some progress has been made in the solution of numerous problems posed at the dawn
of that revolution. (It suffices to note the solution of the Palis–Smale problem on necessary and
sufficient conditions for structural stability.) In this survey, within our competence, we present the
results obtained so far concerning closing lemmas and their application to the description of generic
dynamical systems.

Essentially, the problem of closing a nonperiodic trajectory arose from the following excerpt
from Poincaré’s famous paper “New Methods in Celestial Mechanics” [119, vol. 1, p. 82] :
. . . here is a fact that I could not prove rigorously but which nevertheless seems very plausible.

Given two equations of the form indicated in Section 131 and a particular solution of these
equations, there always exists a periodic solution (albeit possibly with a very large period) such that
the difference between the two solutions is as small as desired on a time interval as large as desired.

Needless to say, Poincaré (who knew about linear vector fields specifying minimal flows on the
torus) meant not an arbitrary Hamiltonian system but a generic one. Recall that, on a symplectic
manifold M , Hamiltonian vector Cr fields equipped with the Whitney Cr topology form a Baire
space Hr (M), i.e., a space in which an arbitrary Gδ-subset is everywhere dense. (A Gδ-subset is
a countable intersection of open everywhere dense subsets.) Any Gδ-subset of a Baire space is said

1 The equations in question are an autonomous system of analytic Hamiltonian equations. [Author’s remark.]
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to be residual , and any element of a residual subset is said to be generic. It is clear from the context
that Poincaré considered trajectories on an arbitrary compact regular energy surface (i.e., a level
surface of the Hamiltonian function). Therefore, omitting the inaccuracies and the smoothness
restriction (Poincaré considered analytic Hamiltonian systems, r = ω), the above excerpt from
Poincaré can be restated as follows.

For a generic Hamiltonian system in Hr (M), periodic trajectories are everywhere dense on any
compact regular energy surface. Moreover , let the relation H0 = c define a regular compact energy
surface M0 of a generic Hamiltonian H0. Then, for any point x0 ∈ M0 and for arbitrary numbers
ε > 0 and T > 0, there exists a point y0 ∈ M0 lying on a periodic trajectory such that

d(φt(x0), φt(y0)) < ε for all 0 ≤ t ≤ T.

Here φt is the time t shift along the trajectories of the system, and d is the metric on M .

The following claim, which can be naturally called the Poincaré problem on the denseness of
periodic trajectories of a generic Hamiltonian system (this problem will be discussed in Section 3),
is an intermediate step towards the proof of the above-represented assertion (which could be called
the Poincaré conjecture on the denseness of periodic trajectories of a generic Hamiltonian system).
For brevity, to stick to the style and spirit of the exposition, we refer to this claim as the Cr

Poincaré closing lemma. Thus, suppose that a point x0 ∈ M lies on a regular compact energy
surface M0 of a Hamiltonian H0 that specifies a Hamiltonian vector field �v ∈ Hr(M), and assume
that the trajectory of �v passing through x0 is nonperiodic. Then

in the space Hr (M), there exists a field �w ∈ Hr (M) that is arbitrarily close to �v and whose
trajectory passing through x0 is periodic.

Hermann [73] showed that this Poincaré lemma fails for sufficiently large r (see also [74]).
However, this lemma holds for r = 1 [128].

More than 50 years after Poincaré’s paper [119], René Thom modified the above-represented
excerpt from Poincaré citation in one of his preprints [149] and stated it as a separate assertion
in bifurcation theory. Thom thought that this assertion was easy to prove and stated it in the
form of a lemma. (He even presented a half-page proof [149, pp. 5–6] but later conceded that it
was unsatisfactory.) The original assertion dealt with an arbitrarily small perturbation making
a nontrivially recurrent2 or nonwandering3 nonperiodic point periodic. Then the cases of nontrivial
recurrence and nonwandering were separated, and the closing lemma, which is referred to as the
classical closing lemma in what follows (in our opinion, it could be called the Thom closing lemma),
and the improved closing lemma emerged.

We present the statement of these lemmas only for the case of diffeomorphisms. (For the case
of vector fields, the statement is similar.) Let Diff r(M) be the space of Cr diffeomorphisms of
a manifold M equipped with the Cr topology, and let f ∈ Diff r(M) have a nontrivially recurrent
point x0 ∈ M . The following assertion is called the classical Cr closing lemma.

For every neighborhood U(f) of the diffeomorphism f in the space Diff r(M), there exists a diffeo-
morphism g ∈ U(f) with periodic point x0.

For a nonwandering nonperiodic point x0, the corresponding assertion is called the improved Cr

closing lemma [122]. Clearly, the improved closing lemma implies the classical one, because a non-
trivially recurrent point is nonwandering.

In the C0 topology, both the classical and the improved closing lemma can readily be proved,
because either the orbit of x0 or orbits close to x0 pass arbitrarily close to x0. Let us indicate the
fundamental difficulties encountered in the proof of the classical Cr closing lemma for r ≥ 1. Since
x0 is a nontrivially recurrent point, it follows that there exists an ε > 0 small enough that the
points f(x0), . . . , fk−1(x0) do not lie in the ε-neighborhood Uε(x0) of x0 and fk(x0) lies in Uε(x0)
for some k ≥ 3 (see Fig. 1). In other words, fk(x0) is the first point of the positive semiorbit of

2 A nontrivially recurrent point is a point that is nonperiodic and belongs to the ω- or α-limit set of itself.
3 A nonwandering point is a point such that each of its neighborhoods meets arbitrarily large iterations of itself.
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Fig. 1. Perturbation of a diffeomorphism f near fk−1(x0).

the point x0 that returns into Uε(x0). Naturally, one can try to perturb f in a neighborhood of
fk−1(x0) so as to obtain a diffeomorphism g ∈ U(f) with g(fk−1)(x0) = x0, which, at first glance,
has the periodic point x0. However, in general, it is not guaranteed that the intermediate points
f(x0), . . . , fk−2(x0) lie outside the perturbation domain. Therefore, one cannot ensure that all the
relations

f(x0) = g(x0), . . . , fk−1(x0) = gk−1(x0)

are true. Therefore, one cannot yet claim that the diffeomorphism g has the periodic point x0.
If r = 0, then there exists a desired perturbation domain. [One can take the domain that is the
preimage with respect to f of a sufficiently thin tube lying in Uε(x0) and connecting the points x0

and fk(x0); this preimage does not contain the points f i(x0), 1 ≤ i ≤ k − 2.] If, for r ≥ 1, one
tries to diminish the perturbation domain for a fixed point fk(x0) so as to exclude intermediate
points, then one can get a “large derivative” and the exit of the perturbing diffeomorphism g from
the given neighborhood U(f). On the other hand, if one tries to diminish the perturbation domain
by choosing a point fk(x0) closer to x0, then one should take larger k, and hence the number of
intermediate points is larger as well. Similar difficulties arise if we try to perturb f near the points
f(x0), . . . , fk−2(x0) so as to hit f−1(x0). This “tug-of-war” makes the classical (and so much the
more the improved) Cr closing lemma a challenge for r ≥ 1. Peixoto [112, 113] was the first to
indicate that the proof of the Cr lemma in the general case for r ≥ 1 is nontrivial.

Note one earlier paper that had been published before the closing lemmas were stated. In 1939,
when describing structurally stable diffeomorphisms of the circle S1, Maier [17] essentially proved
the classical Cr closing lemma for f ∈ Diff r(S1) with any r ≥ 1 (see Theorem 5 in [17]). (Note
that, following Poincaré, Maier referred to nontrivially recurrent points as Poisson-stable points.)
Later, Pliss [19] and Peixoto [112] reproved Maier’s result and used it in the proof of the classical
Cr closing lemma for vector fields without singular points on a torus.

The main contribution to the topic is due to Charles Pugh. In 1964, he announced the classical
C1 closing lemma for diffeomorphisms, flows, and vector fields on two- and three-dimensional
manifolds [120]. (These results formed his doctoral thesis.) In 1967, Pugh [121, 122] published the
proof of the classical and improved C1 closing lemmas for manifolds of an arbitrary dimension. As to
the classical and improved Cr closing lemmas for r ≥ 2, there are few results so far. Smale [147]
stated the improved Cr closing lemma for r ≥ 2 as one of the problems of the XXI century
(Problem 10).

The improved C1 closing lemma is essentially used when proving that the set of Kupka–Smale
diffeomorphisms whose nonwandering set is the closure of the set of hyperbolic periodic points [122]
is residual in the space Diff 1(M). Kupka–Smale diffeomorphisms may have very complicated
dynamics that does not admit a finite description. At the end of the 1950s, the work of Andronov,
Pontryagin [2], and Peixoto [112] raised hope that structurally stable systems are residual in the
space Diff 1(M). Therefore, after this conjecture had be shown to be false [145], attempts started
to find other sets that would be residual and consist of systems with comprehensible dynamics.
One direction of these attempts was related to generalizations of the notion of nonwandering.
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As a consequence, it became necessary to obtain closing lemmas with weakened requirements on
the recurrence of nonperiodic points (like, for example, prolongational recurrence in the sense of
Auslender, Pugh, etc.).4

The most general type of recurrence is the chain recurrence. Recall that an ε-chain of length
n from a point p to a point q is defined as a sequence {p0 = p, p1, . . . , pn = q} such that
d(f(pj−1), pj) < ε for 1 ≤ j ≤ n, where d is a metric on M . A point p is said to be chain recurrent
if, for each ε > 0, there exists an ε-chain of arbitrarily large length from p to p. The assertion on
the bifurcation of a periodic point from a chain recurrent point could naturally be referred to as
a strengthened Cr closing lemma. Under additional constraints on the dynamical systems, such
lemmas were proved in [13, 30, 37, 46, 53].

In lemmas with weakened recurrence requirements, Pugh singled out a part whose investigation
could advance the proof of these lemmas. Namely, if we take two points p, q ∈ M with ω(p) ∩
α(q) �= ∅ [i.e., there exists a point that is an accumulation point of the positive semiorbit of p
and the negative semiorbit of q under a diffeomorphism f ∈ Diff r(M)], then it is natural to try
to perturb the diffeomorphism in the Cr topology so as to ensure that the points p and q lie on
the same orbit. The following assertion (sometimes, for brevity, we refer to it as the connecting
lemma) is called the Cr orbit connecting lemma.

In any neighborhood U(f) of the diffeomorphism f in the space Diff r(M), there exists a diffeomor-
phism g ∈ U(f) for which the points p and q lie on one orbit.

The Cr orbit connecting lemma is harder to prove than the improved (and so much the more
the classical) Cr lemma, because one deals with two orbits instead of one.

Mane suggested a more general version of connecting lemmas for orbits and stated the so-called
“make or break lemma.” We call it the Cr Mane dichotomy . In the notation of the connecting
lemma, it can be stated as follows.

In any neighborhood U(f) of the diffeomorphism f in the space Diff r(M), there exists a diffeo-
morphism g ∈ U(f) such that either the points p and q lie on one orbit or ω(p) ∩ α(q) = ∅.

There are important modifications of the connecting lemma that lead to connecting lemmas for
stable and unstable manifolds of invariant sets of diffeomorphisms. (One such lemma is known as
the lemma on the bifurcation of homoclinic or heteroclinic points.) Let us present the statement of
one version of the Cr connecting lemma for invariant manifolds (which, in a sense, is an assertion on
the bifurcation of a homoclinic point from an almost homoclinic one) for the classical case in which
W u

f (p) and W s
f (p) are the unstable and stable manifolds, respectively, of a hyperbolic periodic point

p of a diffeomorphism f ∈ Diff r(M). Suppose that there exist almost homoclinic points associated
with p, (

clos W u
f (p) ∩ W s

f (q)
) ⋃ (

W u
f (p) ∩ clos W s

f (q)
)
− {p} �= ∅.

Then for each neighborhood U(f) of f in the space Diff r(M), there exists a diffeomorphism g ∈ U(f)
coinciding with f in some neighborhood of p such that W u

g (p) ∩ W s
g (p) − {p} �= ∅.

Substantial progress in the analysis of the C1 connecting lemma for invariant manifolds is due
to Hayashi [70]. In particular, his result implies the C1 lemma on the bifurcation of a homoclinic
point associated with an isolated hyperbolic set. The Hayashi result gave an impetus for a series
of papers dealing with the connecting lemma both for invariant manifolds and for orbits.

In the present survey, we consider various types of the closing lemma. The main ideas of the
proofs of the classical and improved C1 closing lemmas are given in Section 1. C1 connecting
lemmas for invariant manifolds and orbits as well as the strengthened variant of the C1 Mane
dichotomy for vector fields are considered in Section 2. The Poincaré problem on the denseness
of periodic trajectories and close results (including the Hermann counterexample) are presented in
Section 3. The Anosov closing lemma, which is considered in Section 4, is an analog of the Poincaré
problem on the denseness of periodic trajectories of a generic Hamiltonian system (in the sense that

4 Note that the idea of these notions goes back to Bendixson’s notion [40] of extension of a saddle separatrix.
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nothing has to be perturbed) for diffeomorphisms with uniform hyperbolic structure. Various Cr

lemmas for r ≥ 2 are presented in Section 5. In this section, we also describe the construction of the
most interesting and important (from our viewpoint) counterexamples. Closing lemmas for special
dynamical systems and foliations are gathered in Section 6. Finally, in Section 7, we demonstrate
applications of closing lemmas to the description of residual sets in spaces of dynamical systems.
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1. CLASSICAL AND IMPROVED C1 LEMMAS

Pugh proved [121, 122] the classical and improved C1 lemmas for manifolds of arbitrary dimen-
sion. As Pugh recollects [127], he was told about the closing problem by his teacher P. Hartman
in 1963 after a seminar at which Hartman had listened to M. Peixoto’s talk. However, note that
his proofs contain several difficult points (see [123] and Remark 11.1.4 in [134]). Although these
proofs were recognized by the mathematical community, the search for shorter and clearer proofs
was continued [81, 128, 84], and now there is a clear exposition. Let us present the main ideas of
the proof of the classical C1 lemma. Let a C1 diffeomorphism f : M → M of a smooth manifold M
have a nontrivially recurrent point x0 ∈ ω(x0). Take an arbitrary neighborhood U(f) of f in the
space Diff 1(M). First, Pugh (Theorem 5.1 in [121]) noted that it suffices to obtain a periodic orbit
that does not necessarily pass through x0 but passes arbitrarily closely to x0. This remark pertains
to any r ≥ 1 and is called the local Cr closing lemma. Let us state this assertion rigorously.

For any neighborhood U0 of f in Diff r(M) and any neighborhood V (x0) of x0, there exists a g ∈ U0

with a periodic orbit passing through V (x0).

If g ∈ U0 has a periodic point y0 ∈ V (x0), then one can construct a Cr diffeomorphism h arbitrarily
close to the identity and taking y0 to x0. Then the diffeomorphism h ◦ g ◦ h−1 is Cr-close to f
and has periodic point x0. Note that this assertion was proved in Theorem 5.1 in [121] for C1

smoothness, but the proof can be reproduced word for word for Cr, r ≥ 1. A vast majority of the
proofs of closing lemmas are based on the local lemma.

On the basis of the local closing lemma, Pugh singled out the main direction in the proof of the
classical lemma.

For given neighborhoods U0 ⊂ Diff 1(M) and V (x0) ⊂ M, it is unnecessary to close the orbit
segment x0, f(x0), . . . , fk(x0) with extreme points x0, fk(x0) ∈ V (x0), because “between” these
extreme points there may be intermediate points f(x0), . . . , fk−1(x0). One should close an orbit
segment fm(x0), . . . , fn(x0) such that the extreme points fm(x0) and fn(x0) lie in V (x0) but
“between” them there are no intermediate points f j(x0), where 0 ≤ m ≤ j ≤ n ≤ k; see Fig. 2.
In a sense, the word “between” implies that there exists a desired perturbation domain that covers
the points xm = fm(x0) and xn = fn(x0). A clear proof of the existence of a desired orbit segment
can be found in [84, 128]. At the beginning of Section 2, we present the idea of how to single out
such an orbit segment.

After finding such an orbit segment, one constructs an ε-chain from the terminal point xn to
the initial point xm, n > m (see Fig. 2) or to some point xk, where m ≤ k < n. The jumps in the
ε-chain are concentrated in disjoint balls. One can find perturbations of the original diffeomorphism
implementing these jumps by the following standard technique.

Let Br ⊂ R
m be a closed ball of radius r. For an arbitrary number 0 < δ < 1, by δBr we

denote the ball with the same center and with radius δr. It is referred to as the δ-core of Br.
For arbitrary given points P and Q in the interior of Br, there exists a C∞ diffeomorphism h :
R

m → R
m that is the identity mapping outside Br and takes P to Q. If P and Q lie in δBr,

then such a diffeomorphism h is called a motion of the point P into the point Q in the δ-core of

DIFFERENTIAL EQUATIONS Vol. 48 No. 13 2012



1658 ANOSOV, ZHUZHOMA

Fig. 2. Closing the orbit xi = f i(x0).

the ball Br. By using the standard bump function, one can prove the following assertion ([156,
Lemma 2.1]).

Lemma 1.1. For any ε > 0, there exists 0 < δ < 1 such that , for any closed ball Br ⊂ R
m and

for arbitrary points P and Q in δBr, there exists a motion h : R
m → R

m of the point P to the point
Q in the δ-kernel of Br such that all first partial derivatives of the mapping h− id are less than ε.

Indeed, take a C∞ bump function α : R
m → R such that α = 1 in B 1

3
and α = 0 outside B 2

3
;

moreover, the partial derivatives of the function α do not exceed 6. One can assume that the center
Br coincides with the origin of R

m and identify the points with the corresponding vectors. Then

h(�x) = �x + α

(
�x − �P

r

)

(�Q − �P )

is the desired motion, since

‖�Q − �P‖ < 2rδ,
∥
∥∥
∥

∂

∂xi

(h − id)
∥
∥∥
∥ ≤ 6

1
r
2δr = ε.

Note that the radius of Br plays no role in the statement of the lemma. Therefore, the motion in
the δ-kernel of the ball Br is close in the C1 topology to the identical one if ε and r are sufficiently
small. Then the composition h◦f is C1-close to f . By using the mapping expz : TMz → M , which
locally identifies the tangent space with a neighborhood of a point on the manifold, one can prove
the analog of Lemma 1.1 for the manifold M . (For a rigorous proof, see [128, Th. 6.1].)

In the proof of the C1 lemma, the closure of the original diffeomorphism f is constructed
as the composition of f with motions in δ-kernels of pairwise disjoint sufficiently small
balls.

In what follows, we use a theorem dealing with a sequence of isomorphisms of Euclidean spaces.
Let us explain how such a sequence arises in the closing lemma. Take a neighborhood U0 of
a nontrivially recurrent point x0

def= x. Then there exists a strictly increasing sequence of positive
integers j1, . . . , jk, . . . such that f jk(x) ∈ U0 and f j(x) /∈ U0 for j �= jk. In other words, this is
a sequence of iterations for which x returns into U0. Without loss of generality, one can assume
that the neighborhood U0 is a map of the atlas, and it is identified with the Euclidean space R

dim M ,
whose origin is identified with the point x. Then the tangent space TxM is canonically isomorphic
to R

dim M , and in what follows TxM is identified with R
dim M . Set f jk(x) def= yk. The points yk belong
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to a nontrivially recurrent orbit. Therefore, each point of the sequence {yk}∞k=1 is a condensation
point. The mapping f jk is a C1 diffeomorphism that, in the linear approximation at the point x,
is equal to the derivative Df jk(x) : TxM → Tyk

M , which is an isomorphism of linear spaces. Set

Df jk(x) def= Fk, Tyk
M

def= R
dim M
k .

Thus, we have a sequence of points yk ∈ R
dim M , which has accumulation points, and a sequence

of isomorphisms Fk : R
dim M → R

dim M
k . Under these conditions, we have the following assertion,

which was proved by Jiehua Mai [84]. (A clear exposition of the proof of Theorem 1.1 can be found
in [32].)

Theorem 1.1. For each δ > 0, there exist points ys and yl (s > l) and a point set {x1, . . . , xμ},
where x1 = ys and xμ = yl, such that the following conditions are satisfied.

1. jl + jμ < js [i.e., the number μ should be chosen so as to ensure that jμ does not exceed js− jl,
which, in turn, implies that the point f jμ(yl) = f jμ+jl(x) belongs to the negative semiorbit of the
point ys = f js(x)].

2. For any i = 1, . . . , μ− 1, the point Fi(xi+1) lies in the δ-core of the ball B(Fi(xi)); moreover ,
the following assertions hold.

(a) The balls B(Fi(xi)) are pairwise disjoint.
(b) Each ball B(Fi(xi)) contains none of the points yl, yl+1, . . . , ys; see Fig. 3.

It was shown that the number μ depends only on the sequence of isomorphisms Fi and
the number δ and is independent of the sequence of points (the only requirement being
that it should have accumulation points). After defining μ (and, therefore, after fixing a finite set
of isomorphisms F1, . . . , Fμ), for this sequence of points yk, we define a finite segment yl whose
extreme points are sufficiently close, and the indices l and ys differ by a sufficiently large number.

Now the proof of the classical lemma can be carried out as follows. By gi we denote the motion
of the point Fi(xi) to the point Fi(xi+1) in the δ-core of the ball B(Fi(xi)) and form the composition
g = f ◦ g1 ◦ · · · ◦ gμ−1. The diffeomorphism g coincides with f outside all balls B(Fi(xi)) and with
f ◦ gi inside B(Fi(xi)). Note that the definition of the sequence j1, j2, . . . implies that, for any
i = 1, . . . , the points

f(f jixi), f 2(f jixi), . . . , f ji+1−ji−1(f jixi)

Fig. 3.

DIFFERENTIAL EQUATIONS Vol. 48 No. 13 2012
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do not lie in the neighborhood U0. Therefore, under the action of g, the point f jsx = ys = x1 takes
the following path:

ys = x1
fj1

−→ f j1(x1)
g1−→ f j1(x2)

fj2−j1

−→ f j2(x2)
g2−→ f j2(x3)

fj3−j2

−→ . . .

. . .
fjμ−jμ−1

−→ f jμ(xμ) = f jμ+jl(x) fjs−(jμ+jl)−→ f js(x) = x1 = ys.

Therefore, the point ys = f js(x) is a periodic point of the diffeomorphism g, which can be made
arbitrarily close to f in the C1 topology, since this depends completely on the diameters of the
balls B(Fi(xi)) and the motions in their δ-cores (which can be made arbitrarily small).

The improved C1 closing lemma can be proved in a similar way (for a brief proof, see [85]).
On the basis of the main idea of the paper [84], the improved C1 closing lemma was proved in [151]
for a nonsingular (Df is injective on the tangent spaces of all points) endomorphism of a compact
closed manifold in [151].

Note Pliss’s paper [20], in which he considered the nonautonomous two-dimensional system �̇x =
P (t)�x+X(t, �x) with diagonal matrix P (t) = diag(p(t), q(t)) formed by integrally separated functions
p(t) and q(t); i.e., (sgn t)

∫ t

0
[p(τ) − q(τ)] dτ > c|t| − d for some c > 0 and d > 0. The nonlinearity

X(t, �x) is small and has a small Lipschitz constant. If �x(t, t0, �x0) is a solution of the original system
with the initial conditions (t0, �x0), then, for each C1-neighborhood U(X) of the nonlinearity X,
there exists a nonlinearity Y ∈ U(X) such that the corresponding solution satisfies the condition
�y(θ,−θ, �x(−θ, 0, �x0)) = 0 for sufficiently small �x0. The proof is of interest from the viewpoint of
the closing technique, because the perturbation is in a sense written out in closed form. Note
that the conditions imposed on the system can readily be verified.

To finish our discussion of the classical lemma, we note three papers by Lin Zhensheng, Cr Clos-
ing Lemma I, II, III, Ann. of Diff. Equat., 1990, vol. 6, pp. 59–67; 1991, vol. 7, pp. 68–77; 1992,
vol. 8, pp. 307–322, where the proof of the classical Cr lemma is presented for r ≥ 2. (The case
of dimM ≥ 3 was considered in the first paper, the case of dimM = 2 in the second one, and in
the third paper, the case of r = ∞ was considered separately. In the last two papers, the author
corrected mistakes found in the previous ones.) From our viewpoint, which is shared by Carlos
Gutierrez [67] and Jehua Mai [86], the proof presented there is incorrect, because the Cr perturba-
tions with r ≥ 2 are not arbitrarily small in these works, even though, the C1 perturbations are.

2. C1 LEMMAS ON CONNECTING ORBITS AND MANIFOLDS

As was mentioned in the introduction, connecting lemmas split into two classes, connecting
lemmas for orbits and connecting lemmas for invariant manifolds of points. This classification
proves to be convenient in spite of the fact that connecting lemmas for invariant manifolds can
be formally considered as connecting lemmas for orbits. The extraction of connecting lemmas
for invariant manifolds is related to specific properties of problems to be solved in which a small
perturbation of a dynamical system should generate a heteroclinic or homoclinic orbit rather than
connect particular points by a single orbit.

The first results pertaining to the Cr lemma on the bifurcation of homoclinic points were ob-
tained by Takens [148], who proved the C1 lemma on the bifurcation of a homoclinic point in the
class of conservative (symplectic) dynamical systems, and by Robinson [131], who proved the Cr

(r ≥ 1) lemma on the bifurcation of a homoclinic point for a diffeomorphism of a sphere (in the case
of a fixed hyperbolic point). Then these results were developed by Newhouse [99] and Pixton [116].
Mané [89] proved the C1 and C2 lemmas on the bifurcation of a homoclinic point for a periodic
hyperbolic point p of a diffeomorphism of an arbitrary closed manifold under the assumption that
the measure of the point p is positive with respect to some invariant probability measure.

Recall that, in the original situation, which is considered in the connecting lemma for orbits, there
is an accumulation point (say, z ∈ M) of the positive semiorbit O+(p) of the point p and the negative
semiorbit O−(q) of the point q of a diffeomorphism f ∈ Diff r(M), z ∈ ω(p) ∩ α(q). For a given
neighborhood of f in the space Diff r(M), it is natural to take points x ∈ O+(p) and y ∈ O−(q) near
z and perturb f so as to ensure that the resulting diffeomorphism g brings x to y. That strategy can
only be successful if the perturbation domain contains no intermediate point f(p), . . . , f i(p), . . . ,
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Fig. 4.

fm−1(p) = f−1(x), f(y), . . . , fk(y) = q, because otherwise, one cannot guarantee that the orbits of
the points p and q of the perturbed diffeomorphism g pass through the points x and y, respectively;
see Fig. 4 (a). In 1997, the Japanese mathematician Hayashi [70] suggested a procedure for avoiding
this difficulty. Let us outline the main ideas of this procedure in a particular situation. Suppose
temporarily that an intermediate point pj = f j(p), 1 ≤ j ≤ m − 2, lies near pm−1 = fm−1(p) =
f−1(x). If we simultaneously perturb f so as to ensure that g brings f j(p) to fm−1(p), then the
presence of intermediate points f j+1(p), . . . , fm−2(p) in the perturbation domain plays no role. The
pair f j(p), fm−1(p) is referred to as a cutting pair . In a similar way, one can introduce the notion
of a cutting pair for intermediate points in the semiorbit O−(q). In the general case, cutting pairs
have the form f j(p), f l(p), 1 ≤ j ≤ l − 1 ≤ m − 1, or f−j(q), f−l(q), where 1 ≤ l ≤ j − 1 ≤ k − 1,
Fig. 4 (b). One of Hayashi’s ideas is to choose not only a connecting pair of points x and y but also
cutting pairs in an optimal way. If points in cutting pairs are sufficiently close to each other, then
one can construct the desired perturbation in pairwise disjoint balls containing cutting pairs and one
connecting pair (x, y). Then the perturbation of the semiorbits O+(p) and O−(q) at points lying
in the ball with the connecting pair (x, y) does not violate the desired condition: both semiorbits
still pass through the corresponding points x and y of the connecting pair. The perturbations
inside the above-mentioned balls are similar to the perturbation constructed in the proof of the
classical or improved closing lemma; namely, the corresponding ε-chain is constructed. Since these
last lemmas have been proved in the smoothness class C1, Hayashi [70] proved the C1 connecting
lemma. However, note that, in the classical and improved closing lemmas, the considered point is
originally nonperiodic. Accordingly, Hayashi additionally assumed that z is nonperiodic. Because
of this assumption, the C1 connecting lemma for orbits has not been proved in full generality yet.

Connecting Orbits

First, consider results concerning the connecting lemma for orbits. For the first time, such
a lemma was stated as Problem 23 in the famous list of 50 problems by Palis and Pugh [110]. Let
us present its statement.

Let U1 and U2 be two open domains such that the topological closure of the positive f -orbit of U1

meets the topological closure of the negative f -orbit of U2. Does there exist a diffeomorphism g
Cr-close to f such that the positive g-orbit of U1 meets the negative g-orbit of U2?

We return to the discussion of this problem later. The C0 connecting lemma holds for orbits
on arbitrary manifolds, although the proof is not as easy as that of the classical or improved
C0 closing lemma [140, 141]. Let us outline the Pugh example [126], which illustrates that the
C1 connecting lemma does not hold for flows on the plane in general. Note that there are two
nonequivalent topologies, weak and strong, for noncompact manifolds. Unless otherwise specified,
we assume the Whitney strong topology, which permits one to control the perturbation “at infinity.”

Consider a smooth flow f t whose phase portrait is shown in Fig. 5 on the plane or an open
disk. The flow f t has two saddles, two sources, and two sinks. The trajectories of f t in the square
ABCD are vertical lines. The points p and q lie on separatrices lp and lq, respectively, such that
ω(lp)∩α(lq) = l0, where l0 is the unbounded trajectory coming from infinity, going to infinity, and
such that B, D ∈ l0.
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Fig. 5.

By p1, p2 . . . (respectively, r0, r1, . . .) we denote the time-successive points of intersection of the
separatrix lp with the segment BC (respectively, CD). By Fn we denote the flow box bounded by
the segments [pn; pn+1] ⊂ BC and [rn; rn+1] ⊂ CD and the arcs [pn; rn] ⊂ lp and [pn+1; rn+1] ⊂ lp.
Figure 5 represents F1. We place the plug shown in Fig. 11 into each Fn and denote the resulting
flow by f t.

Then on each [pn; pn+1] there exists a segment W s
n such that any positive semitrajectory entering

Fn through W s
n tends either to a sink or to a saddle. Likewise, on each [rn; rn+1] there exists

a segment W u
n such that any negative semitrajectory entering Fn through W u

n tends (in the negative
direction) either to a sink or to a saddle.

By construction, the segment AC (which is not shown in Fig. 5 but can readily be imagined) is
a contact-free segment for f t. The segments ABC and ADC are also contact-free in the topological
sense. By πu we denote the first return map ADC → AC along arcs lying in ABCD. In other
words, each point x ∈ ADC is taken by this map to the first point of intersection πu(x) of AC with
the positive semitrajectory passing through x ∈ ADC. Likewise, by πs we denote the first return
map ABC → AC along arcs lying in ABCD but in the negative direction. Set In = πu(W u

n ).
By I ′

n we denote the open interval between the segments In and In+1. In what follows, the length
of an interval I is denoted by |I|. Take numbers a and λ such that

0 < a < 1 < λa,

∞∑

1

(
1 +

1
λ

)
an ≤ 1√

2
|AB|.

Find a flow f t such that |In| = an and |I ′
n| = an/λ. The above inequalities guarantee that the

intervals In and I ′
n of this length can be placed on AC.

Consider a perturbed flow f t that is ε-close to f t. To denote similar objects related to f
t
, we

use the bar above a letter. Set In = πu(W
u

n) and Jn = πs(W s
n). The open interval between Jn

and Jn+1 will be denoted by J ′
n. Recall that the closeness of dynamical systems on noncompact

manifolds is defined in terms of the Whitney strong C1 topology. This permits one to control the
perturbation of the flow f t at the “points at infinity” corresponding to the points B and D in
the obvious sense. Therefore, the following estimates hold for all sufficiently small ε > 0 :

(1 − ε)an ≤ |In| ≤ (1 + ε)an, (1 − ε)an ≤ |Jn| ≤ (1 + ε)an, (1)

(1 − ε)
an

λ
≤ |I ′

n| ≤ (1 + ε)
an

λ
, (1 − ε)

an

λ
≤ |J ′

n| ≤ (1 + ε)
an

λ
. (2)
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Fig. 6.

We assume that they are true for the flow f t. The key technical assertion (it is stated as the
“Gap-lemma” in [126]) is the following: there exists an ε = ε(a, λ) > 0 such that if relations (1)
and (2) hold and if the interval I ′

n meets J ′
n for some n, then

I ′
n+1 ⊂ Jn+1 ∪ J ′

n+1 ∪ Jn.

It follows from this inclusion that the separatrix lp of the flow f t either successively meets all
intervals I ′

n and hence cannot get even in a neighborhood of the point q or gets into the plug for
some n. In either case, lp does not merge with lq. Thus, the C1 connecting lemma does not hold
in general for noncompact manifolds.

As follows from Arnaud’s theorem [33] given below, the existence of a trajectory l0 with empty
limit set in the above-represented Pugh example proves to be a necessary condition for the possibility
to connect orbits.

Theorem 2.1. On a surface M (not necessarily compact), let there be given a vector field
X ∈ Xr(M), r ≥ 1, that has points p, q ∈ M such that ω(p) ∩ α(q) �= ∅. Suppose that the
intersection ω(p)∩α(q) contains at least one one-dimensional nonperiodic trajectory with nonempty
ω- or α-limit set. Then, for each neighborhood U(X) of the field X in X1(M), there exists a field
Y ∈ U(X) ∩ Xr(M) such that Y has a trajectory passing through p and q.

If the intersection ω(p) ∩ α(q) may contain equilibria (along with one-dimensional trajectories
with empty limit sets), then, as the following theorem in [33] shows, the C1 connecting lemma
takes place provided that all equilibria are hyperbolic. [Note that, in this case, the intersection
ω(p) ∩ α(q) can contain only hyperbolic saddles.]

Theorem 2.2. On a surface M (not necessarily compact), let there be given a vector field
X ∈ Xr(M), r ≥ 1, that has points p, q ∈ M such that ω(p) ∩ α(q) �= ∅. Let all equilibria of X be
hyperbolic. Suppose that the intersection ω(p)∩α(q) contains at least one trajectory (not necessarily
one-dimensional) with nonempty ω- or α-limit set. Then, for each neighborhood U(X) of the field
X in X1(M), there exists a field Y ∈ U(X) ∩ Xr(M) such that Y has a trajectory passing through
p and q.

A possible scenario for the connecting lemma is shown in Fig. 6 (a). Since every trajectory
on a compact surface has nonempty ω- or α-limit set, we see that Theorem 2.2 has the following
corollary.

Corollary 2.1. On a compact surface M, let there be given a vector field X ∈ Xr(M), r ≥ 1, that
has points p, q ∈ M such that ω(p)∩α(q) �= ∅. Let all equilibria of the field X be hyperbolic. Then,
for each neighborhood U(X) of the field X in X1(M), there exists a vector field Y ∈ U(X)∩Xr(M)
such that Y has a trajectory passing through p and q.

If the intersection ω(p) ∩ α(q) contains nonhyperbolic fixed points as in Fig. 6 (b), then the
problem remains open.
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Fig. 7.

Let us return to the general case. By unifying the methods in [128, 84, 70], Lan Wen and
Zhihong Xia [156] obtained so far the most general version of the C1 connecting lemma for orbits.
By B(z, δ) we denote the (metric) ball with center z and radius δ.

Theorem 2.3. Let f : M → M be a diffeomorphism of a closed manifold M, and let z ∈ M
be a nonperiodic point of f . Then, for each neighborhood U(f) of f in the space Diff 1(M), there
exist numbers 
 > 1, L ∈ N, and δ0 > 0 with the following property : if points p, q ∈ M lie outside
the set

Δ def=
L⋃

n=1

f−n(B(z, δ))

and the strictly positive f -orbit and the negative f -orbit of q meet the ball B(z, δ
�
) for 0 < δ ≤ δ0,

then there exists a diffeomorphism g ∈ U(f) such that g = f outside Δ and the points p and q lie
on a common g-orbit (see Fig. 7).

This theorem is also true for a noncompact manifold M provided that the trajectory of the point
z ∈ M has at least one accumulation point. Theorem 2.3 readily implies the following version of
the C1 connecting lemma (Theorem A in [156]) for orbits.

Theorem 2.4. Let f : M → M be a diffeomorphism of a closed manifold M, and let p, q ∈ M
be points such that ω(p)∩α(q) �= ∅. Suppose that the intersection ω(p)∩α(q) contains a nonperiodic
point z ∈ M of f . Then, for each neighborhood U(f) of f in Diff 1(M), there exists a diffeomor-
phism g ∈ U(f) such that q belongs to the g-orbit of p. Moreover , there exists an L ∈ N such
that , for each sufficiently small δ > 0, the diffeomorphism g ∈ U(f) can be chosen to satisfy g = f

outside
⋃L

n=1 f−n(B(z, δ)).

Thus, to study the C1 connecting lemma completely, it remains to consider the case in which
the intersection ω(p) ∩ α(q) consists of periodic points.

The proof of Theorem 2.3 is based on a systematic application of the so-called ε-kernel transition
of fixed length from one point to another. Before providing a rigorous definition, recall that, just
as in the case of the classical closing lemma, a neighborhood of a point is identified with the use
of the standard mapping exp−1 with the tangent space TzM , and in the linear approximation,
a diffeomorphism f can be considered as Df . This explains, in a sense, why the main technical
assertions are stated for isomorphisms of linear spaces.
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Fig. 8. An ε-kernel transition from u = FL(cL) to v.

Let us present the definition of an ε-kernel transition. Let there be given a finite sequence of
linear spaces V0, . . . , VL (where the number L ∈ N is fixed) each of which is isomorphic to R

dim M

and a sequence of linear transformations Ti : Vi → Vi−1, 1 ≤ i ≤ L. Let Fj = T1 ◦ · · · ◦ Tj and
F0 = id. Next, let there be given points u, v ∈ V0, sets Q, G ⊂ V0, and a ball B0 ⊂ V0 such that
v ∈ B0 ⊂ Q and B0 ∩G = ∅. Then an ε-kernel transition from u to v contained in Q and avoiding
G is a sequence of points ci (0 ≤ i ≤ L) and balls Bi ⊂ Vi (0 ≤ i ≤ L − 1) such that c0 = v,
cL = F−1

L (u), and

ci ∈ εBi, Ti+1(ci+1) ∈ εBi, Bi ⊂ F−1
i (Q), Bi ∩ F−1

i (G) = ∅, 0 ≤ i ≤ L − 1.

In other words, an ε-kernel transition is an ε-chain from cL to c0 = v with some constraints on the
position of the intermediate points; see Fig. 8.

Two ε-kernel transitions {ci, Bi} and {c′i, B′
i} are said to be disjoint if Bi ∩ B′

i = ∅ for all
0 ≤ i ≤ L. Disjoint ε-kernel transitions are used in the proof of Theorem 2.3 for points that
form cutting pairs and one connecting pair. Note that if u belongs to the positive semiorbit of v,
u = fk(v), and moreover, k ≥ L + 1, then an application of the ε-kernel transition from u to v
gives the classical closing lemma. If u and v form a cutting pair, then v belongs to the positive
semiorbit of u, v = fk(u). After an application of the ε-kernel transition to such a cutting pair,
one can neglect intermediate points f(u), . . . , fk−1(u) that get into the perturbation domain.

The following theorem, which can be viewed as a generalization of Theorem 1.1, essentially
claims the existence of an optimal set of cutting pairs and one connecting pair and the existence
of ε-kernel transitions between the points of the chosen pairs. In what follows, it is convenient to
treat the sequence {x}s

1 as the numbered sequence of positive iterations of p that get into some
small neighborhood of z and the sequence {y}t

1 as the numbered sequence of negative iterations of
q that get into the same neighborhood of z. The points pi and qi are prototypes of cutting pairs,
and the points x and y form a prototype of a connecting pair.

Theorem 2.5. Let there be given an infinite sequence of linear spaces V0, . . . , Vi, . . . each of
which is isomorphic to R

dim M and a sequence of linear transformations Ti : Vi → Vi−1. Then for
any ε > 0, there exist numbers σ > 1 and L ∈ N satisfying the following property. For arbitrary
finite sequences {x}s

1 and {y}t
1 of points in V0 with the order > of the form

x1 < x2 < · · · < xs < yt < yt−1 < · · · < y1
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introduced on their union N
def= {x}s

1 ∪ {y}t
1, there exist points x ∈ {x}s

1 ∩ B(xs, σ|xs − yt|) and
y ∈ {y}t

1 ∩ B(xs, σ|xs − yt|) and k ordered pairs {pi, qi} ⊂ N ∩ B(xs, σ|xs − yt|) such that
1. x1 ≤ p1 ≤ q1 < p2 ≤ q2 < · · · < pk′ ≤ qk′ < x < y < pk′+1 ≤ qk′+1 < · · · < pk ≤ qk ≤ y1;
2. there exists an ε-kernel transition of length L from x to y contained in B(xs, σ|xs − yt|);
3. for each i = 1, . . . , k, there exists an ε-kernel transition of length L from pi to qi contained

in B(xs, σ|xs − yt|);
4. all ε-kernel transitions avoid the set N − [x, y]− [p1, q1]− · · · − [pk, qk], where [a, b] stands for

the set {c ∈ N |a ≤ c ≤ b};
5. all k + 1 ε-kernel transitions are pairwise disjoint.

Now if we use ε-kernel transitions for all pairs pi, qi (from pi to qi) and an ε-kernel passage for
the pair x, y (from x to y), then we obtain an orbit connecting x1 with the point y1. The proof
of Theorem 2.5 is quite cumbersome and uses a special filling of the space V0 in a neighborhood of
the point xs by (dimM)-dimensional parallelepipeds. Then one chooses a maximal and a minimal
point (in the sense of the order introduced in the theorem) in each parallelepiped and takes pairwise
disjoint intervals [x, y], [p1, q1], . . . , [pk, qk] that contain all points of the sequence N lying in all
parallelepipeds. Note that actually there are some constraints on the ε-kernel transitions, but we
omit them to avoid cumbersome technical details. Just as the classical C1 closing lemma follows
from Theorem 1.1 (see Section 1), one can derive Theorem 2.3 from Theorem 2.5.

By Theorem 2.3, Problem 23 in [110], mentioned at the beginning of this section, has the
following partial solution: if the intersection of the topological closure of the positive f -orbit of U1

with the topological closure of the negative f -orbit of U2 contains at least one nonperiodic point
whose orbit has accumulation points, then there exists a diffeomorphism g C1-close to f such that
the positive g-orbit of U1 meets the negative g-orbit of U2.

A “uniform” analog of Theorem 2.3 was obtained in [152]. Namely, the existence of a neigh-
borhood U1(f) ⊂ U(f) such that the conclusion of Theorem 2.3 holds for f as well as for any
diffeomorphism f1 in U1(f) is proved in addition to the existence of numbers 
 > 1, L ∈ N, and
δ0 > 0. Developing the method of proof of Theorem 2.3, Bonatti and Crovisier [46] proved the
following assertion.

Theorem 2.6. Let f : M → M be a diffeomorphism of a compact manifold M such that all
periodic orbits of f are hyperbolic. Suppose that there exist points p, q ∈ M such that there exists
an ε-chain from p to q for each ε > 0. Then for every neighborhood U of f in the space Diff 1(M),
there exists a diffeomorphism g ∈ U for which p and q lie on the same orbit.

By the Kupka–Smale theorem, a generic C1 diffeomorphism satisfies the assumptions of Theo-
rem 2.6. That is why Theorem 2.6 is substantially used in the description of residual sets (see Sec-
tion 7) in the space Diff 1(M). Note that, in particular, Theorem 2.6 implies that, for a generic
diffeomorphism, any chain-recurrent point can be made periodic by an arbitrarily small C1 pertur-
bation.

By using the main method of his paper [70], Hayashi proved the strengthened variant of the
Mañé C1 dichotomy for vector fields [71]. Before stating the precise result, let us give necessary
definitions (as usual, only for the case of a diffeomorphism). Following [39], we refer to the set

J+
1 (p) = {q ∈ M : ∃ zk → p, ∃nk → +∞

such that fnk(zk) → q as k → +∞}

as the first-order prolongational ω-limit set of the point p in the sense of Auslander. In a similar
way, one can define J+

1 (N) for an arbitrary set N ⊂ M . Set J+
m(p) = J+

1 (J+
m−1(p)) for m ≥ 2.

By replacing nk → +∞ by nk → −∞, one can define the first-order prolongational α-limit set J−
1 (p)

of the point p in the sense of Auslander and, by induction, the set J−
m(p) for m ≥ 2. A point p is

said to be prolongationally recurrent in the sense of Auslander if p ∈ J+
m(p)∪J−

m(p) for some m ≥ 1.
Since p ∈ J+

1 (p) if and only if p ∈ J−
1 (p), it follows that each nonwandering point is prolongationally

recurrent in the sense of Auslander. If we replace the condition of nonwandering in the improved
closing lemma by prolongational recurrence, then we obtain a more general assertion, which could
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be called the Auslander Cr closing lemma. Such a lemma was considered for vector fields on the
plane and the sphere in [114, 115] for r ≥ 1; see Section 5.

The prolongational ω-limit set of a point p is defined as the set

ω̃(p) = {q ∈ M : ∃ zk → p, ∃nk → +∞∃ fk → f

such that fnk

k (zk) → q as k → +∞}.

In a completely similar way, one defines the prolongational α-limit set α̃(p) and the corresponding
notions for flows and vector fields. Obviously, J+

1 (p) ⊂ ω̃(p) and J−
1 (p) ⊂ α̃(p). The following

assertion was proved in [71].

Theorem 2.7. Let there be a C1 vector field �X ∈ χ1(M) given on a closed manifold M, and
assume that there exist points p, q ∈ M such that ω̃ �X(p)∩ α̃ �X(q) �= ∅. Then for each neighborhood
U( �X) ⊂ χ1(M) of �X, there exists a �Y ∈ U( �X) such that either the points p and q lie on the same
trajectory of the vector field �Y or ω̃�Y (p) ∩ α̃�Y (q) = ∅.

Connecting Invariant Manifolds

First, we present some definitions. Let f be a C1-smooth diffeomorphism of a closed
d-dimensional (d ≥ 2) Riemannian manifold M . A set Λ ⊂ M invariant with respect to f is said
to be hyperbolic if the restriction TΛM of the tangent bundle TM of M to Λ can be represented
as the Whitney sum Es

Λ ⊕ Eu
Λ of df -invariant subbundles Es

Λ and Eu
Λ (dim Es

x + dimEu
x = dim M ,

x ∈ Λ) and there exist constants Cs > 0, Cu > 0, and 0 < λ < 1 such that

‖dfn(v)‖ ≤ Csλ
n‖v‖, v ∈ Es

Λ, n > 0,
‖df−n(v)‖ ≤ Cuλn‖v‖, v ∈ Eu

Λ, n > 0.

The hyperbolic structure results in the existence of so-called stable and unstable manifolds,
which comprise points with the same asymptotic behavior under positive and negative iterations,
respectively. More exactly, for each x ∈ Λ, there exists an injective immersion Is

x : R
s → M , whose

image W s(x) = Is
x(Rs) is referred to as the stable manifold of the point x, such that the following

properties hold.
1. The tangent space of W s(x) at the point x coincides with Es

x, TxW
s(x) = Es

x.
2. A point y ∈ M belongs to W s(x) if and only if d(fn(x), fn(y)) → 0 as n → ∞.
3. f(W s(x)) = W s(f(x)).
4. If x, y ∈ Λ, then either W s(x) = W s(y) or W s(x) ∩ W s(y) = ∅.

The unstable manifold W u(x), x ∈ Λ, is defined as the stable manifold with respect to the diffeo-
morphism f−1. The unstable manifolds have similar properties. By virtue of property 3, the stable
and unstable manifolds are said to be invariant.

A hyperbolic set Λ ⊂ M of a diffeomorphism f : M → M is said to be isolated if it has a compact
neighborhood U (the so-called isolating neighborhood) such that

⋃
n∈Z

fn(U) = Λ. It is well known
that an isolated maximal hyperbolic set can be uniquely represented as a union of pairwise disjoint
isolated transitive sets, which are called basic sets. By W s(Λ) and W u(Λ), we denote the stable
and unstable manifolds, respectively, of the set Λ. A point z is called a homoclinic point associated
with Λ if z ∈ W s(Λ) ∩ W u(Λ) − Λ. A point is called an almost homoclinic point associated with Λ
if it lies in

(clos W s(Λ) ∩ W u(Λ)) ∪ (W s(Λ) ∩ clos W u(Λ)) − Λ.

Let a Cr diffeomorphism f : M → M have an almost homoclinic point associated with an isolated
hyperbolic set Λ. The following assertion will be referred to as the Cr lemma on the generation of
a homoclinic point.

For any neighborhood U of the diffeomorphism f in the space Diff r(M), there exists a diffeomor-
phism g ∈ U coinciding with f in some neighborhood of Λ and such that g has a homoclinic point
associated with Λ.
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Fig. 9.

If we require g to have a transversal homoclinic point, then we obtain the Cr lemma on the
bifurcation of a transversal homoclinic point. This lemma plays an important role, because little
information on the dynamics can be derived in practice from the existence of almost homoclinic
points. On the other hand, Smale [144] proved that a transversal homoclinic point is an accu-
mulation point of invariant compact sets on which the diffeomorphism acts like a finite Markov
chain.

The existence of an almost homoclinic point associated with an isolated hyperbolic set Λ implies
the existence of an almost homoclinic sequence. Let us give a precise definition. Let U be an iso-
lating neighborhood for Λ, and let Ds ⊂ W s(Λ) ∩ U and Du ⊂ W u(Λ) ∩ U be the fundamental
domains of the restrictions f |W s(Λ)−Λ and f |W u(Λ)−Λ, respectively; i.e.,

Ds = clos (W s
ε (Λ) − f(W s

ε (Λ))) , Du = clos
(
W u

ε (Λ) − f−1(W u
ε (Λ))

)

for some ε > 0. A sequence of finite orbits O(xk) = {f i(xk) : mk ≤ i ≤ nk, xk ∈ M} is called an
almost homoclinic sequence associated with Λ if the initial points fmk(xk) tend to Ds, the terminal
points fnk(xk) tend to Du, and at least one point in O(xk) lies outside U ; see Fig. 9.

The following assertion was proved in [70].

Theorem 2.8. Suppose that a diffeomorphism f : M → M of a closed Riemannian manifold M
has an isolated hyperbolic set Λ and an almost homoclinic sequence associated with Λ. Then for
each neighborhood U of f in Diff 1(M), there exists a diffeomorphism g ∈ U coinciding with f in
some neighborhood of Λ and such that g has a homoclinic point associated with Λ.

The idea of the choice of a connecting pair and cutting pairs was used in the proof of this
theorem. As a consequence, we obtain the following assertion.

Theorem 2.9. Suppose that a diffeomorphism f : M → M of a closed Riemannian manifold M
has an isolated hyperbolic set Λ and an almost homoclinic point associated with Λ. Then for
each neighborhood U of f in Diff 1(M), there exists a diffeomorphism g ∈ U coinciding with f in
some neighborhood of Λ and such that g has a homoclinic point associated with Λ.

Let us present two theorems which can be derived from Theorem 2.3. (For the proof, see [156].)

Theorem 2.10. Suppose that a diffeomorphism f : M → M of a closed Riemannian mani-
fold M has an isolated hyperbolic set Λ, and let the intersection clos W s(Λ)∩clos W u(Λ)−Λ contain
nonperiodic points. Then for each neighborhood U of f in Diff 1(M), there exists a diffeomorphism
g ∈ U coinciding with f in some neighborhood of Λ and such that g has a homoclinic point associated
with Λ.

Theorem 2.11. Suppose that a diffeomorphism f : M → M of a closed Riemannian mani-
fold M has an isolated hyperbolic set Λ and there exists a family of periodic orbits not lying in Λ
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and accumulating to Λ. Then for each neighborhood U of f in Diff 1(M), there exists a diffeomor-
phism g ∈ U coinciding with f in some neighborhood of Λ and such that g has a homoclinic point
associated with Λ.

Theorem 2.9 does not say anything about the character of the homoclinic point obtained by the
perturbation and the invariant manifolds whose intersection forms the homoclinic point. (It is only
clear that a transversal homoclinic point can be obtained.) The following refinement of Theorem 2.9
was obtained in [91] for a two-dimensional manifold.

Theorem 2.12. Suppose that a diffeomorphism f : M2 → M2 of a closed two-dimensional
Riemannian manifold M2 has a basic set Λ and an almost homoclinic point associated with Λ.
Then one of the following conditions is satisfied for each periodic point p ∈ Λ.

(i) Outside Λ, there exists a transversal homoclinic point associated with p.
(ii) For each neighborhood U of f in Diff 1(M2), there exists a diffeomorphism g ∈ U coinciding

with f in some neighborhood of Λ and such that g has homoclinic tangency associated with p.

Therefore, either the unstable and stable manifolds of p themselves meet transversally outside
the set Λ, and then no perturbation is required for obtaining homoclinic points, or by an arbitrarily
small (in the C1 topology) perturbation one can ensure that the unstable and stable manifolds have
a point of tangency. In the most interesting case where Λ has an almost homoclinic point but the
unstable and stable manifolds of the set Λ are disjoint, for each periodic point p ∈ Λ there exists
an arbitrarily small perturbation under which the unstable and stable manifolds of p have a point
of tangency. Note that even in the case of the coarsest (quadratic) tangency, there exist arbitrarily
small perturbations leading to complicated dynamics [14, 15, 101].

3. POINCARÉ PROBLEM ON THE DENSENESS OF PERIODIC ORBITS

First, recall the main notions of the theory of Hamiltonian systems. A skew-symmetric 2-form
ω on a manifold is said to be symplectic if it is closed (dω = 0) and nondegenerate; the latter means
that if ω( �X, �Y ) = 0 for all �Y , then �X = 0. An even-dimensional manifold M = M2m equipped
with a symplectic form is said to be symplectic. On the tangent space TzM at an arbitrary point
z ∈ M2m, the form ω defines the nondegenerate skew-symmetric inner product

ω(�v, �u) =
2m∑

i,j=1

aijviuj = �v T A�u, (3)

where A = (aij) is a skew-symmetric matrix (AT = −A). By virtue of nondegeneracy, ω naturally
defines an isomorphism of the tangent space TzM onto the cotangent space T ∗

z M by the formula
�u �→ ω(·, �u ). By JA we denote the inverse isomorphism T ∗

z M → TzM . Let a Cr function H :
M → R, r ≥ 1, be given on the symplectic manifold M . Then dH ∈ T ∗M . The Cr−1 vector
field �XH = JA(dH) defined in accordance with (3) by the formula ω( �XH , �Y ) = dH(�Y ) is called the
Hamiltonian field associated with (the Hamiltonian) H. Sometimes the vector field �XH is referred
to as the skew-symmetric gradient of the function H. The flow φH generated by the field �XH is
called the Hamiltonian flow. The space of Hamiltonian Cr smooth vector fields will be denoted
by Hr (M). If c is a regular value of a Hamiltonian H, then H−1(c) is called an energy manifold.

The space R
2m equipped with the symplectic form (3), where A is a constant matrix, is a standard

example of a symplectic manifold. The natural projection π : R
2m → R

2m/Z
2m ∼= T 2m induces

a symplectic structure on the torus T 2m. In this case, we have

�XH = JA∇H, JA = −A−1, ∇ =
(

∂

∂x1

, . . . ,
∂

∂x2m

)
. (4)

As was mentioned above, the C1 Poincaré closing lemma was proved by Pugh and Robinson [128].
(See the statement of the Poincaré lemma in Introduction.) Actually, they proved a stronger result
by showing that there exists a desired perturbation that preserves an energy manifold. Let us
present their theorem.
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Theorem 3.1. Let a point x0 ∈ M lie on a regular compact energy manifold M0 of
a C2-Hamiltonian H0 that defines a Hamiltonian C1 vector field �v0 ∈ H1(M). Then in the space
H1 (M), there exists a field �w ∈ H1 (M) arbitrarily close to �v0 such that M0 is its energy manifold
and x0 lies on a periodic trajectory of �w.

The proof follows the scheme of proof of the improved C1 closing lemma, but one additionally
shows that the perturbation in the direction perpendicular to the family of energy manifolds can
be eliminated. (See [128, Sec. 9] for details.) As a consequence, we obtain the weakened Poincaré
conjecture on the denseness of periodic trajectories of a generic Hamiltonian system in the class C1.

Theorem 3.2. For a generic Hamiltonian vector field in the space H1 (M), the periodic trajec-
tories are everywhere dense on compact energy manifolds.

Let us present Hermann’s example [73], which shows that the Poincaré lemma fails for suffi-
ciently large r. The example is constructed on the even-dimensional torus T

2n+2, n ≥ 1, with the
coordinates θ = (θ1, . . . , θ2n+2). We denote the last coordinate by θ2n+2 = r.

First, recall some facts from “multidimensional” arithmetics. We say that a vector

α = (α1, . . . , αd) ∈ R
d

satisfies the Diophantine condition with exponent τ ≥ 0 if there exists a C > 0 such that
∣∣
∣∣
∣

d∑

i=1

kiαi

∣∣
∣∣
∣
≥ C

(
d∑

i=1

|ki|
)−τ

for each k = (k1, . . . , kd) ∈ Z
d−{0}. The set of such vectors is denoted by DCτ(Rd). If τ ≥ d−1 ≥ 1,

then the complement R
d − DCτ(Rd) of the set DCτ(Rd) has zero Lebesgue measure. Moreover,

the vector (1, sα) ∈ R
d+1 satisfies the Diophantine condition with exponent τ1 = sup{τ, d + 0} for

Lebesgue almost all s ∈ R − {0}.
Take α = (α1, . . . , α2n+1) ∈ R

2n+1 ∈ DCτ(R2n+1), where τ ≥ 2n + 1 ≥ 3 and the numbers
{α1, . . . , α2n+1} are rationally independent. On T

2n+2 we introduce a symplectic structure of the
form (3) such that the isomorphism JA is given by the matrix

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

0 1 0 0 . . . 0 α1

−1 0 0 0 . . . 0 α2

0 0 0 1 . . . 0 α3

0 0 −1 0 . . . 0 α4

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 0 α2n+1

−α1 −α2 −α3 −α4 . . . −α2n+1 0

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

Since detJA = α2
2n+1 �= 0, it follows that there exists a matrix A that defines the desired symplectic

structure. Take the Hamiltonian H0(θ1, . . . , θ2n+1, r) = sin(2πr). One can readily see that ∇H0 =
(0, . . . , 0, cos(2πr)) and system (4) acquires the form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ̇1 = 2α1π cos(2πr)

· · · · · · · · ·
θ̇2n+1 = 2α2n+1π cos(2πr)

ṙ = 0.

Obviously, each value c ∈ (−1,+1) is regular for the Hamiltonian H0, and the energy manifold
H−1

0 (c) consists of two tori T 2n
1c and T 2n

2c on each of which the corresponding Hamiltonian flow is
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minimal, because the numbers {α1, . . . , α2n+1} are rationally independent. To show that the above-
represented system provides the desired example, Hermann [73] proved that the above-mentioned
properties of the Hamiltonian H0 are preserved under small Cr perturbations; namely, for each
r > sup{2τ1; τ + τ1 + 1}, there exists a neighborhood U(H0) of H0 in the Cr topology such that all
values of an arbitrary H ∈ U(H0) in the interval [−1/2, 1/2] are regular, and, for any c ∈ [−1/2, 1/2],
the energy manifold H−1(c) consists of two tori on each of which the corresponding Hamiltonian flow
is conjugate to a flow on the torus T 2n

1c and T 2n
2c (and hence is minimal and has no periodic orbit).

Indeed, for the Hamiltonians sufficiently C2-close to H0, each of the two tori Tc,j ∈ H−1(c) (j = 1, 2)
is the graph of some C2 function ψc,j : T 2n+1 → R : H(θ, ψc,j(θ)) = c for all θ ∈ T 2n+1. Under the
action of the projection T 2n+2 → T 2n+1 of the form (θ, r) → θ, the vector field �XH |Tc,j

= JA∇H|Tc,j

is projected to the vector field �Yc,j. Consider its “normalization,”

�Zc,j =
1

φc,j

�Yc,j, where φc,j =
∂H

∂r
(·, ψc,j).

One can readily see that the kth component (1 ≤ k ≤ 2n + 1) of this field is equal to

−
2n+1∑

i=1

cki

∂ψc,j

∂θi

+ αk,

where JA = (cij). Since cki = −cik, we have
∫

T 2n+1

�Zc,jdm = αA, (5)

where dm is the Haar measure. Somewhat exaggerating, one can say that the field �Zc,j has rotation
number αA. On the two-dimensional torus, one could make the conclusion that the field �Zc,j is
conjugate to a linear field that, by virtue of the rational independence of the coordinates of the
vector αA, is a minimal vector field. However, in the multidimensional case (the torus T 2n+1 is at
least three-dimensional), a field is not conjugate to a linear field in general. Therefore, we cannot
claim yet that the vector field �XH |Tc,j

does not have periodic trajectories. The proof of the conjugacy
with a linear field is carried out with the use of a fine result due to Hermann [72], in which it is
required that the vector field be close to a linear field in the Cr topology for a sufficiently large r.
Let us present this result.

First, recall that if a diffeomorphism f : T d → T d of the torus T d preserves the measure dm and
can be represented in the form f = Id+ζ, where ζ is a 1-periodic function of each of its arguments,
then, by analogy with the circle T 1 = S1, one can define the rotation number


m(f) =
∫

T d

ζdm.

(More precisely, this is one way to introduce a characteristics similar to the Poincaré classical
rotation number.) By gt we denote the time t shift along the trajectories of the vector field �Zc,j.
By virtue of (5), 
(gt) = tαA. Take an s ∈ R − {0} such that the vector (1, sαA) ∈ R

2n+2 satisfies
the Diophantine condition with exponent τ1 = sup{τ, 2n + 1 + 0}. Now we use the following
Proposition 2.6.1 in [72, Chap. XIII].

Let (1, sα) ∈ R
d+1 satisfy the Diophantine condition with exponent τ1, and let r > 2τ1. Then in

the space Diff r
m(T d), there exists a neighborhood V of the translation Rα : T d → T d by the vector α

such that every diffeomorphism g ∈ V ∩ Diff r
m(T d) with 
(g) = α is Cr−τ1−0 conjugate to Rα.

Here Diff r
m(T d) stands for the space of Cr diffeomorphisms T d → T d preserving the measure dm.

Thus, if the Hamiltonian H is Cr+1-close to H0, then the vector field �Zc,j is conjugate to the constant
vector field αA on T 2n+2. This implies the desired result; for details, see [73].
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It was shown in [74] that the Cr smoothness requirement cannot be weakened in general. The pa-
per [74] also provides other examples on compact symplectic manifolds that are not homological to
a torus.

Let a symplectic 2-form ω define a symplectic structure on an even-dimensional compact mani-
fold M2m. By Diff r

ω (M2m) we denote the space of symplectic Cr diffeomorphisms of M2m, that is,
diffeomorphisms preserving the symplectic (or volume) form ω. The following C1 connecting lemma
for pseudo-orbits (an analog of Theorem 2.6) holds for symplectic C1 diffeomorphisms [37, 46, 53].

Theorem 3.3. Let f ∈ Diff 1
ω (M2m) be a symplectic diffeomorphism of a compact manifold M2m

such that , for any number s ∈ N, the set of periodic points of f of period s is finite. Suppose that
there exist points p, q ∈ M such that , for each ε > 0, there exists an ε-chain from p to q. Then,
for each neighborhood U of f in Diff 1

ω (M2m), there exists a diffeomorphism g ∈ U such that p and
q lie on the same orbit.

The proof is carried out by the same scheme as Theorem 2.6 with regard of the symplecticity of
the diffeomorphism.

Closing lemmas play an important role in the analysis of various classes of holomorphic map-
pings of the multidimensional complex space C

k; see the survey [160] and Appendix B in [93],
where the role of the classical closing lemma in the proof of the denseness of hyperbolic mappings
in families of polynomials of degree 2 is discussed. By E we denote the space of holomorphic map-
pings C

k → C
k equipped with the topology of uniform convergence on compact subsets. In [56],

Fornaess and Sibony proved the classical closing lemma (in the above-mentioned topology of the
space E) in classes of holomorphic endomorphisms, biholomorphic mappings, biholomorphic con-
servative (i.e., volume-preserving) mappings, biholomorphic symplectomorphisms C

2k → C
2k, and

holomorphic Hamiltonians on C
2. The proofs are very different from the ones considered here and

are specific to complex analysis and complex dynamics. (These specific features essentially single
out complex dynamics in the theory of dynamical systems.) Note also the papers [57, 130], where
close issues were considered.

4. ANOSOV LEMMA

The assertion that is now referred to as the Anosov closing lemma historically arose from
Lemma 13.1 in [5]. (See also [3, 4], where fundamental results, based on Lemma 13.1, on the count-
ability of periodic motions in Anosov systems and the denseness of periodic motions in Anosov
systems with an integral invariant were announced.) This lemma deals with an Anosov flow5 f t on
a closed manifold M . For a point z ∈ M , by l(z, ftz) we denote the trajectory arc of time length t
with endpoints z and ftz. Let us present Lemma 13.1 in [5].

Lemma 4.1. For each ε > 0, there exists a δ > 0 with the following property. Let a point z ∈ M
and a number τ > ε satisfy the inequality d(z, fτz) < δ. Then there exists a periodic trajectory l0 of
the flow f t such that the Hausdorff distance between the arc l(z, fτz) and the curve l0 is less than ε.

This assertion illustrates how the local hyperbolicity condition and the nonlocal recurrence con-
dition imply the existence of a periodic motion in a system. To demonstrate the idea of how to use
hyperbolicity, considered a weakened version of Lemma 4.1, which is due to Franks [58, Proposi-
tion 1.7]. (Note that the assumption of Lemma 4.1 holds in an arbitrary neighborhood of a non-
wandering point.)

Lemma 4.2. Let f : M → M be an Anosov diffeomorphism of a manifold M . Then periodic
points are dense in the nonwandering set NW (f).

Scheme of proof of Lemma 4.2. Let U be a neighborhood of a point z ∈ NW (f). Without
loss of generality, one can assume that U lies in a neighborhood with a product structure. In what

5 This means that the entire M is a uniform hyperbolic set of the flow f t.
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Fig. 10.

follows, it is convenient to denote W u(s)
ε (p) by W u(s)(p, ε). Take an ε > 0 small enough that

Uε
def= W u(z, ε) × W s(z, ε) ⊂ U.

Since z is a nonwandering point, it follows that there exists a z′ ∈ Uε/4 such that W u(z′, ε/8) ⊂ Uε/4

and fn(z′) ∈ Uε/4. The number n can be assumed to be large enough that Cuλ−n > 8 and
Csλ

n < 1/8, where Cs > 0, Cu > 0, and 0 < λ < 1 are the constants occurring in the definition of
hyperbolicity; see Section 2. Then

W u
(
fn(z′),

ε

2

)
⊂ fn

(
W u(z′),

ε

8

)
def= D.

By D0 we denote the component of D containing the point fn(z′); see Fig. 10. Define a mapping
h : D0 → D0 as follows: first, we map D0 into W u(z′, ε/8) by f−n and then project W u(z′, ε/8)
into D0 along the stable manifolds. Since f−n acts as a contraction on unstable manifolds, it follows
that h has a fixed point y ∈ D0. Obviously, fn(W s(y)) = W s(y). Set D′ = W s(y, 3ε/2). Then

fn(D′) ⊂ W s

(
fn(y),

3ε
16

)
⊂ D′.

Therefore, fn has a fixed point x ∈ Uε. The proof of the lemma is complete.
Following [134], we refer to the closure of the union of all ω- and α-limit sets as the limit set of

the homeomorphism f ,
L(f) = clos

⋃

z∈M

(ω(z) ∪ α(z)) .

The chain-recurrent set of f will be denoted by R(f). Obviously,

clos(Per(f)) ⊂ L(f) ⊂ NW (f) ⊂ R(f).

Presently, the Anosov closing lemma is understood as the following assertion [134].

Theorem 4.1. Let f : M → M be a diffeomorphism of a compact Riemannian manifold M .
The following assertions hold.

1. Suppose that the chain-recurrent set R(f) of the diffeomorphism f has hyperbolic structure.
Then periodic points are dense in R(f), and

clos(Per(f)) = R(f) = L(f) = NW (f).

2. Suppose that the limit set L(f) of the diffeomorphism f has hyperbolic structure. Then periodic
points are dense in L(f), and

clos(Per(f)) = L(f).

3. Suppose that the nonwandering set NW (f) of the diffeomorphism f has hyperbolic structure.
Then periodic points are dense in the nonwandering set of the restriction of f to NW (f); i.e.,

clos(Per(f)) = NW (f |NW (f)).
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The proof is based on the following tracing theorem, which has an independent value (for tracing
see [117]). Recall that a point y is ε-tracing a δ-chain {xj}j2

j1
if d(f j(y), xj) < ε for all j1 ≤ j ≤ j2.

Below Uη(N) stands for the η-neighborhood of the set N .

Theorem 4.2. Let Λ be a hyperbolic invariant compact set. For any ε > 0, there exist δ > 0
and η > 0 such that if {xj}j2

j1
is a δ-chain lying in Uη(Λ), then there exists a point y, which is

ε-tracing {xj}j2
j1

. If the δ-chain {xj}j2
j1

is periodic, then y is also periodic. If j1 = −∞, j2 = +∞,
and Λ is isolated , then y ∈ Λ.

Let us schematically show how to use the shadowing theorem in the proof of the first assertion of
Theorem 4.1. Take a chain-recurrent point z ∈ R(f). Then, for each δ > 0, there exists a periodic
δ-chain {xj}j2

j1
such that d(z, xj1 ) < δ. Moreover, such a δ-chain can be chosen to consist of chain-

recurrent points. By Theorem 4.2, there exists a periodic point y that ε-shadows {xj}j2
j1

. Since
δ + ε can be arbitrarily small, we have z ∈ clos(Per(f)). The remaining assertions of Theorem 4.1
can be proved in a similar way.

There is a version of the closing lemma for a nonuniformly hyperbolic set, which was proved by
Katok [77]. (See also Theorem S.4.13 in [78].)

5. Cr LEMMAS FOR r ≥ 2

Classical and Improved Cr Lemmas

As was mentioned above, there are numerous results on the classical and improved Cr lemmas
for r ≥ 2. Most of them deal with smooth transformations of the circle and the segment and also
with flows on surfaces.

Mappings of the circle and the segment. The circle S1 is the first manifold on which the
classical Cr closing lemma was proved for all r ≥ 1, including Cω, even before the statement itself
of the lemma appeared [17]. Let us outline the proof, because its main idea is used in most proofs of
closing lemmas for r ≥ 2.

Let x0 ∈ S1 be a nontrivially recurrent point of a Cr diffeomorphism f : S1 → S1. Take the lift
f : R → R with respect to the universal covering π : R → R/Z ∼= S1. By Rλ : R → R we denote
the translation x �→ x + λ covering the rotation Rλ : S1 → S1. Take an ε > 0. It suffices to show
that there exists |λ0| < ε such that Rλ0 ◦f has a periodic point x0. Take a lift x0 ∈ R of that point.
Without loss of generality, one can assume that x0 = 0. Since x0 is a nontrivially recurrent point,
it follows that there exists an m ∈ Z and a k ∈ N such that either m − ε/2 < fk(x0) < m or
m < fk(x0) < m + ε/2. To be definite, we assume that the first inequality holds. (In the case
of the second inequality, the proof can be carried out in a similar way.) Obviously, if λ > 0, then
Rλ ◦ f > f and there exists 0 < λ∗ < ε such that fk(x0) + λ∗ > m. We have

(
Rλ ◦ f

)k
(x0) =

(
Rλ ◦ f

)
◦

(
Rλ ◦ f

)k−1
(x0) ≥ Rλ ◦ fk(x0) = fk(x0) + λ.

Therefore,
(
Rλ∗ ◦ f

)k
(x0) > m. On the other hand,

(
R0 ◦ f

)k
(x0) = fk(x0) < m. Since the point

(
Rλ ◦ f

)k
(x0) continuously depends on λ, it follows that there exists 0 < λ0 < λ∗ < ε such that

(
Rλ0 ◦ f

)k
(x0) = m. It follows that Rλ0 ◦ f has the periodic point x0. The proof of the improved

Cr closing lemma reproduces this proof almost word for word.
The above-represented proof demonstrates essentially the only method, which can be called

the “field rotation,” for proving closing lemmas in the smoothness classes with r ≥ 2. In the C1

lemma, the bifurcation is concentrated in small balls, and the closure is performed in the δ-kernels
of these balls (which automatically makes higher-order derivatives large), while for r ≥ 2 one uses
a bifurcation, which, owing to a sufficiently large size of the deformation domain, practically does
not affect higher-order derivatives. On the circle, a “rotation of the field” is simply a translation,
and for vector fields it implies the addition of a constant vector field of desired direction.
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The following super-strengthened closing lemma can be proved for diffeomorphisms of the cir-
cle [13].

Theorem 5.1. Suppose that a Cr diffeomorphism f : S1 → S1 has a chain-recurrent point ,
r ≥ 1. Then, for each neighborhood U of f in the space Diff r(S1), there exists a g ∈ U such that
all points of the diffeomorphism g are periodic.

The most important case is one in which the rotation number rot(f) is irrational. Note that,
in this case, a chain-recurrent point can be wandering, but then r = 1. According to a remarkable
result due to Hermann [72], f can be approximated by an analytic diffeomorphism g0 that is
analytically conjugate to a rotation Rα, g0 = h ◦ Rα ◦ h−1. Obviously, Rα can be approximated
by the rotation Rp/q, all of whose orbits are periodic. Then g = h−1 ◦ Rp/q ◦ h is the desired
diffeomorphism.

Now consider Cr smooth mappings of the interval I = [0; 1] into itself. By Endr
pm(I) we

denote the set of Cr smooth (in particular, continuous) piecewise monotone mappings of I into
itself equipped with the natural metric dr(f, g) = maxx∈I maxi=0,...,r |f (i)x − g(i)x| if r is finite and

d∞(f, g) =
∑∞

i=0

1
2i

max
x∈I

{min(1, |f (i)x − g(i)x|)}. For f ∈ Endr
pm(I), we set

Rec(f) = {x ∈ I : ∀ε > 0, ∃n > 0 : |fnx − x| < ε}.

Obviously, Per(f) ⊂ Rec(f) ⊂ NW (f). The relation

clos(Per(f)) = clos(Rec(f)) (6)

was proved in [161] for any continuous mapping f ∈ End0
pm(I); this relation can be treated as

an analog of the Poincaré lemma (i.e., nothing should be perturbed): there exists a periodic orbit
passing near any nontrivially recurrent point. Note that relation (6) is not necessarily true for
an arbitrary homeomorphism of the circle S1. As to the approximation of nonwandering points by
periodic ones, the following assertion was proved in [161].

Theorem 5.2. Suppose that f ∈ Endr
pm(I), 0 ≤ r ≤ ∞, has a nonwandering point x ∈ NW (f).

Then for each ε > 0, there exists a polynomial g such that dr(f, g) < ε and x belongs to the closure
of the set of periodic points of g, x ∈ clos(Per(g)).

Theorem 5.2 is used to prove that the relation clos(Per(f)) = NW (f) holds for a generic
mapping f ∈ Endr

pm(I), 2 ≤ r ≤ ∞. This relation was proved earlier by Jacobson [24] for
a generic f in the space End1

pm(S1).
Consider one-to-one mappings of the circle S1 ∼= R/Z (which is equipped with the positive sense)

with discontinuities. Let A = {ai}k
i=1 and B = {bi}k

i=1 be two families of cyclically ordered points
that divide S1 into intervals Ii = (ai, ai+1) and Ji = (bi, bi+1), respectively, where ak+1 = a1 and
bk+1 = b1. A mapping

f : S1 −
k⋃

i=1

ai → S1 −
k⋃

i=1

bi

is said to be piecewise Cr-diffeomorphic, r ≥ 0, if it is a one-to-one mapping and the restriction
f |Ii

is a Cr smooth diffeomorphism6 on Jσ(i). Let us introduce the Cr-topology on the set of such
mappings. For a given ε > 0, we say that g belongs to the ε-neighborhood Uε(f) of a mapping
f if there exists an orientation-preserving Cr diffeomorphism h : S1 → S1 ε-close to the identity
mapping and such that h(clos Ii(f)) = clos Ii(g), i = 1, . . . , k, and g◦h is ε-close to f in the Whitney
Cr topology on each clos (Ii(f)). The space of piecewise diffeomorphic mappings of a circle with
a fixed k, equipped with the above-mentioned topology, is denoted by Mr+0(k).

6 A C0 diffeomorphism is understood as a homeomorphism.
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Take the symbols J1, . . . , Jk and A1, . . . , Ak, and for x ∈ S1 define the route

if (x) = (i0(x), . . . , in(x), . . .)

of the point x, where in(x) = Ji if fn(x) ∈ Ii and in(x) = Ai if fn(x) = ai. In the latter case, we
assume that im(x) = Ai for all m ≥ n. By A∞ =

⋃∞
i=0 f−i(A) and B∞ =

⋃∞
i=0 f i(B), we denote

the preimages and “images,” respectively, of the points of discontinuity. If f−i(as) = bp for some
1 ≤ p, s ≤ k, i ≥ 1, then we set f−i−1(as) = f−1(bp) = ∅. By O(x) =

⋃+∞
−∞ fn(x) we denote the

orbit of a point x /∈ A∞ ∪ B∞.
Let x ∈ Iν = [aν , aν+1] be a nontrivially recurrent point (x /∈ A∞ ∪ B∞), and let q1(r) be the

first positive iteration such that f q1(r)(x) ∈ (x, aν+1). By induction, we define qn(r) as the first
iteration such that f qn(r)(x) ∈ (x, f qn−1(r)(x)). In a similar way, one can define the numbers qn(l).
[For example, q1(l) is the first positive iteration such that f q1(l)(x) ∈ (aν , x).] Consider the block
Br

n = [i0(x), . . . , iqn(r)(x)] ⊂ if (x) and define rn ∈ N ∪ {0} as the maximum number of repetitions
of the block Br

n in if (x) after the symbol iqn(r)(x). Formally, ik(x) = ik+jqn(r)(x) for 0 ≤ j ≤ rn and
0 ≤ k ≤ qn(r). The sequence R(x) = {r1(x), . . . , rn(x), . . .} is referred to as the right t-expansion of
the point x. By replacing the numbers qn(r) by qn(l), we obtain the definition of the left t-expansion
of x, which we denote by L(x). The following theorem was proved in [16].

Theorem 5.3. Suppose that f ∈ Mr+0(k), r ≥ 1, is increasing on each monotonicity interval.
Let x ∈ S1 be a nontrivially recurrent point , and let L(x) = {li}∞1 and R(x) = {ri}∞1 be its left and
right t-expansions, respectively. If lim

n→∞
ln ≥ 3 and lim

n→∞
rn ≥ 3, then for each neighborhood U(f),

there exists a g ∈ U(f) that has periodic point x.

In what follows, when describing results for flows on surfaces, we also present other results
dealing with the one-dimensional dynamics (because there is a close relationship between them if
one considers the mappings induced by a flow on a secant line).

Examples by Gutierrez and Carroll. As early as in 1975, Pugh [124] casted doubt on
the validity of the classical and improved Cr lemmas for r ≥ 2 for manifolds of dimensions ≥ 2.
To justify his words, Pugh constructed a flow on the torus with a prolongationally recurrent point
of the first order in the Pugh sense, for which the C2 closing lemma fails (see Section 5). The idea of
that construction was used in most counterexamples to various closing lemmas (except for the
Poincaré lemma, where a different idea is used). In 1978, Gutierrez [64] showed that the classical
(and so much the more the improved) Cr closing lemma with r ≥ 2 is not true for noncompact
surfaces in general. More precisely, he proved the following assertion.

Theorem 5.4. Let T 2 −{p} be a punctured torus, p ∈ T 2, and suppose that , for a given r ≥ 2,
there exists a vector field �X ∈ X∞(T 2) with a nontrivially recurrent trajectory such that , in some
neighborhood U of the field �X |T 2−{p} in the space Xr(T 2 − {p}), any vector field �Y ∈ U has no
periodic trajectory.

It is assumed that the space Xr(T 2 − {p}) is equipped with the Whitney strong topology. This
means that a fundamental system of neighborhoods of the field �X |T 2−{p} is defined as follows.
Let {Ui} be a locally finite cover of the set T 2 − {p}, and let {εi} be a family of positive numbers.
Then the fundamental system of neighborhoods is generated by the open sets

U({Ui}, {εi}) = {�V ∈ X
r(T 2 − {p}) : ||�V |Ui

− �X |Ui
||r < εi}.

The construction of the vector field �X ∈ X∞(T 2) starts from a homeomorphism f : C → C
of the circle. The homeomorphism f is nontransitive and has the irrational rotation number

rot f =
1
2
(
√

5 − 1). There exists a continuous mapping h : C → S1 ∼= R/Z that half-conjugates f

with Rrot f and maps each pasted-in interval into the corresponding point.
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Fig. 11.

Fig. 12.

The standard suspension sus f over f is a flow on T 2 without fixed points, which induces the
first return map f on the zero meridian. One can assume that the circle C is embedded as the zero
meridian in T 2, C ⊂ T 2. The trajectories of the flow sus f passing through the interval h−1(0)
form the so-called Denjoy cell. If false saddles (that is saddles each of which has exactly two saddle
sectors) are placed to endpoints of the interval h−1(0), then sus f becomes smoothable [62]. More
accurately, sus f with false saddles is topologically equivalent to a C∞ flow; moreover, the home-
omorphism implementing this equivalence can be chosen to be arbitrarily close to the identity
mapping. Now, in the Denjoy cell near specially chosen intervals h−1(Rn

rot f (0)), which accumulate
to h−1(0), we paste the “plugs” shown in Fig. 11. Each plug contains one source, one sink, and
two saddles. All fixed points are structurally stable. Next, the segment h−1(0) is deleted from the
torus, and the resulting cut is contracted into the deleted point p. Obviously, this can be carried
out so as to obtain a C∞ flow (we denoted it by f t) on the punctured torus T 2 − {p}. Moreover,
the vector field X|T 2−{p} generating f t can be multiplied by a smooth positive function so as to
ensure that it can be extended smoothly to the deleted point p up to an equilibrium.

The arrangement of the specially chosen intervals h−1(Rn
rot f (0)), which now accumulate to the

puncture, is chosen with regard of the continued fraction expansion of the rotation number, rot f =
[1, . . . , 1, . . .]. The corresponding plugs accumulate to the puncture as well; see Fig. 12. Since the
space Xr(T 2−{p}) is equipped with the strong Whitney topology, it follows that the perturbations
of the vector field X|T 2−{p} are subjected to some constraints near p. Gutierrez [64] proved that, for
any perturbation sufficiently close to X|T 2−{p}, every one-dimensional trajectory either gets into one
of plugs and tend to the fixed point or tends to the puncture. (This happens both in the positive and
the negative direction.) Consequently, all vector fields in some neighborhood of the field X|T 2−{p}
have no periodic trajectories.

A close idea was used by Carroll [52] to construct a C∞ smooth vector field for which no suffi-
ciently small C2 twisting along a closed transversal leads to the appearance of periodic trajectories.
Let us present a rigorous definition. Let C be a closed simple transversal of some C∞ vector field
X on the torus T 2. The curve C has a cylindrical neighborhood A holomorphic to C × (−1;+1).
Without loss of generality, one can assume that the trajectories of the flow f t cross A along seg-
ments of the form {x} × (−1;+1) and are directed from C × {−1} to C × {+1}. Let us specify an
orientation on C×{+1}. The Cr twisting of the field X along C is the addition to X of a Cr vector
field Y whose support lies in A and which “shifts” all points of C × {+1} only in one direction,
either positive or negative.
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Recall that the topological closure of a nontrivially recurrent semitrajectory is called a quasi-
minimal set. Every flow on the torus has at most one quasi-minimal set. The following theorem
was proved in [52].

Theorem 5.5. On the torus T 2, there exists a C∞ vector field X with finitely many equilibria
and a nowhere dense quasi-minimal set Ω(X) such that the following conditions are satisfied.

1. X has a simple closed transversal C that meets all nontrivially recurrent semitrajectories of
the field X.

2. Each sufficiently small C2 twisting of the field X along C results in a vector field that has
either a quasi-minimal set coinciding with Ω(X) or a nonwandering set consisting of finitely many
equilibria. (In particular , in the latter case, there are neither nontrivially recurrent semitrajectories
nor periodic trajectories.)

Like the above-represented Gutierrez construction, the construction of the field X starts from
a Denjoy flow with a rotation number, whose continued fraction forms a bounded sequence. Along
with the cell position, the cell width decay rate is taken into account in [52]. This permits con-
structing a field with finitely many equilibria.

An even more exotic example was considered in [68]. More precisely, on a nonorientable surface
of genus 4, there exists a supertransitive Kupka–Smale C∞ flow7 f t and a family of flows {f t

μ}μ≥0,
f t

0 = f t, obtained from f t by a nontrivial C∞ twisting such that all flows {f t
μ}μ≥0 are topologically

equivalent to f t. The construction is based on a special example of a minimal rearrangement of five
intervals on the circle; moreover, the transformation is orientation-reversing on two of the intervals.
(Such intervals are referred to as flips.)

Flows on surfaces: sufficient conditions. First results concerning Cr closing lemmas for
flows were obtained by Peixoto [112, 113] when proving that structurally stable flows on an oriented
closed surface M2 coincide with Morse–Smale flows. Peixoto (see Lemma 4 in [112]) showed that if
a nontrivially recurrent trajectory in a minimal set passes through a point p ∈ M2 of a Cr-smooth
flow and p does not lie in the limit set of any separatrix, then there exists a flow that is arbitrarily
close in the Cr topology and has a periodic trajectory passing through p; here r ≥ 1. The desired
perturbation was constructed by a rotation of a field along a transversal (twisting). For the case
in which the point p lies in the limit set of a separatrix, Peixoto proved the following analog of
the Cr connecting lemma (see Lemma 5 in [112]). Let p belong to the intersection of the α-limit
set of some ω-separatrix with the ω-limit set of some α-separatrix. Then there exists a flow that
is arbitrarily close in the Cr topology and has one more separatrix connection than the original
flow. An analysis of the proof shows that both results hold for a point of a nontrivially recurrent
trajectory that does not necessarily belong to a minimal set. The refined proofs can be found
in [18, 61]. These results were generalized by Peixoto in [69] to foliations defined by direction fields
specified by principal curvatures. (The so-called umbilical points, at which the curvature is the
same in all directions, are singularities.) Similar bifurcations were considered by Aranson [10] when
studying flows of the first degree of structural instability.

The examples by Gutierrez [64] and Carroll [52] make Pugh’s conjecture that the classical Cr

closing lemma is not true in general for r ≥ 2 even for vector fields on compact surfaces plausible.
This increases the role of assertions with sufficient conditions that imply such a lemma. First, note
that the Cr closing lemma for diffeomorphisms of the circle implies the Cr lemma for vector fields
without equilibria on the torus for any r ≥ 1. As to vector fields with equilibria, the problem in full
generality remains open (even if one restricts oneself to the class of fields with structurally stable
equilibria).

Let α = [a0, . . . , an, . . .] be the continued fraction expansion of an irrational number α. (For con-
tinued fractions, see [23, 72].) We say that α has an unbounded type if lim supn→∞ an = ∞.
The following remarkable theorem was proved in [63].

Theorem 5.6. Let a vector field X ∈ Xr(T 2), r ≥ 1, have a nontrivially recurrent semitrajectory
l passing through a point p and finitely many equilibria. If the rotation number rot X = α of the
7 Recall that a flow is called a Kupka–Smale flow if it has no separatrix connections and all of its fixed points are

hyperbolic.
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Fig. 13.

Fig. 14. The annulus A (a) and a figure eight-shaped flow box (b).

Fig. 15.

vector field X has unbounded type, then, for each neighborhood U(X) ⊂ Xr(T 2) of X in the space
Xr(T 2), there exists a Y ∈ U(X) such that there exists a periodic trajectory of the vector field Y
passing through p.

Let us outline the idea of the proof. Let pn/qn be the convergents. It is well known that
pn+1 = an+1pn + pn−1 and qn+1 = an+1qn + qn−1. Since X has a nontrivially recurrent semi-
trajectory, it follows that X has a simple closed transversal T meeting all nontrivially recurrent
semitrajectories. Then, on some open domain, X induces the first return map T → T with rotation
number α. This first return map is semiconjugate to the rotation Rα

def= R of the unit circle S1

by α. Figure 13 illustrates the position of the first qn+1 points of the orbit Rn(0) = αn (mod 1)
near the point 0. One can show (with the help of Fig. 13) that there exists an interval In whose
first qn+1 iterations under R are adjacent to each other but their interiors are disjoint.

Since the mutual arrangement of points is preserved under semiconjugation, it follows that there
exists an annulus A bounded by two segments of a transversal T and two arcs of a nontrivially
recurrent semitrajectory l; see Fig. 14. The annulus A is cut by arcs of the nontrivially recurrent
semitrajectory l into an+1 so-called figure eight-shaped flow boxes.

Since lim supn→∞ an = ∞, it follows that there exists a flow box without fixed points. Now, in
that box, one can perform a local rotation of the vector field so as to ensure that the nontrivially
recurrent semitrajectory passing through the corner point becomes a periodic trajectory; see Fig. 15.

It is well known [23] that irrational numbers of unbounded type form a set of full Lebesgue
measure. Therefore, Theorem 5.6 implies that the classical Cr closing lemma, r ≥ 1, holds for
“most” Cr smooth vector fields with nontrivially recurrent semitrajectories on the torus.
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Lloyd [83] considered the case of flows on the torus with irrational rotation numbers of bounded
type and showed that the Cr closing lemma is true for all r ≥ 1 in this case as well if all fixed
points are hyperbolic and the divergence is zero at each saddle. The last condition can be replaced
by the conservativeness of the flow in a neighborhood of the saddle together with the possibility of
C2 linearization. The proof is based on the following Denjoy type theorem, which is of interest in
itself.

Theorem 5.7. Let f : S1 → S1 be an orientation-preserving mapping of degree 1 with irra-
tional rotation number α = [a0, . . . , an, . . .] and with C1 smoothness outside finitely many points.
Suppose that the function log Df is of bounded variation on the set L ⊂ S1 where f has positive
derivative Df . If f and f−1 have wandering intervals, then limn→∞ an = ∞.

Theorem 5.6 was generalized in [52] as follows. Let a vector field X ∈ Xr(T 2), r ≥ 1, have
an irrational rotation number α = [a0, a1, . . . , an, . . .] with lim supn→∞ an ≥ k. If X has at most k+3
equilibria, then there exist Cr twistings of the field X along some simple closed transversal C that
are arbitrarily close to the identity mapping and result in the appearance of periodic trajectories.

The main idea of [63] was used in [12] for vector fields on a closed orientable hyperbolic surface.
By that time, Aranson and Grines [11] introduced an analog of the Poincaré rotation number,
namely, the homotopic rotation class. Let us describe this invariant in more detail.

Let Δ be the Poincaré model of the Lobachevskii plane; i.e., Δ is the unit disk on the complex
z-plane equipped with a metric of constant negative curvature. The circle S∞ = ∂Δ = (|z| = 1)
is referred to as the absolute. It is known that, for any orientable closed surface M of genus ≥ 2,
there exists an isometry group Γ of the plane Δ such that Δ/Γ ∼= M . By π : Δ → Δ/Γ ∼= M
we denote the natural projection, which is a universal covering. Being equipped with the metric
induced by the mapping π, M is an orientable hyperbolic surface.

Let l = {m(t) ∈ M : t ≥ 0} be a semi-infinite continuous curve without self-intersections on M ,
and let l = {m(t) ∈ Δ : t ≥ 0} be a lift of l to Δ. Suppose that l tends to a single point σ ∈ S∞ in
the Euclidean metrics on the closed disk Δ ∪ S∞ as t → +∞. In this case, we say that the curve l
has an asymptotic direction.

Aranson and Grines [11] proved that if l is a nontrivially recurrent semitrajectory on M , then its
arbitrary lift l has an irrational asymptotic direction. In [11], the set μ(l) of asymptotic directions
of all possible lifts of the semitrajectory l was called the homotopic rotation class of the semitra-
jectory l. The notion of a chain (or continued) fraction of the homotopic rotation class μ(l) and
the notion of a chain fraction of nonconstant type were introduced in [12]. The following assertion
is the main result of [12].

Theorem 5.8. Suppose that a vector field X ∈ Xr(M2), r ≥ 1, defined on a closed orientable
hyperbolic surface M2 has a nontrivially recurrent semitrajectory l passing through a point p and
finitely many equilibria. If the homotopy rotation class μ(l) has a nonconstant type, then, for any
neighborhood U(X) ⊂ Xr(M2) of the field X in the space Xr(M2), there exists a Y ∈ U(X) such
that the vector field Y has a periodic trajectory passing through p.

In [31], the condition on μ(l) was stated in the form of a Koebe–Morse coding of geodesics
[79, 95], and the following assertion was proved.

Theorem 5.9. Let a vector field X ∈ Xr(M2), r ≥ 1, defined on a closed orientable hyperbolic
surface M2 have a nontrivially recurrent semitrajectory l passing through a point p and finitely many
equilibria. Suppose that the Koebe–Morse code of the coasymptotic geodesic g(l) admits c-expansions
of unbounded type. Then for each neighborhood U(X) of the vector field X in the space Xr(M2),
there exists a Y ∈ U(X) such that the vector field Y has a periodic trajectory passing through p.

The notion of an expansion for a point of the absolute was introduced in [38], and a similar
theorem (including hyperbolic surfaces with boundary) was proved.

Gutierrez [65] suggested his own development of his Theorem 5.6 for a compact orientable
hyperbolic surface. Let E : [a, b) → [a, b) be a rearrangement of intervals defined on the half-open
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interval [a, b) ⊂ R. An interval [s, t] ⊂ [a, b) is called a virtual orthogonal edge of the rearrangement
E if the restriction of E to [s, t] is continuous and s < E(s) < E2(s) = t. For a given k ∈ N,
by Bk we denote the set of rearrangements E : [a, b) → [a, b) such that, for some sequence of
points bn → a, a < bn, and for each n ∈ N, the rearrangement En : [a, bn) → [a, bn) induced by
the rearrangement E has at least χ(M2) + k + 3 pairwise disjoint virtual orthogonal edges, where
χ(M2) is the Euler characteristic of the surface M2. Set B =

⋂
k≥1 Bk. The following theorem was

proved in [65].

Theorem 5.10. Let a vector field X ∈ Xr(M2), r ≥ 1, defined on a compact orientable surface
with negative Euler characteristic χ(M2) have a nontrivially recurrent semitrajectory l passing
through a point p and finitely many equilibria. Let the first return map induced by the field X on
a contact-free segment Σ passing through p be semiconjugate to a rearrangement of intervals from
the set B. Then, for any neighborhood U(X) ⊂ Xr(M2) of the field X in the space Xr(M2), there
exists a Y ∈ U(X) such that the vector field Y has a periodic trajectory passing through p.

Note that the fact that a rearrangement belongs to the set B is independent of the choice of Σ
and is exclusively a characteristics of asymptotic properties of the semitrajectory l.

The idea of the proof of Theorems 5.8, 5.9, and 5.10 is the same: for a given neighborhood
U(X) ⊂ Xr(M2), one constructs a figure eight-shaped equilibrium-free flow box arbitrarily close to
the point p and such that a local rotation of the vector field X inside the box does not lead outside
U(X) and results in the appearance of a periodic trajectory.

Note the paper [66], where many results for flows on surfaces were stated in terms of generalized
rearrangements of intervals on a circle or a segment.

Closure of Prolongationally Recurrent Points

Following [124], we say that a point p is prolongationally recurrent of the first-order in the sense
of Pugh if ω(p) ∩ α(p) �= ∅. A point p is said to be prolongationally recurrent of the nth order in
the sense of Pugh if there exist points p0 = p, p1, . . . , pn = p such that

α(pi+1) ∩ ω(pi) �= ∅, 0 ≤ i ≤ n − 1. (7)

Theorem 2.3 readily implies the following assertion (Theorem B in [156]).

Theorem 5.11. Suppose that f : M → M is a diffeomorphism of a closed manifold M and a
point p is a prolongationally recurrent point of the nth order in the sense of Pugh; i.e., there exist
points p0 = p, p1, . . . , pn = p such that relation (7) holds. Suppose that each intersection α(pi+1)∩
ω(pi) contains a nonperiodic point. Then, for each neighborhood U(f) of the diffeomorphism f in
the space Diff 1(M), there exists a diffeomorphism g ∈ U(f) such that p is a periodic point of g.

In the general case, for r = 1, the closing lemma for a prolongationally recurrent point in the
sense of Pugh remains an open problem.

Let us present Pugh’s example [124] showing that this lemma is not true in general for r ≥ 2.
Since the prolongational recurrence in the sense of Pugh implies the prolongational recurrence in the
sense of Auslander, it follows that the same example implies that the C2 Auslander closing lemma
is not true in the general case as well. The main idea is to block a prolongationally recurrent
trajectory by domains that are the attraction or repelling domains of trivial sinks or sources,
respectively. Then the prolongationally recurrent trajectory of the perturbed system gets into one
of these domains and hence cannot be “closed.”

On a torus T 2, consider a flow without rest points and with exactly one periodic trajectory l0 onto
which the remaining trajectories wind both in the positive and negative directions. The trajectory
l0 is a structurally unstable double-asymptotic trajectory. Take a strip bounded by two trajectories
and place a plug with eight rest points (two sinks, two sources, and four saddles) into it; see
Fig. 16 (a). The resulting flow is denoted by f t. One can assume that f t is Cr smooth, where
r ≥ 2. The properties of f t will be refined below.
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Fig. 16. The plug and the arrangement of the points a, b, c, and d on Σ.

Through an arbitrary point x0 of the trajectory l0, we draw a contact-free segment Σ with
a parametrization y : Σ → [−1;+1] such that y(x0) = 0. The flow f t induces the first return map
ψ on Σ. To be definite, we assume that ψ topologically stretches from x0 for y ≥ 0 and contracts
to x0 for y ≤ 0. In other words, the germ of the mapping ψ at y = 0 has the form y �→ y − y2.
The following assertion is a key technical point. For arbitrary points 0 ≤ ψ(a) ≤ b ≤ a ≤ 1, there
exists a limit


(a, b) = lim
n→∞


n(a, b), where 
n(a, b) =
ψn(a) − ψn(b)

ψn(a) − ψn+1(a)
,

which continuously depends on the points a and b. Moreover, if two first return maps ψ and ψ′ are
C2 close, then the corresponding expressions 
n and 
′

n are close as well for certain n (note that
this is not the case if ψ and ψ′ are only C1 close).

By la and lb we denote the α-separatrices that wind on l0 in the positive direction and enter the
boundary of the repelling domain W u of the extreme source. The points a and b are the first points
of intersection of la and lb with Σ. Let us refine the flow f t by requiring that 
(a, b) = 1/2. Therefore,
the length of the interval between two successive intersections of W u and Σ is approximately equal
to the length of the previous intersection of W u and Σ.

By c and d we denote the first points of intersection of the ω-separatrices lc and ld with Σ,
which wind on l0 in the negative direction, where 0 ≥ ψ−1(c) ≥ d ≥ c ≥ −1; see Fig. 16 (b).
The separatrices lc and ld enter the boundary of the attraction domain W s of the extreme sink that
belongs to the “plug.” Since ψ−1 is attracting on the interval [−1; 0], it follows that the limit


(d, c) = lim
n→∞


n(d, c) = lim
n→∞

ψ−n(d) − ψ−n(c)
ψ−n(d) − ψ−n+1(c)

exists and has properties similar to those of 
(a, b). Let us refine the flow f t by requiring that

(d, c) = 3/4. Therefore, the length of the interval between two successive intersections of W s with
Σ is “much more” than the length of the previous intersection of W s and Σ.

Each point on the separatrix la, say A0 ∈ la, is prolongationally recurrent in the sense of Pugh.
Consider a C2-perturbation of the original flow and show that there cannot appear a periodic
trajectory passing through the point A0. Indeed, obviously, such a trajectory cannot occur if there
exists a periodic trajectory homotopic to l0 near l0 for the perturbed flow. Therefore, it suffices to
consider a perturbation for which l0 disappears. But then, by virtue of the approximate relations

′(a′, b′) ≈ 1/2 and 
′(d′, c′) ≈ 3/4, the trajectory of the perturbed flow passing through A0 should
get into the attraction domain of one of the sinks.

Let us proceed to vector fields for which the Auslander Cr closing lemma can be proved for r ≥ 2.
Recall the definition of an ε-chain of vector fields of length n. Given a vector field X ∈ Xr(M)
generating a flow f t on the manifold M , we say that the trajectory arc has time length T if one
endpoint of the arc passes into the other endpoint by the time T shift along the trajectory. Let
ε = ε(x) and T = T (x) be positive continuous functions defined on M . If M is compact, then
ε and T are assumed to be constant positive quantities. An (ε, T )-chain from a point p ∈ M to
a point q ∈ M is defined as a sequence of arcs [x1, y1], . . . , [xn, yn] such that [xi, yi] has time length
≥ T (xi) and d(xi, yi+1) < ε(yi) for all 1 ≤ i ≤ n, where p = x1 and q = xn+1.
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We say that an (ε, T )-chain is δ-shadowed by a trajectory arc if the chain lies in the δ-neighbor-
hood of the arc and vice versa. Following [114], we say that an equilibrium s satisfies the shadowing
property if s has a neighborhood U(s) such that every (ε, 1)-chain in U(s) is δ-shadowed by a tra-
jectory arc, and, in addition, δ → 0 uniformly as ε → 0. By using the Grobman–Hartman theorem,
one can readily show that hyperbolic equilibria satisfy the shadowing property.

Consider a vector field X on the plane R
2. Let s be an equilibrium of the field X, and let

J(s) be its Jacobian at s. An isolated equilibrium s is said to be semihyperbolic if J(s) = 0 and
the trace of the Jacobian is nonzero, σ(s) �= 0. The topological structure of such an equilibrium
can be described. One can assume that s is the origin (0, 0). Then, by using a nonsingular linear
change of coordinates in a neighborhood of s, one can reduce the field X to the form ẋ = P2(x, y),
ẏ = y +Q2(x, y), where P2(x, y) and Q2(x, y) are functions such that their expansions at the origin
start from terms of order ≥ 2. Then it is well known (see Theorem 65 in [1]) that s is locally
topologically equivalent to either a saddle–node, or a hyperbolic saddle, or a hyperbolic node.

The following Auslander Cr closing lemma for vector fields on the plane was proved in [114].

Theorem 5.12. Let p be a prolongationally recurrent point in the sense of Auslender of a vector
field X ∈ Xr(R2), r ≥ 1. Suppose that each equilibrium of X either is semihyperbolic or satisfies
the shadowing condition. Then, for each neighborhood U(X) of the field X in Xr(R2), there exists
a field Y ∈ U(X) such that Y has a periodic trajectory passing through p.

Note that if a vector field on the plane does not have an equilibrium, then it also does not
have nonwandering and prolongationally recurrent points. The main construction in the proof of
Theorem 5.12 is that of a chain of flow boxes and trajectory arcs that connect the centers of these
boxes. Then one constructs the desired perturbation (a functional rotation of the field) in the
flow boxes.

In [115], the condition on the recurrence type was weakened, but the condition on the type of
the equilibria was strengthened. More precisely, the following assertion was proved in [115].

Theorem 5.13. Let p be a chain-recurrent point of a vector field X ∈ Xr(R2), r ≥ 1, and let X
have only hyperbolic equilibria. Then, for each neighborhood U(X) of the field X in Xr(R2), there
exists a field Y ∈ U(X) such that Y has a periodic trajectory passing through p.

As was mentioned in [115], the requirement of hyperbolicity of all equilibria in Theorem 5.13
can be weakened to the following condition: each equilibrium should have a neighborhood in which
every ε-orbit is δ-shadowed by a trajectory arc, and in addition, δ → 0 uniformly as ε → 0.
An ε-orbit is defined as a C1 smooth oriented curve at each of whose points the tangent vector is
ε-close to the vector of the field X at the same point.

6. SPECIAL CASES

Consider closing lemmas for special dynamical systems and foliations whose orbits or leaves are
subjected to some constraints (for example, to conditions on the recurrence type).

Almost Wandering Points

A nonwandering point p ∈ NW (f) is said to be almost wandering if there exists a neighborhood
U(p) of that point and a positive integer N such that the orbit O(x) = {fn(x) : n ∈ Z} of an
arbitrary point x ∈ M has at most N intersections with U(p). Let us present an example of
a diffeomorphism with such a point. Figure 17 presents the stable and unstable manifolds of saddle
fixed points of a diffeomorphism of a two-dimensional sphere. In addition to two saddle points,
there are two sources and two sinks. By virtue of the presence of a heteroclinic orbit, the point p
is nonwandering. On the other hand, p is almost wandering, because there exists a neighborhood
U(p) that has at most two points of intersection with an arbitrary orbit. The above-represented
example and the following Theorems 6.1 and 6.2 are due to Pugh [125].
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Fig. 17.

Theorem 6.1. If p ∈ NW (f) is an almost wandering point of a Cr diffeomorphism f : M → M,
r ≥ 1, then, for any neighborhood U of the diffeomorphism f in the space Diff r M, there exists
a g ∈ U with a periodic point p.

The proof is based on the fact that, by virtue of the almost wandering property, for p there
exists a neighborhood U0 and a sequence pk → p of points that, under positive iterations, first leave
U0 and then get in U0 so as to ensure that fnk(pk) → p, fn(pk) /∈ U0, 0 < n < nk. Obviously,
there exist Cr diffeomorphisms gk, hk : M → M such that gk = hk = id outside U0, gk(p) = pk,
and hk(fnk(pk)) = p. For any neighborhood U , there exists a k such that hk ◦ f ◦ gk ∈ U . One can
readily see that g = hk ◦ f ◦ gk is the desired diffeomorphism.

The following theorem deals with the two-dimensional torus T 2. The tangent space at each point
is canonically identified with the plane R

2 since the torus is a flat homogeneous Riemannian manifold
with a transitive symmetry group. A diffeomorphism f : T 2 → T 2 is said to be nonoverturning if, for
each nonzero vector �v ∈ Tx(T 2) ∼= R

2, there exists a half-plane Hv ⊂ R
2 such that (1) dfn(�v ) ∈ Hv

for all n ≥ 0 and for all x ∈ T 2; (2) ∠(�v, ∂Hv) ≥ β > 0, where β is independent of �v. An example
of a nonoverturning diffeomorphism is given by a rigid displacement of the torus.

Theorem 6.2. Let f : T 2 → T 2 be a nonoverturning Cr diffeomorphism, r ≥ 1, and let p be
a nontrivially recurrent point of f . Then, for any neighborhood U of the diffeomorphism f in the
space Diff r M, there exists a g ∈ U with a periodic point p.

In [125] the notion of a nonoverturning diffeomorphism was generalized to an arbitrary manifold,
and an assertion similar to Theorem 6.2 was proved.

Note Hirsch’s paper [75] in which so-called cooperative and competing vector fields in the space
R

3 were considered. Recall that a vector field �F is said to be cooperative (respectively, competing) if
all off-diagonal elements of the Jacobian D �F (�x) are nonnegative (respectively, nonpositive) at each
point �x. A vector field �F is said to be irreducible if all matrices D �F (�x) are irreducible, where �x
belongs to the domain X ⊂ R

3. A domain X is said to be p-convex if, together with two arbitrary
points �u = (u1, u2, u3) and �v = (v1, v2, v3) such that ui ≤ vi, the entire segment connecting �u
and �v lies in X. For a cooperative irreducible system whose solutions are defined for all t ≥ 0 in
some p-convex open domain X, the improved Cr closing lemma was proved in [75] for all r ≥ 1.
One basic step of the proof is to show that a nonwandering point p ∈ X is strictly nonwandering
(i.e., that one can construct a transversal surface S through p such that the successive intersections
of the positive semitrajectory passing through p form a sequence of points converging to p). Next,
an argument resembling the proof of Theorem 6.1 is used. The improved Cr closing lemma for
a competing system satisfying some constraints was also proved in [75].

Mappings of the Annulus

Recall that, for orientation-preserving diffeomorphisms, the closing lemma holds even in the an-
alytic class, because the “closing” is carried out with the use of a rigid displacement. The following
generalization of this result was obtained in [49].
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Theorem 6.3. Let f : A → A be a twisting diffeomorphism of the annulus A = R/Z × R. If f
is a nonwandering point , then for each ε > 0, there exists an α ∈ (−ε,+ε) such that the mapping

(x, y) �→ f(x, y) + (0, α)

has a periodic orbit.
A similar theorem was proved in [49] for a twisting diffeomorphism of the two-dimensional torus

homotopic to the mapping (x, y) �→ (x + y, y).

Foliations and Actions of Groups

By FOLl,k(M), 1 ≤ k ≤ l, we denote the space of C l foliations of codimension 1 equipped with
the Ck topology on a manifold M of dimension d = dim M . The Ck topology on this space is
introduced via the Ck−1 topology on the set of fields of tangent (d−1)-planes as follows. The set of
tangent (d− 1)-planes forms a Grassmann bundle on M of a smoothness class C l−1. Each foliation
F corresponds to a field of tangent (d − 1)-planes PF , which is a cross-section in the Grassmann
bundle. The closeness of foliations F , G ∈ FOLl,k(M) implies the closeness of the fields PF and
PG in the Ck−1 Whitney topology.

Let a foliation F be given by an action of the group R
d−1 on M . If this action is nondegenerate

and orientable, then each leaf is homeomorphic to some manifold of the form T
i × R

d−i−1, 0 ≤ i ≤
d − 1, where T

i is the i-dimensional torus. The following assertion was proved in [138].

Theorem 6.4. Let a foliation F ∈ FOLl,2(M), l ≥ 2, defined by a nondegenerate orientable
action of the group R

2 be defined on a closed 3-manifold M . If F has no leaf homeomorphic to R
2,

then, for any neighborhood U(F) of the foliation F in FOLl,2(M), there exists a foliation G ∈ U(F)
defined by a nondegenerate orientable action of the group R

2 such that all leaves of G are compact.
(They are two-dimensional tori.)

If we suppose that, under the assumptions of Theorem 6.4, F has no compact leaves, then each
leaf is homeomorphic to a cylinder and is everywhere dense on M (i.e., F is a minimal foliation).
As was shown in [138], in this case, any leaf can be “closed” into a compact 2-torus.

An invariant of the topological equivalence similar to the Poincaré rotation number was intro-
duced in [137] for a foliation of codimension 1 with trivial holonomy group on T

3 (see also [136]).
The invariant, called the rotation functional, is a pair (λ, μ) of numbers specifying the asymptotic
behavior of the leaves. If λ and μ are rational numbers, then all leaves are compact (tori). If λ
and μ are rationally independent irrational numbers, then the leaves are planes. If at least one
of the numbers λ and μ is irrational and these numbers are rationally dependent, then the leaves
are cylinders. One can show that if a foliation on T

3 has no compact leaves, then it has a trivial
holonomy group; consequently, at least one of the numbers in the rotation functional is irrational.

The following assertion supplementing Theorem 6.4 was proved in [30].

Theorem 6.5. Let a foliation F ∈ FOLl,r(T3), 1 ≤ k ≤ l ≤ ∞, without compact leaves be
defined on T

3. Suppose that one of numbers of the rotation functional of the foliation F satisfies
the Diophantine condition with some positive exponent. Then for any neighborhood U(F) of the
foliation F in FOLl,r(T3), there exists a foliation G ∈ U(F) such that all leaves of G are compact
(2-tori).

Recall that a Cr-action of the group Z
k on S1 is defined as a homeomorphism 
 : Z

k → Diff r(S1)
such that the mapping (γ, x) → 
(γ)(x), x ∈ S1, is Cr-smooth for any γ ∈ Z

k. The space
Gr(Zk, S1), 0 ≤ r ≤ ∞, of such actions is equipped with the natural Cr-topology and admits
a complete metric for finite r. The following strengthened closing lemma was proved in [30].

Theorem 6.6. If the rotation number of one of the mappings 
(γ) of an action 
 ∈ G∞(Zk, S1)
is irrational and satisfies the Diophantine condition with some positive exponent , then, for any
ε > 0 and any finite number r ∈ N, there exists a 
c ∈ G∞(Zk, S1) ε-close to 
 in the space
Gr(Zk, S1) and such that all orbits 
c are compact.
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Ergodic Closing Lemma

This lemma was introduced by R. Mané [88] in the investigation of necessary conditions for the
structural stability of dynamical systems. Mané considered a diffeomorphism in some neighborhood
of which any diffeomorphism has only hyperbolic periodic points. The problem was to prove
that all nonwandering points of the original diffeomorphism are hyperbolic. The assumption of
the contradiction implies the existence of a nonwandering, nonperiodic, and nonhyperbolic point.
It is natural to try to perturb a diffeomorphism so as to obtain a nonhyperbolic periodic point.
The desired small C1 perturbation could be provided by the improved C1 closing lemma, but,
unfortunately, this lemma provides no information on the closeness of the periodic and original
orbits. Therefore, Mané suggested the following strengthening of the improved closing lemma,
which is referred to as the Mané Cr closing lemma.

Let a diffeomorphism f ∈ Diff r M have a nonwandering nonperiodic point x0 ∈ M . Then,
for any ε-neighborhood Uε(x0) of the point x0 and for any neighborhood U of the diffeomorphism
f in the space Diff r M, there exists a g ∈ U such that g has a periodic point y in Uε(x0) and
the inequalities d(f i(x0), gi(y)) < ε hold for all 0 ≤ i ≤ m, where m is the minimum period of
the point y.

One can see that the Mané Cr closing lemma is not related to notions of ergodic theory. However,
the corresponding result obtained by Mané in the investigation of this problem was based on
an invariant measure; therefore, Mané called it the ergodic closing lemma. Recall that a subset
N ⊂ M (M is considered to be compact) is referred to as a set of full measure (with respect to μ)
if μ(N) = 1 for the normalized measure μ. Note that since each f -invariant measure “lives” on
a nonwandering set, one can assume that a set of full measure consists of nonwandering points
(but does not necessarily coincide with the nonwandering set). Therefore, it is natural to consider
the problem how “large,” from the viewpoint of an invariant measure, is the set of nonwandering
points for which the Mané Cr closing lemma holds.

For a fixed ε > 0 and a point x ∈ M , by Oε(x) we denote the ε-neighborhood of the orbit of x.
By Σr(f) we denote the set of points x ∈ M for which the above-represented Mané Cr closing
lemma holds under the additional assumption that the equality f = g holds on M − Oε(x) for
all ε > 0. The following assertion was proved in [88].

Theorem 6.7. The set Σ1(f) is a set of full measure.

Obviously, Theorem 6.7 can be restated as follows: μ (M − Σ1(f)) = 0, where μ is an arbitrary
f -invariant measure. Theorem 6.7 was generalized in [32] to a noncompact manifold M and was
stated as μ (Rec(f) − Σ1(f)) = 0, where Rec(f) stands for the set of recurrent points.

7. APPLICATION TO DESCRIPTION OF GENERIC SYSTEMS

Closing lemmas were mainly used in two directions: for the investigation of structural stability
(e.g., see [5, 6, 17, 58, 70, 88, 90, 112, 120]) and for proving the largeness of some class of dynamical
systems in the space of dynamical systems. In this section, we focus on the latter aspect and restrict
the exposition to dynamical systems on compact manifolds.

The following so-called general denseness problem obtained by Pugh in [122] was the first im-
portant result that substantially used the improved C1 closing lemma.

Theorem 7.1. Let M be a compact manifold. Then diffeomorphisms for which the nonwander-
ing set coincides with the topological closure of the set of hyperbolic periodic points form a residual
set in the space Diff 1(M).

The method of proof became the main method for such assertions. By CM we denote the family
of compact subsets of the manifold M . Consider a mapping Γ : Diff 1(M) → CM that takes each
diffeomorphism f ∈ Diff 1(M) to the set clos Perh(f), where Perh(f) is the set of hyperbolic
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periodic points of the diffeomorphism f . By virtue of the stability of a hyperbolic periodic point
under a perturbation, the mapping Γ is lower semicontinuous; i.e.,

clos Perh(f) ⊂ lim inf
k→∞

clos Perh(fk)

for any sequence fk → f .8 The Hausdorff metric equips CM with the structure of a topological
space. Therefore, one can speak of points of continuity of the mapping Γ. It is a well-known
fact from general topology that the points of continuity of a lower-semicontinuous mapping form
a residual set. By G we denote the set of points of continuity of the mapping Γ. Then G satisfies
Theorem 7.1. Indeed, should f ∈ G have a nonwandering point x0 near which there is no periodic
orbit, this would contradict the continuity of Γ at f , because, by the improved closing lemma, the
diffeomorphism f can be approximated by diffeomorphisms with a hyperbolic periodic point x0.

Note that in [122] Theorem 7.1 was stated for vector fields in a more general form with regard
of the second part of the Kupka–Smale theorem implying that the stable and unstable manifolds of
periodic trajectories meet transversally. We present the main statements for diffeomorphisms and
note essential differences in the case of vector fields.

Since the ω(α)-limit set of an arbitrary point lies in a nonwandering set, we see that the following
result in [36] can be treated as a supplement of Theorem 7.1 : for a generic diffeomorphism in the
space Diff 1(M), any ω(α)-limit set of an arbitrary point is approximated by periodic orbits in
the Hausdorff metric.

Recall that, before Theorem 7.1 arose, the set of Kupka–Smale diffeomorphisms in the space
Diff r(M) had been proved to be residual for any 1 ≤ r ≤ ∞ in [80, 143]. Therefore, by taking
into account Theorem 7.1, one can single out the following residual set, which consists of dif-
feomorphisms f satisfying the following conditions: (1) all periodic points of f are hyperbolic;
(2) the invariant manifolds of periodic points meet transversally; (3) the periodic points are dense
in the nonwandering set NW (f). In connection with the proof of the connecting lemma and its
generalization (see Theorem 2.6, which implies that any chain-recurrent point can be brought into
a periodic point by an arbitrarily small C1 perturbation), the last condition can be strengthened.
In complete analogy with the proof of Theorem 7.1, one can show that, for a generic diffeomorphism
f , any chain-recurrent point can be approximated by periodic points. Summarizing the preceding,
we find that there exists a residual set KSP (M) ⊂ Diff 1(M)9 of diffeomorphisms f ∈ KSP (M)
with the following properties:

• all periodic points of f are hyperbolic;
• the invariant manifolds of periodic points meet transversally;
• the periodic points are dense in the chain-recurrent set R(f) of f ; i.e.,

clos(Per(f)) = L(f) = NW (f) = R(f), (8)

where L(f) = clos
⋃

z∈M ω(α)(z) is the closure of the union of all ω(α)-limit sets of f .
Condition (8) has been essentially refined for the space Diff 1(S1) of diffeomorphisms of the

circle S1 and for the space χ1(M2) of vector fields on an orientable compact surface M2 : a chain
recurrent set consists of finitely many periodic orbits. Therefore, Morse–Smale systems are generic
in Diff 1(S1) and χ1(M2). (Moreover, they form an open dense set.) It is known that Morse–
Smale systems are structurally stable [105, 111], and in the spaces Diff 1(S1) and χ1(M2), they
can be classified with the use of clear finite invariants [17, 112]. However, starting from the spaces
Diff 1(Mn) for n ≥ 2 and χ1(Mn) for n ≥ 3, the situation becomes much more complicated. In fact,
these spaces do not contain residual sets with a similar clear dynamics admitting classification with
the use of constructive and finite invariants. By way of illustration, we present three results.

Let T n be the n-dimensional torus, and let T 2�T 2 be the connected sum of two tori (that is, an ori-
entable closed surface of genus 2). On T 2, there exist DA-diffeomorphisms with a one-dimensional
expanding attractor and a contracting repeller [146]. By using these diffeomorphisms, Robinson

8 The lower limit lim inf Ak of a sequence of sets Ak ∈ CM is defined as the family of points x ∈ M such that
x = limk→∞ xk for some xk ∈ Ak.

9 The abbreviation KSP is formed by the first letters of the names Kupka, Smale, and Pugh.
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Fig. 18. A modified DA-diffeomorphism (a) and its perturbation (b).

and Williams [135] constructed a diffeomorphism f0 ∈ Diff r(T 2�T 2), r ≥ 1, whose nonwandering
set consists of exactly one expanding attractor and contracting repeller with the following prop-
erty: for any finite-parameter family S ⊂ Diff r(T 2�T 2) of diffeomorphisms that contains f0, there
exists a diffeomorphism that is arbitrarily close to f0 in the space Diff r(T 2�T 2) and has the same
nonwandering set but is not conjugate to any diffeomorphism in the family S. The idea of the
example is the presence of irremovable tangencies of stable and unstable manifolds of points from
the expanding attractor and the contracting repeller, respectively. The second result was obtained
by Simon [142], who showed that, in any residual set in the space Diff r(T 3), r ≥ 1, there is an un-
countable family of conjugacy (and even Ω-conjugacy) classes. The idea of all constructions is well
illustrated by the following “least-dimensional” Williams example [157]; see Fig. 18. On T 2, take a
modified DA-diffeomorphism with a one-dimensional expanding attractor Ω, which differs from the
classical DA-diffeomorphism in the sense that there are two sources and a saddle s instead of one
source in the domain T 2 − Ω; see Fig. 18 (a). Both unstable separatrices of the saddle s coincide
with the separatrices of two saddles, say s1 and s2, that belong to Ω. A standard perturbation
(in addition to the original paper [157], such a perturbation was described in the monograph [134],
see Theorem 5.1) of the diffeomorphism results in the generation of heteroclinic transverse intersec-
tions of separatrices of the saddle s with the separatrices of the saddles s1 and s2, see Fig. 18 (b).
One can readily see that the separatrix of the saddle s has heteroclinic tangencies with the stable
manifolds of points of the set Ω.

Let us represent an in a sense positive result due to Mané [88], which follows from his ergodic
closing lemma (Theorem 6.7).

Theorem 7.2. In the space Diff 1(M2), where M2 is a compact two-dimensional manifold , there
exists a residual set G such that one of the following possibilities holds for f ∈ G.

1. f has either infinitely many sinks or infinitely many sources.
2. f is Ω-stable.

This theorem cannot be generalized to manifolds of dimension ≥ 3, because there are ro-
bustly transitive diffeomorphisms that do not have hyperbolic structure on the entire manifold
(robust transitivity implies that all diffeomorphisms in some neighborhood of a given diffeomor-
phism are transitive). Consequently, these diffeomorphisms are not Ω-stable because, by [106],
an Ω-stable diffeomorphism necessarily has a hyperbolic nonwandering set.

The first example of a robustly transitive diffeomorphism that does not admit hyperbolic
structure on the entire manifold, was constructed by Shub [139] on the four-dimensional torus
T 4 = T 2×T 2. Somewhat exaggerating, one can say that the Shub example is a skew product of an
Anosov diffeomorphism T 2×{·} → T 2×{·} by a DA-diffeomorphism {·}×T 2 → {·}×T 2. Mané [87]
proved the existence of an open domain U ⊂ Diff 1(T 3) such that any f ∈ U is mixing (and hence
robustly transitive) but is not an Anosov diffeomorphism. The constructions start from an Anosov
diffeomorphism f0 : T 3 → T 3 with a two-dimensional expanding bundle and a one-dimensional
contracting bundle. Next, an analog of the Smale surgery [146] is applied to f0 for the construction
of a DA-diffeomorphism (the Smale surgery can be represented as the double bifurcation “saddle →
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saddle + saddle–node → saddle + node + saddle”), but the surgery is performed not in the stan-
dard direction of the one-dimensional contracting bundle (then one would obtain a two-dimensional
expanding Williams attractor [158]) but in the direction of the “weakest” one-dimensional expand-
ing foliation. As a result, one obtained a diffeomorphism that is not an Anosov diffeomorphism
but preserves the mixing property specific to f0. There are different examples; see [42, 45].

Theorem 7.2 cannot be generalized to flows on three-dimensional manifolds. Morales [94] proved
that, for any closed orientable 3-manifold M3, in the space χ1(M3), there exists a domain consisting
of vector fields that have neither hyperbolic attractors nor hyperbolic repellers. The main element
of the proof is an example of a vector field on a ball with handles (the number of handles is arbitrary
but ≥ 2) that is a generalized geometric model of the Lorenz attractor. (The classical model is
realized on a ball with two handles.) The vector field has a so-called singularly hyperbolic attractor
and is transversal to the boundary. By reverting the time, we obtain a vector field with a singularly
hyperbolic repeller. By using the Heegaard decomposition, one can construct such a flow on any
closed orientable 3-manifold M3. Note that both the attractor and the repeller in the Morales
example are partially hyperbolic. Since, as Hayashi showed [70], an Ω-stable flow has a hyperbolic
nonwandering set, it follows that the flow in the Morales example is not Ω-stable.

In view of the above-performed considerations and Newhouse’s results [98, 101], it becomes clear
why the hope for the existence of a residual set in the spaces Diff 1(Mn) for n ≥ 2 and χ1(Mn)
for n ≥ 3 with dynamics described by a finite set of constructive invariants faded in the beginning
of the 1970s. Nevertheless, in connection with the achievements in the investigation of closing
lemmas, there was some progress in the understanding of what classes of dynamical systems with a
sufficiently clear description can form residual sets. Obviously, the impetus to describing and finding
residual sets was given by the Palis strategic paper [107] (and the following papers [108, 109]), where
he stated several conjectures pertaining to everywhere dense sets in spaces of dynamical systems.
(Recall that a residual set is dense in a Baire space.)

Consider the Palis program in detail. The main conjecture implies the existence of a dense set
D in the space of dynamical systems (this space is treated as the set of vector fields, diffeomor-
phisms, or transformations of a closed smooth manifold equipped with the uniform Cr topology,
r ≥ 1) such that each element of D has only finitely many attractors, the attraction domain of
these attractors has full measure, and, in addition, there exists a Sinai–Ruelle–Bowen measure
on each attractor. Moreover, it is assumed that the situation is preserved under generic finite-
parameter and sufficiently small bifurcations. One can see that the main conjecture in a sense
has ergodic character. However, by taking into account the positive results due to Sinai, Bowen,
and Bowen–Ruelle [22, 47, 48] for dynamical systems with a uniform hyperbolic structure on the
nonwandering set, Palis suggested auxiliary conjectures in the direction of the proof of the main
conjecture, which already have “dynamic” character. We note two of them.

Strong conjecture. Each dynamical system can be Cr approximated by a hyperbolic system
or a system with a homoclinic tangency or a heterodimensional cycle.

Weak conjecture. Each diffeomorphism can be Cr approximated by a Morse–Smale diffeo-
morphism or a diffeomorphism with a transversal homoclinic orbit.

Recall that a diffeomorphism f has a heterodimensional cycle, see Fig. 19, if there exist periodic
saddle points p and q with stable (and hence with unstable) manifolds of distinct dimensions,

W s(p) ∩ W u(q) �= ∅, W u(p) ∩ W s(q) �= ∅, dim W u(p) �= dim W u(q).

Note that Palis knowingly presented no rigorous definition of the hyperbolicity of a diffeomor-
phism (see [108, pp. 8–9]). It means sometimes the uniform hyperbolic structure on the limit set
(then, by the Anosov lemma, the limit set is the closure of periodic points), sometimes the validity
of the axiom A,10 sometimes the Ω-stability, and finally, sometimes the uniform hyperbolic struc-
ture on the chain-recurrent set. (Then, by the Anosov closing lemma, the chain-recurrent set is the
closure of the set of periodic points and coincides with the limit and nonwandering sets.) However,
by virtue of (8), such an ambiguity is not important for the residual set KSP (M).

10 Recall that the Smale axiom A claims that the nonwandering set is hyperbolic and the periodic orbits are dense
in it.
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Fig. 19. A heterodimensional cycle. [The manifolds W s(p) and Wu(q) meet.]

For all definitions of hyperbolicity, the Palis strong conjecture implies that the nonhyperbolicity
of almost every system is always a consequence of irremovable nontransversal intersections of invari-
ant manifolds of the points of the system. This is the case in the examples suggested by Abraham
and Smale [28], Newhouse [96, 101], Williams [157], Simon [142], Robinson and Williams [135], and
Diaz [55]. One can show that the strong conjecture implies the weak one.

The Palis C1 strong conjecture for two-dimensional compact manifolds was proved in the fol-
lowing theorem in [129]. (Note that there are no heterodimensional cycles on two-dimensional
manifolds.)

Theorem 7.3. Let M2 be a two-dimensional compact manifold , and let f ∈ Diff 1(M2). Then
f can be C1 approximated by A-diffeomorphisms or diffeomorphisms with homoclinic tangencies.

First, one shows that if a diffeomorphism f : M2 → M2 has no homoclinic tangency, then the
angle between the stable and unstable manifolds of hyperbolic periodic points at their points of
intersection is bounded away from zero by a positive constant. This implies the existence of a so-
called dominating splitting, which is a generalization of the hyperbolic structure, on the closure
of the set of periodic points. Let us give a definition (probably the definition of the dominating
splitting was formally given for the first time by Mané in [90]; however, close constructions were
considered even in [21, 82]) for arbitrary dimension n = dim M .

Let f be a diffeomorphism of a closed n-dimensional manifold Mn equipped with some Rie-
mannian metric. A set Λ ⊂ Mn invariant under f admits dominating splitting if the restriction
TΛMn of the tangent bundle TMn of Mn to Λ can be represented as the Whitney sum E ⊕ F of
Df -invariant subbundles E and F such that (1) dim E(x) + dimF (x) = n for all x ∈ Λ; (2) the di-
mensions dim E(x) and dimF (x) are independent of x ∈ Λ; (3) there exist C > 0 and 0 < λ < 1
such that

‖Dfk(v)‖
‖Dfk(u)‖ ≤ Cλk ‖v‖

‖u‖ ,

where v ∈ E(x), u ∈ F (x), x ∈ Λ, and k ≥ 1. Geometrically, a dominating splitting means that the
angle between the direction specified by the vector Dfk(v, u) and F tends exponentially to zero as
k → +∞, see Fig. 20. Roughly speaking, the dilation in the direction F is stronger than in the
direction E, or the contraction in the direction E is stronger than in the direction F .

The key point in the proof of Theorem 7.3 is the proof of the fact that if a compact invariant
set that contains neither sources no sinks but admits dominating splitting, is nonhyperbolic, then
it is a finite family of normally hyperbolic circles. By analogy with considerations of the Denjoy
type, it is shown that the restriction of some power of a diffeomorphism to any circle of this
kind is conjugate to a rotation with an irrational rotation number. Now one can “eliminate”
the nonhyperbolic part with the use of an arbitrarily small perturbation and obtain a hyperbolic
diffeomorphism arbitrarily close to the original diffeomorphism f .

On a surface, an A-diffeomorphism that is not a Morse–Smale diffeomorphism necessarily has
homoclinic orbits or heteroclinic tangencies. Therefore, the following result was obtained in [129]
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Fig. 20. Dominating splitting of E ⊕ F .

as a corollary of Theorem 7.3. By MS(M2) we denote the set of Morse–Smale diffeomorphisms on
a compact surface M2.

Theorem 7.4. In the set U = Diff 1(M2)−clos MS(M2), there exists an open set R dense in U
and such that any diffeomorphism f ∈ R has a transversal homoclinic orbit.

By taking into account the Katok result [77], we find that the closure of the interior of the set
of diffeomorphisms with zero entropy is equal to the closure of the set clos MS(M2) of Morse–
Smale diffeomorphisms. This fact was refined in [59].

Already manifolds of dimensions ≥ 3 can contain heterodimensional cycles, and on such man-
ifolds, there exist diffeomorphisms that cannot be approximated by either hyperbolic diffeomor-
phisms or diffeomorphisms with homoclinic tangencies. For example, such diffeomorphisms in-
clude the above-mentioned robustly transitive Shub and Mané diffeomorphisms [139, 87]. In par-
ticular, the Palis strong conjecture implies that these diffeomorphisms are approximated by diffeo-
morphisms with heterodimensional cycles. By using the presence of a dominating splitting [153],
Lan Wen obtained [154] some description of nonhyperbolic invariant sets for a C1 generic diffeomor-
phism that is not hyperbolic and is not approximated by either diffeomorphisms with homoclinic
tangencies or diffeomorphisms with heterodimensional cycles. By using these results and the very
fine technique developed in [76] concerning the existence of a so-called central field of tangent
planes, Crovisier [54] proved the Palis weak C1 conjecture for compact n manifolds (n ≥ 3) in the
following form.

Theorem 7.5. Every diffeomorphism of a compact manifold can be C1 approximated by
a Morse–Smale diffeomorphism or a diffeomorphism with a transversal homoclinic point.

In the direction of the proof of the Palis strong conjecture, the following theorem was proved
in [25] on the basis of the C1 connecting lemma for manifolds.

Theorem 7.6. In the space Diff 1(M), where M is a compact manifold , there exists a residual
set R such that if Λ is a transitive isolated set of a diffeomorphism f ∈ R in NW (f), then one of
the following possibilities is realized.

1. Λ is a hyperbolic set.
2. Λ is a nonhyperbolic set , and f is C1 approximated by diffeomorphisms that have a hetero-

dimensional cycle.

In what follows, we present one more result dealing with the Palis conjecture.
A many-dimensional analog of Theorem 7.2 was obtained in [26]. Obviously, to this end one

should weaken the requirement of Ω-stability, which is equivalent to axiom A (the presence of
the hyperbolic structure and the denseness of periodic orbits in the nonwandering set) and the
absence of cycles in the family of basic sets. Recall that the nonwandering set of an Ω-stable
diffeomorphism splits into pairwise disjoint closed invariant and transitive subsets, which are said
to be basic [146]. This representation of the nonwandering set is called the spectral expansion. For
an arbitrary diffeomorphism, this result is used as a definition; i.e., the spectral expansion of an
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arbitrary diffeomorphism is understood as a representation of the nonwandering set as the union of
pairwise disjoint closed invariant transitive subsets. These subsets can be introduced independently
in various ways. One fruitful approach going back to Smale [146] and Newhouse [102] is the
straightforward repetition of the definition of a basic set in the Smale theory as a homoclinic class.
(For a detailed rigorous exposition, see [134, pp. 240–244].) Before stating subsequent results, we
introduce related definitions.

Let p be a saddle periodic point of the diffeomorphism f . The saddle homoclinic class associated
with p is defined as the set

H(p, f) = clos (W s(p) � W u(p)) ,

where � stands for the transversal intersection. If p is a nodal periodic point (an isolated attracting
or repelling periodic point), then the homoclinic class H(p, f) is defined as its orbit O(p). The ho-
moclinic class of an arbitrary diffeomorphism is a closed invariant and transitive set. In hyperbolic
theory, the homoclinic classes are basic sets. In the general case, the homoclinic classes are not
isolated and may not be disjoint. However, for a generic diffeomorphism, homoclinic classes either
coincide or are disjoint [26, 51]. It was proved in [26] that the presence of a spectral expansion of
a generic diffeomorphism is equivalent to the finiteness of the number of homoclinic classes; in this
case, there exists a dominating splitting on the nonwandering set.

A dominating splitting NW (f) = H(p1, f) ∪ · · · ∪ H(pm, f) on the nonwandering set of a dif-
feomorphism f is said to be R-robust if there exists a residual set R ⊂ Diff 1(M) containing
f and such that any diffeomorphism g ∈ R sufficiently close to f has a dominating splitting
NW (g) = H(p̄1, g) ∪ · · · ∪ H(p̄m, g) of the same type. In addition, if gi → f (gi ∈ R) in the C1

topology as i → ∞, then H(p̄j, gi) → H(pj, f) in the Hausdorff metric on compact sets for all
j = 1, . . . ,m. The following assertion proved in [26] is the multidimensional analog of Theorem 7.2.

Theorem 7.7. In the space Diff 1(Mn), n ≥ 3, there exists a residual set G such that one of
the following possibilities is realized for f ∈ G.

1. f has infinitely many sinks or sources.
2. f has finitely many sources and sinks but infinitely many homoclinic saddle classes.
3. f has finitely many homoclinic classes, and the nonwandering set NW (f) admits a G-robust

dominating splitting.

In the first two cases, the nonwandering set NW (f) does not admit dominating splitting. It was
suggested in [44] to say that the dynamics of the diffeomorphism f is wild. In the last, third case,
the dynamics is said to be tame. Note that all three cases can be realized. Examples realizing the
first two cases were constructed in [43, 50]. The last case corresponds to the Ω-stability and can
obviously can be realized as well.

The following assertion was proved in [26].

Theorem 7.8. In the space Diff 1(M), where M is a compact manifold , there exists a residual
set R such that if f ∈ R has finitely many homoclinic classes, then exactly one of the following
possibilities is realized.

1. f is Ω-stable.
2. f is not an A-diffeomorphism and is C1 approximated by diffeomorphisms that have a hetero-

dimensional cycle.

Thus the Palis strong conjecture has been proved for tame diffeomorphisms in the multidimen-
sional case. Note that the claim on the approximation by A-diffeomorphisms is replaced by the claim
on the Ω-stability, and it is well known that an Ω-stable diffeomorphism is an A-diffeomorphism.

Needless to say, the connecting lemma for invariant manifolds was used for obtaining homoclinic
points from almost homoclinic ones. Theorem 2.9 implies the following assertion (in [70], it was
stated as Corollary 2).

Theorem 7.9. For a C1 generic diffeomorphism f : M → M of a closed manifold M, the set
of transversal homoclinic points associated with a fixed hyperbolic point is everywhere dense in the
set of almost homoclinic points (associated with the same hyperbolic point).
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In [71], this result was generalized: the everywhere denseness in the set of prolongationally
homoclinic points (associated with the same hyperbolic set) was proved.

Let us briefly consider the problem on generic symplectic systems. (A fascinating survey dealing
mainly with diffeomorphisms of two-dimensional manifolds can be found in [53]. For manifolds of
arbitrary dimension, see [37].) Recall that Diff r

ω (Md) stands for the space of Cr diffeomorphisms
of a compact d-manifold Md, d ≥ 2, preserving a symplectic or volume form ω on Md. In addition,
recall (see Section 3) that Theorem 3.1 implies the Poincaré conjecture on the denseness of periodic
trajectories of a generic Hamiltonian system in the class C1; see Theorem 3.2.

First, consider symplectic diffeomorphisms on two-dimensional compact orientable mani-
folds M2. On such manifolds, the notions of symplecticity and area conservation coincide. In ac-
cordance with [148], such diffeomorphisms are said to be conservative. Recall that a periodic point
p of a diffeomorphism f : M2 → M2 of a two-dimensional manifold M2 is said to be elliptic if the
eigenvalues of Df s(p) are not real numbers,11 where s is the period of the point p. The following
assertion holds for generic conservative diffeomorphisms M2 → M2.

Theorem 7.10. A generic conservative diffeomorphism f ∈ Diff 1
ω (M2) has the following prop-

erties.
1. f is transitive (i.e., there exists an orbit everywhere dense in M2).
2. The saddle hyperbolic periodic points of f are everywhere dense in M2.
3. If f is not conjugate to an Anosov diffeomorphism, then the elliptic periodic points are ev-

erywhere dense in M2.
4. For each ε > 0, there exists a periodic ε-dense point.

The genericity of properties 1 and 4 follows from Theorem 3.3 and the Poincaré recurrence
theorem. The genericity of property 2 follows from [132, 162]. The genericity of property 3 is one
of the main results in [100]. Now the assertions of the theorem follow from the simple remark that
the intersection of finitely (and even countably) many residual sets is a residual set. Property 1
was proved in [37] for manifolds of arbitrary dimension.

The following assertion was proved in [35] for a four-dimensional symplectic manifold.

Theorem 7.11. In the space Diff 1
ω (M4), there exist three open sets U1, U2, and U3 such that

the following assertions hold.
1. The union U1 ∪ U2 ∪ U3 is dense in Diff 1

ω (M4).
2. f ∈ U1 if and only if f is an Anosov transitive diffeomorphism.
3. f ∈ U2 if and only if f is partially hyperbolic.
4. f ∈ U3 if and only if f has a stable completely elliptic periodic point.

Recall that a periodic point p of period k is said to be completely elliptic if the eigenvalues
Dfk(p) have unit absolute values and all of them are distinct.

The homoclinic points discovered by Poincaré [119] when studying the three-body problem
in celestial mechanics play an important role in symplectic dynamics. Poincaré suggested that
homoclinic points of a generic Hamiltonian system are dense on stable and unstable manifolds.
The following assertion generalizing the corresponding Takens result [148] for two-dimensional
manifolds was proved in [159] on the basis of the method of proof of Theorem 2.3.

Theorem 7.12. Let p ∈ Md be a hyperbolic periodic point of a diffeomorphism f ∈ Diff 1
ω (Md).

Then for each point q ∈ W u(p) ∪ W s(p), for its arbitrary neighborhood U(q), and for an arbitrary
neighborhood V (f) of f in Diff 1

ω (Md), there exists a g ∈ V (f) coinciding with f in some neighbor-
hood of p and such that g has a homoclinic point in U(q) associated with p. Moreover , there exists
a residual subset B ⊂ Diff 1

ω (Md) such that if f ∈ B and p is a hyperbolic periodic point of f, then
the intersection W u(p) ∩ W s(p) is everywhere dense both in W u(p) and in W s(p).

11 In this case, the eigenvalues are complex conjugate and have unit absolute values.
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Let us return to two-dimensional closed orientable manifolds. In conclusion, we consider the
application of connecting lemmas for invariant manifolds to conservative diffeomorphisms. A hyper-
bolic periodic point of a conservative diffeomorphism on a surface M2 has one-dimensional invariant
manifolds (i.e., is a periodic saddle point). Each of the invariant manifolds is divided by the peri-
odic point in two components, which are referred to as separatrices. An injective immersion of the
half-line [0;+∞) in a separatrix equips the latter with a parametrization such that 0 corresponds
to a periodic point. Therefore, in a standard way, one can define the limit set of the separatrix L,
which is denoted by ω(L). It is known [103] that if L and K are arbitrary separatrices (possibly,
L = K), then either K ∩ ω(L) = ∅ or K ⊂ ω(L). The last property is generic in the smoothness
class Cr for any 1 ≤ r ≤ ∞. In particular, all separatrices of periodic saddle points of a generic
conservative diffeomorphism of a closed orientable surface are nontrivially recurrent. By using this
fact, Pixton [116] and Oliveira [103] proved for a generic conservative diffeomorphism of the sphere
and the torus, respectively, that each hyperbolic periodic point has a transversal homoclinic point
in the smoothness class Cr, 1 ≤ r ≤ ∞. (For an arbitrary compact surface, this fact was proved
by Takens [148] in the smoothness class C1.)

Let f : M2 → M2 be a conservative diffeomorphism of an orientable closed surface M2 of genus
≥ 2. By f∗ : H1(M2) → H1(M2) we denote the automorphism induced by f in the homology
group H1(M2). The automorphism f∗ is said to be irreducible if the characteristic polynomial of
f∗ is irreducible on Z. By I we denote the set of diffeomorphisms f ∈ Diff r

ω(M2), 1 ≤ r ≤ ∞,
that induce irreducible automorphisms in the group H1(M2). It was shown in [104] that in I there
exists a residual set R such that any diffeomorphism f ∈ R has transversal homoclinic points.

Mather proved [92] that, for a generic symplectic Cr (r ≥ 4) diffeomorphism of a compact
surface, the topological closures of the separatrices of a hyperbolic periodic point coincide. This
result was generalized in [150] to any r ≥ 1 and any surface (which is not necessarily compact and
orientable).
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