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On the extension and generation of
set-valued mappings of bounded variation

by

V. V. Chistyakov (Nizhny Novgorod) and A. Rychlewicz (Łódź)

Abstract. We study set-valued mappings of bounded variation of one real variable.
First we prove the existence of an extension of a metric space valued mapping from a
subset of the reals to the whole set of reals with preservation of properties of the initial
mapping: total variation, Lipschitz constant or absolute continuity. Then we show that
a set-valued mapping of bounded variation defined on an arbitrary subset of the reals
admits a regular selection of bounded variation. We introduce a notion of generated set-
valued mappings and show that, under suitable assumptions, set-valued mappings (with
arbitrary domains) which are Lipschitzian, of bounded variation or absolutely continuous
are generated by certain families of mappings with nice properties. Finally, we prove a
Castaing type representation theorem for set-valued mappings of bounded variation.

1. Introduction. This paper is devoted to single- and set-valued map-
pings of bounded variation of one real variable. Our aim is to extend certain
selection theorems, obtained recently by the first author ([2], [5]–[10]) under
the assumption that the domain of mappings under consideration is an in-
terval, to the case when the domain of set-valued mappings is an arbitrary
subset of the reals R. It is natural to consider mappings of bounded vari-
ation f : E → X, where X is a metric space, on an arbitrary nonempty
set E ⊂ R, since the notion of (Jordan) variation of f depends only on
the order relation on E and the distance function d in the target space X.
Single-valued functions and mappings f : E → X of bounded variation with
arbitrary ∅ 6= E ⊂ R have already been treated in different contexts: [1], [27]
(if X = R) and [4]–[6], [13] (if X is a metric or normed space). We also ex-
tend selection results for Lipschitzian and absolutely continuous set-valued
mappings from [17], [18], [26], [28] and [29] to the case of an arbitrary domain
E ⊂ R.
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First, we study extensions of a metric space valued mapping from a
subset of R to the whole R with preservation of properties of the initial
mapping: total variation, Lipschitz constant or absolute continuity (Theo-
rem 1). In Section 4 we prove an existence theorem for regular selections of
a given set-valued mapping (Theorem 2), introduce a notion of generated
set-valued mappings and show that, under suitable assumptions, set-valued
mappings (with arbitrary domains) which are Lipschitzian, of bounded vari-
ation or absolutely continuous are generated by certain families of mappings
(Theorem 3). Finally, in Section 5 we prove a Castaing type representation
theorem for set-valued mappings of bounded variation (Theorem 4).

2. Preliminaries and main results. In this section we recall some
definitions and facts needed for our results.

Let (X, d) be a metric space and E ⊂ R be a nonempty set. The (total)
Jordan variation of a mapping f : E → X is defined by

V (f,E) = sup
T

m∑

i=1

d
(
f(ti), f(ti−1))(1)

where the supremum is over all partitions T = {ti}mi=0 ⊂ E of E, i.e., m ∈ N
and ti−1 < ti, i = 1, . . . ,m. Denote by BV(E;X) the set of all mappings
f : E → X for which V (f,E) < ∞; these mappings are called of bounded
Jordan variation on E. A mapping g : E → X is said to be Lipschitzian
on E if its (minimal) Lipschitz constant, defined by

L(g,E) = sup{d(g(t), g(s))/|t− s| | t, s ∈ E, t 6= s},(2)

is finite. We set Lip(E;X) = {g : E → X | L(g,E) <∞}. A map h : E → X
is said to be absolutely continuous on E (in symbols, h ∈ AC(E;X)) if for
any ε > 0 there exists δ(ε) > 0 such that for any n ∈ N and any finite
collection {αi, βi}ni=1 ⊂ E with α1 < β1 ≤ α2 < β2 ≤ . . . ≤ αn < βn the
condition

∑n
i=1(βi − αi) ≤ δ(ε) implies

∑n
i=1 d(h(βi), h(αi)) ≤ ε.

Note that the following embeddings hold: Lip(E;X) ⊂ AC(E;X) for any
E ⊂ R, Lip(E;X) ⊂ BV(E;X) if E is bounded, and AC(E;X) ⊂ BV(E;X)
if E is compact (see, e.g., [6]).

Let us recall the main properties of the variation V (·, ·) (see [4]–[6]).
If f ∈ BV(E;X), we set f(E) = {f(t) ∈ X | t ∈ E} and ω(f,E) =
sup{d(f(t), f(s)) | t, s ∈ E}. We have: (i) ω(f,E) ≤ V (f,E); (ii) V (f,E1) ≤
V (f,E2) for E1 ⊂ E2 ⊂ E; (iii) V (f,E) = V (f,E−t ) + V (f,E+

t ) for t ∈ E
where E−t = E ∩ (−∞, t] and E+

t = E ∩ [t,∞); (iv) if J ⊂ R and ψ : J → E
is nondecreasing, then V (f, ψ(J)) = V (f ◦ψ, J) where (f ◦ψ)(t) = f(ψ(t)),
t ∈ J ; (v) V (f,E) = sup{V (f,E ∩ [a, b]) | a, b ∈ E, a ≤ b}; (vi) if s =
supE ∈ (R \ E) ∪ {∞}, then V (f,E−t ) → V (f,E) as E 3 t → s; (vii) if
i = inf E ∈ (R \ E) ∪ {−∞}, then V (f,E+

t ) → V (f,E) as E 3 t → i;
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(viii) if fn : E → X for n ∈ N and d(fn(t), f(t)) → 0 as n → ∞ for all
t ∈ E, then V (f,E) ≤ lim infn→∞ V (fn, E); (ix) the image f(E) is a totally
bounded and separable subset of X; moreover, the closure f(E) of f(E) in
X is compact if X is complete.

In what follows we shall need the concept of metric convexity (due to
Menger [24]): a metric space (X, d) is said to be metrically convex if for any
x, y ∈ X with x 6= y there exists z ∈ X, x 6= z 6= y, such that d(x, z) +
d(z, y) = d(x, y). Clearly, any normed linear space is metrically convex.
Another example of a metrically convex space is given below.

Given a mapping f̃ : R→ X, we denote its restriction to E ⊂ R by f̃ |E.
The first main result (an extension theorem) will be proved in Section 3:

Theorem 1. Let ∅ 6= E ⊂ R and (X, d) be a complete metric space.

(a) If f ∈ BV(E;X), then there exists f̃ ∈ BV(R;X) such that f̃ |E = f

and V (f̃ ,R) = V (f,E).
(b) If (X, d) is metrically convex and g ∈ Lip(E;X), then there exists

g̃ ∈ Lip(R;X) such that g̃|E = g and L(g̃,R) = L(g,E).
(c) If (X, d) is metrically convex , R \ E (the complement of the closure

E of E in R) is a finite union of disjoint open intervals and h ∈ AC(E;X),
then there exists h̃ ∈ AC(R;X) such that h̃|E = h.

To treat set-valued mappings (s.v.m., for short) of bounded variation,
we introduce some notation and terminology.

Let (X, d) be a metric space. Denote by 2̇X , 2̇Xcl , 2̇Xcb and 2̇Xc the fam-
ilies of all nonempty subsets of X, all nonempty closed subsets of X, all
nonempty closed bounded subsets of X, and all nonempty compact sub-
sets of X, respectively. The Hausdorff distance D = Dd is defined by the
formula ([21])

D(A,B) = max{e(A,B), e(B,A)}, A,B ∈ 2̇X ,

where

e(A,B) = sup
x∈A

dist(x,B) and dist(x,B) = inf
y∈B

d(x, y).

It is known that D is a metric on 2̇Xcb and 2̇Xc and a pseudometric (i.e., a
metric with possibly infinite values) on 2̇Xcl . A general example of a metrically
convex metric space (which is not a normed linear space) is given in [11,
Theorem 4.1]: if (X, d) is a continuum (i.e. connected and compact), then
(2̇Xcl ,Dd) is metrically convex if and only if (X, d) is metrically convex.

Given two nonempty sets E and X, any mapping F : E → 2̇X is called
a s.v.m. (or a multifunction) from E into X. The set F (t) ⊂ X is called the
value of F at t ∈ E. A (single-valued) mapping f : E → X is said to be a
selection of F if f(t) ∈ F (t) for all t ∈ E. If (X, d) is a metric space and
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∅ 6= E ⊂ R, the properties of F : E → 2̇X of being of bounded (Jordan)
variation, Lipschitzian or absolutely continuous are introduced along the
same lines as above (cf. (1) and (2)) with the metric d there replaced by the
Hausdorff distance D = Dd; the respective spaces of s.v.m. will be denoted
by BV(E; 2̇X), Lip(E; 2̇X) and AC(E; 2̇X).

Of particular interest are those selections of F : E → 2̇X that preserve
certain regularity properties of F . The second main result is the existence
of regular selections, which will be proved in Section 4:

Theorem 2. Let ∅ 6= E ⊂ R be an arbitrary set , (X, d) a complete
metric space, F : E → 2̇Xc a s.v.m. with compact values, t0 ∈ E and x0 ∈ X.

(a) If F ∈ BV(E; 2̇Xc ), then there exists a selection f ∈ BV(E;X) of F
with

d(x0, f(t0)) = dist(x0, F (t0)) and V (f,E) ≤ V (F,E).(3)

Now suppose also that (X, d) is metrically convex.

(b) If F ∈ Lip(E; 2̇Xc ), then there exists a selection f ∈ Lip(E;X) of F
satisfying conditions (3) and L(f,E) ≤ L(F,E).

(c) If R\E is a finite union of disjoint open intervals and F ∈ AC(E; 2̇Xc ),
then there exists a selection f ∈ AC(E;X) of F satisfying conditions (3).

When E is a (closed) interval, particular cases of this theorem are con-
tained in [17] (part (a), X = Rn), [18] ((b) and (c), X = Rn, F convex and
nonconvex valued), [29] ((c), X = Rn, F nonconvex valued), [26, Suppl.]
((b), X a Banach space, the graph Gr(F ) = {(t, x) ∈ E × X | x ∈ F (t)}
compact), [28] ((b), X a metric space), [5] ((a), X a Banach space, F con-
tinuous and Gr(F ) compact), [6] ((a)–(c), X a Banach space and Gr(F )
compact), [7] ((a)–(c), X a Banach space) and [2], [10] ((a)–(c), X a metric
space).

Let X and E be nonempty sets and XE be the set of all mappings from
E into X. Any nonempty family F ⊂ XE of mappings generates a s.v.m.
F : E → 2̇X according to the rule F(t) = {f(t) | f ∈ F}, t ∈ E. We say
that a s.v.m. F : E → 2̇X is generated by a (nonempty) family F ⊂ XE

(or is F-generated) if F (t) = F(t) for all t ∈ E; note that the family F
here is not uniquely determined in general and that any mapping f ∈ F is
a selection of F . On the other hand, given an arbitrary s.v.m. F : E → 2̇X ,
one cannot infer easily that F is F-generated for some F ⊂ XE : at least
this is the problem of existence of (a large enough family of) selections of F .

If ∅ 6= E ⊂ R and (X, d) is a metric space, then a family G ⊂ XE

is called: equi-Lipschitzian if L(G, E) = supg∈G L(g,E) is finite; pointwise
compact if G(t) is a compact subset of X for all t ∈ E.

The third main result is on the generated s.v.m. of bounded variation:
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Theorem 3. Let ∅ 6= E ⊂ R and (X, d) be a metric space.

1. Let F ∈ BV(E; 2̇Xc ), ν(t) = V (F,E ∩ (−∞, t]), t ∈ E, and J = ν(E).
Suppose that either (a) E is an interval and F is continuous, or (b) (X, d)
is metrically convex. Then there exists a pointwise compact equi-Lipschitzian
family G ⊂ Lip(J ;X) such that

F (t) = {g(ν(t)) | g ∈ G} for all t ∈ E.(4)

2. Conversely , if ν ∈ BV(E;R), J = ν(E), G ⊂ Lip(J ;X) is an equi-
Lipschitzian family and F : E → 2̇X is given by (4), then F ∈ BV(E; 2̇X)
and V (F,E) ≤ L(G, J)V (ν,E).

Similar results hold for Lipschitzian s.v.m. (cf. Lemma 1 in Section 4)
and absolutely continuous s.v.m. (see remarks at the end of Section 4).

Finally, in Section 5 we prove a Castaing type representation theorem
for s.v.m. of bounded variation (Theorem 4).

3. Extensions of metric space valued mappings. Most of this sec-
tion is devoted to the proof of the extension Theorem 1. In what follows
we need a structural lemma (Lemma A) for mappings of bounded variation
and the fundamental result in the theory of metric convexity (Lemma B).

Lemma A ([6, Lemma 3.3]). Let (X, d) be a metric space, ∅ 6= E ⊂ R
and f : E → X. Then f ∈ BV(E;X) (respectively , f ∈ AC(E;X) with E
compact) if and only if f = g ◦ ν on E, where ν : E → R is bounded and
nondecreasing (respectively , bounded , nondecreasing and absolutely continu-
ous) with image J = ν(E), g ∈ Lip(J ;X) and L(g, J) ≤ 1. In the necessity
part one can set ν(t) = V (f,E ∩ (−∞, t]), t ∈ E.

Lemma B ([24], see also [15, Sec. 2]). If (X, d) is a complete and metri-
cally convex metric space, then for any x, y ∈ X there exists an isometrical
embedding ϕ : [0, d(x, y)]→ X such that ϕ(0) = x and ϕ(d(x, y)) = y.

Proof of Theorem 1. (a) Set E−t = E ∩ (−∞, t] for t ∈ R, and ν(t) =
V (f,E−t ) for t ∈ E. Then ν : E → R is bounded and nondecreasing and

ω(ν,E) = V (f,E) where ω(ν,E) = sup
t∈E

ν(t)− inf
t∈E

ν(t).

By Lemma A, there exists g∈Lip(J ;X) with J=ν(E) such that L(g, J)≤1
and f = g ◦ ν on E. We extend ν onto R as follows: given t ∈ R, we set
ν̃(t) = sup{ν(s) | s ∈ E−t } if E−t 6= ∅, and ν̃(t) = inf{ν(s) | s ∈ E} if
E−t = ∅. It is clear that ν̃ : R → R is bounded, nondecreasing, ν̃|E = ν

and ω(ν̃,R) = ω(ν,E). Moreover, ν̃(R) ⊂ ν(E) = J . Note that g extends by
continuity to a unique g̃ ∈ Lip(J ;X) and L(g̃, J) = L(g, J) ≤ 1. Defining
f̃ = g̃ ◦ ν̃ on R, we have: f̃ |E = f and
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V (f̃ ,R) ≤ L(g̃, J)ω(ν̃,R) ≤ ω(ν̃,R) = ω(ν,E) = V (f,E).

Since f̃ |E = f , we also have V (f̃ ,R) ≥ V (f,E).
(b) Again, there exists a unique g ∈ Lip(E;X) such that g|E = g and

L(g,E) = L(g,E). Define g̃ to be g on E. The difference R \ E is at most
a countable union of disjoint open intervals (ak, bk). If bk − ak is finite, set
xk = g(ak) and yk = g(bk), denote by ϕk : [0, d(xk, yk)]→ X the isometrical
embedding from Menger’s theorem (Lemma B) such that ϕk(0) = xk and
ϕk(d(xk, yk)) = yk, define g̃ on the interval (ak, bk) by

g̃(t) = ϕk((t− ak)d(xk, yk)/(bk − ak)), t ∈ (ak, bk),

and note that d(xk, yk)/(bk − ak) ≤ L(g,E) = L(g,E). Since ϕk is an isom-
etry, for all t, s ∈ [ak, bk] we have

d(g̃(t), g̃(s)) = (d(xk, yk)/(bk − ak))|t− s| ≤ L(g,E)|t− s|.(5)

If ak = −∞ and bk <∞, we set g̃(t) = g(bk), t ∈ (−∞, bk], and if ak > −∞
and bk =∞, we set g̃(t) = g(ak), t ∈ [ak,∞).

Clearly, g̃|E = g. It remains to verify that

d(g̃(t), g̃(s)) ≤ L(g,E)|t− s| for all t, s ∈ R.
This inequality is clear if t, s ∈ E. If t ∈ E and s 6∈ E, we may suppose that
s ∈ (ak, bk) and bk ≤ t, so that the triangle inequality and (5) yield

d(g̃(t), g̃(s)) ≤ d(g(t), g(bk)) + d(g̃(bk), g̃(s)) ≤ L(g,E)|t− s|.
Finally, if t, s 6∈ E, we may assume that t ∈ (am, bm), s ∈ (ak, bk) and
bk ≤ am, and so

d(g̃(t), g̃(s)) ≤ d(g̃(t), g̃(am)) + d(g(am), g(bk)) + d(g̃(bk), g̃(s))

≤ L(g,E)((t− am) + (am − bk) + (bk − s)) = L(g,E)|t− s|.
It follows that L(g̃,R) ≤ L(g,E), and so L(g̃,R) = L(g,E) as g̃|E = g.

(c) We extend h by continuity to h : E → X. Since h ∈ AC(E;X), it is
uniformly continuous on E, and so h is (uniformly) continuous on E. Hence
(cf. [13, Lemma IV.5.6]), h is absolutely continuous on E with respect to
the the same function δ(·) as for h. Writing R \ E =

⋃N
k=1(ak, bk) (disjoint

union), we define the desired extension h̃ : R → X in the same manner
as in (b) above. Denote by L the largest number of d(xk, yk)/(bk − ak) for
bk − ak finite, k = 1, . . . , N . By (5) (with g̃ and g replaced by h̃ and h,
respectively), h̃ is absolutely continuous on R with respect to the function
δ̃(ε) = min{δ(ε/2), ε/(2 max{1, L})}, ε > 0.

Remarks. (a) In the case X = R Theorem 1(a) is due to Saks [27,
Ch. 7, Sec. 4, Lemma (4.1)].

(b) Theorem 1(b) is related to the classical extension theorems ([19],
[23], [25]). If X = R, it gives a particular case of the Kirszbraun–McShane
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theorem (cf. [12, 2.10.43]). Also, it extends the results of [12, 2.5.16] and [6,
step 3 in the proof of Theorem 5.1] in the case of a Banach space (X, ‖ · ‖);
in this case one may take

ϕk(%) = xk + %(yk − xk)/‖xk − yk‖, % ∈ [0, ‖xk − yk‖], if xk 6= yk.

However, as is shown in the following two examples, the assumption that X
is metrically convex is essential for Theorem 1(b).

Examples. 1. Let E = X = {0, 1}, χ(0) = 0 and χ(1) = 1. Clearly,
χ ∈ Lip(E;X) and L(χ,E) = 1. If χ̃ : R→ X is any extension of χ, then it
is the characteristic function of the set {t ∈ R | χ̃(t) = 1} 6= R and, hence,
discontinuous.

2. The pathwise connectedness of X is not sufficient either. In fact, let
λ : R → R be a continuous nowhere differentiable function (cf. [14, Exam-
ple 3.8]), X = {(t, λ(t)) ∈ R2 | t ∈ R} be its graph and t0, t1 ∈ R be such
that λ(t0) 6= λ(t1). Define g : E = {t0, t1} → X by g(t0) = (t0, λ(t0)) and
g(t1) = (t1, λ(t1)). It is clear that g ∈ Lip(E;X). The unique continuous
extension g̃ : R → X of g is given by g̃(t) = (t, λ(t)) for all t ∈ R; however,
g̃ is not Lipschitzian.

4. Generated set-valued mappings. Theorem 2 is based on and is
a generalization of the following result on the existence of regular selections
for compact-valued s.v.m. defined on intervals:

Lemma C ([2, Theorems 2, 3]). Let I ⊂ R be an arbitrary interval ,
(X, d) a metric space, F : I → 2̇Xc a s.v.m., t0 ∈ I and x0 ∈ F (t0), and let
F denote either BV, Lip or AC. If F ∈ F(I; 2̇Xc ), then it admits a selection
f ∈ F(I;X) such that f(t0) = x0 and V (f, I) ≤ V (F, I). In the case F = Lip
the selection f can be additionally chosen such that L(f, I) ≤ L(F, I).

The conditions of Lemma C are sharp in the sense that if 2̇Xc is replaced
by 2̇Xcb, then the inequality V (f, I) ≤ V (F, I) does not hold in general (cf. [2,
Example 2]). On the other hand, examples from [16] show that a continuous
s.v.m. F : [a, b]→ 2̇R

2

c need not admit continuous selections.
We also need a result on the metric convexity of the hyperspace 2̇Xc :

Lemma D. If (X, d) is a metrically convex metric space, then so is
(2̇Xc ,Dd).

Proof. We follow the proof outlined in [20]. Let A,B ∈ 2̇Xc and A 6= B.
Then r = D(A,B) > 0. For ε > 0 we set Aε = {x ∈ X | dist(x,A) ≤ ε}.
Since D(A,B) = inf{ε > 0 | A ⊂ Bε and B ⊂ Aε}, we have A ⊂ Br and
B ⊂ Ar. Setting Γ = {(α, β) ∈ A× B | d(α, β) ≤ r} and making use of the
metric convexity of X, for each (α, β) ∈ Γ choose cα,β ∈ X such that

d(α, cα,β) = d(β, cα,β) = d(α, β)/2.
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Defining the compact set C={cα,β | (α, β)∈Γ}, let us show that A 6=C 6=B
and D(A,B) = D(A,C) +D(C,B). In fact, if c ∈ C, then c = cα,β for some
(α, β) ∈ Γ , and so d(c, α) = d(cα,β, α) ≤ r/2. Hence, C ⊂ Ar/2. Given α ∈ A,
there exists β ∈ B with (α, β) ∈ Γ , whence d(α, cα,β) ≤ r/2. Therefore,
A ⊂ Cr/2. It follows that D(A,C) ≤ r/2. Similarly, D(B,C) ≤ r/2. Since
always D(A,B) ≤ D(A,C) +D(B,C), the proof is complete.

Proof of Theorem 2. (a) Since (X, d) is complete, so is (2̇Xc ,D) (see [3,
Theorem II-5]), and hence, by Theorem 1(a), there exists F̃ ∈ BV(R; 2̇Xc )
such that F̃ |E = F and V (F̃ ,R) = V (F,E). Choose y0 ∈ F (t0) such that
d(x0, y0) = dist(x0, F (t0)). Applying Lemma C with F = BV and I = R,
we find a selection f̃ ∈ BV(R;X) of F̃ such that f̃(t0) = y0 and V (f̃ ,R) ≤
V (F̃ ,R). Then f = f̃ |E ∈ BV(E;X) is a selection of F , the first condition
in (3) holds and

V (f,E) ≤ V (f̃ ,R) ≤ V (F̃ ,R) = V (F,E).

(b) By the assumptions on X and Lemma D, (2̇Xc ,D) is complete and
metrically convex, and so Theorem 1(b) yields F̃ ∈ Lip(R; 2̇Xc ) such that
F̃ |E = F and L(F̃ ,R) = L(F,E). The rest of the proof is similar to that
of (a). In the same way one can prove (c).

In the rest of this section we study F-generated s.v.m. of bounded vari-
ation. We start with Lipschitzian s.v.m. and Lipschitzian families of map-
pings.

Lemma 1. Suppose that either (a) E ⊂ R is an interval and (X, d) is
an arbitrary metric space, or (b) ∅ 6= E ⊂ R is arbitrary and (X, d) is
metrically convex. Given G : E → 2̇Xc , we have: G ∈ Lip(E; 2̇Xc ) if and
only if G is G-generated by a pointwise compact equi-Lipschitzian family of
mappings G ⊂ Lip(E;X).

Proof. Necessity. Denote by G the family of selections g ∈ Lip(E;X) of
G for which L(g,E) ≤ L(G,E). By the assumptions, Lemma C in case (a)
and Theorem 2(b) in case (b), the family G is nonempty. Given t ∈ E, we
have to show that G(t) = G(t). If x ∈ G(t), then x = g(t) for some g ∈ G,
and since g(t) ∈ G(t), it follows that x ∈ G(t). Conversely, if x ∈ G(t),
then again according to Lemma C or Theorem 2(b) there exists g ∈ G such
that g(t) = x, whence x ∈ G(t), and so G(t) ⊂ G(t). Clearly, G is pointwise
compact and equi-Lipschitzian.

Sufficiency. A more general assertion holds: if G ⊂ XE is a nonempty
equi-Lipschitzian family and G : E→ 2̇X is G-generated, then G∈Lip(E; 2̇X)
and L(G,E) ≤ L(G, E). The proof is a straightforward verification: If t, s ∈
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E and x ∈ G(t), then there exists g ∈ G such that x = g(t), and so

inf
y∈G(s)

d(x, y) ≤ d(g(t), g(s)) ≤ L(g,E)|t− s| ≤ L(G, E)|t− s|.

It follows that e(G(t), G(s)) ≤ L(G, E)|t − s|. By the definition of the
Hausdorff metric D, we have D(G(t), G(s)) ≤ L(G, E)|t − s|, and so G ∈
Lip(E; 2̇X).

It remains to note that if G is pointwise compact, then G is compact-
valued. (Note also that E here can be replaced by an arbitrary metric
space.)

We say that a nonempty family F ⊂ BV(E;X) is of equi-bounded
variation if V(F , E) = supT

∑m
i=1 supf∈F d(f(ti), f(ti−1)) < ∞ where the

first supremum is over all partitions T = {ti}mi=1 of E. Clearly, if F is
of equi-bounded variation, then F is of uniformly bounded variation and
supf∈F V (f,E) ≤ V(F , E). Also, if G ⊂ Lip(E;X) is equi-Lipschitzian,
then G is of equi-bounded variation.

Lemma 2. Suppose that either (a) E ⊂ R is an interval and (X, d) is an
arbitrary metric space, or (b) ∅ 6= E ⊂ R is arbitrary and (X, d) is a com-
plete metric space. If F ∈ BV(E; 2̇Xc ), then F is F-generated by a pointwise
compact family F ⊂ BV(E;X) of mappings of uniformly bounded variation.
Conversely , if F ⊂ BV(E;X) is a family of equi-bounded variation and
F : E → 2̇X is F-generated , then F ∈ BV(E; 2̇X) and V (F,E) ≤ V(F , E).

Proof. Necessity. Denote by F the family of all selections f ∈ BV(E;X)
of F such that V (f,E) ≤ V (F,E) and note that, by Lemma C or Theo-
rem 2(a), F is nonempty. The rest of the proof is identical with the necessity
part of the proof of Lemma 1.

Sufficiency. Let t, s ∈ E. Given x ∈ F (t), there exists f ∈ F such that
x = f(t), and so

inf
y∈F (s)

d(x, y) ≤ d(f(t), f(s)) ≤ sup
f∈F

d(f(t), f(s)) ≡ α(t, s).

It follows that e(F (t), F (s)) ≤ α(t, s) and D(F (t), F (s)) ≤ α(t, s), and so
V (F,E) ≤ V(F , E).

Proof of Theorem 3. 1. By Lemma A, there exists G ∈ Lip(J ; 2̇Xc ) such
that L(G, J) ≤ 1 and F = G ◦ ν on E. In case (a), ν : E → R is continuous,
and so G is defined on the interval J = ν(E). In case (b), G takes its values
in 2̇Xc where X is metrically convex. According to Lemma 1 there exists a
pointwise compact equi-Lipschitzian family G ⊂ Lip(J ;X) such that G is
G-generated. It follows that

F (t) = G(ν(t)) = G(ν(t)) = {g(ν(t)) | g ∈ G}, t ∈ E.
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2. (One can check that the family F = {g ◦ν | g ∈ G} is of equi-bounded
variation.) Let t, s ∈ E. Given x ∈ F (t), there exists a mapping g ∈ G such
that x = g(ν(t)). We have

inf
y∈F (s)

d(x, y) ≤ d(g(ν(t)), g(ν(s))) ≤ L(g, J)|ν(t)− ν(s)|
≤ L(G, J)|ν(t)− ν(s)|,

and hence e(F (t), F (s)) ≤ L(G, J)|ν(t)− ν(s)|. It follows that

D(F (t), F (s)) ≤ L(G, J)|ν(t)− ν(s)| ∀t, s ∈ E.
Thus, V (F,E) ≤ L(G, J)V (ν,E).

We finish this section with remarks on absolutely continuous mappings.
Since Lemma A holds for f ∈ AC(E;X) with E ⊂ R compact, a variant
of Lemma 2 for AC can be obtained from Lemma C and Theorem 2(c). A
family F ⊂ AC(E;X) is called equi-absolutely continuous if for each ε > 0
the number δ(ε) > 0 from the definition of the absolute continuity of f ∈ F
can be chosen independently of f ∈ F . Theorem 3 holds as well if we replace
“E” by “compact E” and “BV” by “AC”.

5. A Castaing type representation. Let (T,M) be a measurable
space and (X, d) be a metric space. Recall ([3, Ch. III]) that a mapping
f : T → X is measurable if for any open set O ⊂ X the preimage f−1(O) =
{t ∈ T | f(t) ∈ O} ∈ M. A s.v.m. F : T → 2̇X is measurable if F−1(O) =
{t ∈ T | F (t) ∩ O 6= ∅} ∈ M for any open set O ⊂ X. It is known (see [3,
Ch. III]) that if X is a complete separable metric space, then F : T → 2̇Xc is
measurable if and only if it is measurable as a mapping to the metric space
(2̇Xc ,D).

A mapping f : T → X is called a measurable selection of F : T → 2̇X

if it is measurable and f(t) ∈ F (t) for all t ∈ T . It is known (see [22])
that a measurable F : T → 2̇X with closed values in a complete separable
metric space X admits a measurable selection. Moreover, for a s.v.m. F with
nonempty closed values in a complete separable metric space X, one can
choose a sequence {fn}∞n=1 of measurable selections for which the following
representation holds (cf. [3, Ch. III]):

F (t) = {fn(t)}∞n=1 for all t ∈ T,(6)

where the bar means the closure in X. The sequence {fn}∞n=1 satisfying
(6) is called a Castaing representation for F . Also, the existence of such a
representation for F : T → 2̇Xcl with X a complete separable metric space is
equivalent to the measurability of F ([3, Theorem III.8]).

Now, let I = [a, b] and (X, d) be a complete metric space. A mapping
f ∈ XI is said to be proper if it has at most a countable number of points
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of discontinuity on I, at each of which f has both one-sided limits. We say
that F : I → 2̇X admits a Castaing (resp. an almost everywhere Castaing)
representation if there exists a sequence {fn}∞n=1 ⊂ XI of selections of F
for which (6) holds (resp. holds almost everywhere).

The following theorem is based on Lemma C and the above remarks.

Theorem 4. Let X be a complete metric space and F ∈ BV(I; 2̇Xc ) be
continuous. Then: (a) for any measurable selection f of F there exists a
sequence of proper selections of F which converges to f almost everywhere
on I; (b) F admits an almost everywhere Castaing representation by a se-
quence of proper selections of F .

Proof. The idea of the proof is taken from [26, Theorem D1.9]. Since
F ∈ BV(I; 2̇Xc ) is continuous, it is measurable and takes compact values,
and so, by the remarks above, it admits a Castaing representation by its
measurable selections. Hence, it suffices to prove (a).

Suppose that f ∈ XI is any measurable selection of F . Given ε > 0,
using the Lusin C-property we can find a closed subset Jε ⊂ I such that
the (Lebesgue) measure meas(I \ Jε) ≤ ε and the restriction f |Jε is contin-
uous. As I \ Jε is open, it is the union of at most a countable number of
nonintersecting intervals (αn, βn), n ∈ N. According to Lemma C for each
n ∈ N there exists a continuous selection fn of F on [αn, βn] of bounded
variation such that fn(αn) = f(αn). Define ψε : I → X by: ψε(t) = f(t) if
t ∈ Jε, and ψε(t) = fn(t) if t ∈ (αn, βn), n ∈ N. Let us show that fε may be
discontinuous (with left and right limits) only at points t = βn, n ∈ N. For
this, it suffices to verify that ψε(tk) → ψε(t) for all {tk}∞k=1 ⊂ I \ Jε in the
following two cases: t ∈ Jε \ {βn : n ∈ N} and tk → t as k →∞; and t = βn
for some n ∈ N and tk → t+ 0 as k →∞.

Denote by (αk, βk) the interval from I \ Jε containing tk. Since αk → t,
by the construction we have

‖ψε(tk)− ψε(t)‖ ≤ ‖fk(tk)− fk(αk)‖+ ‖f(αk)− f(t)‖,
which implies that ψε(tk) → ψε(t) as k → ∞ by the uniform continuity of
fk on [αk, βk], k ∈ N, and the continuity of f on Jε. From the definition of
ψε it follows that ψε tends to f in measure as ε → +0, i.e. meas({t ∈ I :
‖ψε(t)− f(t)‖ > γ})→ 0 as ε→ +0 for all γ > 0, from which we conclude
that a suitable subsequence of ψε tends to f pointwise almost everywhere
on I.
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