
International Journal of Open Information Technologies ISSN: 2307-8162 vol. 5, no.5, 2017

Pareto-optimal Algorithms for Metric TSP:
Experimental Research

Ekaterina N. Beresneva (Chirkova) and Prof. Sergey M. Avdoshin

Abstract—The Travelling Salesman Problem (TSP) is a

fundamental task in combinatorial optimization. A special case of
the TSP is Metric TSP, where the triangle inequality holds.
Solutions of the TSP are generally used for costs minimization,
such as finding the best tour for round-the-world trip or
construction of very large-scale integration schemes. Since the
TSP is NP-hard, heuristic algorithms providing near optimal
solutions will be considered. The objective of this article is to find
a group of Pareto optimal heuristic algorithms for Metric TSP
under criteria of run time efficiency and qualitative performance
as a part of the experimental study. Classification of algorithms
for Metric TSP is presented. Feasible heuristic algorithms and
their prior estimates are described. The data structure and the
details of the research methodology are provided. Finally, results
and prospective research are discussed.

Keywords—travelling salesman problem, resource-efficient
algorithm, heuristic algorithm, posterior estimate, computational
experiment.

I. INTRODUCTION
The Travelling Salesman Problem (TSP) is one of the

most widely known questions in a class of combinatorial
optimization problems. Essentially, to meet a challenge of the
TSP is to find a Hamiltonian circuit of minimal length. A
subcase of the TSP is Metric TSP where all of the edge costs
are symmetric, and they satisfy the triangle inequality.

The methods for solving the TSP have been developed for
many years, and since the problem is NP-hard, it continues to
be topical. The TSP has seen applications in the areas of
logistics, genetics, manufacturing, telecommunications and
neuroscience [1]. The most common practical interpretation of
the TSP relates to the movement of people and vehicles
around tours, such as searching for the shortest tour through 𝑁
cities, school bus route planning, and postal delivery. In
addition, the TSP plays an important role in very large-scale
integration (VLSI) [2] The purpose of this study is to
determine the group of Pareto-optimal heuristic algorithms for
Metric TSP by criteria of run time and qualitative performance
as part of the experimental investigation.

Manuscript received April 18, 2017.
Ekaterina N. Beresneva is with the Department of Software Engineering,

Faculty of Computer Science, National Research University Higher School of
Economics, Moscow, Russia (e-mail: enchirkova@edu.hse.ru).

Prof. Sergey M. Avdoshin is with the Department of Software
Engineering, Faculty of Computer Science, National Research University
Higher School of Economics, Moscow, Russia (e-mail: savdoshin@hse.ru).

Clearly, a study of this type is inevitably restricted by
various constraints, in this research only heuristic algorithms
constructing near optimal solutions in polynomial time will be
considered instead of the exact ones.

The paper is structured as follows. First, the theoretical
basis is described. It presents the mathematical formulation of
Metric TSP, the specification of metric types and, at last,
definition of Pareto optimization. Next, a classification of
algorithms for Metric TSP is given, including a literature
review of popular heuristics. Then the description of methods
to be used is provided with their prior estimates. After that the
details of the research methodology and expected results are
mentioned.

II. THEORETICAL BASIS

A. Problem Formulation
In this paper, mathematical formulation of Metric TSP is

adopted as follows.

Given a complete weighted undirected graph 𝐺 = (𝑉,𝑉2)
which contains 𝑁 = |𝑉| vertices. Graph vertices are indexed
as 𝑖𝑛𝑑𝑒𝑥 = 𝑉 → 𝐼, 𝐼 = {1, 2, … ,𝑁}, and (∀𝑣𝑖 ∈ 𝑉)�∀𝑣𝑗 ∈ 𝑉�
it is true that if 𝑣𝑖 ≠ 𝑣𝑗 then 𝑖 ≠ 𝑗, where 𝑖 = 𝑖𝑛𝑑𝑒𝑥(𝑣𝑖).
The distance between two vertices 𝑣𝑖 and 𝑣𝑗 is calculated by
distance function 𝑑�𝑣𝑖 , 𝑣𝑗�. Here a real-valued function 𝑑(∙,∙)
on 𝑉 × 𝑉 satisfies [3]:

1. 𝑑�𝑣𝑖 , 𝑣𝑗� ≥ 0 (non-negativity axiom)
2. 𝑑�𝑣𝑖 , 𝑣𝑗� = 0 if and only if 𝑣𝑖 = 𝑣𝑗 (identity axiom)
3. 𝑑�𝑣𝑖 , 𝑣𝑗� = 𝑑�𝑣𝑗 , 𝑣𝑖� (symmetry axiom)
4. 𝑑(𝑣𝑖 , 𝑣𝑘) ≤ 𝑑�𝑣𝑖 , 𝑣𝑗� + 𝑑�𝑣𝑗 , 𝑣𝑘� (triangle inequality

axiom)

Let S be a set of all Hamiltonian cycles of 𝐺. It is defined
as 𝑆 = {𝑝: 𝑉 → 𝑉|(𝑝(1) = 1&(∀𝑖 ∈ 𝑉)(∀𝑗 ∈ 𝑉)
(𝑝(𝑖) = 𝑝(𝑗) => 𝑖 = 𝑗}. An example of a Hamiltonian circuit
𝑠 ∈ 𝑆 is (𝑝1 , 𝑝2, … , 𝑝𝑁), where 𝑝𝑖 is used as abbreviated
notation of 𝑝(𝑖).

Weight of a Hamiltonian cycle 𝑠 ∈ 𝑆 can be found
according to the formula (1):

 𝑓(𝑠) = 𝑑(𝑝1, 𝑝𝑁) + ∑ 𝑑(𝑝𝑖 , 𝑝𝑖+1)𝑁−1
𝑖=1 (1)

16

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 5, no.5, 2017

The set of vertices 𝑉 is determined in Euclidean space
𝑅𝑛 by their coordinates. Under these circumstances, the
distance between two vertices 𝑣 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑤 =
(𝑥1, 𝑥2, … , 𝑥𝑛) is defined as (2):

 𝑑0(𝑣,𝑤) = �∑ �𝑥𝑖(𝑣) − 𝑥𝑖(𝑤)�2𝑛
𝑖=1 (4)

The formulation for the metric travelling salesman
problem is to find such 𝑠0 that 𝑓(𝑠0) = min𝑠∈𝑆 𝑓(𝑠) for the
given metric 𝑑0.

B. Resourse-efficient parameters

Let 𝑀 be a set of given heuristic algorithms for Metric
TSP. There are two parameters of resource-efficiency for
𝑚 ∈ 𝑀 for each 𝑁:

• 𝑓𝜀(𝑚,𝑁) – qualitative performance;
• 𝑓𝑡(𝑚,𝑁) – running time.

Qualitative performance can be calculated using (7):

 𝑓𝜀(𝑚,𝑁) = 𝑓(𝑠)−𝑓(𝑠0)
𝑓(𝑠0)

∗ 100%, (7)

where 𝑓(𝑠) is the obtained tour length and 𝑓(𝑠0) is the optimal
tour length. The values of optimal tour lengths are taken from
the open library TSPLIB as the lengths of the best reported
solutions for each of the instances [4].

C. Pareto-optimality

 Pareto optimization [5] or multi-objective optimization
problem for the TSP can be formulated as (8):

 min𝑚∈𝑀{𝑓𝜀(𝑚) , 𝑓𝑡(𝑚)} (8)

 Pareto optimal solutions are solutions that cannot be
improved in any of the objectives without degrading, at least,
one of the other objectives. In mathematical terms, a feasible
solution 𝑚1 ∈ 𝑀 is said to (Pareto) dominate another solution
𝑚2 ∈ 𝑀, if

1. 𝑓𝑖(𝑚1) ≤ 𝑓𝑖(𝑚2), for all indices 𝑖 ∈ {𝜀, 𝑡}.

2. 𝑓𝑗(𝑚1) < 𝑓𝑗(𝑚2), for at least one index 𝑗 ∈ {𝜀, 𝑡}.

III. RELATED WORKS

Algorithms for solving the TSP may be divided into two
classes:

• Exact algorithms, and
• Heuristic (or approximate) algorithms.

Exact algorithms are aimed at finding optimal solutions.
Both widely known subtypes of exact methods – linear
programming and branch-and-bound techniques – are
described in details by Applegate [1]. However, a major
drawback is connected with their time efficiency. It is a
common knowledge that there are no exact algorithms running

in polynomial time. Thus, only small datasets can be solved in
reasonable time. For example, the 4410-vertex problem is
believed to be the largest Metric TSP ever solved with respect
to optimality [6].

In this paper, only a class of heuristic search algorithms
will be taken into account. They are designed to run quickly
and to get an approximate solution to a given problem.
Heuristic algorithms are subdivided into two groups.

The first group includes tour construction algorithms that
have one feature in common – the tour is built by adding a
new vertex at each step. The following are alternative ways of
doing this [7]:

• Ordered sequence methods:
At the start of the heuristic, all the edges are ranked by
some suitable criteria. At each iteration the best edge
according to the criteria is added to the solution. The
most common order sequence methods are Greedy [8]
and Savings [9] [10].

• Increasing path methods:
One node or edge is selected as the starting point of a
path. At each iteration one edge is selected according
to some criterion, and added to one of the ends of the
path. A disadvantage of this approach is that it is
possible for the ends of the path to be 'far' from one
another when the heuristic terminates, i.e. the last edge
needed to change the path to a tour may be an
expensive edge. There are two groups of increasing
path methods – neighbour group [11] [12] and space-
filling curves group [13].

• Subtour insertion methods:
An initial subtour is selected, for example one edge is
selected. In each iteration, a node is selected and
inserted into the subtour according to some criterion.
To insert a node an edge in the subtour is replaced by
two edges not in the subtour. The insertion heuristics
are described by Johnson and McGeoch [14].

• Combined methods:
These are well-known algorithms based on minimum
spanning tree that were introduced by Christofides
[15] [16].

The second group consists of tour-improving algorithms
that have their roots in TSP papers from the 1950s [17] [18]
According to Applegate, ‘… These heuristics take as input an
approximate solution to a problem and attempt to iteratively
improve it by moving to new solutions that are close to the
original’ [1]. Most of these algorithms are described by Aarts
and Lenstra [19]. Currently, the most simple tour-improving
heuristic used in practice is 2-Opt heuristic [20]. It was
introduced and described by Flood [21], Croes [18] and Bock
[17]. The later algorithm of Lin and Kernighan (LKH) [22]
appeared on the basis of k-Opt tour-finding approach. Also
this group consists of simulated annealing [23], evolutionary
[24] and swarm intelligence methods [25] [26].

17

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 5, no.5, 2017

IV. ALGORITHMS
In this paper, most of the methods mentioned in Part III are

implemented and assessed through experiments.

It should be noted that Savings algorithm was not chosen
because of its high computational complexity – 𝑂(𝑁3 log𝑁) –
in comparison with Greedy one – 𝑂(𝑁2 log𝑁). In addition, it
was mentioned in [1] that for most instances Greedy algorithm
gives better results than Savings.

In order to restrict our investigation, it was decided to
choose only two types of tour improving algorithms – the
most simple one (2-Opt) and the most perspective one (LKH).

The list of used algorithms for Metric TSP is following:

1) Nearest Neighbour (NN).

The key to NN is to initially choose a random vertex and
to add repeatedly the nearest vertex to the last appended,
unless all vertices are used [21].

2) Double Ended Nearest Neighbour (DENN).

This algorithm is a modification of NN. Unlike NN, not
only the last appended vertex is taken into consideration, so
the closest vertex to both of endpoints in the tour is added
[21].

3) Greedy (GRD).

The Greedy heuristic constructs a path by adding the
shortest edge to the tour until a cycle with 𝐴 edges, 𝐴 < 𝑁, is
created, or the degree of any vertex exceeds two [27].

4) Nearest Addition (NA), Simple Cheapest Insertion
(SCI), Simple Nearest Segment Insertion (SNSI).

The fundamental idea of NA, SCI and SNSI is to start with
an initial subtour made of the shortest edge and to add
repeatedly other vertices using various rules. Depending on
the algorithm the vertex not yet in the cycle should be inserted
so that:

a) In NA it is the closest to any node in the tour;
b) In SCI its addition to the tour gives a minor

increment of its length;
c) In SNSI distance between the node and any edge

in the tour is minimal.

The previous step should be repeated until all vertices are
added to the cycle [19].

5) Nearest Insertion (NI), Cheapest Insertion (CI),
Nearest Segment Insertion (NSI).

Algorithms NI, CI and NSI are variations of NA, SCI and
SNSI respectively. The feature of modified methods is
additional computation that selects the best place for each
inserting node.

6) Double Minimum Spanning Tree (DMST).

DMST method is based on the construction of a minimal
spanning tree (MST) from the set of all vertices. After MST is
built, the edges are doubled in order to obtain an Eulerian
cycle, containing each vertex at least once. Finally, a
Hamiltonian circuit is made from an Eulerian circuit by
sequential (or greedy) removing occurrences of each node
[16].

7) Double Minimum Spanning Tree Modified (DMST-M).

This algorithm is a modification of DMST. Unlike DMST,
it is necessary to remove duplicate nodes from an Eulerian
cycle using triangle inequality instead of greedy method.

8) Christofides (CHR).

This method is a modification of DMST that was proposed
by Christofides [15]. The difference between CHR and DMST
is addition of minimum weight matching calculation to the
first algorithm.

9) Moore Curve (MC).

This is recursive geometric method. Vertices are sorted by
the order they are located on the plane. Only the two-
dimensional example of Moore curve is implemented. Figure
2 shows the order of the cells after one, two and three
subdivision steps respectively [28] .

Fig. 1. The order for the Moore curve after 1, 2 and 3 subdivision steps.

10) 2-Opt.

The main idea behind 2-Opt is to take a tour that has one
or more self-intersections and to remove them repeatedly. In
mathematical terms, edges 𝑎𝑏 and 𝑐𝑑 should be deleted and
new edges 𝑎𝑐 and 𝑏𝑑 should be inserted, if 𝑑(𝑎, 𝑏) +
𝑑(𝑐,𝑑) > 𝑑(𝑎, 𝑐) + 𝑑(𝑏,𝑑) (Fig. 1) [19].

Fig. 2. 2-Opt modification.

11) Helsgaun’s Lin and Kernighan Heuristic (LKH).

LKH uses the principle of 2-Opt algorithm and generalizes
it. In this heuristic, the 𝑘-Opt, where 𝑘 = 2. .√𝑁��������, is applied,

18

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 5, no.5, 2017

so the switches of two or more edges are made in order to
improve the tour. This method is adaptive, so decision about
how many edges should be replaced is taken at each step [22].

It should be noted that because of complexity of LKH
algorithm, it was not implemented by the authors of research.
The original open source code [29] was used to carry out
experiments. All the parameters were not changed, so they
were used by default.

Estimated upper bounds for the algorithms can be
calculated as are the ratio of 𝑓(𝑠)

𝑓(𝑠0)
 (see Table 1). According to

[30], for any 𝑘-Opt algorithm, where 𝑘 ≤ 𝑁/4, problems
may be constructed such that the error is almost 100%. So 2-
Opt and LKH algorithms have approximate upper bound 2.
Running times of the algorithms are represented in Table 2.

TABLE I. UPPER-BOUND ESTIMATES OF ALGORITHMS

 # Algorithm Upper-bound estimate
1 NN

DENN
0.5⌈log2 𝑁 + 1⌉

2 GRD 0.5⌈log2 𝑁 + 1⌉
3 NA, SCI, SNSI

NI, CI, NSI
2 −

2
𝑁

4 DMST, DMST-M 2 −
2
𝑁

5 CHR 3
2

6 2-Opt ≈ 2
7 LKH ≈ 2
8 MC log𝑁

TABLE II. RUNNING TIME OF ALGORITHMS

 # Algorithm Running time
1 NN

DENN
𝑂(𝑁2)

2 GRD 𝑂(𝑁2 log𝑁)
3 NA, SCI, SNSI

NI, CI, NSI
𝑂(𝑁2)

4 DMST, DMST-M 𝑂(𝑁2)
5 CHR 𝑂(𝑁3)
6 2-Opt 𝑂(𝑁2)
7 LKH 𝑂(𝑁2,2)
8 MC 𝑂(𝑁 log𝑁)

V. WAVE FUNCTION AS THE DATA STRUCTURE IN USE
The key aspect of realization of the algorithms is data

structure they make use of. In the study the Hamiltonian
circuits are presented as wave functions, which are fixed-
length one-dimensional arrays [31]. Their sizes are equal to 𝑁.

The wave function data structure decreases the
computational time of the algorithms in comparison with
standard C++ template std::vector<T> (Fig. 3).

Fig. 3. The time-efficiency comparison of wave and vector data structures.

VI. EXPERIMENTAL RESEARCH
This section documents details of the research

methodology. The experiment is carried out on a 1.3 GHz Intel
Core i5 MacBook Air. It includes the qualitative performance
and the run time efficiency of the current implementations.

Heuristics are implemented in C++. VLSI data sets from an
open library TSPLIB [2] are selected as input data for
algorithms. There are 102 instances in the VLSI collection that
range in size from 131 vertices up to 744,710 vertices. There is
one data set for each number of vertices. The integer Euclidean
metric distance is used, so coordinates of nodes and distances
between them have integer values, thus without loss of
generality (4) is transformed into:

 𝑑1(𝑣,𝑤) = ��|𝑥(𝑣) − 𝑥(𝑤)|2 + |𝑦(𝑣) − 𝑦(𝑤)|2 + 0.5�

The computational experiment corresponds to the following
scenario:

for algorithm 𝑚 in range [1…9, 11] (see IV)
 for data set 𝑁 in range [1…102]
 for i in range [1…11]
 𝑓𝜀𝑖(𝑚,𝑁), 𝑓𝑡𝑖(𝑚,𝑁) are calculated

 if i > 1 then
 𝑓𝜀𝑚𝑖𝑛

(𝑚,𝑁) is memorized
 𝑓𝑡𝑠𝑢𝑚(𝑚,𝑁) is calculated

 𝑓𝑡𝑎𝑣𝑔(𝑚,𝑁) = 𝑓𝑡𝑠𝑢𝑚(𝑚,𝑁)
10

 // 2-Opt stage
 if 𝑚 ! = 11 (𝑚 is not LKH)

𝑓𝜀(𝑚 + 2⎼𝑂𝑝𝑡,𝑁), 𝑓𝑡(𝑚 + 2⎼𝑂𝑝𝑡,𝑁) are
calculated

𝐸 �𝑓𝜀𝑚𝑖𝑛
(𝑚,𝑁)� ,𝜎 �𝑓𝜀𝑚𝑖𝑛

(𝑚,𝑁)� for all 𝑁 - ?

𝑚𝑎𝑥 �𝑓𝜀𝑚𝑖𝑛
(𝑚,𝑁)� ,𝑚𝑖𝑛 �𝑓𝜀𝑚𝑖𝑛

(𝑚,𝑁)� for all 𝑁 - ?

Metrics used in scenario have following meanings:
• 𝑓𝜀𝑚𝑖𝑛

(𝑚,𝑁) – best qualitative performance of 𝑚,
• 𝑓𝑡𝑠𝑢𝑚(𝑚,𝑁) – accumulative running time of 𝑚 (sec),
• 𝑓𝑡𝑎𝑣𝑔(𝑚,𝑁) – average running time of 𝑚 (sec),
• 𝑓𝜀(𝑚 + 2⎼𝑂𝑝𝑡,𝑁) – qualitative performance of

𝑚 + 2⎼𝑂𝑝𝑡,
• 𝑓𝑡(𝑚 + 2⎼𝑂𝑝𝑡,𝑁) – running time of 𝑚 + 2⎼𝑂𝑝𝑡,

19

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 5, no.5, 2017

• 𝐸 �𝑓𝜀𝑚𝑖𝑛
(𝑚,𝑁)� – expected value of qualitative

performance of 𝑚 for all 𝑁,
• 𝜎 �𝑓𝜀𝑚𝑖𝑛

(𝑚,𝑁)� – standard deviation of qualitative
performance of 𝑚 for all 𝑁,

• 𝑚𝑎𝑥 �𝑓𝜀𝑚𝑖𝑛
(𝑚,𝑁)� ,𝑚𝑖𝑛 �𝑓𝜀𝑚𝑖𝑛

(𝑚,𝑁)� – maximum and
minimum values of qualitative performance of 𝑚 for
all 𝑁.

Qualitative performance metrics are represented in Table
3. Table color scheme varies from green (the best result in a
column) to red (the worst value in a column).

The line graphs that illustrate 𝑓𝜀(𝑚,𝑁) and 𝑓𝑡(𝑚,𝑁) of
the algorithms are provided (see Fig. 4, Fig. 5). There are no
MC algorithms as their key figures are outstanding (Table 3).

Fig. 4. Qualitative performance of the algorithms.

Fig. 5. Running time of the algorithms.

TABLE III. QUALITATIVE PERFORMANCE METRICS OF THE ALGORITHMS

Algorithm E(ɛ) σ(ɛ) max ɛ min ɛ
LKH 5/10 0,07% 0,05% 0,23% 0,00%
CHR + 2-Opt 5,77% 0,68% 11,02% 3,47%
GRD + 2-opt 6,22% 0,70% 9,89% 4,69%
DENN + 2-opt 10,95% 4,42% 23,51% 3,82%
NN + 2-opt 11,44% 1,87% 24,77% 4,26%
CHR 12,61% 1,08% 17,79% 9,31%
CIM + 2-opt 13,05% 2,29% 21,86% 6,74%
NIM + 2-opt 14,60% 5,53% 29,66% 5,86%
DMST-M + 2-opt 16,08% 8,39% 40,61% 4,80%
NSIM + 2-opt 17,63% 5,82% 33,65% 8,92%
GRD 18,12% 2,91% 31,34% 10,30%
DMST + 2-opt 19,08% 9,54% 39,12% 6,91%

CIM 20,31% 1,44% 27,54% 12,46%
DENN 23,28% 1,62% 32,53% 13,88%
NN 23,94% 1,64% 30,97% 12,94%
CI 26,25% 2,70% 33,05% 17,94%
NIM 27,98% 1,89% 35,29% 14,89%
DMST-M 32,41% 3,15% 41,68% 18,55%
MC + 2-opt 32,41% 22,54% 177,83% 6,21%
NSIM 36,23% 4,23% 48,17% 19,15%
DMST 40,09% 2,34% 48,88% 33,16%
NSI 43,55% 5,64% 55,61% 25,89%
NI 52,46% 3,19% 60,94% 36,77%
MC 63,93% 25,58% 242,41% 33,07%

20

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 5, no.5, 2017

VII. PARETO-OPTIMAL ALGORITHMS
We decided to select six different data sets with 𝑁 =

{1083, 5087, 10150, 30440, 52057, 104815} to plot charts
that illustrate Pareto-optimal algorithms.

The charts are shown below (see Fig. 6, Fig. 8, Fig. 10,
Fig. 12, Fig. 14, Fig. 16). The name of TSPLIB instance is
shown in chart title. The horizontal axis represents the time
performance of methods in seconds. The vertical axis shows
the gap between optimal and obtained solutions, expressed in
percent. Pareto-optimal methods are highlighted in red. The
points which are represented by Pareto solutions are bigger
than non-Pareto-optimal solutions.

There are five charts (see Fig. 7, Fig. 9, Fig. 11, Fig. 13,
Fig. 15), except one with 𝑁 = 104814, where not all
algorithms are compared. These auxiliary charts are enlarged
copies of their originals. Their role is to graphically illustrate
Pareto-optimal algorithms at scale-up.

Fig. 6. Pareto-optimal algorithms for XIT1083.tsp, 𝑁 = 1083.

Fig. 7. Pareto-optimal algorithms, for XIT1083.tsp, 𝑁 = 1083 (scale-up).

Fig. 8. Pareto-optimal algorithms for FQM5087.tsp, 𝑁 = 5087.

Fig. 9. Pareto-optimal algorithms for FQM5087.tsp, 𝑁 = 5087 (scale-up).

Fig. 10. Pareto-optimal algorithms for XMC10150.tsp, 𝑁 = 10150.

21

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 5, no.5, 2017

Fig. 11. Pareto-optimal algorithms for XMC10150.tsp, 𝑁 = 10150 (scale-up).

Fig. 12. Pareto-optimal algorithms for PBH30440.tsp, 𝑁 = 30440.

Fig. 13. Pareto-optimal algorithms for PBH30440.tsp, 𝑁 = 30440 (scale-up).

Fig. 14. Pareto-optimal algorithms for FNA52057.tsp, 𝑁 = 52057.

Fig. 15. Pareto-optimal algorithms for FNA52057.tsp, 𝑁 = 52057 (scale-up).

Fig. 16. Pareto-optimal algorithms for SRA104815.tsp, 𝑁 = 104815.

Full results are presented in Table 4. Dash sign ‘-‘ is used
because some methods have not tested on large 𝑁 yet. So we
cannot claim whether these algorithms are Pareto-optimal or
not.

22

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 5, no.5, 2017

TABLE IV. PARETO-OPTIMAL ALGORITHMS FOR 6 GROUPS OF N

XIT1083 FQM5087 XMC10150 PBH30440 FNA52057 SRA104815
SCI SCI
CI CI CI CI CI CI
 CI+2-Opt CI+2-Opt

NN NN NN NN NN NN
 DENN DENN DENN DENN
 DENN+

2-Opt
 DENN+

2-Opt
 GRD

MC MC MC MC MC MC
CHR - -
LKH LKH LKH LKH - -

The rough estimations can be suggested on the basis of
VLSI data sets only:

1. SCI, and CHR methods are efficient for small
𝑁 ≲ 5000.

2. GRD is one of the bests for 𝑁 ≈ 10000.
3. DENN is high-performance for 𝑁 ≳ 10000.
4. CI + 2-Opt combination gives good results for large

𝑁 ≳ 50000.
5. DENN + 2-Opt is efficient on 𝑁 ≈ 30000 and

𝑁 ≈ 100000.
6. There are three heuristics included in each Pareto-

optimal group for different 𝑁. They are CI, NN and
MC.

Despite the lack of information on LKH algorithm for 𝑁 =
52057 and 𝑁 = 104814, this method continues to be the most
perspective heuristic. As it can be seen from Table 3, expected
value of qualitative performance of LKH is 0.07%. From
there, we decided to add LKH to the generalized group of
Pareto-optimal algorithms.

Overall, the generalized group of Pareto-optimal
algorithms consists of CI, NN, MC and LKH heuristics.

VIII. CONCLUSION
The presented study is undertaken to determine what

heuristics for Metric TSP should be used in specific
circumstances with limited resources.

This paper provides an overview of eleven heuristic
algorithms implemented in C++ and tested on the VLSI data
set. In the course of computational experiments, the
comparative figures are obtained and on their basis multi-
objective optimization is provided. Overall, the generalized
group of Pareto-optimal algorithms consists of CI, NN, MC
and LKH heuristics.

In our future work, we are going to fine-tune parameters of
LKH method using genetic algorithms of search optimization.
Further, it is possible to increase the number of heuristic
algorithms, to transit to other types of test data and to conduct
experiments using different metrics in order to ensure that a
Pareto optimal group is sustainable.

The practical applicability of our findings is to present
Pareto optimal algorithms that lead to solutions with maximum
accuracy under the given resource limitations. The results can
be used for scientific purposes by other researchers and for cost
minimization tasks.

REFERENCES
[1] D. L. Applegate, The Traveling Salesman Problem, Princeton: Princeton

University Press, 2006.
[2] Heidelberg University, "TSPLIB," [Online]. Available:

https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.
[Accessed 01 02 2017].

[3] M. Reed and B. Simon, Methods of Modern Mathematical Physics,
London: Academic Press, 1972.

[4] Department of Combinatorics and Optimization at the University of
Waterloo, "Status of VLSI Data Sets," University of Waterloo, [Online].
Available: http://www.math.uwaterloo.ca/tsp/vlsi/summary.html.
[Accessed 29 04 2017].

[5] Wikipedia, "Multi-objective optimization," [Online]. Available:
https://en.wikipedia.org/wiki/Multi-objective_optimization. [Accessed
03 02 2017].

[6] University of Waterloo, "Status of VLSI Data Sets," [Online]. Available:
http://www.math.uwaterloo.ca/tsp/vlsi/summary.html. [Accessed 08 02
2017].

[7] B. Hock, "An examination of heuristic algorithms for the Travelling
Salesman problem," University of Cape Town, Cape Town, 1988.

[8] M. Fisher, G. Nemhauser and L. Wolsey, An analysis of approximations
for maximizing submodular set functions, Springer, 1978.

[9] G. Clarke and J. Wright, "Scheduling of Vehicles from a Central Depot
to a Number of Delivery Points," Operations Research, no. 12, pp. 568-
581, 1964.

[10] B. L. Golden, T. Magnanti and H. Nguyen, "Implementing vehicle
routing algorithms," Networks, vol. 7, no. 2, pp. 113-148, 1977.

[11] D. Rosenkrantz, R. Stearns and P. Lewis II, "An analysis of several
heuristics for the traveling salesman problem," vol. 6, pp. 563-581, 1977.

[12] F. Glover and A. P. Punnen, "The Travelling Salesman Problem: New
Solvable Cases and Linkages with the Development of Approximation
Algorithms," vol. 48, no. 5, 1997.

[13] E. H. Moore, "On Certain Crinkly Curves," Trans. Amer. Math Soc., vol.
1, pp. 72-90, 1900.

[14] D. Johnson and L. McGeoch, "The Traveling Salesman Problem: A Case
Study," in Local Search in Combinatorial Optimization, Chichester,
1997, pp. 215-310.

[15] N. Christofides, "Worst-case analysis of a new heuristic for the travelling
salesman problem," Graduate School of Industrial Administration, CMU,
1976.

[16] N. Christofides, Graph theory - An Algorithmic Approach, New York:
Academic Press, 1974.

[17] F. Bock, "An algorithm for solving "traveling-salesman" and related
network optimization problems," in Unpublished manuscript a-ssociated
with talk presented at the 14th ORSA National Meeting, 1958.

[18] G. Croes, "A method for solving travelling salesman problems,"
Operation Resources, vol. 6, pp. 791-812, 1958.

[19] E. Aarts and J. K. Lenstra, Local Search in Combinatorial Optimization,
Princeton, New Jersey: Princeton University Press, 2003.

[20] G. Gutin and A. Punnen, The Traveling Salesman Problem and Its
Variations, vol. 12, Kluwer, Dordrecht: Springer US, 2002.

[21] M. M. Flood, "The traveling-salesman problem," Operation research,
vol. 4, pp. 61-75, 1956.

[22] K. Helsgaun, "An effective implementation of the Lin–Kernighan

23

International Journal of Open Information Technologies ISSN: 2307-8162 vol. 5, no.5, 2017

traveling salesman heuristic," EJOR, vol. 12, pp. 106-130, 2000.
[23] P. J. Laarhoven and E. H. Aarts, imulated Annealing: Theory and

Applications, Heidelberg, Germany: Springer, 1987.
[24] D. S. Johnson and L. A. McGeoch, "The traveling salesman problem: A

case study," in Local Search in Combinatorial Opti- mization,
Chichester, UK, John Wiley & Sons, 1997.

[25] M. Dorigo and L. M. Gambardella, "Ant colony system: a cooperative
learning approachto the traveling salesman problem," vol. 1, no. 1, 1997.

[26] B. Gorkemli and D. Karaboga, "Quick Combinatorial Artificial Bee
Colony -qCABC- Optimization Algorithm for TSP," vol. 1, no. 5, 2013.

[27] W. J. Cook, Combinatorial optimization, New York: Wiley, 1998.
[28] K. Buchin, "Space-Filling Curves," in Organizing Points Sets: Space-

Filling Curves, Delaunay Tessellations of Random Point Sets, and Flow
Complexes, Berlin, Free University of Berlin, 2007, pp. 5-30.

[29] K. Helsgaun, "LKH," Keld Helsgaun, [Online]. Available:
http://www.akira.ruc.dk/~keld/research/LKH/. [Accessed 24 02 2017].

[30] D. E. Rosenkrantz, R. E. Stearns and P. M. Lewis II, "An analysis of
several heuristics for the traveling salesman problem," SIAM J. Comput,
p. 563–581, 1977.

[31] S. M. Avdoshin and V. V. Belov, "Obobschennyi metod "volny" dlya

resheniya ekstremal'nykh zadach na grafah," ZHVM and MF, vol. 19, no.
3, pp. 739-755, 1979.

[32] C. Nilsson, "Heuristics for the traveling salesman problem," Linkoping
University, Linkoping, Sweden, 2013.

[33] S. Kirkpatrick, C. Gelatt and M. Vecchi, "Optimization by Simulated
Annealing," Science, vol. 220, pp. 671-680, 13 05 1983.

[34] P. van Laarhoven and E. Aarts, Simulated Annealing: Theory and
Applications, Heidelberg: Springer, 1987.

[35] B. Gorkemeli and D. Karaboga, "Quick Combinatorial Artificial Bee
Colony -qCABC- Optimization Algorithm for TSP," in 2nd International
Symposium on Computing in Informatics and Mathematics, 2013.

[36] M. Dorigo, Ant colony optimization, Cambridge: MIT Press, 2004.
[37] T. Lust and J. Teghem, "The Multiobjective Traveling Salesman

Problem: A Survey and a New Approach," Studies in Computational
Intelligence , vol. 272, pp. 119-141, 2010.

24

	I. Introduction
	II. Theoretical basis
	A. Problem Formulation
	B. Resourse-efficient parameters
	C. Pareto-optimality

	III. Related works
	IV. Algorithms
	1) Nearest Neighbour (NN).
	2) Double Ended Nearest Neighbour (DENN).
	3) Greedy (GRD).
	4) Nearest Addition (NA), Simple Cheapest Insertion (SCI), Simple Nearest Segment Insertion (SNSI).
	5) Nearest Insertion (NI), Cheapest Insertion (CI), Nearest Segment Insertion (NSI).
	6) Double Minimum Spanning Tree (DMST).
	7) Double Minimum Spanning Tree Modified (DMST-M).
	8) Christofides (CHR).
	9) Moore Curve (MC).
	10) 2-Opt.
	11) Helsgaun’s Lin and Kernighan Heuristic (LKH).

	V. Wave function as the data structure in use
	VI. Experimental research
	VII. Pareto-optimal algorithms
	VIII. Conclusion

