
Выходные данные сборника.
© Национальный Открытый Университет «ИНТУИТ», 2012

Applying Graphs for Multilevel
Domain Model Description

Alexander O. Sukhov

Perm State National Research University, Perm, Russia. Sukhov.PSU@gmail.com

Abstract. In the article the approach to creation of the formal descrip-
tion of the metalanguage, used for development of visual domain-
specific languages of information systems modeling, based on di-
rected pseudo-metagraphs, is considered. Using graph models for
formal metalanguage definition of system MetaLanguage allows us to
describe its properties, to develop algorithms of horizontal and vertical
metamodels and models transformation.

Keywords: pseudo-metagraphs, graph grammars, domain-specific
languages, metalanguage.

Introduction

Now the technologies based on using of models in information systems
development process are widely applied. Model is an abstract description of
system characteristics which are important from the viewpoint of modeling
purposes. Model is described in some formal language. To each task solution
can be applied a modeling language which uses concepts and relations from
the information system domain. The systems life cycle is based on usage of
several models that are described from the various points of view and with
different levels of abstraction. Such approach is caused by that system devel-
opment process consists of several stages: analysis, design, implementation,
testing.

2 Applying Graphs for Multilevel Domain Model Description

Several levels of models are created at system designing: the data that
are stored in system database is a state model of the information system do-
main; their description, which providing a data interpretation or code genera-
tion to work with them, is a metamodel; for developing this model special
formal language, which allows to work in terms of the appropriate domain, is
applied – the meta-metamodel here is used.

In fact, system creation with usage of modern workbenches represents
the development of domain-specific languages (DSLs) – information system
meta-metamodels. DSLs are easy to understand for users as they operate with
domain terms. Therefore now a large number of DSLs is developed for using
in different domains, for example, for business processes modeling and the
designing applications for mobile devices.

Despite all DSL advantages they have one big disadvantage – complex-
ity of the designing. The language workbench or DSM-platform is the in-
strumental software intended to support development and maintenance of
DSLs. Usage at DSLs creation a language workbench considerably simplifies
the process of their designing [1]. The language used to create other lan-
guages is called metalanguage.

The MetaLanguage system is being developed at the Department of
Software and Computing Systems Mathematical Support of Perm State Na-
tional Research University. MetaLanguage system is a tool for creating visual
dynamic adaptable domain-specific modeling languages used for develop-
ment of information system [2]. To describe the metamodels MetaLanguage
toolkit uses metalanguage, which basic constructions are entity, relation and
constraint.

Multilevel Mathematical Model of Metalanguage

Using constructions entity and relation it is possible to build any model,
including an invalid in the current domain. There are various formalisms for
specifying syntax of visual languages: automatic models [3], algorithmic
nets [4], graph grammars [5], etc.

Most of the existing approaches to definition of visual languages syntax
consider a concrete syntax, and only in rare cases – abstract syntax. The ab-
stract syntax of visual modeling languages does not need all those details that
are presented in a concrete syntax: it is possible to abstract from the choice of
symbols used to display the language elements, and their geometrical pa-
rameters, etc.

Graph grammars are proposed to define the formal rules of models crea-
tion. Graph grammar is a generalization of Chomsky grammars on graphs. To
define a grammar it is required to specify the finite sets of terminal and non-
terminal symbols, a finite set of production rules, and select the start symbol

Applying Graphs for Multilevel Domain Model Description 3

in nonterminal symbols set. For representation graph grammars it is neces-
sary to choose such type of graphs which would be provided the opportunity
for an iteratively metamodels definition, unified representation and descrip-
tion of domain models and metamodels. There are several types of graphs
that are used for representation graph grammars: the classical graphs, di-
graphs, multigraphs, pseudographs, hi-graphs, hypergraphs, metagraphs and
others.

Production rules in graph grammar contain the left- and the right-hand
side. If we generalize the classic definition of graph grammars, then right-
hand side of the rule may be not only a labeled graph, but the code in any
programming language, and also a fragment of a visual model described in
other notation. That is why the graph grammar can be used for generation
syntax correct models and for refactoring of existing models, code generation
and model transformations from one modeling language to another.

As an analysis result of various representations of graph grammars it was
determined that the most appropriate formalism for describing the syntax of
visual modeling languages in MetaLanguage system are graph grammars,
which are constructed on pseudo-metagraphs [6]. Let’s define the domain
metamodel and model, applying the selected formalism.

Metamodel Graph

Let { },iEnt ent i  (N is a set of natural numbers) be a set of meta-

model entities that is finite at every fixed moment of time, but is extended at
entity creation and is reduced at removing.

Let's designate each entity as a tuple

enti = {ENamei, EICounti, EAttri, EOppi, EResti, EUniquei},

where ENamei is an entity name, EICounti is a amount of entity instances,

iEAttr is a entity attributes, iEOpp is a entity operations, iERest is a set of

constraint imposed on the entity, EUniquei is a flag of uniqueness. Sets

iEAttr , iEOpp , iERest are finite at every fixed moment of time.

Let's divide all characteristics of i-th entity on two groups EGi
1 and EGi

2.
The first group consists of those characteristics, which will be represented by
separate nodes in graph model: sets of attributes, operations, and constraints
imposed on the entity, i.e.

EGi
1 = {EAttri, EOppi, EResti}.

Characteristics of second group EGi
2 = {ENamei, EICounti, EUniquei}

(entity name, amount of entity instances, flag of uniqueness) will be attrib-
uted to node of the corresponding entity directly.

4 Applying Graphs for Multilevel Domain Model Description

{ },iRel rel i  denotes a set of metamodel relations that is finite at

every fixed moment of time, but extends at relation creation and reduces at
removing.

Let relation be a tuple

reli = {RNamei, RTypei, RAttri, RMulti, RResti, RUniquei},

where RNamei is a relation name, RTypei is a relation type, iRAttr is a rela-

tion attributes, RMulti is a multiplicity, iRRest is a relation constraints,

RUniquei is a flag of uniqueness. Sets iRAttr , iRRest are finite at every

fixed moment of time.
Characteristics of i-th relation will be divided into two groups RGi

1 and
RGi

2. The first group comprises a set of relation attributes and constraints
imposed on the relation. The second group includes the following character-
istics: «name», «type», «multiplicity», «flag of uniqueness», i.e.

RGi
1 = {RAttri, RResti}, RGi

2 = {RNamei, RTypei, RMulti, RUniquei}.

Consider directed pseudo-metagraph (,)GMM V E . Let a set of met-

amodel graph nodes is a union of seven disjoint subsets:

1 1 1 1 1

Ent Ent Ent Rel Rel

i i i i i

i i i i i

V Ent EAttr EOpp ERest Rel RAttr RRest
    

       . (1)

The set of pseudo-metagraph arcs E is divided into six disjoint subsets:

 { }, 1,iEEA eea i Ent  is a set of arcs connecting each meta-

model entity with set of attributes belonging to it;

 { }, 1,iEEO eeo i Ent  is a set of arcs connecting each meta-

model entity with set of operations over it;

 { }, 1,iEER eer i Ent  is a set of arcs connecting each meta-

model entity with set of constraints imposed on it;

 { }, 1,iERA era i Rel  is a set of arcs connecting each meta-

model relation with set of its attributes;

 { }, 1,iERR err i Rel  is a set of arcs connecting each meta-

model relation with set of constraints imposed on it;

 { },iEERR eerr i  is a set of arcs, appropriate to links between

entities and relations, that is finite at every fixed moment of time, but is
extended at entity (relation) creation and is reduced at removing.

Applying Graphs for Multilevel Domain Model Description 5

Thus, we see that

 E EEA EEO EER ERA ERR EERR      . (2)

The metamodel graph is a directed pseudo-metagraph (,)GMM V E ,

for which (1) and (2), where V is a nonempty set of graph nodes, E is a set
of graph arcs.

Let's consider an example. We will construct a metamodel graph for the
entity «Use Case» of UML Use Case diagrams. Attributes of the entity «Use
Case» are «Name», «Description», «Creation_Date». Operations that can be
performed on entity – «SetName()», «SetDescription()», «SetDate()», i.e. for
given entity

iEAttr  {«Name», «Description», «Creation_Date»},

iEOpp  {«SetName()», «SetDescription()», «SetDate()»}, iERest   .

The metamodel graph corresponding to a fragment of the «Use Case»
entity shown in Fig. 1.

Fig. 1. Fragment of metamodel graph for «Use Case» entity

As can be seen from figure
1

{ }iEEA eea ,
1

{ }iEEO eeo , EER   ,

EERR   .

Model Graph

The model is actually an «instance» of metamodel in which:
 the attributes of entity is a concrete values;
 there are no operations over entity instances and constraints imposed
on the entity and relation instances;
 inheritance relation instances can’t be created.

6 Applying Graphs for Multilevel Domain Model Description

Let's designate a set of all models which have been created based on the

current metamodel through { },kM m k  that is finite at every fixed

moment of time, but extends at model creation and reduces at removing.
Let's introduce following notation:

 iEntI is a set of instances of i-th entity;


ij

EAttrI is a set of attribute values for j-th instance of i-th entity;

 kRelI is a set of instances of k-th relation;


lkRAttrI is a set of attribute values for k-th instance of l-th relation.

Sets iEntI ,
ij

EAttrI , kRelI ,
lkRAttrI are finite at every fixed moment

of time, but extend at entity (relation) instance creation and reduce at remov-
ing.

Examine the directed pseudo-metagraph (,)GM VI EI . Let a set of

model graph nodes is a union

1 1 1 1

i k

i k

EAttr RAttrEnt Rel

i j k l
i j k l

VI EntI EAttrI RelI RAttrI
   

   
       

   
    . (3)

Consider the following example. Let’s create a model graph for instance
of «Use Case» entity (Fig. 2).

From a figure it is apparently that iEAttrI  {«Pass_exam», «Use Case

describes passing an exam process», «21/06/09»}.

Fig. 2. Model graph corresponding to «Use Case» entity instance

The set EI divides into three disjoint subsets:

 { }, 1,iEEAI eeaI i EntI  is a set of arcs connecting each entity

instance with set of attributes belonging to it;

 { }, 1,iERAI eraI i RelI  is a set of arcs connecting each rela-

tion instance with set of attributes belonging to it;

Applying Graphs for Multilevel Domain Model Description 7

 { },iEERRI eerrI i  is a set of arcs corresponding to the links

between entity instances and relation instances.
Thus, we see that

 EI EEAI ERAI EERRI   . (4)

You can see from the Fig. 2 that for represented instance of «Use Case»

entity
1

{ }iEEAI eeaI , EERRI   .

The model graph is a directed pseudo-metagraph (,)GM VI EI , for

which (3) and (4), where VI is a nonempty set of graph nodes, EI is a set of
graph arcs.

Conclusion

For unified models creation the mathematical model – graph grammars
based on pseudo-metagraphs – was constructed. This formalism has al-
lowed to describe basic elements and algorithms which MetaLanguage
uses in its work: algorithms for creation/modification of domain meta-
models and models, algorithms for vertical models transformation, algo-
rithms for constraint checking.

References

1. Lyadova L.N., Sukhov A.O. Visual Languages and DSL-Tools: Develop-
ment Methods and Means (in Russian) // Proceedings of the Congress on
Intelligence Systems and Technologies “AIS-IT’10”. – 2010. – Vol. 1. –
P. 374-382.

2. Sukhov A.O. The Development Environment of Visual Domain-Specific
Modeling Languages // Mathematics of Program Systems. – 2008. –
P. 84-94.

3. Stasenko A.P. Automat Model of Visual Description (in Russian) // Com-
putational Technologies. – 2008. – Vol. 13. – P. 70-87.

4. Korolev O.F. Algorithmic Net as a Visual Programming Language (in
Russian) // SPIIRAS Proceedings. – 2005. – Vol. 2. – P. 130-137.

5. Rekers J., Schuerr A. A Graph Grammar approach to Graphical Parsing //
Visual Languages, Proceedings, 11th IEEE International Symposium. –
1995. – P. 195-202.

6. Sukhov A.O. Analysis of Formalisms for Visual Modeling Languages De-
scription // Modern Problems of Science and Education. – 2012. – Vol. 2. –
P. 1-8.

