УДК 517.98+517.95

Смешанные задачи в липшицевой области для сильно эллиптических систем 2-го порядка*

© 2011. М. С. Агранович

Рассматриваются смешанные задачи для сильно эллиптических систем 2-го порядка в ограниченной области пространства \mathbb{R}^n с липшицевой границей. Выводятся уравнения на границе, эквивалентные задаче, в простейших L_2 -пространствах H^s типа Соболева, что позволяет представить решения через поверхностные потенциалы. Доказывается результат о регулярности решений с выходом в немного более общие пространства H_p^s бесселевых потенциалов и пространства B_p^s Бесова. Рассматриваются задачи со спектральным параметром в системе или в условии на части границы, обсуждаются спектральные свойства соответствующих операторов, включая асимптотики собственных значений.

§1. Введение

1.1. Содержание работы. Пусть Ω — ограниченная область в пространстве \mathbb{R}^n , $n\geqslant 2$, с липшицевой границей Γ . Пусть в Ω задана сильно эллиптическая система 2-го порядка Lu=f, записанная в дивергентной форме, см. ниже (1.1). Предположения о гладкости коэффициентов в известной мере минимизируются. Основную «энергетическую» форму $\Phi_{\Omega}(u,v)$ мы предположим коэрцитивной при u=v в усиленном смысле на пространстве $H^1(\Omega)=W_2^1(\Omega)$; это условие влечет однозначную разрешимость задач Дирихле и Неймана.

В бо́льшей части работы (§§ 1–6) мы предполагаем, что граница Γ разбита на две области Γ_1 и Γ_2 замкнутой (n-1)-мерной липшицевой поверхностью $\partial \Gamma_j$ без самопересечений, на Γ_1 ставится условие Дирихле, на Γ_2 — Неймана.

Смешанным задачам посвящена обширная литература. Причина состоит в том, что они встречаются во множестве прикладных вопросов. См., например, книги [16] и [41]. (В них содержатся также явные и непростые формулы для решения ряда конкретных смешанных задач.)

Во многих работах накладываются дополнительные условия гладкости на Γ_1 и Γ_2 , или на Γ , и на $\partial \Gamma_j$. См., в частности, [39], [38] и приведенную там литературу, а также [42], [43], [30]. В ряде работ накладывается условие на геометрию границы: обычно требуется, грубо говоря, чтобы угол между нормалями к Γ_1 и Γ_2 в точках на $\partial \Gamma_j$ был меньше π (creased domains, точное определение см. в [10]; см. также [46], [27], [11]). Многие работы посвящены конкретным уравнениям или системам, чаще всего это уравнения Лапласа–Гельмгольца или системы теории упругости; кроме названных выше работ, см. также [19], [35]. При этом исследования в значительной степени направлены на выяснение регулярности решения и в особенности его поведения вблизи $\partial \Gamma_j$. Легко строятся примеры (типа $r^\alpha \sin(\alpha\theta)$ в полярных координатах r, θ в плоской области в случае уравнения Лапласа), показывающие, что даже при бесконечно гладких Γ_j (или

^{*}Поддержано грантом РФФИ 11-01-00277-а.

даже Γ) и $\partial \Gamma_j$ решение может иметь особенность вблизи $\partial \Gamma_j$. В [42], [43], [30] в гладком случае получена асимптотика решения вблизи $\partial \Gamma_j$ при помощи метода Винера–Хопфа в форме, предложенной в [15].

Существенно меньше работ об общих сильно эллиптических уравнениях или системах, в которых никакиx дополнительных условий гладкости на Γ_j и $\partial \Gamma_j$ или геометрических условий не накладывается. Назовем монографию [24], работы [34] (о скалярном уравнении с формально самосопряженной старшей частью), [18] и [33, п. 3] (о скалярном формально самосопряженном уравнении без младших членов). К этому направлению относится и наша работа (в пределах §§ 1–5).

Мы приведем общую теорему о существовании и единственности вариационного решения в пространствах H^s и сравним разные подходы к ее доказательству. С учетом деликатности некоторых из затрагиваемых вопросов мы сначала напомним свойства пространств H^s (п. 1.3), постановку задач Дирихле и Неймана (п. 2.1) и непосредственное доказательство однозначной разрешимости смешанной задачи на основе леммы Лакса-Мильграма (п. 2.2). Затем, в §3, выведем двумя способами уравнения на Γ с операторами типа поверхностных потенциалов на части границы, эквивалентные задаче и однозначно разрешимые. Эти операторы представляют самостоятельный интерес. В [24] уравнения получены в предположении формальной самосопряженности старшей части системы. Нам оно не понадобится; мы воспользуемся прозрачным подходом в [30] к системе анизотропной упругости.

В §4 мы обобщим теорему об однозначной разрешимости на близкие к H^s пространства H^s_p бесселевых потенциалов и пространства B^s_p Бесова, используя *теорему Шнейберга* [40] об экстраполяции обратимости операторов, действующих в интерполяционных шкалах пространств. Ср., в частности, [27] (где получены очень общие теоремы об однозначной разрешимости для уравнения Лапласа при дополнительном геометрическом предположении), а также [11]. Отметим, что в этих работах и ряде других авторы выходят за рамки функциональных пространств, используемых в нашей статье.

В §§ 5–6 мы рассмотрим спектральные задачи. Для самосопряженных задач мы укажем результаты о базисности собственных функций, а для несамосопряженных задач и задач в рассматриваемых у нас негильбертовых пространствах — условия полноты корневых функций и суммируемости рядов Фурье по ним методом Абеля—Лидского, ср. [3]—[5].

Если система или хотя бы ее старшая часть формально самосопряженная, то интересна асимптотика собственных значений. Для задач со спектральным параметром в системе результат следует из теоремы в [25], и там получена сильная оценка остаточного члена. Задачи со спектральным параметром в условии на части границы — это спектральные задачи Пуанкаре—Стеклова. Мы применим к ним вариационный подход, восходящий к Куранту—Гильберту [13], при условии, что граница почти гладкая вне замкнутого подмножества $\Gamma_{\rm sing}$ нулевой меры, это определение из [6]). Мы дополним также результаты по спектральным асимптотикам, полученные в [4] и [5].

В §7 мы кратко рассмотрим некоторые обобщения.

1.2. Уточнение постановки задачи. Запишем систему в виде

$$Lu := -\sum \partial_j a_{j,k}(x) \partial_k u(x) + \sum b_j(x) \partial_j u(x) + c(x) u(x) = f(x). \tag{1.1}$$

Здесь и дальше $\partial_k = \partial/\partial x_k$; u — вектор-функция (столбец) размерности m, так что коэффициенты — это $m \times m$ -матрицы. Как и u, они состоят из комплекснозначных функций. Будем предполагать, что $a_{j,k} \in C^1(\overline{\Omega}), \ b_j \in C^{0,1}(\overline{\Omega})$ (липшицевы), $c \in L_\infty(\Omega)$. В некоторых ситуациях можно предполагать меньше. Условие сильной эллиптичности состоит в равномерной положительной определенности вещественной части $\frac{1}{2}(a+a^*)$ главного символа — матрицы $a(x,\xi) = \sum a_{j,k}(x)\xi_j\xi_k$ — при вещественных ξ , $|\xi| = 1$. Решение будем сначала искать в $H^1(\Omega)$. Пространство для f будет указано в п. 2.2.

Запишем граничные условия:

$$u^+ = g$$
 на Γ_1 , $T^+ u = h$ на Γ_2 . (1.2)

Здесь $u^+ = g$ — след функции u, принадлежащий $H^{1/2}(\Gamma_1)$, мы его будем обозначать также через $\gamma^+ u$, а $T^+ u = h$ — конормальная производная, ее определение напоминается и кратко комментируется в п. 2.1; она принадлежит $H^{-1/2}(\Gamma_2)$.

Системе отвечает обозначаемая через $\Phi_{\Omega}(u,v)$ полуторалинейная форма

$$\int_{\Omega} \left[\sum a_{j,k}(x) \partial_k u(x) \cdot \partial_j \overline{v}(x) + \sum b_j(x) u(x) \cdot \overline{v}(x) + c(x) u(x) \cdot \overline{v}(x) \right] dx; \quad (1.3)$$

она определена на функциях из $H^1(\Omega)$. Наше предположение о ее (усиленной) коэрцитивности состоит в том, что для них справедливо неравенство Гординга

$$||u||_{H^1(\Omega)}^2 \leqslant C_0 \operatorname{Re} \Phi_{\Omega}(u, u) \tag{1.4}$$

без добавления $\|u\|_{L_2(\Omega)}^2$ справа. На функциях с $u^+=0$ на Γ такое неравенство является следствием одной лишь сильной эллиптичности, если

$$\operatorname{Re}(cu, u)_{\Omega} \geqslant C_1 \|u\|_{L_2(\Omega)}^2 \tag{1.5}$$

с достаточно большой постоянной C_1 , что у нас предполагается. Здесь $(\cdot, \cdot)_{\Omega}$ — стандартное скалярное произведение в $L_2(\Omega)$. На функциях из $H^1(\Omega)$ неравенство (1.4) получается в случае скалярного уравнения с вещественной симметрической матрицей из старших коэффициентов. Для его справедливости в матричном случае на коэффициенты в L накладываются некоторые (достаточные) условия (см., например, [24], [5]); в частности, они выполнены для обобщенных систем теории упругости (см., например, [32]). При этом снова форма $\operatorname{Re}(cu,u)_{\Omega}$ считается достаточно большой.

1.3. Пространства H^s . См., например, [24]. Пространства $H^s(\mathbb{R}^n)$ бесселевых потенциалов $(s \in \mathbb{R})$ вводятся формулой

$$H^{s}(\mathbb{R}^{n}) = J^{-s}L_{2}(\mathbb{R}^{n}), \qquad J^{-s} = F^{-1}(1 + |\xi|)^{-s}F,$$
 (1.6)

где F — преобразование Фурье в смысле обобщенных функций; $\|u\|_{H^s(\mathbb{R}^n)} = \|J^s u\|_{L_2(\mathbb{R}^n)}$. Для $s \geqslant 0$ это пространства $W_2^s(\mathbb{R}^n)$ Соболева (при целых s) и Слободецкого (при нецелых s). Пространства $H^s(\mathbb{R}^n)$ и $H^{-s}(\mathbb{R}^n)$ дуальны, или двойственны, или сопряжены, относительно продолжения стандартного скалярного произведения в $L_2(\mathbb{R}^n)$ на их прямое произведение.

Пространство $H^s(\Omega)$ определяется как состоящее из сужений элементов из $H^s(\mathbb{R}^n)$ на Ω в смысле обобщенных функций с обычной нормой inf. Имеется универсальный ограниченный оператор $\mathscr E$ продолжения элементов из $H^s(\Omega)$ до элементов из $H^s(\mathbb{R}^n)$, не зависящий от s [37].

Пространство $\widetilde{H}^s(\Omega)$ определяется как подпространство в $H^s(\mathbb{R}^n)$ элементов с носителями в $\overline{\Omega}$. Норма наследуется из $H^s(\mathbb{R}^n)$. Пространство $\widetilde{H}^s(\Omega)$ можно отождествить с пополнением в $H^s(\mathbb{R}^n)$ линеала $C_0^\infty(\Omega)$, считая функции из него продолженными нулем вне Ω . При -1/2 < s < 3/2, $s \neq 1/2$ его можно отождествить также с пополнением $\mathring{H}^s(\Omega)$ линеала $C_0^\infty(\Omega)$ в $H^s(\Omega)$. Все отождествления понимаются с точностью до эквивалентности норм.

Пространства $\widetilde{H}^{-s}(\Omega)$ и $H^s(\Omega)$ дуальны относительно продолжения стандартного скалярного произведения в $L_2(\Omega)$ на их прямое произведение. Это продолжение имеет вид

$$(f, v)_{\Omega} = (f, \mathcal{E}v)_{\mathbb{R}^n}, \tag{1.7}$$

где справа используется продолжение скалярного произведения в $L_2(\mathbb{R}^n)$. Разумеется, функции в этих формах до и после запятой можно одновременно поменять местами. Пространства $H^s(\Omega)$ и $\widetilde{H}^s(\Omega)$ отождествляются при |s| < 1/2.

Пространства $H^s(\Gamma)$ определяются на липпицевой поверхности при $|s|\leqslant 1$ при помощи разбиения единицы и норм в $H^s(\mathbb{R}^{n-1})$. Оператор $\gamma^+v=v^+$ перехода к следу действует ограниченным образом из $H^{s+1/2}(\Omega)$ в $H^s(\Gamma)$ при 0< s< 1 и имеет ограниченный правый обратный. Пространства $H^s(\Gamma)$ и $H^{-s}(\Gamma)$ дуальны относительно продолжения стандартного скалярного произведения в $L_2(\Gamma)$ (относительно естественно определяемой меры — площади поверхности на Γ) на их прямое произведение.

Пространство $H^{-s}(\Omega)$ при s>1/2 содержит элементы из $H^{-s}(\mathbb{R}^n)$, сосредоточенные на Γ . При 1/2 < s < 3/2 они имеют вид $(w,v^+)_{\Gamma}, \ v \in H^s(\Omega), \ w \in H^{-s+1/2}(\Gamma)$ [26].

Если Γ_0 — область на Γ с липшицевой границей, то пространство $H^s(\Gamma_0)$ определяется при $|s| \leq 1$ как состоящее из сужений на Γ_0 элементов из $H^s(\Gamma)$ с нормой inf. Имеется ограниченный оператор продолжения из $H^s(\Gamma_0)$ в $H^s(\Gamma)$, не зависящий от s. Пространство $\widetilde{H}^s(\Gamma_0)$ определяется как подпространство в $H^s(\Gamma)$ элементов с носителями в $\overline{\Gamma}_0$. Пространства $\widetilde{H}^{-s}(\Gamma_0)$ и $H^s(\Gamma_0)$ дуальны относительно продолжения стандартного скалярного произведения в $L_2(\Gamma_0)$ на их прямое произведение. Это продолжение строится аналогично (1.7). Пространства $H^s(\Gamma_0)$ и $\widetilde{H}^s(\Gamma_0)$ отождествляются при |s| < 1/2.

Оператор умножения на характеристическую функцию области Γ_0 является мультипликатором в $H^s(\Gamma)$ при |s|<1/2 и не является мультипликатором в $H^{\pm 1/2}(\Gamma)$. Но он является мультипликатором в $\widetilde{H}^s(\Gamma_0)$ при $|s|\leqslant 1/2$; более того, умножение на эту функцию не меняет элементы этих пространств.

§2. Вариационный подход

2.1. Задачи Дирихле и Неймана. Напомним их вариационную постановку. Запишем формулу Грина

$$\Phi_{\Omega}(u, v) = (Lu, v)_{\Omega} + (T^{+}u, v^{+})_{\Gamma}. \tag{2.1}$$

3десь v — произвольная пробная функция.

Начнем с задачи Неймана ($\Gamma = \Gamma_2$). В этом случае $u, v \in H^1(\Omega)$, так что след $\gamma^+ v = v^+$ принадлежит $H^{1/2}(\Gamma)$. В соответствии с выбором пространства для v правая часть системы Lu = f берется из $\widetilde{H}^{-1}(\Omega)$. Справа в (2.1) используются соответствующие дуальности.

Конормальная производная на гладких функциях определяется формулой $T^+u(x)=\sum \nu_j(x)\partial_j u(x)$ в точках x границы, в которых есть нормаль к ней (это почти все точки). Здесь $\nu_j(x)$ — коэффициенты единичной внешней нормали. В общем случае заданием функции $u\in H^1(\Omega)$ обобщенная функция Lu(x) однозначно определяется только внутри области Ω , а $f\in \widetilde{H}^{-1}(\Omega)$ может содержать еще слагаемое из $H^{-1}(\mathbb{R}^n)$ с носителем на Γ . Справедливость формулы (2.1) постулируется, и она принимается за определение конормальной производной $T^+u\in H^{-1/2}(\Gamma)$ (по u и Lu=f), а также за определение решения задачи Неймана (по f=Lu и $h=T^+u$). Всегда можно принять, что h=0, изменив f на слагаемое с носителем на Γ .

Из неравенства (1.4) следует однозначная разрешимость этой задачи в силу следующей леммы Лакса-Мильграма о слабых решениях абстрактного уравнения Lu=f, где L — ограниченный оператор, определяемый приведенным ниже равенством (2.4). (Ср., например, [24, с. 43].)

Лемма 2.1. Пусть H — гильбертово пространство и H^* — сопряженное κ нему пространство относительно формы (f,v), $v \in H$, $f \in H^*$, и пусть задано $f \in H^*$. Предположим, что для непрерывной полуторалинейной формы $\Phi(u,v)$ на H выполнено неравенство

$$||u||_H^2 \leqslant C \operatorname{Re} \Phi_{\Omega}(u, u). \tag{2.2}$$

Тогда существует один и только один элемент $u \in H$, такой, что

$$\Phi(u,v) = (f,v) \tag{2.3}$$

при всех $v \in H$. При этом оператор L^{-1} : $f \mapsto u$ ограничен.

Перейдем к задаче Дирихле ($\Gamma = \Gamma_1$). В этом случае $u \in H^1(\Omega)$ и $v \in \widetilde{H}^1(\Omega)$. Соответственно $f \in H^{-1}(\Omega)$. Формула Грина принимает вид

$$\Phi_{\Omega}(u,v) = (Lu,v)_{\Omega}. \tag{2.4}$$

В эту формулу u^+ не входит явным образом, но подразумевается, что $u^+=g$. Пусть u_0 — функция из $H^1(\Omega)$ с $u_0^+=g$. Определим $f_0=Lu_0\in H^{-1}(\Omega)$ формулой Грина $\Phi_\Omega(u_0,v)=(Lu_0,v)_\Omega$. Разность $u-u_0$ принадлежит $\widetilde{H}^1(\Omega)=\mathring{H}^1(\Omega)$, и если ее переобозначить через u, то снова получается формула Грина (2.4), в которой уже обе функции u и v принадлежат $\widetilde{H}^1(\Omega)$, а f=Lu— сопряженному пространству $H^{-1}(\Omega)$. Это стандартная постановка задачи Дирихле с однородным граничным условием. Форма $\Phi_\Omega(u,u)$ у нас коэрцитивна на $\widetilde{H}^1(\Omega)$, так что задача Дирихле однозначно разрешима.

Замечание. Предположим (в этом замечании), что оператор L — формально самосопряженный. Из формулы Грина видно, что тогда пространство $H^1(\Omega)$ есть ортогональная сумма относительно скалярного произведения $\Phi_{\Omega}(u,v)$ подпространства $\mathring{H}^1(\Omega) = \widetilde{H}^1(\Omega)$ и подпространства решений системы Lu = 0. Последнее параметризуется данными Дирихле в $H^{1/2}(\Gamma)$, поэтому линейные непрерывные функционалы на нем можно привести в изоморфное соответствие с функционалами из $H^{-1/2}(\Gamma)$ над $H^{1/2}(\Gamma)$. По этим причинам пространство $H^{-1}(\Omega)$, дуальное к $\widetilde{H}^1(S)$, можно отождествить с фактор-пространством пространства $\widetilde{H}^{-1}(\Omega)$, дуального к $H^1(\Omega)$, по подпространству функционалов, сосредоточенных на Γ .

2.2. Перейдем к смешанной задаче. Ее решения u тоже ищутся в $H^1(\Omega)$. Ключевым моментом можно считать выбор пространства пробных функций v: это (замкнутое) подпространство $H^1(\Omega, \Gamma_1)$ в $H^1(\Omega)$, состоящее из функций с нулевым следом на Γ_1 . (То есть след, принадлежащий $H^{1/2}(\Gamma)$, равен 0 на Γ_1).

Как видно из [27], пространство $H^1(\Omega, \Gamma_1)$ можно определить также как 1) пространство сужений на Ω элементов пополнения линеала $C_0^{\infty}(\mathbb{R}^n \setminus \overline{\Gamma}_1)$ в $H^1(\mathbb{R}^n)$, 2) пополнение в $H^1(\Omega)$ сужений на Ω функций из $C_0^{\infty}(\mathbb{R}^n \setminus \overline{\Gamma}_1)$.

Формула Грина, определяющая решение задачи, принимает вид

$$\Phi_{\Omega}(u,v) = (Lu,v)_{\Omega} + (T^{+}u,v^{+})_{\Gamma_{2}}, \tag{2.5}$$

где Lu=f и $T^+u=h.$ Выбором пространства для v определяется пространство правых частей системы: это пространство

$$\widetilde{H}^{-1}(\Omega, \Gamma_1) := [H^1(\Omega, \Gamma_1)]^*, \tag{2.6}$$

сопряженное к $H^1(\Omega, \Gamma_1)$ относительно продолжения формы $(f, v)_{\Omega}$ на их прямое произведение. По аналогии с замечанием в конце п. 2.1 получается, что (2.6) можно отождествить с фактор-пространством пространства $\widetilde{H}^{-1}(\Omega)$ по подпространству функционалов, сосредоточенных на $\overline{\Gamma}_1$. Тогда любое f из (2.6) — элемент из $\widetilde{H}^{-1}(\Omega)$, определенный с точностью до прибавления любого элемента с носителем на $\overline{\Gamma}_1$. Можно просто считать f элементом пространства $\widetilde{H}^{-1}(\Omega)$ (продолжая соответствующий функционал на все $H^1(\Omega)$ по теореме Хана—Банаха), фактически это и сделано в [24].

Снова равенство $g=u^+$ подразумевается. Возьмем функцию u_0 из $H^1(\Omega)$ с $u_0^+=g$ на Γ_1 (продолжим g до функции из $H^{1/2}(\Gamma)$ и возьмем u_0 с $u_0^+=g$). Определим Lu_0 формулой $\Phi_{\Omega}(u_0,v)=(Lu_0,v)_{\Omega}$, принимая соответствующую конормальную производную равной нулю на Γ_2 . Переобозначим разность $u-u_0$ через u. Для нее получается формула Грина (2.5), в которой обе функции u и v принадлежат пространству $H^1(\Omega,\Gamma_1)$, а Lu=f принадлежит сопряженному пространству (2.6). При желании можно принять, что h=0.

Все это согласуется со сказанным выше про задачи Дирихле и Неймана.

Теперь, используя коэрцитивность формы $\Phi_{\Omega}(u,u)$ на $H^1(\Omega,\Gamma_1)$ (ее сейчас достаточно), при помощи леммы Лакса–Мильграма сразу получаем следующую известную теорему. Ср. [24].

Теорема 2.2. При любых $f \in \widetilde{H}^{-1}(\Omega,\Gamma_1)$, $g \in H^{1/2}(\Gamma_1)$, $h \in H^{-1/2}(\Gamma_2)$ задача (1.1)–(1.2) имеет одно и только одно вариационное решение $u \in H^1(\Omega)$.

§3. Сведение смешанной задачи к уравнениям на Г

3.1. Для экономии места предположим, что область $\Omega = \Omega^+$ лежит на стандартном торе \mathbb{T}^n с периодическими координатами и поверхность Γ разделяет его на две области Ω^\pm . Нормаль к Γ в тех точках, где она есть, считаем направленной в Ω^- . Пространство $\widetilde{H}^s(\Omega^+)$ теперь будет подпространством в $H^s(\mathbb{T})$. Коэффициенты системы считаем продолженными на тор с сохранением предположений об их «гладкости» и сильной эллиптичности. Форму $\Phi_{\mathbb{T}}(u,u)$ предположим коэрцитивной (в усиленном смысле) на $H^1(\mathbb{T})$ (для этого не требуются дополнительные предположения о старшей части системы), а формы

 $\Phi_{\Omega^{\pm}}(u,u)$ — на $H^1(\Omega^{\pm})$. Тогда задачи Дирихле и Неймана в Ω^{\pm} однозначно разрешимы. Это позволяет воспользоваться готовыми результатами из [3] (где мы следовали идеям из [31], [12] и [24]). Мы продолжим рассмотрение смешанной задачи в $\Omega=\Omega^+$, хотя можно одновременно рассматривать ее и в Ω^- .

Система (1.1) у нас однозначно разрешима в $H^1(\mathbb{T})$ при $f \in H^{-1}(\mathbb{T})$. (Это позволит в дальнейшем считать, что f=0.) Обратный оператор L^{-1} — интегральный:

$$L^{-1}f(x) = \int_{\mathbb{T}} \mathscr{E}(x, y) f(y) \, dy. \tag{3.1}$$

Это так называемый ньютонов потенциал. Его ядро \mathscr{E} — фундаментальное решение для L. Имея его, составим *потенциал простого слоя*

$$\mathscr{A}\psi(x) = \int_{\Gamma} \mathscr{E}(x, y)\psi(y) \, dS_y \tag{3.2}$$

и потенциал двойного слоя; последний в общем случае определяется формулой

$$\mathscr{B}\varphi(x) = \int_{\Gamma} (\widetilde{T}_y^+ \mathscr{E}^*(x, y))^* \varphi(y) \, dS_y \qquad (x \notin \Gamma), \tag{3.3}$$

где $\widetilde{T}^+(\,\cdot\,)$ — конормальная производная, отвечающая формально сопряженному к L оператору \widetilde{L} (см. [24]). При $L=-\Delta$ звездочки и волна опускаются. Напомним свойства этих операторов (см. [24] и [3]).

При наших предположениях оператор \mathscr{A} продолжается до оператора, действующего ограниченным образом из $H^{-1/2}(\Gamma)$ в $H^1(\mathbb{T})$ и, значит, в $H^1(\Omega^\pm)$. При $\psi \in H^{-1/2}(\Gamma)$ функция $u = \mathscr{A}\psi$ удовлетворяет однородной системе Lu = 0 в Ω^\pm и имеет одинаковые следы $\gamma^\pm u$ на Γ , обозначаемые через $A\psi$; это ограниченный обратимый оператор из $H^{-1/2}(\Gamma)$ в $H^{1/2}(\Gamma)$. Это позволяет строить решение задачи Дирихле в Ω^+ для системы Lu = 0 по формуле

$$u = \mathscr{A}A^{-1}u^{+}. (3.4)$$

Оператор \mathscr{B} действует ограниченным образом из $H^{1/2}(\Gamma)$ в $H^1(\Omega^\pm)$, и при $\varphi \in H^{1/2}(\Gamma)$ функция $u = \mathscr{B}\varphi$ тоже удовлетворяет однородной системе в Ω^\pm . Она имеет следы $\gamma^\pm \mathscr{B}\varphi$ на Γ , и это ограниченные операторы в $H^{1/2}(\Gamma)$. Положим, как в [24], $B = \frac{1}{2}(\gamma^+\mathscr{B} + \gamma^-\mathscr{B})$. Это так называемое *прямое значение потенциала двойного слоя*. Скачок $[u] = u^- - u^+$ функции $u = \mathscr{B}\varphi$ равен φ , поэтому $\gamma^+\mathscr{B} = -\frac{1}{2}I + B$. Оператор справа ограничен и обратим в $H^{1/2}(\Gamma)$. Это позволяет записать решение задачи Дирихле в Ω^+ также в виде

$$u = \mathcal{B}(-\frac{1}{2}I + B)^{-1}u^{+}. (3.5)$$

Операторы T^\pm применимы к функциям $\mathscr{A}\psi$ и $\mathscr{B}\varphi$. При этом $T^+\mathscr{B}=T^-\mathscr{B}$. Оператор $H=-T^\pm\mathscr{B}$ называется *гиперсингулярным оператором*. Он действует ограниченным образом из $H^{1/2}(\Gamma)$ в $H^{-1/2}(\Gamma)$ и обратим. Поэтому решение задачи Неймана для системы Lu=0 в Ω^+ можно строить по формуле

$$u = -\mathcal{B}H^{-1}T^{+}u. \tag{3.6}$$

Далее, $T^{\pm}\mathscr{A}$ — ограниченные операторы в $H^{-1}(\Gamma)$. Положим, как в [24], $\widehat{B}=\frac{1}{2}(T^{+}\mathscr{A}+T^{-}\mathscr{A})$. Скачок $[T\mathscr{A}\varphi]=T^{-}\mathscr{A}\varphi-T^{+}\mathscr{A}\varphi$ равен $-\varphi$, поэтому $T^{+}\mathscr{A}=$

 $\frac{1}{2}I+\hat{B}$. Это ограниченный обратимый оператор в $H^{-1/2}(\Gamma)$, и решение задачи Неймана в Ω^+ можно строить также по формуле

$$u = \mathcal{A}(\frac{1}{2}I + \widehat{B})^{-1}T^{+}u. \tag{3.7}$$

Нам еще нужны оператор N (Neumann-to-Dirichlet), переводящий данные Неймана T^+u в данные Дирихле u^+ , и обратный оператор D (Dirichlet-to-Neumann). Оператор N действует ограниченным образом из $H^{-1/2}(\Gamma)$ в $H^{1/2}(\Gamma)$, оператор D— в обратную сторону. Для них справедливы неравенства типа Гординга, вытекающие из формулы Грина (2.1) и исходного предположения о коэрцитивности:

$$\|\varphi\|_{H^{1/2}(\Gamma)}^2 \leqslant C_1 \operatorname{Re}(D\varphi, \varphi)_{\Gamma}, \qquad \|\psi\|_{H^{-1/2}(\Gamma)}^2 \leqslant C_2 \operatorname{Re}(N\psi, \psi)_{\Gamma}. \tag{3.8}$$

Обратимость операторов D и N следует из предположения об однозначной разрешимости задач Дирихле и Неймана. Она следует также из этих неравенств в силу леммы Лакса–Мильграма. Кроме того, известно, что $BA = A\widehat{B}$, поэтому из написанных выше формул следует, что

$$N = A(\frac{1}{2}I + \widehat{B})^{-1} = (\frac{1}{2}I + B)^{-1}A.$$
(3.9)

В случае бесконечной гладкости поверхности Γ и коэффициентов в L операторы A и N — (сильно эллиптические) ПДО (псевдодифференциальные операторы) порядка -1, а H и D — порядка 1.

3.2. Теперь приведем два варианта составления уравнений на Γ для смешанной задачи. В первом мы следуем работе [30]; ср. также [42], [43].

Этот вариант состоит в следующем. Продолжим g до функции из $H^{1/2}(\Gamma)$, сохранив для продолжения обозначение g. Теперь для решения u нашей задачи мы имеем $u^+ = g + g_0$, где $g_0 \in \widetilde{H}^{1/2}(\Gamma_2)$. Если мы найдем g_0 , то сможем вычислить u как решение задачи Дирихле. С другой стороны, $h = (D(g+g_0))|_{\Gamma_2}$. Введем оператор

$$D_{\Gamma_2}\varphi = (D\varphi)|_{\Gamma_2} \tag{3.10}$$

из $\widetilde{H}^{1/2}(\Gamma_2)$ в $H^{-1/2}(\Gamma_2)$. Он получен из D сужением области определения и ограничением получающихся функций на Γ_2 . Получаем уравнение для g_0 :

$$D_{\Gamma_2} g_0 = h_0, \tag{3.11}$$

где $h_0 = h - (Dg)|_{\Gamma_2}$ — известная функция.

Теорема 3.1. Оператор D_{Γ_2} обратим.

Доказательство. Первое из неравенств (3.8) «наследуется» оператором D_{Γ_2} :

$$\|\varphi\|_{\widetilde{H}^{1/2}(\Gamma_2)}^2 \leqslant C_1 \operatorname{Re}(D_{\Gamma_2}\varphi, \varphi)_{\Gamma_2}. \tag{3.12}$$

Здесь в форме справа функции находятся в дуальных пространствах $H^{-1/2}(\Gamma_2)$ и $\widetilde{H}^{1/2}(\Gamma_2)$. Достаточно воспользоваться леммой Лакса-Мильграма. \square

Итак, первый подход состоит по существу в решении уравнения (3.11) с последующим решением, скажем, уравнения $A\psi = g + g_0$, после чего u определяется по формуле $u = \mathcal{A}\psi$. Как видно из (3.5), можно строить решение и в виде потенциала двойного слоя.

Второй подход аналогичен первому, только вместо задачи Дирихле используется задача Неймана. Продолжим h до элемента из $H^{-1/2}(\Gamma)$. После этого $T^+u=h+h_0$, где $h_0\in \widetilde{H}^{-1/2}(\Gamma_1)$. Введем оператор

$$N_{\Gamma_1}\psi = (N\psi)|_{\Gamma_1} \tag{3.13}$$

из $\widetilde{H}^{-1/2}(\Gamma_1)$ в $H^{1/2}(\Gamma_1)$. Для h_0 получим уравнение

$$N_{\Gamma_1} h_0 = g_1, \tag{3.14}$$

где g_1 — известная функция $g-(Nh)|_{\Gamma_1}$.

Теорема 3.2. Оператор N_{Γ_1} обратим.

Доказательство. Второе неравенство в (3.8) для N наследуется оператором N_{Γ_1} :

$$\|\psi\|_{\widetilde{H}^{-1/2}(\Gamma_1)}^2 \leqslant C_2 \operatorname{Re}(N_{\Gamma_1}\psi,\psi)_{\Gamma_1}.$$
 (3.15)

Функции справа принадлежат дуальным пространствам $H^{1/2}(\Gamma_1)$ и $\widetilde{H}^{-1/2}(\Gamma_1)$, и мы опять применяем лемму Лакса–Мильграма.

Второй вариант состоит, таким образом, в том, что мы решаем сначала уравнение (3.14), затем, скажем, уравнение $H\varphi = h + h_0$, после чего находим решение в виде $u = -\mathscr{B}\varphi$. Можно строить решение и в виде потенциала простого слоя, см. (3.7).

Замечания. 1. Операторы N_{Γ_1} и D_{Γ_2} для частей замкнутой липшицевой поверхности являются аналогами операторов N и D для всей поверхности и наследуют свойства последних — неравенства типа Гординга и обратимость. Операторы A_S и H_S с близкими свойствами рассмотрены в [4]. В специальных случаях они встречались, в частности, в [42], [43], [30].

2. Названия «Neumann-to-Dirichlet operator» заслуживает не только оператор N_{Γ_1} , но и оператор $D_{\Gamma_1}^{-1}$, действующий из $H^{-1/2}(\Gamma_1)$ в $\widetilde{H}^{-1/2}(\Gamma_1)$. Это операторы с разными областями определения и разными областями значений. На Γ_2 тоже есть два оператора, N_{Γ_2} и $D_{\Gamma_2}^{-1}$.

Приложения операторов $N, D, N_{\Gamma_1}, D_{\Gamma_2}$ чрезвычайно многообразны, см., например, [23], [48] и приведенную там литературу.

§4. Регулярность решений

4.1. Пространства H_p^s бесселевых потенциалов и пространства B_p^s Бесова. (См., например, [47], [21], [29], [2].) Условимся считать, что

$$s \in \mathbb{R}, \quad 1$$

Пространство $H_p^s(\mathbb{R}^n)$ определяется формулой

$$H_p^s(\mathbb{R}^n) = J^{-s}L_p(\mathbb{R}^n), \tag{4.2}$$

где J^{-s} — тот же оператор, что и в (1.6). При целом $s\geqslant 0$ это пространство Соболева $W_p^s(\mathbb{R}^n)$.

Пространства Слободецкого $W_p^s(\mathbb{R}^n)$ определяются при нецелых s>0. Если 0 < s < 1, то

$$||u||_{W_p^s(\mathbb{R}^n)}^p = ||u||_{L_p(\mathbb{R}^n)}^p + \iint \frac{|u(y) - u(x)|^p}{|y - x|^{n+sp}} dx dy.$$
 (4.3)

Пространство Бесова $B_p^s(\mathbb{R}^n)=B_{p,p}^s(\mathbb{R}^n)$ определяется формулой

$$B_p^s(\mathbb{R}^n) = J^{\sigma-s} W_p^{\sigma}(\mathbb{R}^n), \qquad 0 < \sigma < 1, \tag{4.4}$$

при изменении $\sigma \in (0,1)$ норма заменяется эквивалентной нормой. При нецелом s>0 это пространства Слободецкого.

При p=2 пространства H_p^s и B_p^s совпадают с H^s .

Ниже в этом пункте букву H можно заменить на B.

Пространства $H_p^s(\mathbb{R}^n)$ и $H_{p'}^{-s}(\mathbb{R}^n)$ дуальны относительно продолжения стандартного скалярного произведения в $L_2(\mathbb{R}^n)$ на их прямое произведение.

Пространство $H_p^s(\Omega)$ состоит из сужений элементов из $H_p^s(\mathbb{R}^n)$ на Ω с нормой inf. Тот же самый, что и раньше, оператор $\mathscr E$ является ограниченным оператором продолжения элементов из $H_p^s(\Omega)$ до элементов из $H_p^s(\mathbb{R}^n)$ [37].

Пространство $\widetilde{H}_{p}^{s}(\Omega)$ определяется как подпространство в $H_{p}^{s}(\mathbb{R}^{n})$ элементов с носителями в $\overline{\Omega}$. При -1/p' < s < 1 + 1/p, $s \neq 1/p$ его можно отождествить с пополнением $\mathring{H}_{p}^{s}(\Omega)$ линеала $C_{0}^{\infty}(\Omega)$ в $H_{p}^{s}(\Omega)$.

Пространства $\widetilde{H}_{p'}^{-s}(\Omega)$ и $H_p^s(\Omega)$ дуальны относительно формы (1.7). Пространства $H_p^s(\Omega)$ и $\widetilde{H}_p^s(\Omega)$ отождествляются при -1/p' < s < 1/p.

Пространства $B_p^s(\Gamma)$ вводятся для $|s| \leq 1$ при помощи разбиения единицы на Γ и норм в $B_p^s(\mathbb{R}^{n-1})$. Пространства $B_p^s(\Gamma)$ и $B_{p'}^{-s}(\Gamma)$ дуальны относительно продолжения скалярного произведения в $L_2(\Gamma)$ на их прямое произведение.

Оператор перехода к следу действует ограниченным образом из $H_p^{s+1/p}(\Omega)$ и из $B_p^{s+1/p}(\Omega)$ в $B_p^s(\Gamma)$ при 0 < s < 1. Эти два оператора имеют общий правый обратный [22].

Пусть Γ_0 — область на Γ . Пространство $B_p^s(\Gamma_0)$ определяется как состоящее из сужений на Γ_0 элементов из $B_p^s(\Gamma)$ с нормой inf. Имеется ограниченный оператор продолжения элементов из $B_p^s(\Gamma_0)$ до элементов из $B_p^s(\Gamma)$, не зависящий от $s,\ p$. Пространство $\widetilde{B}_p^s(\Gamma_0)$ определяется как подпространство в $B_p^s(\Gamma)$ элементов с носителями в $\overline{\Gamma}_0$. Пространства $\widetilde{B}_{p'}^{-s}(\Gamma_0)$ и $B_p^s(\Gamma_0)$ дуальны относительно продолжения стандартного скалярного произведения в $L_2(\Gamma_0)$ на их прямое произведение. Пространства $B_p^s(\Gamma_0)$ и $\widetilde{B}_p^s(\Gamma_0)$ отождествляются при -1/p' < s < 1/p.

4.2. Решения смешанной задачи теперь ищутся в $H_p^{1/2+s+1/p}(\Omega),$ где обязательно |s|<1/2: в (1.2)

$$g \in B_p^{1/2+s}(\Gamma_1), \quad h \in B_p^{-1/2+s}(\Gamma_2).$$
 (4.5)

Вариационная (слабая) постановка смешанной задачи сохраняет вид (2.5). Пробные функции v принадлежат подпространству $H^{1/2-s+1/p'}_{p'}(\Omega,\Gamma_1)$ функций пространства $H^{1/2-s+1/p'}_{p'}(\Omega)$ с нулевым следом на Γ_1 . Ср. [27].

Правая часть f системы принадлежит сопряженному пространству

$$\widetilde{H}_{p}^{-1/2+s-1/p'}(\Omega,\Gamma_{1}) := [H_{p'}^{1/2-s+1/p'}(\Omega,\Gamma_{1})]^{*}$$
(4.6)

относительно продолжения формы (1.7).

Здесь всюду пространства H можно заменить пространствами B.

Допустимые точки (s,t), t=1/p, образуют квадрат

$$Q = \{(s,t) : |s| < 1/2, 0 < t < 1\}. \tag{4.7}$$

Частные случаи смешанной задачи — задачи Дирихле и Неймана. Про них мы знаем [3], что они однозначно разрешимы при $|s| < \varepsilon$, $|t-1/2| < \delta$ с достаточно малыми ε и δ . Мы хотим получить аналогичный результат для смешанной задачи. Мы сделаем это, как в [4], рассматривая операторы типа потенциала в шкалах пространств на границе. Ср. [17], [27], [11].

Прежде всего заметим, что операторы

$$A, N: B_p^{-1/2+s}(\Gamma) \to B_p^{1/2+s}(\Gamma), \qquad H, D: B_p^{1/2+s}(\Gamma) \to B_p^{-1/2+s}(\Gamma), \\ \frac{1}{2}I \pm B: B_p^{1/2+s}(\Gamma) \to B_p^{1/2+s}(\Gamma), \qquad \frac{1}{2}I \pm \widehat{B}: B_p^{-1/2+s}(\Gamma) \to B_p^{-1/2+s}(\Gamma)$$

$$(4.8)$$

ограничены и обратимы при тех же (s,t) [3]. При этом $N=D^{-1}$ и сохраняются соотношения (3.9).

Оператор N_{Γ_1} действует ограниченным образом из $\widetilde{B}_p^{-1/2+s}(\Gamma_1)$ в $B_p^{1/2+s}(\Gamma_1)$ (при тех же (s,t)). Каждое из этих двух семейств пространств образует интерполяционную шкалу относительно комплексного метода интерполяции по каждому из индексов. Мы объяснили это в [4] при рассмотрении операторов A_S и H_S . В точке (s,t)=(0,1/2) наш оператор обратим. Значит, применима теорема Шнейберга [40], и получается

Теорема 4.1. Оператор $N_{\Gamma_1}\colon \widetilde{B}_p^{-1/2+s}(\Gamma_1)\to B_p^{1/2+s}(\Gamma_1)$ остается обратимым при $|s|<arepsilon,\ |t-1/2|<\delta$ с достаточно малыми arepsilon и δ .

При этих (s,t) мы сейчас установим однозначную разрешимость смешанной задачи. Сначала проверим единственность. Пусть g=0 и h=0. Тогда $T^+u=h_0\in \widetilde{B}_p^{-1/2+s}(\Gamma_1)$. Значит, $Nh_0=u^+$ на Γ и $N_{\Gamma_1}h_0=0$. Но оператор N_{Γ_1} обратим, поэтому $h_0=0$ и $T^+u=0$ на Γ . Остается воспользоваться единственностью для задачи Неймана. Мы использовали второй вариант подхода к смешанной задаче из п. 3.2. С этим вариантом очевидным образом получается и существование. Это дает основной результат в настоящем пункте.

Теорема 4.2. Смешанная задача (1.1)–(1.2) $c\ f=0,\ g\in B_p^{1/2+s}(\Gamma_1),\ h\in B_p^{-1/2+s}(\Gamma_2)$ остается однозначно разрешимой при $|s|<\varepsilon,\ |t-1/2|<\delta$ c достается малыми ε и δ .

В этих рамках, чем «лучше» правые части, тем «лучше» решение. Это и есть результат о регулярности. Он автоматически следует из теоремы 4.2.

Замечания. 1. Вместо N_{Γ_1} можно использовать оператор D_{Γ_2} , действующий из $\widetilde{B}_p^{1/2+s}(\Gamma_2)$ в $B_p^{-1/2+s}(\Gamma_2)$, для него тоже получается ограниченность и обратимость при $|s|<\varepsilon,\,|t-1/2|<\delta$ с достаточно малыми ε и δ . Затем используется первый вариант подхода к смешанной задаче из п. 3.2.

- 2. Как мы видим, в этих более общих пространствах сохраняются оба варианта сведения смешанной задачи к эквивалентным уравнениям на границе и решения этих уравнений при помощи операторов типа потенциала.
- 3. Теорема 4.2 обобщается на случай ненулевой правой части f в уравнении Lu=f. Действительно, пусть $f\in \widetilde{H}_p^{-1/2+s-1/p'}(\Omega,\Gamma_1)$. Тогда мы можем считать f элементом пространства $\widetilde{H}_p^{-1/2+s-1/p'}(\Omega)$. (Букву H можно заменить буквой B.) Пусть u_0 решение задачи Неймана для уравнения $Lu_0=f$ с

нулевой конормальной производной. Вычитая u_0 из u, приходим к задаче, к которой применима теорема 4.2.

§5. Спектральные задачи

5.1. Задача со спектральным параметром в системе. Рассмотрим задачу

$$Lu = \lambda u$$
 в Ω , $u^+ = 0$ на Γ_1 , $T^+u = 0$ на Γ_2 . (5.1)

Пусть сначала оператор L формально самосопряженный: $L = \widetilde{L}$. Считая уравнение Lu = f однозначно разрешимым в $H^1(\Omega, \Gamma_1)$ при $f \in \widetilde{H}^{-1}(\Omega, \Gamma_1)$, введем в последнем пространстве скалярное произведение (ср. [34])

$$\langle f_1, f_2 \rangle_{\Omega} := (L^{-1} f_1, f_2)_{\Omega}.$$
 (5.2)

Относительно него неограниченный оператор L в этом пространстве (с областью определения $H^1(\Omega,\Gamma_1)$) остается самосопряженным. Собственные значения положительны. Как и в других задачах, рассмотренных раньше в [3] и [5], собственные значения и собственные функции совпадают с собственными значениями и собственными функциями аналогичного оператора в $L_2(\Omega)$. А так как пространство $H^1(\Omega,\Gamma_1)$ содержит $\tilde{H}^1(\Omega)=\mathring{H}^1(\Omega)$ и содержится в $H^1(\Omega)$, то действует результат Метивье [25], согласно которому для считающей функции $N_L(\lambda)$ — числа собственных значений с учетом кратностей, меньших λ , — справедлива асимптотика

$$N_L(\lambda) = c_L \lambda^{n/2} + O(\lambda^{(n-1/2)/2}),$$
 (5.3)

где коэффициент c_L — тот же, что и в задачах Дирихле и Неймана (см. [5]).

Далее, справедливы такие же утверждения о собственных функциях, как в случаях этих задач [5]. Из собственных функций составляется ортонормированный базис в $\widetilde{H}^{-1}(\Omega,\Gamma_1)$. Они принадлежат пространству $H^1(\Omega,\Gamma_1)$ и там образуют ортонормированный базис относительно скалярного произведения $(Lu,v)_{\Omega}$, кстати, равного $\Phi_{\Omega}(u,v)$. Этот результат распространяется на промежуточные пространства. Более того, можно удлинить шкалу этих пространств влево и вправо на ε . Если же выйти в пространства, отвечающие значениям t с $|t-1/2| < \delta$, $t \neq 1/2$, то там сохраняется полнота собственных функций и суммируемость рядов Фурье по ним методом Абеля–Лидского.

Если только главная часть оператора L формально самосопряженная, то собственные значения лежат в сколь угодно узком угле с биссектрисой \mathbb{R}_+ с некоторого номера и имеют асимптотику с тем же главным членом. Сохраняются утверждения о гладкости корневых функций, об их полноте и о суммируемости.

Если совсем отказаться от предположений о самосопряженности, то сохраняется оценка собственных значений $|\lambda_j(L^{-1})| \leqslant Cj^{-2/n}$. Наибольшая общность, в которой мы можем получить утверждения о полноте и о суммируемости, — это случай, когда все значения формы $\Phi_{\Omega}(u,u)$ лежат в угле раствора меньше $2\pi/n$ с биссектрисой \mathbb{R}_+ . Ср. [5].

5.2. Задачи Пуанкаре-Стеклова со спектральным параметром на части границы. Рассмотрим две задачи.

I.
$$Lu = 0$$
 в Ω , $T^+u = 0$ на Γ_2 , $\lambda T^+u = u^+$ на Γ_1 .

Здесь $T^+u\in \widetilde{H}^{-1/2}(\Gamma_1)$ и (см. п. 3.2) $N_{\Gamma_1}T^+u=u^+\in H^{1/2}(\Gamma_1)$. Поэтому для собственных функций спектральной задачи I получается уравнение $N_{\Gamma_1}\psi=\lambda\psi$, где $\psi=T^+u$, и оно эквивалентно этой задаче при $L=\widetilde{L}$.

II.
$$Lu=0$$
 в Ω , $u^+=0$ на Γ_2 , $\lambda T^+u=u^+$ на Γ_1 .

Здесь $u^+ \in \widetilde{H}^{1/2}(\Gamma_1)$ и (см. п. 3.2) $D_{\Gamma_1}u^+ = T^+u \in H^{-1/2}(\Gamma_1)$. Поэтому для собственных функций спектральной задачи II получается уравнение $D_{\Gamma_1}^{-1}\psi = \lambda \psi$, где снова $\psi = T^+u$, и оно эквивалентно этой задаче при $L = \widetilde{L}$.

Во второй задаче мы поменяли местами Γ_1 и Γ_2 по сравнению с п. 3.2, чтобы ниже сопоставить соответствующие операторы.

Спектральные свойства операторов N_{Γ_1} и D_{Γ_1} аналогичны спектральным свойствам соответственно операторов A_S и H_S (при $\Gamma_1=S$), описанным в [4]. Скалярное произведение $\langle \psi_1, \psi_2 \rangle_{\Gamma_1}$ при $L=\widetilde{L}$ определяем в первом случае в $\widetilde{H}^{-1/2}(\Gamma_1)$ как $(N_{\Gamma_1}\psi_1, \psi_2)_{\Gamma_1}$ и во втором случае в $H^{-1/2}(\Gamma_1)$ как $(D_{\Gamma_1}^{-1}\psi_1, \psi_2)_{\Gamma_1}$.

В частности, мы имеем в виду свойства гладкости собственных и корневых функций, результаты об ортонормированном базисе из собственных функций при p=2, если $L=\widetilde{L}$, о полноте и суммируемости рядов по корневым функциям методом Абеля–Лидского в остальных случаях. Если оператор L имеет формально самосопряженную главную часть, то собственные значения лежат в сколь угодно узком угле с биссектрисой \mathbb{R}_+ с некоторого номера. Наибольшая общность, при которой получаются утверждения о полноте и суммируемости, — это случай, когда все значения квадратичных форм $\Phi_{\Omega^\pm}(u,u)$ лежат в угле раствора меньше $\pi/(n-1)$ с биссектрисой \mathbb{R}_+ .

Дополнительные результаты о полноте получаются как следствия (плотных) вложений рассматриваемых пространств.

§6. Спектральные асимптотики

Здесь мы хотим получить асимптотические формулы для собственных значений операторов N_{Γ_1} и $D_{\Gamma_1}^{-1}$. Но до этого рассмотрим операторы на Γ . Сформулируем сначала следующие предположения.

- 1° $L \widetilde{L}$
- 2° . Поверхность Γ является почти гладкой (см. п. 1.1).
- 3° . L скалярный оператор или матричный оператор, старшая часть которого совпадает с оператором Ламе.

Как показано в [5], при этих условиях можно вывести асимптотическую формулу для собственных значений $\lambda_j(N)$ оператора N

$$\lambda_j(N) \sim C_N j^{-1/(n-1)} \tag{6.1}$$

(в том смысле, что разность левой и правой частей есть $o(j^{-1/(n-1)})$) из результатов работы [6] в сочетании с приведенной выше формулой (3.9) и очень глубокими известными результатами об обратимости операторов $\frac{1}{2}I\pm B$ и $\frac{1}{2}I\pm \widehat{B}$ в $L_2(\Gamma)$ [28], [14]. Собственные значения нумеруются в порядке невозрастания с учетом кратностей.

Мы освободимся здесь от ограничения 3° при помощи вариационного подхода к асимптотикам. При этом будем рассматривать оператор bN, где функцию

b будем для начала считать мультипликатором в $H^{\pm 1/2}(\Gamma)$ и для простоты неотрицательной функцией. Липшицеву поверхность Γ будем считать почти гладкой в окрестности ее носителя. Результат сформулирован ниже в теореме 6.5. Ср. с [1] и в особенности с работой [45], где рассматривались кусочно-гладкие поверхности.

Пусть T — компактный самосопряженный оператор в гильбертовом пространстве H со скалярным произведением (\cdot,\cdot) , для простоты неотрицательный — с неотрицательными собственными значениями. Считающая функция $N(\lambda)=N(\lambda,T)$ для его положительных собственных значений $\lambda_j(T)$ $(j=1,2,\dots)$ — это число собственных значений с учетом кратностей, бо́льших λ $(\lambda>0)$. Асимптотика $N(\lambda)\sim\beta\lambda^{-\alpha}$ при $\lambda\to0$ $(\alpha>0,\ \beta>0)$ эквивалентна асимптотике $\lambda_j\sim\beta' j^{-1/\alpha}$ при $j\to\infty,\ \beta'=\beta^{1/\alpha}$.

Вариационное отношение для T имеет вид R(x) = (Tx, x)/(x, x). Собственные значения являются «последовательными максимумами» этого отношения:

$$\lambda_{j+1}(T) = \min_{\substack{\text{codim } X \leq j}} \max_{\substack{0 \neq x \in X}} R(x), \tag{6.2}$$

где X — подпространства в H.

Нам понадобятся известные леммы, мы приведем их в упрощенном виде (ср. [8, добавление 1] или [45, п. 1]). Первая из них позволяет сравнивать считающие функции операторов, действующих в разных пространствах.

Лемма 6.1. Пусть H_1 и H_2 — гильбертовы пространства со скалярными произведениями $(\cdot,\cdot)_1, (\cdot,\cdot)_2, T_1$ и T_2 — компактные неотрицательные операторы в этих пространствах, S — ограниченный оператор из H_1 в H_2 , $(T_1x,x)_1=0$ при Sx=0 и

$$(T_1x, x)_1/(x, x)_1 \le (T_2Sx, Sx)_2/(Sx, Sx)_2 \qquad (x \in H_1, Sx \ne 0).$$
 (6.3)

Тогда $N(\lambda, T_1) \leqslant N(\lambda, T_2)$. В частности, это верно, если $H_1 \subset H_2$, $(\cdot, \cdot)_1 = (\cdot, \cdot)_2$ на H_1 и S — оператор вложения; знаменатели в (6.3) в этом случае не нужны.

Лемма 6.2. Пусть H — ортогональная сумма $H_1 \oplus H_2$, подпространства H_1 и H_2 инвариантны относительно неотрицательного оператора T в H и T_j — сужения этого оператора на H_j . Тогда $N(\lambda,T)=N(\lambda,T_1)+N(\lambda,T_2)$.

Лемма 6.3 (М. Ш. Бирман–М. 3. Соломяк). Пусть компактный неотрицательный оператор T в гильбертовом пространстве H при любом $\varepsilon>0$ допускает представление $T=T'_{\varepsilon}+T''_{\varepsilon}$, где T'_{ε} и $T''_{\varepsilon}-$ компактные операторы, T'_{ε} неотрицателен, $\lambda_{j}(T'_{\varepsilon})\sim C(T'_{\varepsilon})j^{-\sigma}$ при некотором $\sigma>0$ и $\limsup|\lambda_{j}(T''_{\varepsilon})|j^{\sigma}\leqslant \varepsilon$. Тогда при $\varepsilon\to 0$ величина $C(T'_{\varepsilon})$ имеет конечный предел C(T) и $\lambda_{j}(T)\sim C(T)j^{-\sigma}$.

6.1. Оператор bN. Коэффициенты в L будем сначала считать бесконечно гладкими. Введем в $H^{-1/2}(\Gamma)$ скалярное произведение

$$\langle \psi_1, \psi_2 \rangle_{\Gamma} = (N\psi_1, \psi_2)_{\Gamma}. \tag{6.4}$$

Оператор bN остается компактным и самосопряженным. Рассмотрим вариационное отношение

$$R_b(\psi) = \langle bN\psi, \psi \rangle_{\Gamma} / \langle \psi, \psi \rangle_{\Gamma} = (bN\psi, N\psi)_{\Gamma} / (N\psi, \psi)_{\Gamma} \qquad (\psi \in H^{-1/2}(\Gamma)). \quad (6.5)$$

Считая, что $\psi = T^+u$ для решения $u \in H^1(\Omega)$ системы Lu = 0, имеем $N\psi = u^+$. Поэтому числитель равен $(bu^+, u^+)_{\Gamma}$, а знаменатель равен $(T^+u, u^+)_{\Gamma}$, т. е. $\Phi_{\Omega}(u, u)$ в силу формулы Грина. Отношение (6.5) переписывается в виде

$$Q_b(u) = (bu^+, u^+)_{\Gamma} / \Phi_{\Omega}(u, u). \tag{6.6}$$

Теперь числитель — форма некоторого компактного оператора в подпространстве пространства $H^1(\Omega)$, состоящем из решений u системы Lu=0. За скалярное произведение в $H^1(\Omega)$ принимаем $\Phi_{\Omega}(u,v)$. Тогда ортогональное дополнение к подпространству решений составляют функции с $u^+=0$, это уже отмечалось в п. 2.1. Поэтому (см. лемму 6.2) будем рассматривать отношение (6.6) на всех $u \in H^1(\Omega)$. (На самом деле переход от (6.5) к (6.6) не обязателен.)

Теперь воспользуемся тем, что для липшицевой области Ω можно построить области $\widetilde{\Omega}$ и $\widehat{\Omega}$ с бесконечно гладкими границами $\widetilde{\Gamma}$ и $\widehat{\Gamma}$, такие, что $\widetilde{\Omega} \subset \Omega \subset \widehat{\Omega}$ и эти границы сколь угодно близки к Γ . Более точно, между этими гладкими границами и Γ имеется взаимно однозначное соответствие и расстояние между соответствующими точками становится равномерно сколь угодно малым. См., например, [49].

В нашей ситуации, зафиксировав окрестность U сингулярного множества $\Gamma_{\rm sing}$ со сколь угодно малой мерой, мы можем принять, что $\widehat{\Gamma}$ и $\widehat{\Gamma}$ совпадают c Γ вне U. Пусть θ_U — гладкое приближение к характеристической функции дополнения к U с носителем в этом дополнении. Тогда для соответствующих отношений $\widetilde{Q}_{b\theta_U}(u)$ и $\widehat{Q}_{b\theta_U}(u)$ мы имеем

$$\widehat{Q}_{b\theta_U}(u) \leqslant Q_{b\theta_U}(u) \leqslant \widetilde{Q}_{b\theta_U}(u) \tag{6.7}$$

на функциях из $H^1(\widehat{\Omega})$ и их сужениях на Ω и $\widehat{\Omega}$. Левое и правое отношения отвечают гладким задачам, и соответствующие операторы $b\theta_U\widehat{N}$ и $b\theta_U\widehat{N}$ имеют известную и одинаковую асимптотику собственных значений (мы имеем в виду ее старший член), см. [9]. Отсюда аналогичный результат получается для $b\theta_U N$. Это вытекает из леммы 6.1.

Теперь рассмотрим отношение $Q_c(u)$, где $c = b(1 - \theta_U)$. В силу ограниченности оператора перехода к следу

$$Q_c(u) \leqslant C \int_{\Gamma} |c| |u|^2 dS / ||u||_{H^{1/2}(\Gamma)}^2,$$
 (6.8)

и справа Γ можно заменить на $S=\mathrm{supp}\,c.$ После этого отношение справа отвечает компактному неотрицательному оператору в $H^{1/2}(S).$

Лемма 6.4. Пусть S — область на ограниченной липшицевой поверхности Γ размерности n-1 с липшицевой границей и c(x) — неотрицательная функция из $L_r(S)$ на этой поверхности. Тогда для считающей функции $N(\lambda,T)$ компактного оператора T в $H^s(S)$, s>0, с вариационным отношением

$$\int_{S} c(x)|u(x)|^{2} dS / ||u||_{H^{s}(S)}^{2}$$
(6.9)

справедливо неравенство

$$N(\lambda, T) \leqslant C_1 \|c\|_{L_r(S)}^{\tau} \lambda^{-\tau} \tag{6.10}$$

 $npu\ r > 1$, если n-1=2s, $u\ r=(n-1)/(2s)$, если n-1>2s, $c\ \tau=(n-1)/(2s)$.

Доказательство. В случае, когда S — область в \mathbb{R}^{n-1} , это лемма 1.7 в [45]. Как там указано, это утверждение получено в [8] (теорема 4.1) для целых s, но доказательство сохраняется при нецелых s. Лемма установлена для скалярных функций, но легко переносится на вектор-функции.

Чтобы распространить ее на случай области на липпицевой поверхности, можно принять, что эта область мала и допускает представление $x_n = \phi(x')$ с липпицевой функцией $\phi(x')$ в проекции этой области на x'-плоскость. Остается учесть, что $dS = (1 + |\nabla \phi(x')|^2)^{1/2} dx'$ и градиент здесь ограничен.

В нашей ситуации s=1/2, и лемма приводит к оценке

$$|\lambda_j(T)| \le C_2 ||c||_{L_r(S)} \lambda^{-(n-1)},$$
(6.11)

решающей дело, поскольку L_r -норма функции $c = b(1 - \theta_U)$ стремится к нулю, когда окрестность U стягивается к $\Gamma_{\rm sing}$, так как при наших предположениях о b это ограниченная функция. Здесь следует воспользоваться леммой 6.3.

Предположение о гладкости коэффициентов в L снимается при помощи аппроксимации исходных коэффициентов гладкими (ср. [45, п. 5]). Получается

Теорема 6.5. Пусть $L = \widetilde{L}$, неотрицательная функция b- мультипликатор в $H^{\pm 1/2}(\Gamma)$ и поверхность Γ является почти гладкой в окрестности ее носителя. Тогда для собственных значений оператора bN справедлива асимптотика вида (6.1).

Коэффициент C_{bN} вычисляется по формуле

$$C_{bN}^{n-1} = (2\pi)^{-(n-1)} \iint_{T^*\Gamma} b(x') n_{\alpha}(x', \xi') \, dx' d\xi'$$
(6.12)

в случае гладких коэффициентов в L; здесь из Γ выбрасывается сингулярное множество. Через $\alpha(x',\xi')$ обозначен главный символ оператора N и через $n_{\alpha}(x',\xi')$ число его собственных значений, больших 1. Если коэффициенты в L негладкие, то при их аппроксимации гладкими операторы bN для этих гладких задач сходятся по операторной норме к интересующему нас оператору. Нужный коэффициент получается предельным переходом, предел существует в силу той же леммы 6.3. Он вычисляется через главный символ оператора L.

Из-за недостатка места мы не приводим обобщение на случай функции b со значениями разных знаков. Однако отметим следующее обобщение.

Теорема 6.6. Утверждение теоремы 6.5 остается в силе в случае функции b, принадлежащей $L_r(\Gamma)$, где r=n-1 при n>2 и r>1 при n=2, если определить bN как оператор с вариационным отношением (6.5) или (6.6).

При использовании, например, отношения (6.6) имеется в виду оператор в $H^1(\Omega)$, имеющий форму $(bu^+,v^+)_{\Gamma}$. Эта форма определена в силу теорем вложения и неравенства Гёльдера. В этом случае b уже, вообще говоря, не является мультипликатором в $H^{\pm 1/2}(\Gamma)$.

6.2. Оператор N_{Γ_1} . В этом случае в качестве b хотелось бы взять характеристическую функцию θ области Γ_1 . Но это не мультипликатор в $H^{1/2}(\Gamma)$. Однако эта функция является мультипликатором в $\widetilde{H}^{-1/2}(\Gamma_1)$; более того, умножение на нее не меняет элементы этого пространства. Это позволяет переписать уравнение $N_{\Gamma_1}\psi=\lambda\psi$ в виде

$$\theta N \theta \psi = \lambda \theta \psi, \tag{6.13}$$

по крайней мере, считая u^+ функцией из $H^{1/2-\varepsilon}(\Gamma_1)$ со сколь угодно малым $\varepsilon > 0$. Соответствующее вариационное отношение имеет вид

$$(\theta u^+, u^+)_{\Gamma} / \Phi_{\Omega}(u, u). \tag{6.14}$$

Здесь u принадлежит подпространству решений системы Lu=0 в $H^1(\Omega)$ с $T^+u=0$ вне Γ_1 , и теперь можно считать, что $u^+\in H^{1/2}(\Gamma_1)$. В силу формулы Грина

$$\Phi_{\Omega}(u,v) = (T^{+}u, v^{+})_{\Gamma}, \tag{6.15}$$

ортогональное дополнение к указанному подпространству состоит из функций $u \, {\rm c} \, u^+ = 0$ на Γ_1 . На них отношение (6.14) равно нулю. Поэтому его можно рассматривать на всех $u \in H^1(\Omega)$ с Lu = 0 и, далее, на всем $H^1(\Omega)$. Теперь применима теорема 6.6, и мы приходим к желаемому результату:

Теорема 6.7. Пусть L = L и поверхность Γ почти гладкая в окрестности замыкания области Γ_1 . Тогда имеет место асимптотика

$$\lambda_j(N_{\Gamma_1}) \sim C_{N_{\Gamma_1}} j^{-1/(n-1)}.$$
 (6.16)

3десь $C_{N_{\Gamma_1}}$ определяется формулой вида (6.12) c b=1 u Γ_1 вместо Γ .

6.3. Оператор $D_{\Gamma_1}^{-1}$. Основной результат в этом пункте — теорема 6.8 — получен автором совместно с Т. А. Суслиной. Оператор $D_{\Gamma_1}^{-1}$ — это оператор, отвечающий задаче Дирихле с $u^+=0$ вне Γ_1 .

Для него вариационное отношение имеет вид

$$(u^+, u^+)_{\Gamma_1}/(Du^+, u^+)_{\Gamma_1}$$
 $(Lu = 0 \text{ B } \Omega, u^+ \in \widetilde{H}^{1/2}(\Gamma_1)).$ (6.17)

Асимптотика для гладких задач такого вида исследована в [44]. Ключевой момент в нашем случае состоит в проверке того, что *отношение* (6.17), если Γ и $\partial \Gamma_i$ гладкие, можно заменить на

$$(\theta u^+, u^+)_{\Gamma}/(Du^+, u^+)_{\Gamma} \quad (Lu = 0 \ \ \theta \ \ \Omega, \ u^+ \in H^{1/2}(\Gamma))$$
 (6.18)

в смысле совпадения асимптотик. Относительно просто это можно сделать в нашем случае следующим образом. Мы дважды воспользуемся леммой 6.1.

Пусть функции α и β принадлежат $C^{\infty}(\Gamma)$, их значения заключены между 0 и 1, $\operatorname{supp} \alpha \subset \Gamma_1$ и $\alpha^2 + \beta^2 = 1$; α аппроксимирует функцию θ . Мы имеем, полагая $\varphi = u^+$,

$$(\alpha\varphi, \alpha\varphi)_{\Gamma}/[(D\alpha\varphi, \alpha\varphi)_{\Gamma} + (D\beta\varphi, \beta\varphi)_{\Gamma}] \leqslant (\alpha\varphi, \alpha\varphi)_{\Gamma}/(D\alpha\varphi, \alpha\varphi)_{\Gamma}. \tag{6.19}$$

Здесь φ — функция из $H^{1/2}(\Gamma)$. В качестве S берем отображение $\varphi \mapsto \alpha \varphi$ этого пространства в $\widetilde{H}^{1/2}(\Gamma_1)$. Добавочно заметим, что формы в знаменателях в (6.18) и слева в (6.19) совпадают с точностью до прибавления формы ПДО нулевого порядка ввиду совпадения главных символов. Известно, что такое прибавление не отражается на асимптотике (см. [8] или [45, п. 1]).

Теперь пусть α_1 — неотрицательная функция из $C^{\infty}(\Gamma)$, равная 1 в окрестности замыкания области Γ_1 , тоже аппроксимирующая θ . Имеем

$$(\varphi, \varphi)_{\Gamma}/(D\varphi, \varphi)_{\Gamma} = (\alpha_1 \varphi, \alpha_1 \varphi)_{\Gamma}/(D\varphi, \varphi)_{\Gamma}. \tag{6.20}$$

Здесь φ — функция из $\widetilde{H}^{1/2}(\Gamma_1)$ и S — вложение этого пространства в $H^{1/2}(\Gamma)$.

Лемма 6.1 показывает, что считающая функция для оператора с отношением (6.17) заключена между считающими функциями для операторов с отношениями слева в (6.19) и $(\alpha_1\varphi,\alpha_1\varphi)_{\Gamma}/(D\varphi,\varphi)_{\Gamma}, \varphi\in H^{1/2}(\Gamma)$. Асимптотика операторов с такими вариационными отношениями известна из [9]. Теперь предельный переход с использованием леммы 6.3 доказывает выделенное выше утверждение. После этого фактически вариационное отношение, а значит, и асимптотика такие же, как в п. 6.2.

На случай почти гладкой поверхности результат распространяется при помощи соображений, аналогичных использованным в п. 6.1. Получается

Теорема 6.8. Если $L = \tilde{L}$ и поверхность Γ почти гладкая в окрестности замыкания области Γ_1 , то для собственных значений оператора $D_{\Gamma_1}^{-1}$ имеет место асимптотика вида (6.1) с тем же коэффициентом, что и для N_{Γ_1} .

Пример (ср. [23, с. 50]). Рассмотрим уравнение Лапласа в квадрате $\{(x,y): 0 < x < \pi, 0 < y < \pi\}$. Пусть Γ_1 — его левая сторона, а Γ_2 состоит из трех других сторон. Задача I имеет решения $\operatorname{ch} k(\pi-x) \cos ky \ (k=0,1,\dots)$. Задача II — решения $\operatorname{sh} k(\pi-x) \sin ky \ (k=1,2,\dots)$. Собственные функции: $\cos ky$ в задаче I и $\sin ky$ в задаче II. Собственные значения: соответственно $\operatorname{cth} k\pi/k$ и $\operatorname{th} k\pi/k$. Они разные в двух задачах, но асимптотика одинакова.

6.4. Замечания к работам [4] и [5]. Вариационное отношение для оператора H^{-1} имеет вид (ср. [5, предложение 9.1])

$$(\varphi, \varphi)_{\Gamma}/(H\varphi, \varphi)_{\Gamma}$$
 $(\varphi = [u] \in H^{1/2}(\Gamma), \ u = \mathscr{B}\varphi).$ (6.21)

Здесь [Tu]=0, и решения системы Lu=0 в Ω^\pm определяются скачком [u]. Соображения из п. 6.1 в случае почти гладкой Γ применимы к (6.21) непосредственно. По сравнению с [5] удается снять условие 3° . Далее, для оператора H_S^{-1} можно получить аналог теоремы 6.8 по существу как в предыдущем пункте. Подход в [4] к H_S^{-1} нуждается в некоторой ревизии, возможной при помощи вариационных соображений, но в этом уже нет нужды.

К операторам A и A_S тоже возможен вариационный подход, но он не дает ничего нового по сравнению с [36] и [4]. Ограничимся замечанием, что вариационному отношению для A можно придать вид $(u^{\pm}, u^{\pm})_{\Gamma}/\Phi_{\mathbb{T}}(u, u)$.

§7. Некоторые обобщения

7.1. Более общие задачи Пуанкаре—Стеклова. Мы хотим теперь рассмотреть случай, когда граница Γ разбита на три области Γ_1 , Γ_2 и Γ_3 : в первой ставится однородное условие Дирихле, во второй — однородное условие Неймана и в третьей — спектральное условие Пуанкаре—Стеклова. Будем считать, что имеются две замкнутые липшицевы поверхности размерности n-2 без самопересечений и без общих точек, отделяющие эти области одну от другой. Ср. [34].

Рассмотрим для определенности случай, когда область Γ_3 разделяет области Γ_1 и Γ_2 . Введем следующие обозначения. Через $\Gamma_{2,3}$ обозначим дополнение к $\overline{\Gamma}_1$ и через $\Gamma_{1,3}$ — дополнение к $\overline{\Gamma}_2$. Пусть $\widehat{H}^{1/2}(\Gamma_3)$ — пространство сужений на Γ_3 функций из $\widetilde{H}^{1/2}(\Gamma_{2,3})$ с нормой inf и $\widehat{H}^{-1/2}(\Gamma_3)$ — пространство сужений на Γ_3 элементов из $\widetilde{H}^{-1/2}(\Gamma_{1,3})$ с нормой inf. Далее, через \mathscr{E}_2 обозначим оператор продолжения функций из $\widehat{H}^{1/2}(\Gamma_3)$ через границу области Γ_2 до функций из

 $\widetilde{H}^{1/2}(\Gamma_{2,3})$ и через \mathscr{E}_1 — оператор продолжения элементов из $\widehat{H}^{-1/2}(\Gamma_3)$ через границу области Γ_1 до элементов из $\widetilde{H}^{-1/2}(\Gamma_{1,3})$. Эти два оператора получаются из известных нам операторов продолжения локализацией.

Предложение 7.1. Пространства $\widehat{H}^{-1/2}(\Gamma_3)$ и $\widehat{H}^{1/2}(\Gamma_3)$ дуальны относительно продолжения формы $(\varphi, \psi)_{\Gamma_3} = (\mathscr{E}_1 \varphi, \mathscr{E}_2 \psi)_{\Gamma}$ на их прямое произведение.

Поясним, что на границе с областью Γ_1 пространство $\widehat{H}^{1/2}(\Gamma_3)$ локально «похоже» на $\widetilde{H}^{1/2}(\Gamma_3)$, а $\widehat{H}^{-1/2}(\Gamma_3)$ — на $H^{-1/2}(\Gamma_3)$, и на границе с Γ_2 пространство $\widehat{H}^{-1/2}(\Gamma_3)$ локально «похоже» на $\widetilde{H}^{-1/2}(\Gamma_3)$, а $\widehat{H}^{1/2}(\Gamma_3)$ — на $H^{1/2}(\Gamma_3)$. Поэтому на обеих частях границы области Γ_3 ситуация стандартна с точки зрения двойственности, хотя формально эти пространства немного нового типа.

Формула Грина сейчас имеет вид $\Phi_{\Omega}(u,v)=(T^+u,v^+)_{\Gamma_3}$. Из наших результатов в §§ 2—3 следует, что решение в рассматриваемом классе однозначно определяется, если задать данные Дирихле в $\widehat{H}^{1/2}(\Gamma_3)$, при этом данные Неймана на Γ_3 попадают в $\widehat{H}^{-1/2}(\Gamma_3)$. Точно так же решение в нашем классе однозначно определяется, если задать данные Неймана в $\widehat{H}^{-1/2}(\Gamma_3)$, при этом данные Дирихле на Γ_3 попадают в $\widehat{H}^{1/2}(\Gamma_3)$. Поэтому определены два обратимых и взаимно обратных оператора

$$D_{\Gamma_3} : \widehat{H}^{1/2}(\Gamma_3) \to \widehat{H}^{-1/2}(\Gamma_3), \qquad N_{\Gamma_3} : \widehat{H}^{-1/2}(\Gamma_3) \to \widehat{H}^{1/2}(\Gamma_3),$$
 (7.1)

переводящие данные Дирихле на Γ_3 в данные Неймана на Γ_3 и обратно. На этих решениях мы имеем

$$\Phi_{\Omega}(u, u) = (T^{+}u, N_{\Gamma_{3}}T^{+}u)_{\Gamma_{3}} = (D_{\Gamma_{3}}u^{+}, u^{+})_{\Gamma_{3}}.$$
(7.2)

Можно написать неравенства типа Гординга для напих операторов. Если $L=\widetilde{L}$, то в $\widehat{H}^{-1/2}(\Gamma_3)$ можно ввести скалярное произведение $\langle \psi, \psi \rangle_{\Gamma_3} = (N_{\Gamma_3} \psi, \psi)_{\Gamma_3}$ и рассматривать N_{Γ_3} как компактный самосопряженный оператор. Можно получить аналоги теорем 4.1 и 6.7. На деталях останавливаться не будем.

Два других варианта расположения области Γ_3 не сложнее, и останавливаться на них тоже не будем.

7.2. Третье граничное условие вместо условия Неймана. Вернемся к задаче (1.1)–(1.2), но заменим второе условие в (1.2) следующим:

$$T^+u + \sigma u^+ = h \quad \text{Ha} \quad \Gamma_2. \tag{7.3}$$

Здесь $\sigma(x)$ — заданная матрица из $L_{\infty}(\Gamma_2)$. Подобное граничное условие рассматривалось в очень многих работах, например, в [24] (случай $\Gamma_2 = \Gamma$) и [34] (скалярное уравнение). Подробно мы рассматривать его не будем, на это потребовалось бы много места. Ограничимся следующими соображениями. Подставляя в формулу Грина $T^+u = h - \sigma u^+$, приходим к формуле

$$\Phi_{\Omega}(u,v) + (\sigma u^{+}, v^{+})_{\Gamma_{2}} = (Lu, v)_{\Omega} + (h, v^{+})_{\Gamma_{2}}.$$
(7.4)

Теперь слева при u = v мы имеем квадратичную форму

$$\Phi_{\Omega}(u,u) + (\sigma u^+, u^+)_{\Gamma_2} \tag{7.5}$$

и можем обобщать наши результаты, если она коэрцитивна в нашем смысле на $H^1(\Omega)$. Проще всего случай, когда $\mathrm{Re}(\sigma u^+, u^+)_{\Gamma_2} \geqslant 0$. Если же это условие не

выполнено, то следует учесть, что в левую часть добавлено слагаемое меньшего порядка. Действительно, при сколь угодно малых $\alpha>0$ и $\beta>0$

$$|(\sigma u^+, u^+)_{\Gamma_2}| \leqslant C_1 ||u^+||_{L_2(\Gamma)}^2 \leqslant C_1 ||u^+||_{H^{\alpha}(\Gamma)}^2 \leqslant C_1 ||u||_{H^{1/2+\alpha}(\Omega)}^2$$
$$\leqslant \beta ||u||_{H^1(\Omega)}^2 + C_\beta ||u||_{L_2(\Omega)}^2.$$

Поэтому нужная коэрцитивность опять имеет место, если форма $\mathrm{Re}(cu,u)_{\Omega}$ достаточно велика.

7.3. Случай, когда граница разделена на несколько областей. Результаты заведомо можно обобщать на случай, когда поверхность разбита на конечное число областей конечным набором липшицевых (n-2)-мерных замкнутых поверхностей без самопересечений и без общих точек (предполагаем это из осторожности), в каждой из этих областей ставится или условие Дирихле, или условие Неймана, или спектральное условие. Ср. [34], [23] и [50].

Автор искренне благодарит Н. Д. Филонова и особенно Т. А. Суслину за обсуждение работы и ценные советы. Как отмечено в п. 6.3, теорему 6.8 мы получили с ней вместе.

Наш список литературы содержит далеко не все работы по смешанным задачам. Много дополнительных ссылок можно найти в работах этого списка.

Литература

- [1] M. S. Agranovich, On a mixed Poincaré–Steklov type spectral problem in a Lipschitz domain, Russian J. Math. Phys., 13:3 (2006), 239–244.
- [2] M. S. Agranovich, Remarks on potential spaces and Besov spaces in a Lipschitz domain and on Whitney arrays on its boundary, Russian J. Math. Phys., 15:2 (2008), 146–155.
- [3] М. С. Агранович, Операторы типа потенциала и задачи сопряжения для сильно эллиптических систем 2-го порядка в областях с липшицевой границей, Функц. анализ и его прил., 43:3 (2009), 3–25.
- [4] М. С. Агранович, Сильно эллиптические системы 2-го порядка с граничными условиями на незамкнутой липшицевой поверхности, Функц. анализ и его прил., 45:1 (2011), 1–15.
- [5] М. С. Агранович, *Спектральные задачи в липшицевых областях*, Современная математика. Фундаментальные направления, **39** (2011) (в печати).
- [6] М. С. Агранович, Б. А. Амосов, Оценки s-чисел и спектральные асимптотики для интегральных операторов типа потенциала на негладких поверхностях, Функц. анализ и его прил., **30**:2 (1996), 1–18.
- [7] М. Ш. Бирман, М. З. Соломяк, Асимптотика спектра вариационных задач на решениях эллиптических уравнений, Сиб. матем. журн., **20**:1 (1979), 3–22.
- [8] М. III. Бирман, М. З. Соломяк, Количественный анализ в теоремах вложения Соболева и приложения к спектральной теории, в кн.: «Десятая математическая школа», Инст. матем. АН УССР, Киев, 1974, 5–189.
- [9] М. Ш. Бирман, М. С. Соломяк, Асимптотика спектра псевдодифференциальных операторов с анизотропно-однородными символами, Вестник ЛГУ, №13, матем. механ. астрон., вып. 3 (1977), 13–21.
- [10] R. M. Brown, The mixed problem for Laplace's equation in a class of Lipschitz domains, Comm. Partial Differential Equations, 19:7–8 (1994), 1217–1233.
- [11] R. M. Brown, I. Mitrea, The mixed problem for the Lamé system in a class of Lipschitz domains, J. Differential Equations, 246:7 (2009), 2577–2589.

- [12] M. Costabel, Boundary integral operators in Lipschitz domains: elementary results, SIAM J. Math. Anal., 19:3 (1988), 613–626.
- [13] Р. Курант, Д. Гильберт, Методы математической физики, т. I, ГТТИ, М., 1934.
- [14] B. E. J. Dahlberg, C. E. Kenig, G. C. Verchota, Boundary value problems for the system of elastostatics in Lipschitz domains, Duke Math. J., 57:3 (1988), 795–818.
- [15] Г. И. Эскин, Краевые задачи для эллиптических псевдодифференциальных уравнений, Наука, М., 1973.
- [16] V. I. Fabrikant, Mixed Boundary Value Problems of Potential Theory and their Applications in Engineering, Kluwer, Dorderecht, 1991.
- [17] J. A. Griepentrog, K. Gröger, H.-Chr. Kaiser, J. Rehrberg, Interpolation for function spaces related to mixed boundary value problems, Math. Nachr., 241 (2002), 110–120.
- [18] J. A. Griepentrog, H.-Chr. Kaiser, J. Rehrberg, Heat kernel and resolvent properties for second order elliptic differential operators with general boundary conditions on L_p, Adv. Math. Sci. Appl., 11 (2001), 87–112.
- [19] K. Gröger, A W^{1,p}-estimate for solutions to mixed boundary value problems for second order elliptic differential equations, Math. Ann., **283**:4 (1989), 679–687.
- [20] G. C. Hsiao, W. L. Wendland, Boundary Integral Equations, Springer-Verlag, Berlin, 2008.
- [21] D. Jerison, C. E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal., 130:1 (1995), 161–219.
- [22] A. Jonsson, H. Wallin, Function Spaces on Subsets of Rⁿ, Harwood Academic Publishers, 1984.
- [23] В. И. Лебедев, В. И. Агошков, Операторы Пуанкаре–Стеклова и их приложения в анализе, Отдел вычислительной математики АН СССР, М., 1983.
- [24] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge Univ. Press, Cambridge, 2000.
- [25] G. Métivier, Valeurs propres de problémes aux limites elliptiques irreguliers, Bull. Soc. Math. France, Mémoire **51–52** (1977), 125–219.
- [26] S. E. Mikhailov, Traces, extensions, co-normal derivatives and solution regularity of elliptic systems with smooth and non-smooth coefficients, http://arxiv.org/abs/0906.3875v1.
- [27] I. Mitrea, M. Mitrea, The Poisson problem with mixed boundary conditions in Sobolev and Besov spaces in non-smooth domains, Trans. Amer. Math. Soc., **359**:9 (2007), 4143–4182.
- [28] M. Mitrea, M. Taylor, Boundary layer methods for Lipschitz domains in Riemannian manifolds, J. Funct. Anal., 163:2 (1999), 181–251.
- [29] M. Mitrea, M. Taylor, Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev-Besov space results and the Poisson problem, J. Funct. Anal., 176:1 (2000), 1–79.
- [30] Д. Г. Натрошвили, О. О. Чкадуа, Е. М. Шаргородский, Смешанные задачи для однородных анизотропных упругих сред, Труды Института прикладной математики им. Векуа, **39** (1990), 133–178.
- [31] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967.
- [32] O. A. Oleinik, A. S. Shamaev, G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization, North Holland, Amsterdam, 1992.
- [33] K. A. Ott, R. M. Brown, The mixed problem for the Laplacian in Lipschitz domains http://arxiv.org/abs/0909.0061v2.
- [34] Б. В. Пальцев, О смешанной задаче с неоднородными граничными условиями для эллиптических с параметром уравнений второго порядка в липшицевых областях, Матем. сб., 187:4 (1996), 59–116.

- [35] T. von Petersdorff, Boundary integral equations for mixed Dirichlet, Neumann and transmission problems, Math. Methods Appl. Sci., 11:2 (1989), 183–213.
- [36] G. Rozenblum, G. Tashchiyan, Eigenvalue asymptotics for potential type operators on Lipschitz surfaces, Russian J. Math. Phys., 13:3 (2006), 326–339.
- [37] V. S. Rychkov, On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains, J. London Math. Soc. (2), 60:1 (1999), 237–257.
- [38] G. Savaré, Regularity and perturbation results for mixed second order elliptic problems, Comm. Partial Differential Equations, 22:5–6 (1997), 869–899.
- [39] E. Shamir, Regularization of mixed second-order elliptic equations, Israel J. Math., 6 (1968), 150–168.
- [40] И. Я. Шнейберг, Спектральные свойства линейных операторов в интерполяционных семействах банаховых пространств, Матем. исслед., 9:2 (1974), 214–227.
- [41] I. N. Sneddon, Mixed Boundary Value Problems in Potential Theory, Elsevier, New York, 1966.
- [42] E. Stephan, Boundary integral equations for mixed boundary value problems, screen and transmission problems in \mathbb{R}^3 , Habilitationsschrift, Darmstadt, 1984 (THD-preprint 848).
- [43] E. P. Stephan, Boundary integral equations for mixed boundary value problems in \mathbb{R}^3 , Math. Nachr., **134** (1987), 21–53.
- [44] Т. А. Суслина, Асимптотика спектра вариационных задач на решениях однородного эллиптического уравнения при наличии связей на части границы, в кн.: Проблемы мат. анализа, т. 9, ЛГУ, 1984, 84–97.
- [45] T. A. Suslina, Spectral asymptotics of variational problems with elliptic constraints in domains with piecewise smooth boundary, Russian J. Math. Phys., 6:2 (1999), 214–234.
- [46] J. D. Sykes, R. M. Brown, The mixed boundary problem in L^p an Hardy spaces for Laplace's equation on a Lipschitz domain, in: Contemporary Mathematics, vol. 227, Amer. Math. Soc., 2001, 1–18.
- [47] H. Triebel, Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers, Rev. Mat. Complut., 15:2 (2002), 475–524.
- [48] G. Uhlmann, Inverse boundary problems and applications, Astérisque, 207 (1992), 153–207.
- [49] G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains, J. Funct. Anal., **59**:3 (1984), 572–611.
- [50] В. И. Войтицкий, Н. Д. Копачевский, П. А. Старков, *Многокомпонентные задачи сопряжения и вспомогательные абстрактные краевые задачи*, Современная математика. Фундаментальные направления, **34** (2009), 5–44.

Московский институт электроники и математики e-mail: magran@orc.ru

Поступило в редакцию 16 декабря 2010 г.