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1. Introduction 

Let X c It w be a projective curve. In this paper we try to find an upper bound 
for the number of  linearly independent hypersurfaces Z D X of given degree m 
and to investigate the borderline cases. 

Maybe the first result in this direction is due to Castelnuovo. To wit, his well- 
known lemma (see, for instance, [8, Ch. 4, Sect. 3]) says that if  n ( n -  1)/2 linearly 
independent quadrics pass through d _> 2n + 3 points in uniform position in IP n, 
then these points lie on a rational normal curve. As an immediate consequence, 
one can see that 

Theorem 1.1 (Castelnuovo). I f  n(n - 1)/2 linearly independent quadrics pass 
through a non-degenerate curve C C lY', then C is a rational normal curve. 

By induction on dimension, one can derive the following result from this theorem: 

Theorem 1.2. l f  X C II w is a non-degenerate irreducible projective variety and 
c = codimX, then X is contained in at most c(c + 1)/2 linearly independent 
quadrics; the equality is attained iff the A-genus o f  X is O. 

The condition "A-genus of  X is zero" means that degX = c + 1; see [10, Section 

3] for complete classification of such varieties. 

The above mentioned lemma of  Castelnuovo was generalized to the case of 

hypersurfaces of arbitrary degree by J. Harris [10, Section 1, Lemma]: 

* Research supported in part by grant MSC300 from ISF and the Russian government and by 
grant 95-01-00364 from RBRF 
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Lemma 1.3 (J. Harris).  An), d > kn + 1 points in general position in I? ~ impose 

at least kn + 1 linear conditions on hypersurfaces o f  degree k. I f  d > kn + 1 (resp. 
kn + 2 if k = 2), then these points impose exactly kn + 1 conditions iff they lie on 
a rational normal curve in ~n. 

This lemma implies the following 

Theorem 1.4. l f  X C ~ is a non-degenerate irreducible projective curve and 
m > 2, then h ~  < (re+n) _ mn - 1. The equality is attained i f fX  is a 

rational normal curve. 

On the other hand, as early as 1894 Fano [6] generalized the lemma of 
Castelnuovo in another direction: he proved that if exactly n(n - 1 ) / 2 - 1  linearly 
independent quadrics pass through d > 2n + 5 points in uniform position in ~z~, 
then these points lie on a linearly normal curve ofarithmetic genus 1, which is 
cut out by these quadrics. Nowadays this result was rediscovered by D. Eisenbud 
and J. Harris [ 11, Proposition 3.20] (see also [3, Theorem 3.1 ]). This immediately 
implies the following 

Theorem 1.5 (Fano, Eisenhud, Harris).  I fn (n  - 1 ) / 2 -  1 linearly independent 
quadrics pass through a non-degenerate curve C C ]I ~, then C is either a rational 
normal curve or a linearly normal curve o f  arithmetic genus 1. 

Induction on dimension yields 

Theorem 1.6. Suppose that X C ]pn is a non-degenerate irreducible projective 
variety and put c = codimX, l f  X is contained in exactly c(c + 1)/2 - 1 linearly 
independent quadrics, then deg X = codim X and smooth one-dimensional linear 
sections o f  X are linearly normal elliptic curves. 

The varieties whose one-dimensional linear sections are linearly normal elliptic 
curves are also completely classified (see, for instance, [7]). 

Finally, F. L. Zak proposed new proofs and generalizations of these facts 
in a recent unpublished paper [17]. Zak's proofs make extensive use of secant 
varieties. 

The aim of the present paper is to propose a new method of proof of The- 
orems 1.4 and 1.5 and some similar results. Using this method, we give new 
proofs of Theorems 1.4 and 1.5. Moreover, we generalize Theorem 1.5 to the 
case of hypersurfaces of arbitrary degree: 

Theorem 1.7. Suppose that X C F ,  n > 2, is a non-degenerate irreducible 
m + n  projective curve and m > 2. I f  h~  < ( n ) - -  mn - 1, then h~ <_ 

(m+nn ) - m(n + 1). The equality is attained iff d e g X  = n + 1 and the genus o f  X 

equals 1. 

Finally, we obtain some results with less compact statements (see below). 
It should be noted that actually Fano, Eisenbud and Harris proved much more 

that we reprove here. The author would like to stress that it is the method of 
proof that claims to novelty, not the final results. 
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Our method of proof of  the above results is based on the study of  inflection 
points of the curve X. It involves two ideas. The first one is that the presence of an 
inflection point imposes an upper bound on the number of  hypersurfaces of degree 
m containing X (Proposition 3.2). For the case of canonical linear system, this 
idea was used by R. O. Buchweitz [2]. The second idea is to compare the Hilbert 
polynomials of X and of the monomial curve C A, where A = ( a 0 , . . . ,  an) is the 
vanishing sequence at the point p E X (see Section 2 for the definition). It turns 
out that those Hilbert polynomials coincide once the values of  the Hilbert function 
agree in some degree at least as large as the maximal degree of generators of  the 
homogeneous ideal of C A . 

In the above results, inflection points appeared in proofs rather than in state- 
ments. If we assume that the curve X has an inflection point of the prescribed 
type, then the upper bound on the number of hypersurfaces of given degree con- 
taining X can sometimes be made explicit, and something can be said about the 
borderline cases. 

Theorem 1.8. Let X C ~w be an irreducible non-degenerate curve. Suppose that 
p E X is a smooth point and denote by (0 = ao, a l , . . .  ~ an) the vanishing sequence 
at p. Put t5 = maxl<_i<;Sn {(ai - - a i - l ) + ( a j  -- a j - l ) } ,  and denote by L the number 
o f  gaps o f  the semigroup generated by 0, an - a n - I , . . . ;  an - al , an. Suppose that 
m >_ ~ is an integer. Then: 

(i) h~  <_ (re+Z) - an .m - 1 +L; 

(ii) I f  the equality is attained, then degX = an, the arithmetic genus o f  X equals 
L, and the homogeneous ideal of  X is generated by its elements o f  degree 
( m .  

Remark 1.9. If C = C A C It w is the monomial curve corresponding to the vanish- 
ing sequence A = (0, a l , . . . ,  an) (cf. Section 2), then the bound (i) in theorem 1.8 
is attained for the point p = (1 : 0 . . .  : 0) E C. Hence, this bound cannot be 
sharpened uniformly for all curves having an inflection point with the vanishing 
sequence (0, a l , . . . ,  a~). 

Our proofs require some study of monomial curves and their defining equa- 
tions. In Section 5 we obtain, as a by-product, some results on this subject. All 
these results can be restated in purely combinatorial terms (see Corollaries 5.9 
and 5.10). For example, we prove that if 0 = a0 < al < . . .  < an is an increasing 
sequence of integers such that g.c.d, of ( a l , . . . ,  an) equals 1, then conductor of 
the additive semigroup in Z generated by a0 , . . .  ,an is at most (t5 - 2)an + 1, 
where 6 = maxl_<i<j<~ {(ai  -- ai-1) + (aj - a j - l ) ) .  This bound is admittedly not 
sharp (for example, if al and a2 are relatively prime, then conductor is at most 
(al - 1)(a2 - 1); cf. [12]), but it has the advantage of  being applicable to any 
sequence ( a l , . . .  ,aN) with g .c .d . (a l , . . .  , aN)= 1. 

Unfortunately, proofs of  these combinatorial results are ultimately based on 
the heavy cohomological machinery from the paper [9]. It would be interesting 
to find more elementary proofs. 



722 s. L'vovsky 

Monomial curves (and semigreups in N, which are closely related to the latter) 
have been studied by many authors (cf. [1], [2], [13], and references therein). 
Corollary 5.9 strengthens Theorem 4.1 from [ 1]. Hilbert functions of  semigroup 
algebras were considered in [2] and [14]. 

The paper is organized as follows. In Section 2 we recall some well-known 
definitions and results on inflection points. Section 3 contains the combinatorial 
results that will be used in our proofs of  Theorems 1.4 and 1.5. In Section 4 
we prove our main degeneration result. Section 5 contains auxiliary results on 
equations defining monomial curves, while Section 6 is devoted to the final 
proofs. 

Some results from this paper were posted at publications.math.duke.edu/alg- 
geom/9504002. 

Notation and conventions 

We work over an algebraically closed field of  arbitrary characteristic. 
If  a and b are integers, then (a ;b )  = {n E Z l a < n < b}  and [a ;b]  = 

{n E Z I a  < n  < b } .  
For any subset X C IF n, denote by (X) its linear span. A projective subvariety 

X C I? n is called non-degenerate iff (X) = ~n. 
If  X C I[ w is a closed subscheme, then J x  C ~ is its ideal sheaf. 
By ~m: l~ ~ ]?( ",+" ) -  I we denote the m-th Veronese mapping. 
The set of  non-negative integers will be denoted by bl. If  0 < a l  < � 9  �9 < an 

is an increasing sequence of  positive integers, then (a l . . . an)  C H denotes the 
semigroup generated by 0, a l , .  �9 an. If g.c.d, of a l , . . . ,  an equals 1, then 

(1) (al . . . a , )  ~ d +I~t 

for some d _> 0. In that case, the minimal d for which (1) holds is called con- 
ductor of the semigroup, and any positive integer not contained in the semigroup 
is called its gap. 

Abusing the language, we will sometimes write "s E 5 7 "  instead of "s is a 
local section of  a sheaf i f " .  

The notation ~(V) means Proj Sym(V*). 

2 .  P r e l i m i n a r i e s  

In this section we chiefly recall some well-known definitions. 
Let C be a smooth projective curve, ~5~ a line bundle on C, V C H ~  

a linear subspace. The pair (.~f, V) will be referred to as a linear system on 
C. Consider a morphism of sheaves a:  V | C-c ~ -~= defined by the formula 
v | ~ ~-~ ~v, where v E V and ~ E ~c .  Following [9], put ,//gv = kera ;  
if a is epimorphic (i. e. the linear system has no base points), then ~//gv is a 
locally free sheaf of rank dim V - 1 and degree - d e g ~ .  If  the linear system 
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( ~ ,  V) has no base points and f :  C ~ ~(V*) is the mapping associated to it, 
them u/gv  �9 l = f  J2~r(v. ). 

If  ~ is a coherent sheaf on IV', then it is called t-regular if H i( ,~'(t  --i))  = 0 
for all i > 0 (cf. [16, Lecture 14]). A closed subscheme X C ~ is called t- 
regular if its ideal sheaf is t-regular. If  X C J~ is t-regular, then it is t~-regular 
for all t r >_ t, and the homogeneous ideal of X is generated by its components 
of  degree < t (loc. cit.) 

Let ( ~  V) be a linear system on a curve C, and suppose that d imV = 
n + 1. For any point p E C, there exists a basis s0 , . . . ,Sn  of V such that 
ordp(so) < ordp(Sl) < . . .  < ordp(sn). Denote ordp(s,) by ai(p). The sequence 
ao(p) ,a l (p ) , . . .  ,an(p) is called vanishing sequence o f  (cS~, V)  at p. For any 
s E V, the number ordp(s) coincides with one of  aj(p)'s.  The number w(p) = 
Y~o<_i<_n (ai (t 9) - i) is called weight of p with respect to the linear system (5~7-, V ). 
If  w(p) r 0, one says that p is an inflection point. If p is not an inflection point, 
then ai(p) = i for all i, and vice versa. 

We will use the following well-known 

Proposition 2.1. Suppose that no point o f  C is an inflection point with respect to 
the linear system (~.~, V). Then this linear system defines an isomorphism o f  C 
onto a rational normal curve in ]pn. 

If X C ~ = Pro jk[X0, . . .  ,Xn] is an irreducible curve and u: C ~ X is its 
normalization, then one may consider the linear system (S'~, V) on C, where 
S = u * r c ( 1 )  and V is spanned by u*(Xj)'s. 

L e m m a  2.2. In the above setting, suppose that (a0 , . . .  ,an) is the vanishing se- 
quence of  (Si~ , V)  at a point p E C. Then g.c.d, o f  (ao, . . . ,an) equals 1. 

Proof Denote g.c.d, of  ( a o , . . . , a n )  by d. Then ordp(u*(f)) is divisible by d 
for any f E C-x,v~o). Since the rings u ~ ,~(p)  and ~c,p have the same field of 
fractions, we arrive at a contradiction if we assume that d > 1. 

For a non-negative integer n, denote by , ~ n  the set of  strictly increasing 
sequences of  n + 1 non-negative integers: 

. _ ~ ,  = { (ao . . . .  , a , )  I 0 < ao < . . .  < an } �9 

For any A E ~'~n one can consider the monomial c u r v e  C A C ]1 ])n, which is 
the projective curve with (t a~ : t al : . . .  : t a") a generic point. Denote by S A 
the homogeneous coordinate ring of C A, and by jA  C R = k[X0, . . .  ,Xn] its 
homogeneous ideal. 

Actually, S A has the structure of  a bigraded ring. To wit, for a monomial ~ = 
X ~ . . . X ~  = E R put wtA(() = aoko+alki + "  "+ankn and call this numberA-weight  

of (. The decomposition R = ~ R j ,  where Rim C R is the k-subspace spanned 
by the monomials of degree m and A-weight j ,  defines a bigrading on the ring R; 
the ideal jA is bihomogeneous with respect to this bigrading, whence the ring 
S A is bigraded as well. 
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A linear combination of monomials of  the same A-weight is called A- 
quas ihomogeneous  polynomial. The natural projection of R onto the space of 
quasihomogeneous polynomials of  A-weight j will be denoted by prJ:R 

Em Rj' 

3. On Hilbert functions of monomial curves 

For any integer k > 1 and any A = (a0 , . . .  , a , )  E ~ , ,  put 

v k ( A ) = { a i ~ + . . . + a i ~  IO<_i l  <_...<<_ik <_n}  . 

Sometimes we will assume that vo(A) = {0}. 
Some simple properties of  curves C A and their homogeneous rings are gath- 

ered in the following 

Proposition 3.1. Let  A = ( a o , . . .  , a n ) a n d  B = ( b o , . . . , b , )  be increasing se- 
quences  o f  non-negat ive  integers. 

(i) dimS A equals the cardinality o f  vk(A). 

(ii) I f  there exist constants  p and q such that bi = p . a i + q  f o r  all  i, then C A = C B 
and S A ~ S B 

(iii) l f  there exists a constant  p such that bi = p - -  a n - i  f o r  all i, then C A = C B 
and S A ~ S B. 

The following easy observation plays the key role in the sequel. 

Proposition 3.2. I f  (5~,  V )  is a l inear sys tem on a smooth  curve C, where  

d i m 2 ~  = n + 1, and  i fA  = ( a o , . . . , a n )  is the vanishing sequence at a po in t  
p E C, then dimim (Sym m V --+ H ~ 1 6 2 1 7 4  >_ dimSAmfor any m > 1. 

Now let us find out in what cases dim Sm A is small. 

Proposition 3.3. Suppose that A E ~ .  Then 

(0 dim SAm >_ mn + 1; 

(ii) d imS a = mn + 1 i f  and only i f  A is an ari thmetic progression.  

(iii) I f  dimSam > m n  + 1, then dimSm a > m(n  + 1). 
(iv) Suppose that n >_ 3. Then dim Sm A = m (n + 1) i f  and only i f  e i ther a ,  - a , _  1 = 

2 ( a j - - a j _ l ) f o r a I l j  E [ 1 ; n -  1] or  a~ - -ao  = 2(aj - - a j _ l ) f o r  a l l j  C [2;n]. 

Proo f  For 1 _< i , j  < n, put bij = (m - i)ao + aj + ( i  - 1)a, C vm(A). It is clear 
that the following chain of  inequalities holds: 

mao < bll < b12 < . , .  < bin < 

(2) b21 < b22 < - , .  < b2, < 

bin1 < bin2 < . . .  < bran �9 

Since this chain contains mn + 1 elements of  v,,,(A), assertion (i) follows from 
Proposition 3.1(i). The "if" part of  assertion (ii) (resp. (iv)) is clear since, by virtue 
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of Proposition 3.1, one may assume that A = (0, 1 , . . .  ,n )  (resp. (0, 1 , . . .  ,n - 
1,n + 1)). 

To proceed, we need the following 

L e m m a  3.4. (i) I f  (bk,n-t;bk+l,1)f~vm(A) = {bkn) f o r  some k ~ [1;m - 1], then 

an  - -  a n - I  ~ a l  - -  ao ,  

(ii) I f  a j + l - a j  = a l - a o f o r  some j E [ 2 ; n -  1] and(bkd-1;bkd+l )Nvm(A)  = {bkj } 

f o r  some k 6 [1;m - I], then aj - a j -  i = a t  - ao. 

P r o o f  o f  the lemma. To prove (i), observe that the number x = (m - k - 1)ao + 
al + a , - i  +(k - 1)a, E vm(A) belongs to the interval (bk , , - l ;  bk+l,l); thus x = bk,, 

whence a n  - -  g l n - I  -~ a l  - -  a o .  

To prove (ii), observe that the hypothesis implies the equality 

bk,j+l = (m - k - 1 ) a o  + al + a) + (k - 1 ) a ~  . 

Hence, the number x = (m - k - 1)ao + al + a j_ l  + (k - 1)an belongs to the 

interval ( b k , j - l  ; b k d + l ) ;  thus x = b k j ,  whence a j  - -  a j - i  = a l  - -  a o .  

To prove assertion (iii) of Proposition 3.3 together with the "only if" part 
of (ii), it suffices to prove that A is an arithmetic progression whenever dim S a < 
m(n + 1). Indeed, in this case at most m - 2 elements of vm(A) are not contained 
in the chain (2). Since for k C [ l ; m  - 1] the intervals (bk,n-1;bk+L,i) are disjoint, 
it follows that (bk,n-1;bk+l,I)fq vm(A) = {bkn} for some k E [1;m - 1], whence 
an - an -  1 = al - ao by virtue of  Lemma 3.4(i). The same argument shows that for 
each i E [2;n - 1] there exists a number ki ~ [ l ; n ]  such that (bk, , i_l;bk, , i+l)N 

vm(A) = {bk,,i),  Applying Lemma 3.4(ii) n - 2 times, we see that a , - i  - a , - z  = 
. . . .  al  - a0, i.e. A is an arithmetic progression. 

It remains to prove the "only i f '  part of (iv). First we do it for m = 2: 

L e m m a  3.5. Suppose that A C ~7~,  where n > 3, and dim $2 a = 2n + 2. Then 

either an - an-1 = 2(aj - a j _ l ) f o r  a l l j  E [1;n - 1] or al - ao = 2(aj - a j - l )  

f o r  a l l j  ~ [2; n]. 

Proo f  o f  the lemma. For any A = ( ao , . . .  , a , )  C , ~ ,  put A r = ( a o , . . - , a , - 1 )  C 
~ , - i  and A "  = ( a l , . . .  , a , )  E . ~ , - l .  Observe that 

(3) dim S A >_ dim S A' + 2 and dim Sz a > dim S A'' + 2 .  

Indeed, since A is a strictly increasing sequence, we see that v2(A) \ v2(A') 

{a~_ i + a , ,  2a~ } and v2(A) \v2(A")  ~ {a0+al,  2a0}, whence the desired inequality. 

Now we proceed by induction on n. For n = 3, the proof is straightforward. 
Suppose now that the lemma is proved for all A E ~ k ,  where k < n, and that 
n > 3. I f  A E , ~ ,  and dimS2 A = 2n + 2, then (3) implies that d i m s  A' < 2n 

�9 A/t and dim S 2 < 2n. Moreover,  we see that one of  these inequalities is actually 

an equality (if this is not the case, then part (ii) of Proposition 3.3, which we 
have already proved, implies that A'  and A" are arithmetic progressions, whence 

A is an arithmetic progression and dim S~ = 2n + 1, contrary to the assumption). 
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�9 A '  From now on we will assume that d i m S  2 = 2n (the argument for the case 

when d i m S  a ' '  = 2n is the same if one mirrors the indices with respect to n/2) .  

Observe that {a~_ I + an, 2an } n vz(A ~) = ~; it follows from our assumptions that 

v2(A) = v2(A')U {a~_ i+a~,  2an }, whence an-2 +a~ E v2(A'). The only element of 
v2(A I) that is apriori  not less than an-2+an, is 2a,_1.  Hence, an-2+a,  = 2a~- l .  

If we apply the induction hypothesis to A ~, we see that either al, �9 �9 �9 an- i  

is an arithmetic progression with step d and as - ao = 2d, or a o , . . . , a n - 2  is 
an arithmetic progression with step d and a~-l  - a~-2 = 2d. In the first case 
it is clear that a l , . . . ,  a ,  is an arithmetic progression with the same step d,  and 
we are done. In the second case it is easy to show that dim S A = 2n + 3, which 
contradicts the hypothesis. This completes the proof of the lemma. 

To prove (iv) in full generality, we may assume that m > 2. Denote by 
the set of  elements of  vm(A) that do not belong to the chain (2). Suppose that 
cardvm(A) = m(n + 1), i.e. card& ~ = m - 1. I claim that each of the m - 1 
intervals (bk,n-l ;  bk+j.I) contains exactly one element of ~ .  Indeed, assume the 
converse; then Lemma 3.4(i) implies that an - a , _  1 = al  - a o .  Moreover,  arguing 
as in the proof of  assertion (iii) above, we see that for each i C [2;n - 1] 

there exists a number ki E [1;n] such that (bk,,i-I;bk,,i+l) fq •m(A) = {bkl,i}; 
applying Lemma 3.4(ii) n - 2 times we see that A is an arithmetic progression 

- a contradiction. 
Hence, for each k c [1;m - 1] there exists a number xk E (bk , , - l ;bk§ 

xj ~ bkn, and each of the intervals (bi- l , l ;bi+l, l) ,  i E [2;n - 1] does not contain 
elements of vm(A). New Lemma 3.4(ii) implies that A is an arithmetic progression 

whenever an - a n - t  = al - a 0 .  Hence, a n - - a n - I  ~ al - -ao,  and for any 
k E [1;n - 1] the number (m - k - 1 )ao+a i  + a n - I  +(k  - l)an E vm(A) belongs 
to the interval (bk , , - i ;  bk+l,1) and does not coincide with bk,. This shows that 
Xk = (m - - k  - 1)ao + a t +  an-1 + (k - 1)an. If is clear that either bk,n-i < x~ < b~  
for all k E [1;n - 1 ]  (this is the case if al - a 0  < a n - - a n - l ) ,  orbkn < xk < bk+l,l 

(this is the case if al - ao > an - an- l ) .  
In the first case, there are exactly 2n + 2 elements of vm(A) in the interval 

[bm-2,,~;bmn]. Since a number x E vm(A) belongs to [bm-2,,;bmn] whenever 

x = ( m - 2 ) a n  + y  with y c v2(A), we see that dimS2 a = 2n + 2 ,  and the 
conclusion about A follows from Lemma 3.5. 

In the second case the argument is analogous if we consider Vm (A)A[mao; bl~ ]. 

This completes the proof. 

Remark 3.6. In Corollary 5.9 below we give an explicit  upper bound for the 

number mo starting with which dim S a becomes a linear function of  m. 

By way of an amusing application, we show how Proposition 3.3(iv) yields 

a proof  of the following well-known 

Propos i t ion  3.7. S~ppose that the characteristic is zero. I f  C C I? n is an elliptic 

curve o f  degree n + 1, then C has exactly (n + I) 2 distinct inflection points, and the 

weight o f  each o f  these points equals 1 (or, equivalently, the vanishing sequence 

is o f  the form ( 1 , . . . ,  n - 1, n + 1)). 
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Proof It follows immediately from the Plticker formula [5, Proposition 1.1] that 
~p~c  w(p) = (n + 1)2; to prove that the (n + 1) 2 inflection points are distinct, 
we show that w(p) = 1 for any inflection point p E C. To that end, denote by 
A the vanishing sequence at p;  since C is contained in n(n - 1)/2 - 1 linearly 
independent quadrics, we see that hc(2) _< 2n + 2, whence d imS A _< 2n + 2 by 
virtue of Proposition 3.1. Since ao = 0 and al = 1, we see, by Proposition 3.3(iv), 
that A = (0, 1 , . . . , n  - 1,n + 1) and ~v(p)= 1. 

Remark 3.8. Of course, this fact can be established directly by Riemann-Roch. 
The (n + 1) 2 inflection points are points of order n + 1 on the elliptic curve. 

4. Deformations to monomiai  curves 

Let (5~S, V) be a linear system on a smooth curve C, where dim V = n + 1. 
Denote by S the homogeneous coordinate ring of the curve 4~(C) C II ~ ,  where 
~b is the rational mapping defined by our linear system. One has S = R/1, where 
R = k[Xo, . . .  ,X,]  and I is the homogeneous ideal of  r  

Fix a point p E C, and denote by A = ( ao , . . . ,  an) the vanishing sequence a tp .  
For any j ,  m > 0, put FiRm = ~ t ~  R~ and FiR = ~ m  FiRm (cf. the end of  Sec- 
tion 2). Filtration F induces filtrations on I and S; both of these filtrations will be 
also denoted by F. The associated graded ring grS equals ~i,m(FiSm/Fi+lSm); 
thus, gr S becomes a bigraded ring. 

Lemma 4.1, In the above setting, pry (FJlm) C jAN RJm. 

Proof Fix an isomorphism ~b: ~ p  --+ @ and a generator :r ~ rap. One may 
choose a basis ( so , . . .  ,sn) in V in such a way that ~(si) = 7r a' rood m~ ~+l. Ob- 
serve that G ( so , . . . ,  sn) ~ prJ ( G ) ( 1 , . . . ,  1) - 7d (mod 7d +i) for any G c F JR, 
whence p r J ( G ) ( l , . . . ,  1) = 0 whenever G E FJl. Since prY(G) is quasihomoge- 
neous, we see that prJ(G) vanishes on C a, which proves the lemma. 

Proposition 4.2. There is a natural epimorphism A: grS ---+ S A, where grS is the 
associated graded ring of S with respect to the filtration F and A = ( a0 , . . . ,  an) 
is the vanishing sequence of (5~J, V) at p. This homomorphism respects the bi- 
gradings on grS and S a. 

Proof In view of Lemma 4.1, the homomorphism 

. : j+l 

that acts by the formula G(so,. . .  ,Sn) ~ p r S ( G ) m o d J  A, where G E FiRm, is 
well defined. It is clear that A = ~ ) , , j  ~ is the desired epimorphism. 

Corollary 4.3. dim S,, > dim S~. 

This corollary suggests the following 
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Definition 4.4. A linear system ( ~ ,  V) on a curve C is called m-extremal at a 
point p E C if  dimSm = dimS A, where A is the vanishing sequence of  ( ~ ,  V) 
atp .  

Corollary 4.5. In the above setting, a linear system (c~, V) is m-extremal iff 
prJ(FJlm) = j A N  R j for al l j .  

Here's how the definition of m-extremality works: 

Proposition 4.6. Let ( ~ ,  V) be a linear system on a smooth curve C, p E C 
a point, and A E ~ n  the vanishing sequence of  ( ~ ,  V) at p. I f  ( ~ ,  V)  is m- 
extremal at p and ~t~_m j a  = RjA, then the linear system (5'~ , V)  is t-extremal 
at p for all t > m. 

Proof. We resume the notation from the proof of Proposition 4.2. Denote 
by At: St ~ S A the t-th component of A. We are to show that At is injective 
whenever t > m. To that end, assume that 0 ~ ~ E ker At. Choose a polynomial 
G E Rt such that ~ = G(so, . . .  ,sn) and G E FJRt \ FJ+lRt with the greatest 
possible j .  Since A(~) = 0, we see that prJ(G) E j a ;  the hypothesis implies 
that prJ G = ~-~Piai, where all the Oi's lie in j a  and are quasihomogeneous. 
Hence, G = ~PiQi  + G 1 ,  where Gl E FJ+1Rr Since A m is injective, we see that 
Qi(so,... ,sn) = 0 for all i, whence ~ = Gl(so, . . .  ,s~), contrary to our choice 
o f j .  This contradiction completes the proof. 

Another application of the notion of m-extremality is the following 

Proposition 4.7. I f  a linear system ( ~ ,  V)  on a curve C is m-extremal at a 
point p with vanishing sequence A and if  ~-~q>_m Jt a = RJ A, then ~t>_m It = Rim. 

Proof. Since FJlt = 0 forj  >> 0, the proposition will follow once we have proved 
that FJlt C_ Rim + FJ+llt for any t > m and any j .  To prove these inclusions, 
suppose that f E FJlt. Then prJ(f) E j a n  R) by virtue of Lemma 4.1. Since 
Jt A = Rt-mJam by hypothesis, we see that prJ(f) = ~ g a h ~ ,  where 9c, E R~-r~ ~ 
and h,~ E R "~ AJ A. Since our linear system is m-extremal, Corollary 4.5 implies 
that ha = pr~(/]~), where/z~ E F'~I,~. Hence, 

prJ(f) = Z g , ,  pr~~ (h~) = prJ( Z 9,~ha) ; 

it is clear t ha t f  - ~9~h,~ E FJ+llt, and Y'~9,~h,~ E Rim by construction. This 
completes the proof of the proposition. 

The following proposition says that a projective curve X can be deformed 
to its associated monomial curve provided that "many" hypersurfaces of given 
degree contain X. 

Proposition 4.8. Suppose that the linear system ( ~ ,  V)  is m-extremal at a point 
p E C for some m and denote by A the vanishing sequence of  ( ~ ,  V) at p. I f  
~ j> , ,  j a  = R JAm, then degree and arithmetic genus of  X = qS(C) are equal to 

those of  C A . 
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Proof  Proposition 4.6 shows that ( ~ ,  V) is t-extremal for all t _> m. Hence, 
Hilbert polynomials of X and C A coincide�9 

Degree and arithmetic genus of the rational curve C A are easily com- 
putable. First observe that, in view of Proposition 3.1, one may assume that 
A = (a0 , . . .  ,an), where a0 = 0 and g.c.d, of a j ' s  equals 1. 

Proposi t ion 4.9. Denote by v:  ~1 ~ ~n the morphism that sends (1 : t) to 

(t a~ : t al : . . .  : ta"). Under the above assumptions on A, u(~ 1) = C A , u is 

an isomorphism on ~1 {0, o~z), u*U~( r )  = U~,(ran) f o r  atl r, and degree o f  C a 
equals an. 

Proof  The first assemon is obvious. It follows from the hypothesis that there 
exist integers c t , . . . ,  c, such that ~ eiai = 1. The rational map ~: C a --~ A 1 

�9 . c, is the inverse to the restriction of v which sends (1 : xl x~) to I-I xi 
to ]?l \  {0, oo}. Since u * ( ~  (1) = ~ (an) and u is birational, we see that deg C A = 

an. 

Computation of the arithmetic genus of C A will be a particular case of  the 
following 

Proposi t ion 4.10. Suppose that A = (0, a l , . . . ,  a, )  is an abstract vanishing se- 

quence such that g.c.d, o f  a j ' s  equals 1, and that X = C a C ~ is the corre- 
sponding monomial curve. Put  ,4 = (0, b l , . . . ,  bn) c , / ~ ,  where bj = an - an-j .  

I f  r E I~1, then 

(4) d i m H  l(X, ~x (r)) = card(~/(A) \ [0; rai l )  + 

card('y(A) \ [0; ran ]) + card(~/(A) N #r~, ('Y(A)) N [0; ran ]); 

(5) d i m H l ( J x ( r ) )  = card([0; ran] \ (vr(A) t2 7(A) 0 ]Aran(7(A))))  , 

where 7(B) stands f o r  the set o f  gaps o f  the semigroup generated by a vanishing 

sequence B and the map # d : Z  --+ Z acts by the formula r ~ d - r. 

Proof  We will use the notation from the previous proposition. Till the rest of 
the proof H~ will be identified with the space of polynomials in t of 
degree _< ra,. Consider an exact sequence 

(6) 0 ~ ~ ~ v.uL_S~ ~ ~ --~ 0 ; 

Since v is an isomorphism on ~l \ {0, oe} by Proposition 4.9, we see that 
supp(~ )  _C {v(0), v(o~)} and '~  ~ v . (~ r , /Ox .  The stalk of the latter sheaf at 
v(O) is isomorphic to k[[t]]/k[[t"~, . . . , ta"]]  ~ k ~A), and its stalk at v(c~) is 

isomorphic to k[ [ s ] ] / k [ [ sb ' , . . . ,  s b" ]] ~ k "y(~), where s = t -1 . It is clear from the 
sequence (6) that H I ( X , ~ )  ~ c o k e r ( ~ : H ~  --+ H~ Identifying 
source (resp. target) of ~ with the space of polynomials in t of  degree 5 ra, 

(resp. k ~(A) | ke~a)), put ~;(f) = (a( f ) ,  3 ( f ) )  E k ~(A) |  "yc;~). It is easily seen that 
a ( f )  E k "y(A) is the family {Pg}~-r(A), where p~ is the coefficient o f f  at t ~ and 
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A 

f3(f) E k "Y(a) is the family {qg}gE-~(A), where qg is the ceefficient of tr~"f(t - l )  at 

t g. Now it is clear that h l ( ~ )  = dim coker r equals the right-hand side of  (4). 
To prove (5), observe that H l ( Jx( r ) )  ~' cokerf ,  where f :  H~  n, ~r" (r)) --~ 

H ~  S ( ) .  Consider the commutative diagram with exact rows 

0 

H~ ~ , ~ ( r ) )  = H~ a~ , (f~, (r)) ~ 0 

, H ~  ~ H ~  ~ > k'~(A) | k'y(a) , 

where the lower row is H 0 of  the exact sequence (6). Since coker 9 ~ kt~ 
this diagram yields the exact sequence 

0 > coker f  ~ k [O;ra"l\v~(A) ~ > k "r(A) ~ k "y(;~) . 

Let p ~ k t~ be a family {Pt}tE[O;ra. | \v , (A) .  It  is clear that ~(p) = (c~,/3) E 

k'Y<a)| where c~ = {ut}t~-~(A) with ut = p~ whenever t <<_ ran and 0 otherwise, 
and/3 = {vt}tc.~(a) with vt = ran - t whenever t < ran and 0 otherwise. Since 
cokerf  ~ ker ~, Eq. (5) follows. 

Corollary 4.11. l f  A = (0, a l , . .  �9 an) is an abstract vanishing sequence such that 
g.c.d, o f  a j ' s  equals 1, then the arithmetic genus o f  C A equals Lo + L ~ ,  where 

Lo is the number o f  gaps o f  the semigroup ( a~ , . . . ,  an) and L ~  is the number o f  

gaps o f  the semigroup (an - an-  1 . . . .  , an - a l, an >. 

Proof  Put r = 0 in Eq. (4). 

5. Equations defining certain monomial curves 

To be able to apply Proposition 4.8, one should know degrees of  generators of 
the homogeneous ideal of the curve C A . In general, it is not clear how these 
degrees depend on A. In this section we show at first that in the simplest cases 
jA is generated by quadrics, and then we use a result from [9] to obtain some 
information about the general case. 

Proposition 5.1. Let A E ~ n  be an increasing sequence o f  integers. Suppose 

that one o f  the following conditions holds: 

(i) n >_ 2 and A is an arithmetic progression; 

(ii) n > 3 and either an - an-1 = 2(aj - aj_l  ) f o r  all j E [1;n - 1] or a l - ao = 

2(aj - a j_ l )  f o r  all j E [2;n]. 

Then JA - RjA and Z j>m "]Am = RJA for  all m > 2. 

Remark 5.2. If  n = 2 in the case (ii), then C A is the plane cuspidal cubic, which 
is not defined by quadratic equations. 
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Remark 5.3. The cu rve  C A C ~)n is a rational normal curve in the case (i) and 
a linearly normal curve of arithmetic genus 1 in the case (ii). It is well known 
that homogeneous ideals of such curves are generated by their components of 
degree 2 (this is especially true for the case (i)), but it is not easy to give 
a suitable reference. Our assertion must follow from the algorithm for finding 
minimal systems of  generators of j a  that is proposed in [41, but we prefer to 
give direct proofs. 

Proof Of course, it suffices to show that j a  __ RjA. The result for the case (i) 
follows, for example, from the fact that rational normal curves are 2-regular. To 
prove (ii), note first that we may, by virtue of  Proposition 3.1, assume that aj =j  
for j > n and an = n + 1. Observe that C A, being a linearly normal curve of 
arithmetic genus 1, is 3-regular. Thus, j a  C RJ A for m _> 3, and it remains to 
show that jm = Rlja.  

To that end observe that jA is generated, as a linear space, by differences 
of monomials of equal A-weight. Denote by jr  C ja  the subspace generated by 
the monomials of the form xixjxk -xix,nXp, where all the indices are less than n 
and i + j  + k  = l + m  +p.  Since j r  = j f f ,  where B = ( 0 , . . . , n  - 1) E ,~.'~n-l, it 
follows from case (i) that jr  C RIJ2. Suppose that 

(7) ~ = X i X j X  k - -  X I X m X  p C j A  . 

To prove that ~ ~ R1J2 A, we may assume that { i , j ,  k} n {l, m, n} = 0 (otherwise 
the two monomials in the right-hand side of Eq. (7) have a common factor) and 
that at least one of the indices, say k, equals n (otherwise ~ c JP C RIJ a and 
there is nothing more to prove). After a suitable reordering of indices, only three 
cases are possible: 

1. k = n , j  < n , i  _ < n - 3 ;  
2. k = n , i = j = n - 2 ;  
3. j = k = n , i < _ n - 3 .  

In the first case one can write 

= Xj ( .X iX  n - -  X i + 2 X n _ l )  "t- ( X j X i + 2 X n _  1 - -  X t X m X p )  

with the first summand in xjJ a and the second in JP, whence ( E R1J A. In the 
second case the only possibility for l, m, and p is that they all equal n - 1; hence, 

r 2 X 3 =X~(X2. --X.-3X~-,)+X~-,(X.--3X. --Xff_l) E R,J A = X n - - 2 X x  - -  n - I  

(it is here that we use the assumption n > 3). Finally, in the third case we have 

= Xn (XiXn - -  X i+2Xn- -1 )  + (X i+2Xn- - IXn  - -  X l X m X p )  , 

where the first summand is in x f l  A and the second summand is in R1J a by virtue 
of what we have proved for the first two cases. This completes the proof. 

Our next objective is to prove a result on t-regularity of monomial curves. 
We derive it from results of the paper [9]. We start with an auxiliary result. 
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Propos i t ion  5.4. Let A = (0 = ao, a l , . .  �9 an) be an abstract vanishing sequence. 
Identifying H~ ~r~ (m ) ) with the vector space of  degree m binary forms in u and v, 
denote by V the subspace of  H~ spanned by ua"-~Jv a~ for j E [0;n]. I f  
we consider V as linear system on ]pl, then .t/gv ~ ~ i n l  (7/~l(ai_l - a i ) .  

Proof It follows from the definition that , / /gv C (~zp~) n+~ consists of  (n + 1)- 

tuples ( f0 , . . .  ,f~) of local sections of (7 r ,  such that 

ua"-a~176 + . . .  +va"fn = O. 

For each j E [1;n] define an injection sj:Cr~(aj_l - a j )  ~ (C~,) "+l as ~r .-~ 

(Cr o , . . . , a , ) ,  where a j - l  = v~J-"J-~a, crj = - u ~ - ~ J - ~ a ,  and ai = 0 for i # 
j , j  - 1. Put r i g '  = ~C~r~(ai-i  - a i ) .  It is clear that ~ s j  defines an injection 
of  r i g '  into ~///~'v. Since ao = 0, the linear system V has no base points, whence 
d e g J I g v  = - d e g  ~ ( a n ) =  - a , .  On the other hand, d e g ~ C  = - a , ,  as well. 
The locally free sheaves JFC C_ J /~v  on a smooth curve have the same rank 
and degree. Hence, ~/Pg' = ~///~v. 

Now we can state a result on t-regularity of monomial  curves. 

Propos i t ion  5.5. Let A = (0 = ao, a l , . . . ,  an) be an abstract vanishing sequence 
such that g.c.d, of  aj 's equals 1, and let C A C F n be the corresponding monomial 
curve. Put 5 = maxl<i<j<_n{(ai - ai-1)  + (aj - a j - l )} .  Then the curve C a is 
6-regular. 

Remark 5.6. The bound provided by this proposition cannot be sharpened uni- 
formly for all vanishing sequences A = ( a o , . . .  , a , )  c , ~ n .  For example, 
take an integer l > n and put ao = 0, al  = 1, and aj = l - n + j  for 
j > 2. Then Hl(~oTcA(l -- n)) ~ 0 (this follows from Proposition 4.10, because 
l - n + 1 r v t - , (A)) ,  whence the curve C A is not (l - n + 1)-regular. Since 

= l - n + 2, we see that the bound is sharp for this curve. 

On the other hand, there are examples when this bound is very far from being 
optimal. To wit, suppose that l > 0 is an integer and consider an A E ,~n such 
that aj = j  f o r j  6 [0;n - 1] and an = n + l .  Then it can be checked that the 

curveCAis t - regu lar ,  w h e r e t =  [nl-nl~_l_l]+2. F o r l a r g e n t h i s t i s m u c h l e s s  

than 5 = l + 2. 

Proof of  the proposition. Recall a result of  Gruson, Lazarsfeld and Peskine: 

Propos i t ion  5.7 ([9], Propos i t ion  1.2). Let (5;r , V) be a linear system without 
base points on a smooth curve C. Suppose that this linear system defines a bira- 
tional morphism of C onto the curve C C pn. I f  ~ is an invertible sheaf on (Y 
such that H~ A2./lgv | ~ )  = O, then C is h~ 

To derive our proposition from this result, put C = I? 1, _~, = Cr , ( a , ) .  If  V is 

as in the proof of  Proposition 5.4, then C = C A. Put , ~  = (7~,(6 - 1). Then 

Proposition 5.4 implies that H~ | , ~ )  = 0. Since h ~  = 6, we are 

done. 
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In the corollary that follows, R stands for k[X0, . . . ,X~]  and jA is as in 
Section 4. 

Corol lary 5.8, Suppose that A = (0 = a 0 , a l , . . . , a n )  E .... ~n and that g.c.d, o f  
a j ' s  equals  1. I f  ~5 is the same as in Proposition 5.5, then j A  = RJ~.  

Our next corollary strengthens Theorem 4.1 from [1]. 

Corol lary 5.9. Suppose that A = (0 = a o , a ~ , . . .  ,an)  E ~ .  Denote  by d the 

g.c.d, o f  aj 's and put  6 = maxl<i<j<n{(  (ai - a i -1 )  + (aj - a y - l )  ) / d } .  Then f o r  
all m >_ ~5 - 1 one has dim S a = (a n /d ) .  m + 1 - Lo - Loc, where  Lo is the number  

o f  gaps o f  the semigroup ((al - a o ) / d , . . . ,  (an - a o ) / d )  and L ~  is the number  

o f  gaps o f  the semigroup ((an - a n - i ) / d , . . . ,  (a,  - ao) /d) .  

Proo f  By virtue of Proposition 3.1, one may assume that ao = 0 and g.c.d, of 
aj ' s  equals 1. If C A is the monomial curve corresponding to A, then it is 6- 
regular by Proposition 5.5. Hence, d i m s  a = X(6CA(m))  for all m >_ 6 - 1. Now 
the conclusion follows from Proposition 5.1 and Corollary 4.11. 

Finally, let us restate Proposition 5.5 in combinatorial terms. 

Corol lary 5.10. Suppose that  al < . . .  < an is an increasing sequence o f  integers 

such that g.c.d, o f  a) 's equals 1. Put  ao = 0 and 6 = maxl<_i<j<n{(ai - a , - l )  + 

(aj - a j_  z )}. Then: 

(i) Conductor  o f  the semigroup (a 1 , . . . ,  an) is at  most  (6 - 2)an + 1. 
(ii) Pu t  bj = an - an- j  ; i f  r >_ ~ - 2 and x E [0; ran ] is a gap o f  the semigroup 

( a t , . . .  ,an),  then ran - x is a non-gap o f ( b , , . . .  ,bn). 
(iii) I f  r >_ 6 - 1, then any x E [0; ran] such that x is not  a gap o f  A and ran - x 

is not  a gap o f  A, lies in v~(A). 

Proo f  Put A = (0, a l , . . . ,  an) C ~J~n. The curve X = C a is (5-regular by Proposi- 
tion 5.5. Now Proposition 4.10 applies: since H 2(Jx ( 6 -  2)) = H 1 ( ~  (6_  2)) = 0, 
we have (i) and (ii); since H~(57x(6 - 1)) = 0, we have (iii). 

6. Proofs of main results 

Proo f  o f  Theorem 1.4. If  X C ~a~ is an irreducible non-degenerate curve, then 
X is the image of a birational morphism f :  C --+ ~I ~ defined by a linear system 
( ~ ,  V), where C is a smooth curve. If  p E C is any point with the vanishing 
sequence A = (a0 , . . .  ,an), then Proposition 3.3(i) shows that d imS a >_ mn + 1, 
whence dimim(Symm(V) - - ~  H~174 >_ mn + 1 by Proposition 3.2. The first 
part of the theorem follows immediately from this inequality. 

The fact that the bound is attained for rational normal curves is trivial. Hence, 
we can assume for the sequel that h ~  = (m+,)  _ m n  - 1, or, equivalently, 
that d imim(Sym"(V)  --+ H ~ 1 7 4  = m n +  1, and we are to prove that X is a 

rational normal curve. 
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To that end, pick a point p E C and denote by A = (ao, . . .  ,an) its vanishing 
sequence at p. It follows from Proposition 3.2 that dim S A <_ mn + 1. Now 
Proposition 3.3(i,ii) shows that A is an arithmetic progression and that (5~ ~, V) 
is m-extremal at p. 

Hence, C a is a normal rational curve of degree n in ~w. Propositions 4.8 
and 5.1 show that X has degree n and arithmetic genus 0 as well, whence X is 
a rational normal curve. 

Proof  o f  Theorem 1.7. Denote by v: C --+ X the normalization of X and con- 
sider the linear system (5~, V), where 5~ = v,*~T,(1) and V = im(H~ --* 
H~ If this linear system has no inflection points, then X is a nor- 
mal rational curve by Proposition 2.1, whence h ~  = (,,+n) _ m n  - 1, 
which contradicts the hypothesis. Hence, we may assume that there is an in- 
flection point p E C. Denote its vanishing sequence by A = (ao . . . .  ,aN). 
Lemma 2.2 implies that g.c.d, of aj's  equals 1. Hence, A is not an arithmetic 
progression and proposition 3.3(iii) implies that d imS A > m(n + 1), whence 
dimim (Sym m V --+ H~174  > m(n + 1) by virtue of  Proposition 3.2. Thus, 
the first assertion of the theorem follows. 

To prove the second assertion, suppose that h ~  = (m+,) _ m(n + 1). 
Propositions 3.3(iv) and 3.2 imply that A is of  the form (0, 1 , . . .  ,n  - 1,n + 1) 
or (0, 2 , . . . ,  n + 1) and the linear system ( ~ ,  V) is 2-extremal at p.  Corollary 5.1 
shows that Proposition 4.8 applies, whence the degree and arithmetic genus of 
X equal those of  C A. Since C A is a cuspidal rational curve of degree n + 1 and 
arithmetic genus 1, we are done. 

Proof  o f  Theorems 1 .2and1.6 .  We will proceed by induction on dimX. If 
d imX = 1, then our theorem are just the m = 2 case of  Theorems 1.4 and 1.7. 
If  d imX > 1, consider a generic hyperplane section Y C X. There is an exact 
sequence 

0 ~ . T x ( 1 )  ~ 57x(2) ~ 57v(2) ~ 0 .  

Since X is non-degenerate, this sequence yields the inequality h~  _ 
h ~  (2), and the theorems follow from the induction hypothesis. 

Proof  of  Theorem 1.8. Denote by A the vanishing sequence of X at p.  It is clear 
that ao = 0, and al = 1 since p is a smooth point. Hence, the semigroup 
( a l , . . .  , a , )  has no gaps, and pa(C A) = L by Corollary 4.11. Using the nota- 
tion of  Corollary 4.11, we see that Lo = 0 and L ~  = L. Corollary 5.9 implies 
that dim S a = a , .  in + 1 - L. Now the first assertion follows immediately from 
Proposition 3.2. 

t n + n  To prove the second assertion, assume that h ~  = ( ,~ ) - a n  .m - 1 +L 
for some m > s If  (5r V) is the linear system defining a birational morphism 
of a smooth curve onto X, then Corollary 5.9 implies that this linear system 
is m-extremal. Then Corollary 5.8 together with Proposition 4.8 implies that 
degX = d e g C  A = a ,  and pa(X) = pa(C a) = L, and the same corollary together 
with Proposition 4.7 implies that the homogeneous ideal of  X is generated by 
elements of degree <_ m. This completes the proof. 
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