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Abstract—The Travelling Salesman Problem (TSP) is a 

fundamental task in combinatorial optimization. A special case of 
the TSP is Metric TSP, where the triangle inequality holds. 
Solutions of the TSP are generally used for costs minimization, 
such as finding the best tour for round-the-world trip or 
construction of very large-scale integration schemes. Since the 
TSP is NP-hard, heuristic algorithms providing near optimal 
solutions will be considered. The objective of this article is to find 
a group of Pareto optimal heuristic algorithms for Metric TSP 
under criteria of run time efficiency and qualitative performance 
as a part of the experimental study. Classification of algorithms 
for Metric TSP is presented. Feasible heuristic algorithms and 
their prior estimates are described. The data structure and the 
details of the research methodology are provided. Finally, results 
and prospective research are discussed. 

Keywords—travelling salesman problem, resource-efficient 
algorithm, heuristic algorithm, posterior estimate, computational 
experiment. 

I. INTRODUCTION 
The Travelling Salesman Problem (TSP) is one of the 

most widely known questions in a class of combinatorial 
optimization problems. Essentially, to meet a challenge of the 
TSP is to find a Hamiltonian circuit of minimal length. A 
subcase of the TSP is Metric TSP where all of the edge costs 
are symmetric, and they satisfy the triangle inequality. 

The methods for solving the TSP have been developed for 
many years, and since the problem is NP-hard, it continues to 
be topical. The TSP has seen applications in the areas of 
logistics, genetics, manufacturing, telecommunications and 
neuroscience [1]. The most common practical interpretation of 
the TSP relates to the movement of people and vehicles 
around tours, such as searching for the shortest tour through 𝑁 
cities, school bus route planning, and postal delivery. In 
addition, the TSP plays an important role in very large-scale 
integration (VLSI) [2] The purpose of this study is to 
determine the group of Pareto-optimal heuristic algorithms for 
Metric TSP by criteria of run time and qualitative performance 
as part of the experimental investigation. 
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Clearly, a study of this type is inevitably restricted by 
various constraints, in this research only heuristic algorithms 
constructing near optimal solutions in polynomial time will be 
considered instead of the exact ones. 

The paper is structured as follows. First, the theoretical 
basis is described. It presents the mathematical formulation of 
Metric TSP, the specification of metric types and, at last, 
definition of Pareto optimization. Next, a classification of 
algorithms for Metric TSP is given, including a literature 
review of popular heuristics. Then the description of methods 
to be used is provided with their prior estimates. After that the 
details of the research methodology and expected results are 
mentioned. 

II. THEORETICAL BASIS 

A. Problem Formulation 
In this paper, mathematical formulation of Metric TSP is 

adopted as follows.  

Given a complete weighted undirected graph 𝐺 = (𝑉,𝑉2) 
which contains 𝑁 = |𝑉| vertices. Graph vertices are indexed 
as 𝑖𝑛𝑑𝑒𝑥 = 𝑉 → 𝐼, 𝐼 = {1, 2, … ,𝑁},  and (∀𝑣𝑖 ∈ 𝑉)�∀𝑣𝑗 ∈ 𝑉� 
it is true that if 𝑣𝑖  ≠ 𝑣𝑗  then 𝑖 ≠ 𝑗, where 𝑖 =  𝑖𝑛𝑑𝑒𝑥(𝑣𝑖). 
The distance between two vertices 𝑣𝑖  and 𝑣𝑗   is calculated by 
distance function 𝑑�𝑣𝑖 , 𝑣𝑗�. Here a real-valued function 𝑑(∙,∙) 
on 𝑉 × 𝑉 satisfies [3]: 

1. 𝑑�𝑣𝑖 , 𝑣𝑗� ≥ 0 (non-negativity axiom) 
2. 𝑑�𝑣𝑖 , 𝑣𝑗� = 0 if and only if 𝑣𝑖 =  𝑣𝑗  (identity axiom) 
3. 𝑑�𝑣𝑖 , 𝑣𝑗� =  𝑑�𝑣𝑗 , 𝑣𝑖� (symmetry axiom) 
4. 𝑑(𝑣𝑖 , 𝑣𝑘) ≤  𝑑�𝑣𝑖 , 𝑣𝑗� + 𝑑�𝑣𝑗 , 𝑣𝑘� (triangle inequality 

axiom) 

Let S be a set of all Hamiltonian cycles of 𝐺. It is defined 
as 𝑆 = {𝑝: 𝑉 → 𝑉|(𝑝(1) = 1&(∀𝑖 ∈ 𝑉)(∀𝑗 ∈ 𝑉)   
(𝑝(𝑖) = 𝑝(𝑗) => 𝑖 = 𝑗}. An example of a Hamiltonian circuit 
𝑠 ∈ 𝑆 is (𝑝1 , 𝑝2, … , 𝑝𝑁), where 𝑝𝑖  is used as abbreviated 
notation of 𝑝(𝑖).  

Weight of a Hamiltonian cycle 𝑠 ∈ 𝑆 can be found 
according to the formula (1):  

 𝑓(𝑠) = 𝑑(𝑝1, 𝑝𝑁) + ∑ 𝑑(𝑝𝑖 , 𝑝𝑖+1)𝑁−1
𝑖=1  (1) 
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The set of vertices 𝑉 is determined in Euclidean space 
𝑅𝑛 by their coordinates. Under these circumstances, the 
distance between two vertices 𝑣 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑤 =
(𝑥1, 𝑥2, … , 𝑥𝑛) is defined as  (2): 

 𝑑0(𝑣,𝑤) = �∑ �𝑥𝑖(𝑣) − 𝑥𝑖(𝑤)�2𝑛
𝑖=1  (4) 

The formulation for the metric travelling salesman 
problem is to find such 𝑠0 that 𝑓(𝑠0) =  min𝑠∈𝑆 𝑓(𝑠) for the 
given metric 𝑑0. 

B. Resourse-efficient parameters 

Let 𝑀 be a set of given heuristic algorithms for Metric 
TSP. There are two parameters of resource-efficiency for 
𝑚 ∈ 𝑀 for each 𝑁:  

• 𝑓𝜀(𝑚,𝑁) – qualitative performance; 
• 𝑓𝑡(𝑚,𝑁) – running time.  

Qualitative performance can be calculated using (7): 

 𝑓𝜀(𝑚,𝑁) = 𝑓(𝑠)−𝑓(𝑠0)
𝑓(𝑠0)

∗ 100%, (7) 

where 𝑓(𝑠) is the obtained tour length and 𝑓(𝑠0) is the optimal 
tour length. The values of optimal tour lengths are taken from 
the open library TSPLIB as the lengths of the best reported 
solutions for each of the instances [4]. 

C. Pareto-optimality 

 Pareto optimization [5] or multi-objective optimization 
problem for the TSP can be formulated as (8): 

 min𝑚∈𝑀{𝑓𝜀(𝑚) , 𝑓𝑡(𝑚)} (8) 

 Pareto optimal solutions are solutions that cannot be 
improved in any of the objectives without degrading, at least, 
one of the other objectives. In mathematical terms, a feasible 
solution 𝑚1 ∈ 𝑀 is said to (Pareto) dominate another solution 
𝑚2 ∈ 𝑀, if 

1. 𝑓𝑖(𝑚1) ≤ 𝑓𝑖(𝑚2), for all indices 𝑖 ∈ {𝜀, 𝑡}. 

2. 𝑓𝑗(𝑚1) < 𝑓𝑗(𝑚2), for at least one index 𝑗 ∈ {𝜀, 𝑡}. 

III. RELATED WORKS 

Algorithms for solving the TSP may be divided into two 
classes: 

• Exact algorithms, and 
• Heuristic (or approximate) algorithms. 

Exact algorithms are aimed at finding optimal solutions. 
Both widely known subtypes of exact methods – linear 
programming and branch-and-bound techniques – are 
described in details by Applegate [1]. However, a major 
drawback is connected with their time efficiency. It is a 
common knowledge that there are no exact algorithms running 

in polynomial time. Thus, only small datasets can be solved in 
reasonable time.  For example, the 4410-vertex problem is 
believed to be the largest Metric TSP ever solved with respect 
to optimality [6].  

In this paper, only a class of heuristic search algorithms 
will be taken into account. They are designed to run quickly 
and to get an approximate solution to a given problem. 
Heuristic algorithms are subdivided into two groups. 

The first group includes tour construction algorithms that 
have one feature in common – the tour is built by adding a 
new vertex at each step. The following are alternative ways of 
doing this [7]: 

• Ordered sequence methods: 
At the start of the heuristic, all the edges are ranked by 
some suitable criteria. At each iteration the best edge 
according to the criteria is added to the solution. The 
most common order sequence methods are Greedy [8] 
and Savings [9] [10]. 

• Increasing path methods: 
One node or edge is selected as the starting point of a 
path. At each iteration one edge is selected according 
to some criterion, and added to one of the ends of the 
path. A disadvantage of this approach is that it is 
possible for the ends of the path to be 'far' from one 
another when the heuristic terminates, i.e. the last edge 
needed to change the path to a tour may be an 
expensive edge. There are two groups of increasing 
path methods – neighbour group [11] [12] and space-
filling curves group [13]. 

• Subtour insertion methods: 
An initial subtour is selected, for example one edge is 
selected. In each iteration, a node is selected and 
inserted into the subtour according to some criterion. 
To insert a node an edge in the subtour is replaced by 
two edges not in the subtour. The insertion heuristics 
are described by Johnson and McGeoch [14]. 

• Combined methods: 
These are well-known algorithms based on minimum 
spanning tree that were introduced by Christofides 
[15] [16]. 

The second group consists of tour-improving algorithms 
that have their roots in TSP papers from the 1950s [17] [18] 
According to Applegate, ‘… These heuristics take as input an 
approximate solution to a problem and attempt to iteratively 
improve it by moving to new solutions that are close to the 
original’ [1]. Most of these algorithms are described by Aarts 
and Lenstra [19]. Currently, the most simple tour-improving 
heuristic used in practice is 2-Opt heuristic [20]. It was 
introduced and described by Flood [21], Croes [18] and Bock 
[17]. The later algorithm of Lin and Kernighan (LKH) [22] 
appeared on the basis of k-Opt tour-finding approach. Also 
this group consists of simulated annealing [23], evolutionary 
[24] and swarm intelligence methods [25] [26]. 
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IV. ALGORITHMS 
In this paper, most of the methods mentioned in Part III are 

implemented and assessed through experiments.  

It should be noted that Savings algorithm was not chosen 
because of its high computational complexity – 𝑂(𝑁3 log𝑁) – 
in comparison with Greedy one – 𝑂(𝑁2 log𝑁). In addition, it 
was mentioned in [1] that for most instances Greedy algorithm 
gives better results than Savings.  

In order to restrict our investigation, it was decided to 
choose only two types of tour improving algorithms – the 
most simple one (2-Opt) and the most perspective one (LKH). 

The list of used algorithms for Metric TSP is following: 

1) Nearest Neighbour (NN). 

The key to NN is to initially choose a random vertex and 
to add repeatedly the nearest vertex to the last appended, 
unless all vertices are used [21]. 

2) Double Ended Nearest Neighbour (DENN). 

This algorithm is a modification of NN. Unlike NN, not 
only the last appended vertex is taken into consideration, so 
the closest vertex to both of endpoints in the tour is added 
[21]. 

3) Greedy (GRD). 

The Greedy heuristic constructs a path by adding the 
shortest edge to the tour until a cycle with 𝐴 edges, 𝐴 < 𝑁, is 
created, or the degree of any vertex exceeds two [27].  

4) Nearest Addition (NA), Simple Cheapest Insertion 
(SCI), Simple Nearest Segment Insertion (SNSI). 

The fundamental idea of NA, SCI and SNSI is to start with 
an initial subtour made of the shortest edge and to add 
repeatedly other vertices using various rules. Depending on 
the algorithm the vertex not yet in the cycle should be inserted 
so that: 

a) In NA it is the closest to any node in the tour; 
b) In SCI its addition to the tour gives a minor 

increment of its length; 
c) In SNSI distance between the node and any edge 

in the tour is minimal. 

The previous step should be repeated until all vertices are 
added to the cycle [19]. 

5) Nearest Insertion (NI), Cheapest Insertion (CI), 
Nearest Segment Insertion (NSI). 

Algorithms NI, CI and NSI are variations of NA, SCI and 
SNSI respectively. The feature of modified methods is 
additional computation that selects the best place for each 
inserting node. 

6) Double Minimum Spanning Tree (DMST). 

DMST method is based on the construction of a minimal 
spanning tree (MST) from the set of all vertices. After MST is 
built, the edges are doubled in order to obtain an Eulerian 
cycle, containing each vertex at least once. Finally, a 
Hamiltonian circuit is made from an Eulerian circuit by 
sequential (or greedy) removing occurrences of each node 
[16].  

7) Double Minimum Spanning Tree Modified (DMST-M). 

This algorithm is a modification of DMST. Unlike DMST, 
it is necessary to remove duplicate nodes from an Eulerian 
cycle using triangle inequality instead of greedy method. 

8) Christofides (CHR). 

This method is a modification of DMST that was proposed 
by Christofides [15]. The difference between CHR and DMST 
is addition of minimum weight matching calculation to the 
first algorithm. 

9) Moore Curve (MC). 

This is recursive geometric method. Vertices are sorted by 
the order they are located on the plane. Only the two-
dimensional example of Moore curve is implemented. Figure 
2 shows the order of the cells after one, two and three 
subdivision steps respectively [28] . 

 
Fig. 1. The order for the Moore curve after 1, 2 and 3 subdivision steps. 

10) 2-Opt. 

The main idea behind 2-Opt is to take a tour that has one 
or more self-intersections and to remove them repeatedly. In 
mathematical terms, edges 𝑎𝑏 and 𝑐𝑑 should be deleted and 
new edges 𝑎𝑐 and 𝑏𝑑 should be inserted, if 𝑑(𝑎, 𝑏) +
𝑑(𝑐,𝑑) > 𝑑(𝑎, 𝑐) + 𝑑(𝑏,𝑑) (Fig. 1) [19]. 

 
Fig. 2. 2-Opt modification. 

11) Helsgaun’s Lin and Kernighan Heuristic (LKH). 

LKH uses the principle of 2-Opt algorithm and generalizes 
it. In this heuristic, the 𝑘-Opt, where 𝑘 = 2. .√𝑁��������, is applied, 
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so the switches of two or more edges are made in order to 
improve the tour. This method is adaptive, so decision about 
how many edges should be replaced is taken at each step [22]. 

It should be noted that because of complexity of LKH 
algorithm, it was not implemented by the authors of research. 
The original open source code [29] was used to carry out 
experiments. All the parameters were not changed, so they 
were used by default. 

Estimated upper bounds for the algorithms can be 
calculated as are the ratio of 𝑓(𝑠)

𝑓(𝑠0)
 (see Table 1). According to 

[30], for any 𝑘-Opt algorithm, where 𝑘 ≤  𝑁/4, problems 
may be constructed such that the error is almost 100%. So 2-
Opt and LKH algorithms have approximate upper bound 2. 
Running times of the algorithms are represented in Table 2. 

TABLE I.  UPPER-BOUND ESTIMATES OF ALGORITHMS 

  # Algorithm Upper-bound estimate 
1  NN  

DENN 
0.5⌈log2 𝑁 + 1⌉ 

2  GRD 0.5⌈log2 𝑁 + 1⌉ 
3  NA, SCI, SNSI 

NI, CI, NSI 
2 −

2
𝑁

 

4  DMST, DMST-M 2 −
2
𝑁

 

5  CHR 3
2

 

6  2-Opt ≈ 2 
7  LKH ≈ 2 
8  MC log𝑁 

TABLE II.  RUNNING TIME OF ALGORITHMS 

  # Algorithm Running time 
1  NN  

DENN 
𝑂(𝑁2) 

2  GRD 𝑂(𝑁2 log𝑁) 
3  NA, SCI, SNSI 

NI, CI, NSI 
𝑂(𝑁2) 

4  DMST, DMST-M 𝑂(𝑁2) 
5  CHR 𝑂(𝑁3) 
6  2-Opt 𝑂(𝑁2) 
7  LKH 𝑂(𝑁2,2) 
8  MC 𝑂(𝑁 log𝑁) 

V. WAVE FUNCTION AS THE DATA STRUCTURE IN USE 
The key aspect of realization of the algorithms is data 

structure they make use of. In the study the Hamiltonian 
circuits are presented as wave functions, which are fixed-
length one-dimensional arrays [31]. Their sizes are equal to 𝑁.  

The wave function data structure decreases the 
computational time of the algorithms in comparison with 
standard C++ template std::vector<T> (Fig. 3).  

 

 
Fig. 3. The time-efficiency comparison of wave and vector data structures. 

VI. EXPERIMENTAL RESEARCH 
This section documents details of the research 

methodology. The experiment is carried out on a 1.3 GHz Intel 
Core i5 MacBook Air. It includes the qualitative performance 
and the run time efficiency of the current implementations.  

Heuristics are implemented in C++. VLSI data sets from an 
open library TSPLIB [2] are selected as input data for 
algorithms. There are 102 instances in the VLSI collection that 
range in size from 131 vertices up to 744,710 vertices. There is 
one data set for each number of vertices. The integer Euclidean 
metric distance is used, so coordinates of nodes and distances 
between them have integer values, thus without loss of 
generality (4) is transformed into: 

 𝑑1(𝑣,𝑤) = ��|𝑥(𝑣) − 𝑥(𝑤)|2 + |𝑦(𝑣) − 𝑦(𝑤)|2 +  0.5� 

The computational experiment corresponds to the following 
scenario: 

for algorithm 𝑚 in range [1…9, 11] (see IV) 
   for data set 𝑁 in range [1…102] 
      for i in range [1…11] 
         𝑓𝜀𝑖(𝑚,𝑁), 𝑓𝑡𝑖(𝑚,𝑁) are calculated 

                            if i > 1 then 
                      𝑓𝜀𝑚𝑖𝑛

(𝑚,𝑁) is memorized 
                                                      𝑓𝑡𝑠𝑢𝑚(𝑚,𝑁) is calculated 

             𝑓𝑡𝑎𝑣𝑔(𝑚,𝑁) = 𝑓𝑡𝑠𝑢𝑚(𝑚,𝑁)
10

 
      // 2-Opt stage 
      if 𝑚 ! = 11 (𝑚 is not LKH) 

𝑓𝜀(𝑚 + 2⎼𝑂𝑝𝑡,𝑁), 𝑓𝑡(𝑚 + 2⎼𝑂𝑝𝑡,𝑁) are   
calculated 

𝐸 �𝑓𝜀𝑚𝑖𝑛
(𝑚,𝑁)� ,𝜎 �𝑓𝜀𝑚𝑖𝑛

(𝑚,𝑁)� for all 𝑁 - ?  

𝑚𝑎𝑥 �𝑓𝜀𝑚𝑖𝑛
(𝑚,𝑁)� ,𝑚𝑖𝑛 �𝑓𝜀𝑚𝑖𝑛

(𝑚,𝑁)� for all 𝑁 - ?  

Metrics used in scenario have following meanings:  
• 𝑓𝜀𝑚𝑖𝑛

(𝑚,𝑁) – best qualitative performance of 𝑚, 
• 𝑓𝑡𝑠𝑢𝑚(𝑚,𝑁) –  accumulative running time of 𝑚 (sec), 
• 𝑓𝑡𝑎𝑣𝑔(𝑚,𝑁) – average running time of 𝑚 (sec), 
• 𝑓𝜀(𝑚 + 2⎼𝑂𝑝𝑡,𝑁) – qualitative performance of 

𝑚 + 2⎼𝑂𝑝𝑡, 
• 𝑓𝑡(𝑚 + 2⎼𝑂𝑝𝑡,𝑁) – running time of  𝑚 + 2⎼𝑂𝑝𝑡, 
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• 𝐸 �𝑓𝜀𝑚𝑖𝑛
(𝑚,𝑁)� – expected value of qualitative 

performance of 𝑚 for all 𝑁, 
• 𝜎 �𝑓𝜀𝑚𝑖𝑛

(𝑚,𝑁)� – standard deviation of qualitative 
performance of 𝑚 for all 𝑁, 

• 𝑚𝑎𝑥 �𝑓𝜀𝑚𝑖𝑛
(𝑚,𝑁)� ,𝑚𝑖𝑛 �𝑓𝜀𝑚𝑖𝑛

(𝑚,𝑁)�  – maximum and 
minimum values of qualitative performance of 𝑚 for 
all 𝑁. 
 

Qualitative performance metrics are represented in Table 
3. Table color scheme varies from green (the best result in a 
column) to red (the worst value in a column).  

The line graphs that illustrate 𝑓𝜀(𝑚,𝑁) and 𝑓𝑡(𝑚,𝑁) of 
the algorithms are provided (see Fig. 4, Fig. 5). There are no 
MC algorithms as their key figures are outstanding (Table 3).   

 
 

 
Fig. 4. Qualitative performance of the algorithms. 

 
Fig. 5. Running time of the algorithms.

TABLE III.  QUALITATIVE PERFORMANCE METRICS OF THE ALGORITHMS 

Algorithm E(ɛ) σ(ɛ) max ɛ min ɛ 
LKH 5/10 0,07% 0,05% 0,23% 0,00% 
CHR + 2-Opt 5,77% 0,68% 11,02% 3,47% 
GRD + 2-opt 6,22% 0,70% 9,89% 4,69% 
DENN + 2-opt 10,95% 4,42% 23,51% 3,82% 
NN + 2-opt 11,44% 1,87% 24,77% 4,26% 
CHR 12,61% 1,08% 17,79% 9,31% 
CIM + 2-opt 13,05% 2,29% 21,86% 6,74% 
NIM + 2-opt 14,60% 5,53% 29,66% 5,86% 
DMST-M + 2-opt 16,08% 8,39% 40,61% 4,80% 
NSIM + 2-opt 17,63% 5,82% 33,65% 8,92% 
GRD 18,12% 2,91% 31,34% 10,30% 
DMST + 2-opt 19,08% 9,54% 39,12% 6,91% 

CIM 20,31% 1,44% 27,54% 12,46% 
DENN 23,28% 1,62% 32,53% 13,88% 
NN 23,94% 1,64% 30,97% 12,94% 
CI 26,25% 2,70% 33,05% 17,94% 
NIM 27,98% 1,89% 35,29% 14,89% 
DMST-M 32,41% 3,15% 41,68% 18,55% 
MC + 2-opt 32,41% 22,54% 177,83% 6,21% 
NSIM 36,23% 4,23% 48,17% 19,15% 
DMST 40,09% 2,34% 48,88% 33,16% 
NSI 43,55% 5,64% 55,61% 25,89% 
NI 52,46% 3,19% 60,94% 36,77% 
MC 63,93% 25,58% 242,41% 33,07% 
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VII. PARETO-OPTIMAL ALGORITHMS 
We decided to select six different data sets with 𝑁 = 

{1083, 5087, 10150, 30440, 52057, 104815} to plot charts 
that illustrate Pareto-optimal algorithms.  

The charts are shown below (see Fig. 6, Fig. 8, Fig. 10, 
Fig. 12, Fig. 14, Fig. 16). The name of TSPLIB instance is 
shown in chart title. The horizontal axis represents the time 
performance of methods in seconds. The vertical axis shows 
the gap between optimal and obtained solutions, expressed in 
percent. Pareto-optimal methods are highlighted in red. The 
points which are represented by Pareto solutions are bigger 
than non-Pareto-optimal solutions. 

There are five charts (see Fig. 7, Fig. 9, Fig. 11, Fig. 13, 
Fig. 15), except one with 𝑁 = 104814, where not all 
algorithms are compared. These auxiliary charts are enlarged 
copies of their originals. Their role is to graphically illustrate 
Pareto-optimal algorithms at scale-up. 

 
Fig. 6. Pareto-optimal algorithms for XIT1083.tsp, 𝑁 = 1083. 

 

 

Fig. 7. Pareto-optimal algorithms, for XIT1083.tsp, 𝑁 = 1083 (scale-up). 

 

 
Fig. 8. Pareto-optimal algorithms for FQM5087.tsp, 𝑁 = 5087. 

 
Fig. 9. Pareto-optimal algorithms for FQM5087.tsp, 𝑁 = 5087 (scale-up). 

 

 
Fig. 10. Pareto-optimal algorithms for XMC10150.tsp, 𝑁 = 10150. 
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Fig. 11. Pareto-optimal algorithms for XMC10150.tsp, 𝑁 = 10150 (scale-up). 

 

Fig. 12. Pareto-optimal algorithms for PBH30440.tsp, 𝑁 = 30440. 

 

 

Fig. 13. Pareto-optimal algorithms for PBH30440.tsp, 𝑁 = 30440 (scale-up). 

 

 

Fig. 14. Pareto-optimal algorithms for FNA52057.tsp, 𝑁 = 52057. 

 

Fig. 15. Pareto-optimal algorithms for FNA52057.tsp, 𝑁 = 52057 (scale-up). 

 

 

Fig. 16. Pareto-optimal algorithms for SRA104815.tsp, 𝑁 = 104815. 

Full results are presented in Table 4. Dash sign ‘-‘ is used 
because some methods have not tested on large 𝑁 yet. So we 
cannot claim whether these algorithms are Pareto-optimal or 
not. 
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TABLE IV.  PARETO-OPTIMAL ALGORITHMS FOR 6 GROUPS OF N 

XIT1083 FQM5087 XMC10150 PBH30440 FNA52057 SRA104815 
SCI SCI     
CI CI CI CI CI CI 
    CI+2-Opt CI+2-Opt 

NN NN NN NN NN NN 
  DENN DENN DENN DENN 
   DENN+ 

2-Opt 
 DENN+ 

2-Opt 
  GRD    

MC MC MC MC MC MC 
CHR    - - 
LKH LKH LKH LKH - - 

The rough estimations can be suggested on the basis of 
VLSI data sets only:  

1. SCI, and CHR methods are efficient for small 
𝑁 ≲ 5000.  

2. GRD is one of the bests for 𝑁 ≈ 10000.   
3. DENN is high-performance for 𝑁 ≳ 10000. 
4. CI + 2-Opt combination gives good results for large 

𝑁 ≳ 50000. 
5. DENN + 2-Opt is efficient on 𝑁 ≈ 30000 and 

𝑁 ≈ 100000. 
6. There are three heuristics included in each Pareto-

optimal group for different 𝑁. They are CI, NN and 
MC.  

Despite the lack of information on LKH algorithm for 𝑁 = 
52057 and 𝑁 = 104814, this method continues to be the most 
perspective heuristic. As it can be seen from Table 3, expected 
value of qualitative performance of LKH is 0.07%. From 
there, we decided to add LKH to the generalized group of 
Pareto-optimal algorithms.  

Overall, the generalized group of Pareto-optimal 
algorithms consists of CI, NN, MC and LKH heuristics. 

VIII. CONCLUSION 
The presented study is undertaken to determine what 

heuristics for Metric TSP should be used in specific 
circumstances with limited resources.  

This paper provides an overview of eleven heuristic 
algorithms implemented in C++ and tested on the VLSI data 
set. In the course of computational experiments, the 
comparative figures are obtained and on their basis multi-
objective optimization is provided. Overall, the generalized 
group of Pareto-optimal algorithms consists of CI, NN, MC 
and LKH heuristics. 

In our future work, we are going to fine-tune parameters of 
LKH method using genetic algorithms of search optimization. 
Further, it is possible to increase the number of heuristic 
algorithms, to transit to other types of test data and to conduct 
experiments using different metrics in order to ensure that a 
Pareto optimal group is sustainable. 

The practical applicability of our findings is to present 
Pareto optimal algorithms that lead to solutions with maximum 
accuracy under the given resource limitations. The results can 
be used for scientific purposes by other researchers and for cost 
minimization tasks. 
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