TOCYIXIAPCTBEHHB N YHUBEPCUTET

BbICHIAA IIKO(TA DKOHOMHKH

Fuad Aleskerov, Andrey Subochev

MATRIX-VECTOR REPRESENTATION
OF VARIOUS SOLUTION CONCEPTS

MpenpuHT WP7/2009/03
Cepusa WP7

MaTtemartunyeckne metoabl
aHanmaa peLueHnin B 3KOHOMUKE,
On3Hece 1 NoInTUKe

Mocksa
TocynapcTBeHHBIN YHUBEpPCUTET — BbIciiast 111Koj1a 9KOHOMUKU
2009



A32

VAK 519.816
bbK 22.1
A32

Penakropsl cepun WP7
«MareMaTruecKe METOIbI aHAIN3a PEIIEHUI B SKOHOMUKE,
Ou3HeCe U MOJIUTHUKE»
®D.T. Aneckepos, B.B. I[lodunoeckuii, b.I. Mupxun

Aleskerov F., Subochev A. Matrix-vector representation of various solution concepts: Working
paper WP7/2009/03. — Moscow: State University — Higher School of Economics, 2009. — 36 p.

A unified matrix-vector representation is developed of such solution concepts as the core, the
uncovered, the uncaptured, the minimal weakly stable, the minimal undominated, the minimal
dominant and the untrapped sets. We also propose several new versions of solution sets.

The work was partially supported by the Scientific Foundation of the State University —
Higher School of Economics (grant Ne 08-04-0008), by Russian Foundation for Basic Research
(joint Russian-Turkish research project, grant N 09-01-91224-CT _a) and by Decision Choice
and Analysis Laboratory (DeCAN Lab) of the State University — Higher School of Economics.

YAK 519.816
bbK 22.1

Fuad Aleskerov — Department of Mathematics for Economics, University — Higher School
of Economics (Moscow), alesk@hse.ru.

Andrey Subochev — Department of Mathematics for Economics, University — Higher School
of Economics (Moscow), asubochev@hse.ru.

Aneckepo ®.T., Cyooues A.H. MaTpuyHo-BeKTOPHOE MpeACTABJIEHHE PA3JIMYHBIX KOHLEI-
muii pemrenmii: [Tpenpunt WP7/2009/03. — M.: U3a. nom [ocynapcTBeHHOTO YHUBEpCUTETA —
Briciueii mkosibl 3koHoMuKH, 2009. — 36 ¢. (Ha aHII. 93.).

Pa3pabortaHo enuHo0Opa3HOe MaTPUUHO-BEKTOPHOE MPEACTABICHUE TAKMX KOHLICTILIUI pe-
IIeHMIA 331291 KOJUIEKTUBHOTO BBIOOPA, KaK PO, HEMOKPHITOE, He3aXBaueHHOE, MUHUMATbHOE
€1ab0yCTONUMBOE, MUHUMATIbHOE HEIOMUHUPYEMOE, MUHUMAIbHOE JOMUHUPYIOILee U He3a-
TepToe MHOXKeCTBa. MBI TaKXKe TTpe/iTaraeM HEeCKOJIbKO HOBBIX BEPCHIA KOHIICTIIINIA PeIIeHUT.

Pabota ocyiiectsieHa npu yactuuHOi puHaHcoBoit noanepxke Hayunoro ¢ounna [ocy-
TAPCTBEHHOTO YHUBepcUTeTa — Bricieit mkoibl akoHoMuku (tpant Ne 08-04-0008), Poccuii-
ckoro ¢oHaa hyHAAMEHTaTbHBIX UCCASIOBAHUMN (COBMECTHBIN POCCUIMCKO-TYPELIKUI UCCISI0-
BaTeIbCKMIA TPoeKT, TpaHT Ne 09-01-91224-CT_a) u JlabopaTopuu aHaM3a 1 BEIOOpa pelleHn i
(JTABP) TocynapcTBeHHOro yHUBepcuTeTa — BhICILIEH 1LIKOJIbI 9KOHOMUKH.

IIpenpuntbl [ocyaapcTBeHHOTO YHHBEPCUTETA — BhicIeii K061 3KOHOMUKH
pasmeniaoTcs mo aapecy: http://new.hse.ru/C3/C18/preprintsID/default.aspx

© Aneckepos ®@.T., 2009

© Cyboues A.H., 2009

© Odopmnenue. M3natenbckuii mom
TocymapcTBEHHOTO YHUBEPCUTETA —
Briciieit mkosnsl sKkoHoMuKr, 2009

1. Introduction

In decision making theory solution concepts are of major significance.
This stems from the fact that there is no single best solution for different
decision making problems — each problem dictates its own reasonable an-
SWer.

In collective decision making the absence, in general case, of a maxi-
mal element in majority relation, i.e. nonexistence of an alternative more
preferable for the majority of agents than any other alternative under binary
comparisons, is called the Condorcet paradox. This very paradox led to pro-
liferation of solution concepts over last 50 years of research in the area.

In this paper we develop a unified matrix-vector representation of such
concepts as the core, the uncovered, the uncaptured, the minimal weakly
stable, the minimal undominated, the minimal dominant and the untrapped
sets, and propose several new versions of solution sets.

At the same time this representation determines a convenient algorithm
for the calculation of solutions on majority relation.

The structure of the text is as follows. Basic definitions and notations
are given in Section 2, where relations on the universal set of alternatives
are considered in general. It is demonstrated how a relation and a subset of
alternatives can be represented as a Boolean matrix and a Boolean vector,
respectively. Also a vector-matrix representation for a set of maximal ele-
ments of an arbitrary relation is obtained in this Section.

Section 3 contains matrix-vector representations for the following solu-
tion sets: the Condorcet winner, the core, the five versions of the uncovered
set (Fishburn, 1977; Miller, 1980), the uncaptured set (Duggan, 2007), the
second version of the union of minimal weakly stable sets (Aleskerov, Kurba-
nov, 1999; Subochey, 2008), the union of minimal undominated sets (strong
top-cycles) (Ward, 1961; Schwartz, 1970, 1972), the minimal dominant set
(weak top-cycle) (Ward, 1961; Smith, 1973; Fishburn, 1977; Miller, 1977;
Schwartz, 1977), the untrapped set (Duggan, 2007). These representations
are obtained in general case, when ties are allowed.

In Section 4 new versions of some solution concepts are proposed: mod-
ifications of the five versions of the uncovered set and a new (third) ver-
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sion for a union of the minimal weakly stable sets. A criterion to determine
whether an alternative belongs to the third version of the minimal weakly
stable set is established. This criterion provides a connection between the
union of the minimal weakly stable sets and the modified second version
of the covering relation. The matrix-vector representations of the proposed
solutions are also given.

Section 5 contains matrix-vector representations for the classes of k-stable
alternatives and classes of k-stable sets introduced in Aleskerov, Subochev
(2009) (see also Subochev (2008)). These classes are defined for tourna-
ments, when there are no ties.

In Section 6 the results of the paper are summarized in the form of
Theorem.

2. Matrix-vector representation
of sets and relations: basic definitions

A finite set A of alternatives is given, |A|=n>2. Alternatives from A are
denoted by a unique natural number i, 1<i<n, assigned to each of them.
Throughout the paper plain lowercase letters without indices denote alter-
natives or numbers; plain capital letters without indices denote sets of al-
ternatives.

A relation p on A is a set of ordered pairs from A, pCAxA. Throughout
the paper Greek letters are used to denote relations. A relation p is called
symmetric if Vi, jEA (i, j)€p = (j, i)Ep. A relation is called asymmetric if
it is irreflexive, i.e. Vi€A (i, )&p, and Vi, jEA: i=j (i, j)Ep = (j, i)&p. Any
relation p can be unambiguously represented as a union of two relations,
one of which is asymmetric and the other is symmetric. They are called
asymmetric and symmetric parts of p and denoted nt(p) and o(p), respec-
tively: 7(p)CSp; o(p)Sp; m(p)Uo(p)=p; (i, ))Ep & @, DEp < (i, ))E n(p);
(4,))ep & (, HVEP = (i, j)Eo(p). A relation p is called complete if Vi, jEA
i=j = ipj v jpi. Evidently, if p is a subrelation of m, pCwCAxA, and if p is
complete, then w is complete as well.

Any relation p on a set A, |A|=n, can be uniquely represented by (nxn)
matrix. It is said that a matrix R=[rij] represents a relation

pifr,=1 < (i,j)€p and r,=0 < (i, ) &p.

Throughout the paper matrices are denoted by bold capital letters, ma-
trix elements — by plain small letters with two indices. E, O and I denote
matrices [e, ] [o, ] and [i, ] such that e,= 1ifi=j, 0 otherwise; 0,= Oandi —1
foranyi, JEA Lete denote the relation of identity, (i, j)Ee < i=j. EV1der1tly,
the matrix E is a representation of the relation e.

A set of alternatives B, BCA, can be represented by a characteristic n-
component vector b=[b ] defined in the following way: b=1 < i€B and b=0
< iZB. Let e(j) be a vector with only one (namely j’th) non-zero component
and let this component be equal 1. Then e(j) will be a characteristic vector
of a set containing only one alternative {j}. Let a denote a characteristic vec-
tor of the universal set A. By definition a=1 for any i, I<i=n. Throughout
the paper vectors are denoted by bold small letters, vector components —
by plain small letters with one index.

Since we presume that all matrices and vectors are Boolean matrices
and Boolean vectors, in all expressions, containing addition and/or multi-
plication of elements, these operations are understood as logical disjunc-
tion and conjunction, respectively. Addition and multiplication of matrices
and vectors are defined and denoted in a standard way, for instance, R' de-
notes a product of i matrices R=R -R-...-R ; R" denotes a transposed ma-

S
trix: Q=R" < q,;=r1; for alliand j, 1=i<n, l<j<n; diag(R) denotes a vector
made of diagonal elements of R, i.e. v=diag(R) < v=r, forall i, l1<i=n.
R and v denote a matrix and a vector resulted after logical inversion of
values of all elements in the corresponding matrix R and vectorv, TU =0 <
= 1. It is evident that transposition and logical inversion commute,

R =( R )". Alsoo=a ,0=0foranyi, I<i=n, isa characteristic vector for
the empty set . More generally, if v is a characteristic vector for a set V,
VCA, then v will be a characteristic vector for a set A\V. A characteristic
vector of a union of sets is a sum of characteristic vectors of the sets united.

Let P(R) and S(R) denote matrices representing rt(p) and o(p), respec-
tively. Lemma 1 contains main expressions for R, P(R) and S(R).

Lemma 1. R=P(R)+S(R); S(R)"=S(R); P(R)=(R" +R); S(R)=

(R" +R). Ifp iscomplete, then P(R)+S(R)+E=P"(R), P(R)+P*(R)+E=

S(R) , P(R)+P"(R)+S(R)+E=I.



Proof follows directly from definitions and the formulaavb=aab.

An alternative i is called p-maximal in A iff Vj: j=i jpi = ipj. Let MAX(p)
denote a set of all p-maximal in A alternatives, iEMAX(p) < iis p-maximal
in A. If R is a matrix representing p, then i€MAX(p) < Jj: j=i & rij=0 &

r=1.LetQ=R +R"  then 3j:j=i & r,=0 & r,=1 <> Jj: q,=1. TheniEMAX(p)
= qij=0 for all j, Isj=n. Let us multiply Q by a, v=Qxa. Since a=1 for all

i, Isisn,v= 2 q, -a, =0 iffqij=0 forallj, Isjsn. Then v=0 ifficEMAX(p).
k=1

Therefore v=Q-a=(R + I_{") -a =max(p) will be a characteristic vector

for the set MAX(p).
This expression can be simplified if p is complete or asymmetric.
If p is complete then Vj: j=i & rij=0 = 1}121- Consequently, iEMAX(p)

< Jj:j=i & r,=0. Let Q=R+ E, then Jj: j=i & =0 < 3j: q,=1. Then

IEMAX(p) & q; =0 for all j, 1<j<n, therefore max(p)=Q-a=(R +E)-a.
Ifpis asymmetrlc then Vj: j=i & I, =l= I, =0, and r,=0 forall i€A. Then
IEZMAX(p) < Jj: j=i & I, =1. Let Q Ry, then dj: j=i & I, =1l d q; =1.

Consequently, iEMAX(p) < qij=0 forallj, 1<j<n, therefore max(p)=Q-a
=R"-a
Let us formulate this result as

Lemma 2. 1) If R is a matrix representing a relation p, then a character-
istic vector max(p) for the set of its maximal elements MAX(p) is

max(p)=(R+l_{")-a; 2) if p is complete then max(p)=R +E)-a ;

3) if p is asymmetric then max(p)=R" -a
Corollary. MAX(p)=MAX(zt(p)).
Proof of the Corollary. nt(p) is asymmetric therefore by Lemma 2

max(a(p))=P"(R)-a . By Lemma 1 P(R)=(R" +R) . Since (R")=(R)

« Pr(R)=((R" + R))"=(R" + R)" =(R + R"). Then max(n(p))=P"(R)-a

=R+ R") -a =max(p) « MAX(p)=MAX(w(p)).
An ordered pair (i, j) such that ipj is also called a p-step. A path from i
to j is an ordered sequence of steps starting at i and ending at j, such that
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the second alternative in each step coincides with the first alternative of
the next step. If all steps in a path belong to the same relation p, we call it
a p-path. In other words a p-path is an ordered sequence of alternatives i,
J1sdys +es Jip Jiy» J» sUCh that each alternative dominates the following one
via p, i.e.ipj,j Piy» -» Jy o), » Ji,P)- The number of steps in a path is called
path’s length. An alternative j is called reachable in k steps from i if there is
a path of length k fromitoj. A p-path fromi toj is called a minimal p-path
ifi=j and there is no other p-path from i to j, which is shorter than the given
one. By definition minimal p-paths are not cycles.

Let k(p) denote the transitive closure of p: (i, j)Ek(p) if j is reachable
from i via p, i.e. if there is a p-path from i to j. We suppose that transitive
closure is reflexive by definition, ViEA = (i, i)Ek(p). Let k (k)(p) denote a
k-transitive closure of p. A k-transitive closure is an abridged version of the
transitive closure: (i, j)Exk, (p) < i=j orj is reachable from i in no more than
k steps via p, i.e. (i, j)Ek,(p) < i=j or there is a p-path from i to j of length
I: I=k. Evidently, if d is a maximum of lengths of all minimal p-paths in A,
i.e. if d is a diameter of a digraph, which represents p, then a k-transitive
closure of p will be the transitive closure of p iff k=d, k (p)=K(p) < k=d.
The value d=d(p) will be called a p-diameter of A.

Relations p, v and v

Now let us consider a framework of a collective decision making problem.
A group of agents have to choose alternatives from the set A. The number
of agents is greater than one. Each agent has preferences over alternatives
from A. Majority relation is a binary relation pu, uCAxA, constructed as
(i,j)epifan alternative i is strongly preferred to an alternative j by majority,
whichever defined, of all agents. Ifipj then it is said that i dominates j and
j is dominated by i. By assumption majority is defined so that p is asym-
metric. If neither (i, j)Eu, nor (j, i)Ep holds, then (i, j) is called a tie. A set
of ties T is a symmetric binary relation on A: TCAxA, (i, j)Et = (j, i)Er.
By definition both p and < are irreflexive, i.e. (i, i)&u, (i, i)t for all iEA.
Let v denote a relation, which is a union of p, T and &, v=pUtUe. It fol-
lows from definitions of 1, T and € that v is complete, reflexive and p=mn(v),
tUe=0(v) hold.

Acrelation pis called a tournament, if it is complete. Thus 1 is a tournament
when corresponding t is empty, T=CJ, which is equivalent to pUe=wv.

Let M=[mij] denote a matrix representing i mij=1 if an alternative,
which corresponds to a row i, dominates an alternative, which corresponds
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to a column j, and mij=0 if i is dominated by j or ties it. T=[tij] and UZ[UU]
will denote the matrices representing t and v, respectively. Evidently,
M=P(U) and T+E=S(U), therefore according to Lemma 1 the following

expressions hold: U=M+T+E=M" , M+M"+E= T , M+M"+T+E=I.

To illustrate this let us consider the following example: A={1, 2, 3,4, 5, 6},
p={(1,2),(2,3),(3,1),4,1),4,2),4,5),(5,6), (6,2), (6,4)} . Then

010000 0000 11 110011
001000 000010 0110710
M=|! 00000/ p 00011 1|y 1ol 11l
110010 001000 111110
00000 I 111000 111011
010100 101000 111101
001100 101 111 111100
100101 110111 111101
M0 10 00 0 g [0 1 1 1 1 1| F_[1 11000
000001 001101 110111
000100 111110 000 1 11
000010 101011 0101 11

A lower contour set of an alternative i is a set L(i) of all alternatives
dominated by i, L(i)={j€A: iyj}. Correspondingly, an upper contour set
of an alternative i is a set D(i) of all alternatives dominating i, D(i)={jEA:
jui}. A horizon of'i is a set H(i) of all alternatives j, for which (i, j) is a tie,
H(i)={j€A: itj}. Obviously, L())UD@{)UH(i)U{i}=A. Let 1(i), d(i) and h(i)
denote characteristic vectors of L(i), D(i) and H(i), respectively. These vec-
tors can be calculated by the following formulae.

(1) 13G)=Mvxe(i), d(i)=Mxe(i), h(i)=Txe(i)

The proof is obvious. It should be also noted that the expression
L3G)UD(®i)UH(i)U{i}=A, which must hold for any i, can be represented
asl(i)+d(i)+h(i)+e(i)=a. The latter directly follows from the formulae (1)
and M"+M+T+E=I.

In the example above for the alternative 2 we obtain

001 1 0O0)(0 0
1 001 01 1 0
01 00 0O|]0 1
1(2)=M"xe(2)= . = =e(3 L(2)={3
@=M=e@=| o] T] | e = L=
0001 O0O0(]0 0
0 00 01 0)1L0 0
01000 0)(O 1
001 000O0]|]|1 0
d2)=Mxe(2)=|} * 0 0 0 0L =|TI=e(1)+e(4)+e(6) < D(2)={1, 4, 6}
000001 0 0
01010 0)\0 1
000 0 1T1)(0 0
000 0 1 O0ff1 0
000 1 1 11(]0 0
h(2)=Txe(2)= . = =e(4 HQ2)={5
@=Txe@=| 1 o ollol =l [Fe® = HO=S)
1 1T 1.0 0 010 1
1 01 0 0 0)10 0

3. Representations for various solution concepts
in general case

The Condorcet winner and the core

The core Cris defined as a set of all undominated alternatives in A, i€Cr
< D(1)=d. That is Cr=MAX(p). Since p=mn(v), then by Lemma 2 and its
Corollary Cr=MAX(n)=MAX(v) and

cr=max(p)=max(v)=M"-a= U-a= M+T+E)-a.



In the example considered above we obtain

001 1 00

1 00101
MeT+E=M"= 010000 ’

000001

00 0T1O0O0

000010

001 1 0 0)(1 1 0

1 0010 1)1 1 0

= (01 0 0 0 0|1 1 0

cc=M+T+E)-a= 00000 1 : 11~ I = 0 =0 < Cr=0J.

000 1O0O0]]|1 1 0

000O0T1O0)U1 1 0

That is in our example the core is empty.

If a matrix R is represented as a sum of some matrices X and Y, i.e.
R=X+Y, then rij=1 = xij=1 Vy,= 1. Let R=M+E. Ifrij=1 foranyj: j=i, then
i is a Condorcet winner, i.e. an alternative dominating any other alterna-

tive. Therefore cw=(M + E)-a is a characteristic vector of a set of Con-
dorcet winners.
In our example

001 1 1 1)(1 1 0

1 00 11 1)1 1 0

—— |01 0 1 1 1|1 1 0
cw=M+E)-a= 00100 11117 T = 0 =0

1 1 1 1 00(]|1 1 0

1 01 01 0)\1 1 0

Consequently, {CW}=, i.e. a Condorcet winner does not exist.
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The uncovered set

Calculating the uncovered set in a tournament Banks (1986) considered
a product of matrices R=MxM and pointed out that an element

n

= E m, -m,, is not equal to zero iff there is at list one alternative k such
k=1

that i dominates k and k dominates j. That is rU#O iff there is a two-step
u-path from i to j: ipk & kyj. Since we presume that all vectors and matri-
ces are Boolean ones, rij=1 iff there is a two-step p-path fromitojand rij=0
iff there is no such path. Respectively, if R=MxT then rij=1 iff there is a
two-step path from i to j, where the first step is a p-step ipk, and the second
step is a T-step ktj. In other words, rii=1 <> 3k, kEA, such that ipk & ktj,
otherwise r,=0. Analogously if R=TxM then r,.=1 < 3k, k€A: itk & kpj,
and if R=TxT then rij=1 < 3k, kEA: itk & ktj, otherwise rij=0.

Five versions of the covering relation have been given in order to define
uncovered alternatives in general case. Let us denote them as o!, o', a!'l,
aVand oV, respectively.

Version 1: i coversj, (i, j)Ea! < iyj & L(G)CL(i))UH(i), then i is uncov-
ered < Vj: jui = 3k: ipk & kyj (Duggan, 2007).

Version 2: i coversj, (i, j)Ea < ipj & L(G)CL(i), then i is uncovered <
Vij: jui = 3Jk: (ipk & kyj)v(ipk & ktj) (Miller, 1980).

Version 3:1 coversj, (i, j)Ea! < ipj & D(1)CD(j), theniis uncovered <
Vij: jui = 3Jk: (ipk & kyj)v(itk & kyj) (Fishburn, 1977; Miller, 1980).

Version 4: i covers j, (i, j)Eo!Y < ipj & L(G)CL(1) & D(GH)CD()), then i
isuncovered < Vj: jui = 3Ik: (ipk & kyj) v (ipk & ktj)v(itk & kyj) (Miller,
1980; McKelvey, 1986).

Version 5: i covers j, (i, j)€a¥ < iyj & HG)ULG)CL(i), then i is un-
covered < Vj: jui = 3k: (ipk & kpj)v(ipk & ktj)v(itk & kpj)v(itk & ktj)
(Duggan, 2007).

An uncovered alternative is an alternative, which is not covered by
any alternative from A. The uncovered set UC is comprised of all uncov-
ered alternatives from A. UC!, UCY, UC™, UC"™ and UCY denote un-
covered sets derived from the first to fifth definitions of the covering rela-
tion, respectively. Since all versions of the covering relation are asymmet-
ric, uncovered alternatives and only they are maximal elements of a, that
is UC'=MAX(a!), UC"'=MAX(a"), UCT"=MAX(a!"), UCV=MAX(a!),
and UCY=MAX(a").
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Let us construct matrices representing the relations o!, o', o™, o'V and
V. Let Q=M?>+M+T+E. If ;=1 then either i=j, or itj, or iyj, or Ik: ipk &
kyj hold. Consequently, if q,=1, then i is not covered by j according to the
first version of the covering relation, (j, i)&a!. If there is an alternative j,
such that q,=0, then neither i=j, nor itj, nor iyj holds, hence jui. Also

E m, -m, =0= (mkal = m, =0) = (Vk: kyj = (kpi v kti)). Therefore,

k=1
if qij=0, then i is covered by j according to the first version of the covering

relation, (j, i)€a'. Then (q,=1 = (j, i)&a! and q,=0= (j, )€a') = Q"=

(M-M +M + T + E)" =Ris a matrix representation of o.'. Similar consid-

erations lead us to the following conclusion:( M- T+ M-M+M+T+E)",
(TM+M-M+M+T+E)",
(TM+M-T+M-M+M+T+E)"and
(T-T+T-M+M-T+M-M+M+T+E)"

are matrices representing relations o', o', 'V and oY, respectively.

Since all versions of the covering relation are asymmetric, by Lemma 2
we obtain the following formulae for characteristic vectors uc!, uc', uc'”,
uc" and uc" of the uncovered sets UC!, UC!Y, UC™, UC™Y and UCY:

uc=max(c)=R"-a=Q-a,

uc'=max(a)=M-M+M+T+E)-a,

uc"=max(a")=M-T+M-M+M+T+E)-a,

uc"=max(c™M=(T - M+M-M+M+T+E)-a,

ucV=max(a™V)=(T-M+M-T+M-M+M+T+E)-a and

ucV=max(aV)=(T-T+T-M+M-T+M-M+M+T+E)-a.
For the example considered above we obtain
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MxT+M>+M+T+E
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{1,2,3,4,5, 6}=A.

= UC]V

=I, therefore uc¥=

Evidently, T>+1

T-T+T-M+M-T+M-M+M+T+E)-a

< Ucv=ucv
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Finally, it should be noted that in terms of matrices M and U the expres-

uc'=M-M+M+T+E)-a

sions for the characteristic vectors can be written simpler: uc'=(M -M + U)-a,

uc'=M-U+U)-a,uc"™=(U-M+U)-a,uc"=(U- M+M-U+U)-a

anduc*=U-U-a.
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The uncaptured set

The concept of the uncaptured set was proposed by Duggan (2007).

Let us define the capturing relation . An alternative i is captured by an
alternative j, (j, i)Ep iff none of the following propositions holds: 1) (j, i)&pu;
2) 3dk: (ipk & kpj)v(ipk & ktj)v(itk & kyj); 3) Ak, 1: (ipk & kul & Ipj)v (ipk
& krtl & 1yj). An uncaptured alternative is an alternative, which is not cap-
tured by any alternative from A. The uncaptured set UCp is comprised of
those and only those alternatives that are uncaptured, that is iEUCp iff
any alternative dominating i is either 1) reachable from i in two steps, at
list one of which is a p-step, or 2) reachable from i in three steps, the first
and the last of which are p-steps. Since capturing relation is asymmetric,
uncaptured alternatives and only they are maximal elements of 3, that is
UCp=MAX(p).

Let Q=MxTxM+MxMxM+MxT+TxM+MxM+M+T+E. If q.=1
then either i=j, or itj, oriyj, or Ik: (ipk & kuj)v(ipk & ktj)v(itk & kyj), or
3k, I: (ipk & kul & Iyj) v (ipk & ktl & 1) hold. Consequently, if q,;=1 then

i is not captured by j, (j, i))&B, and (j, i)EP if qij=0. Therefore R=Q" =

=M-T-M+M-M-M+T-M+M-T+M-M+M+T+E)" isama-
trix representation of the capturing relation f3.

Since capturing relation is asymmetric, by Lemma 2 we obtain the fol-
lowing formula for characteristic vector ucp of the uncaptured set UCp:

ucp=max(f)=R"-a= E =

M-TM+M-M-M+T-M+M-T+M-M+M+T+E)-a,

ucp=M-U-M+U-M+M-U+U)-a.

In our example TxM+MxT+M?>+M+T+E=I, therefore ucp= T-a=a
< UCp=UC"=A.

The minimal dominant, minimal undominated and untrapped sets

Aset B, BCA, is called a dominant set if each alternative in B dominates
each alternative outside B, iEB < (VjEA\B = ipj) (Ward, 1961; Smith,
1973). A dominant set will be called a minimal dominant set (denoted MD)
if none of'its proper subsets is a dominant set (Fishburn, 1977; Miller, 1977,
Schwartz, 1977).
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A set B, BCA, is called an undominated set if no alternative outside
B dominates some alternative in B, i€B < (VJEA\B = (j, i)&un) (Ward,
1961). An undominated set is called a minimal undominated set if none of
its proper subsets is an undominated set (Schwartz, 1970). If such a set is
not unique, then the solution is defined as a union of these sets (Schwartz,
1972), which is denoted MU.

Let us define the trapping relation v. It is said that an alternative i traps
an alternative j iff i dominates j and i is not reachable from j via u (Duggan,
2007), (i, )€y < (1,j)Eun & (, i)&x(n). An untrapped set UT is comprised
of those and only those alternatives that are not trapped by any alterna-
tive from A (Duggan, 2007). Since the trapping relation y is asymmetric,
untrapped alternatives and only they are maximal elements of vy, that is
UT=MAX(y).

k k
Let us consider matrices M(k)= 21 M' +E and U(k)= 21 U'; m(k)ij=1 iff

there is a p-path from an alternative i to an alternative j, j=i, of length s:
0<s<k, also m(k)n=1 for all i€A. Consequently M(k) is a matrix representing
a k-transitive closure of u, K, (1). Respectively, U(k) is a matrix representing
K, (v). Since A is finite there must be a minimal p-path of length maximal
among all minimal p-pathsin A. Let d(p) denote the length of such a path,
i.e. d(p) is a p-diameter of A. Then if follows from the definition of «, (p)
that k, (1)=K d(m(l,l) ifk<d(u)andx, (u)(u)=Kk(u)=K(u) forany k: k=d(p). There
must be a minimal v-path of length maximal among all minimal v-paths
in A as well. Let its length be denoted by d(v). Analogously, k, (v)=K,, (U)(v)
if k<d(v) and x, (v)=k (V)= (v) for any k: k=d(v). Since M, , and U
represent x, (1) and , (v), M( ) and U( dwy AT the representations of k(L)
and x(v), respectively. Let us note that M =M &M M

@)™ dw-1) @) R+
and U =U & U U hold.

To ((d:gi)cula(&g)tlk)le mi(ri(i%al ci(gﬁ);ilr)lant set MD and the union of minimal
undominated sets MU we will use the following Theorem (Deb, 1977):
MU=MAX(x(n)), MD=MAX(x(v)).

Since MU=MAX(x(u)), p=x(1), R=M(d), d=d(p). By Lemma 2 a char-
acteristic vector of the union of minimal undominated sets MU is

mu=(M  + M:;))-a )

A diameter d is determined by a condition M( d);eM &M ( d)=M

(d-1) (d+1)”
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Now let us consider MD. Since MD=MAX(x(v)), p=k(), R=U(d),
d=d(v). Since v is always complete and pCk (p) holds for any natural k,
completeness of v implies completeness of k (v) and k(v). Therefore by
Lemma 2 a characteristic vector of the minimal dominant set MD is

md=(U(d)+E)-a=I_J(d)-a.

A diameter d is determined by a condition U ;=U , & U =U . .

Let Q=M( d(u))+T‘ If qij=1 then either itj or ik(p)j holds. Consequently,
if qij=1 then i is not trapped by j, (j, )&y, and (j, )&y if qij=0. Therefore if

d=d(p) then R=Q" =(M ot T)" is a matrix representation of the trap-
ping relation y.

Since trapping is asymmetric, by Lemma 2 we obtain the following for-
mula for the characteristic vector ut of the untrapped set UT:

ut=max(y)=R"-a=Q-a =M, +T)a.

Adiameter d=d(p) is determined by a condition M ) d);eM
or, alternatively, Md;eM( oy & Md+'=M( o
For the example considered above we obtain
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00 0 00

M, =M*+M =
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- o O o O
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—_— = = = e e
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mu=(M(3)+M(3))'a=111111+111000'1=
P11 11 1]t 110001
r1 111111000/ U

00011 1)(1) (0

0001 1 1][1] |0

oo o 11 af]1] |o

o000 o0o0l|1] 1]

00000O0|[1] |1

000000 U

Consequently, MU={4, 5, 6}.
11 1000) (00001 1))(1
11 1000[]0000T10[[[1

——— it 11000/ l0o0o01 1 1|l

u=Mg +Da= o 1 floo 1 00 ofl1]”
P11 11111100 0l]l]1
P11 111)to1000) U

00010 0)(1) (0

00010 1||1] |0

000000[[1 |1

00000O0||1] |1

00000O0||1] |1

000000 U

Consequently, UT={3, 4, 5, 6}=UC".
Note that MD=A since always UCpCMD (Duggan, 2007) and UCp=A
in this example.
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The minimal weakly stable set

The first version of this solution was introduced by Aleskerov and Kur-
banov (1999). A set B, BCA, is called a weakly stable set if it has the follow-
ing property: if i belongs to B, then for any j outside B, which dominates i,
there is an alternative k in B, which dominates j, Vi€A, i€EB < (F&B: jui
=> JkEB: kyj). In terms of upper and lower contour sets B is weakly stable
iff Vi€B BNL(j))#3 = BND(j)#dJ.

Subochev (2008) proposed a second version of a weakly stable set. B is
a weakly stable set iff Vj: j&B = BND(j)*. That is B is a weakly stable
set iff there is one-step path from some alternative in B to any alternative
outside B.

A weakly stable set is called a minimal weakly stable set if none of its
proper subsets is a weakly stable set. If such set is not unique, then the so-
lution is defined as a union of these sets. Thus we have two versions of this
solution: MWS! and MWS™,

To calculate a second version of a union of minimal weakly stable sets
MWS!" we will use the following Theorem (see Subochev (2008)): an alter-
native i belongs to a minimal weakly stable set (second version) iff i is un-
covered according to the third version of the covering relation or some al-
ternative from the lower contour set of i is uncovered according to the third
version of the covering relation, IEMWS! < either icUC™, or 3j: jEL() &
JEUCH!, That is an alternative belongs to a union of minimal weakly stable
sets MWS! iff it ether belongs to UC™, or belongs to an upper contour of
some alternative from UC™, Consequently, MWS! is a union of UC" and
upper contours of all alternatives from UC™. A characteristic vector d(i) of
upper contour set of an alternative i is given by the formula d(i)=Mxe(i).
Therefore, for a characteristic vector d(UC™) of a union of upper contour
sets of all alternatives from UC!"! we obtain

d(UCI)= 2 dg) = E M -e(i) =Mx 2 e(i) =Mxuc!'!’.

iE(JC]“ iE(JCl“ iE(JC]“

Thus mws"™=uc+d(UC"™)=uc™+Mxuc"'=(M+E)xuc and finally

mws'=(M+E)x(T-M+M-M+M +T +E)-a =(M+E)x

x(U-M+U)-a.
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In our example uc'= = mws''=

[ S e T
-_o = O O O
S = = O O O
_—_— O O O O
_— = = = O =

O S S T = =

—_— O = O = =
o o O = = O

O OO = = O

=a < MWS!I=A,
Unfortunately, we cannot get similar representation for the original ver-
sion of a union of minimal weakly stable sets MWS!.

4. New versions of the uncovered and weakly stable sets

As it has been already noted in Subochev (2008) neither Fishburn, nor
Miller did explicitly include a condition jui into their definitions of the
covering relation (third and second versions, respectively). That is none of
them says that an alternative i can not be covered by an alternative j, which
ties i, jti. Miller (1980, p. 94) proposed only L())CL(j) & D()CD(i) as a
definition of the covering relation for general case, t#O. If p is a tourna-
ment then it does not matter which version of the covering relation is ap-
plied, since in tournaments Miller's and Fishburn's versions coincide with
all other versions and imply jui when j covers i. But if there are ties, T#J,
the absence of this condition in the definition makes a difference. If it is
dropped one gets five more versions of the covering relation and of the un-
covered set.

1)jcoversiif L(i))CLG)UH(), i is uncovered < Vj: j=i = iyj or Ak: ipk
& kyj;

2) j coversiif L(1))CL(j) (Miller, 1980),

iis uncovered < Vj: j=i = iyj or Ak: (ipk & kyj)v(ipk & kTj);

3)jcoversiif DG)CD() (Fishburn, 1977),

iis uncovered < Vj: j=i = iyj or Ak: (ipk & kyj)v (itk & kyj);

4)jcoversiif L(i))CL(j) & D(G)CD(i) (Miller, 1980),

i is uncovered < Vj: j=i = ipyj or Ak: (ipk & kyj)v(ipk & ktj)v(itk &
kpj);

5)jcoversiif HA)UL®)CL(),
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iis uncovered < Vj: j=i = iyj or Ak: (ipk & kpj)v(ipk & ktj)v(itk &
kwj)v (itk & kTj).

The condition jui in the definitions is what makes the covering relation
asymmetric. Under these modified definitions the covering relation may pos-
sess a symmetric component. For instance, ifitj and L(i)=L(j) then i covers
jand j covers i according to Miller’s definition of the covering relation.

Leta™ ,UCN jucN (N=I+V)denote the modified versions of the cover-
ing relation, the corresponding versions of the uncovered set and their char-
acteristic vectors, respectively. It follows from the definitions that modified
uncovered sets are smaller than original ones: UCN_CUCN. Considerations
similar to those that produced matrix-vector representation of o' and UC'
lead us to the following formulae

p=a! =R=M-M+M+E)" juc’ =M-M+M+E)-a;

p=ao! =R=M-T+M-M+M+E)",

uc! =M-T+M-M+M+E)-a;

p=ao' =R=(T-M+M-M+M+E)",

uc" =(T-M+M-M+M+E)-a;

p=aV =R=(T-M+M-T+M-M+M+E)",

ucV =T-M+M-T+M-M+M+E)-a;

p=a =R=(T-T+T-M+M-T+M-M+M+E)",

ue! =T-T+T-M+M-T+M-M+M+E)-a.
Absence of T in a sum is what differs all of these formulae from their un-

modified counterparts. In terms of M and U the expressions for the char-
acteristic vectors are the following:

uc' =M-U+E)-a,
uc' =(U-M+E)-a,

uc” =(U-M+M-U+E)-a,

uc! =(T-T+U-M+M-U+E)-a.
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Let us also propose a new (third) version for the definition of a weakly
stable set: B, BCA, is a weakly stable set iff Vi: icA\B = BN(D({)UH(i))=J.
That is B is a weakly stable set iff there is a one-step v-path from some al-
ternative in B to any alternative outside B, Vi: i€A\B 3 j: j€B & jui. Cor-
respondingly, B is not a weakly stable set iff di: BCL(i), i.e. iff there is an
alternative dominating all alternatives from B.

The weak stability under the third definition, like its second version, is
monotonous. That is if BCC and B is a weakly stable set, then C is a weakly
stable set as well. If C is not a weakly stable set, then any B, such that BCC,
is not a weakly stable set.

This new definition gives us one more solution — a third version of a un-
ion of minimal weakly stable sets MWS!!. Minimality is defined here in a
standard way: a set is a minimal weakly stable set if none of its proper sub-
sets is weakly stable. The difference between sets MWS!, MWS"and MWS!!
lies in the definition of the weak stability only. In a tournament MWS™ co-
incides with MWS"and MWS",

A criterion to determine whether an alternative belongs to a minimal
weakly stable set under the third definition is given by the following

Lemma 3. An alternative i belongs to a minimal weakly stable set (third
version) MWS! iff i is uncovered according to the second version of the
covering relation or some alternative from the lower contour set of i or from
the horizon of i is not covered by any alternative from the upper contour
set of i according to the modified second version of the covering relation,
IEMWS! < either icUC", or Jj: jeL(i)UH(i) & (Vk: k€D(i) = (juk or
Al: (ul & 1pk) v (jul & Itk))). Correspondingly iEMWS!" < (iEUC" and Vj:
JEL()UH(1) = 3k: keD(i) & L(G)CL(k)).

The proof of Lemma 3 is given in the Appendix.

Lemma 3 allows us to find a matrix representation for MWS™,

LetR=M-T+M-M+M+E=M-U+E .Thenrij=0iffiisn0tcovered
by j according to the modified second version of the covering relation. Let
b and ¢ be characteristic vectors of sets B and C, BCA, CCA, respectively.
Let v=Rxb, then v=1 iff an alternative i is covered at list by one alternative
from the set B according to the modified second version of the covering re-
lation. Consequently, v, =1 iff an alternative i is not covered by any alter-

native from the set B according to the modified second version of the cov-

ering relation. Then a scalar product (cx v )= E c, v, =liffthere is at list
k=1
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one alternative in C not covered by any alternative from the set B accord-
ing to the modified second version of the covering relation. Now let B=D(j),
C=L(i))UH() and f=(cx v ). Then £=1 iff there is some alternative from
the lower contour set of i or from the horizon of i not covered by any alter-
native from the upper contour of i according to the modified second ver-
sion of the covering relation, i.e. fis a characteristic vector of precisely those
alternatives that satisfy the aforementioned condition. According to the
formulae (1)
b=d(i)=(Mxe(i))=m,;
¢ =l(), +h(i) =(M"xe(i)), +(Txe(i)), =m, +t =m -+t .

As a result f= E (m, +t,) (M-U+E),-m_,thatis

i
i

f=diag((M+T)x(M-U +E)-M).
Let mws'" denote a characteristic vector of MWS!!!, Then by Theorem 1
mws'"=uc"+f. Therefore

mws'"'=(M-U + U)-a +diag(M+T)x (M- U + E)-M ).

5. Classes of k-stable alternatives and k-stable sets

Let p be a tournament. Then t=U, v=, M<k)=U(k), d(p)=d(v)=d and
all steps and paths are p-steps and p-paths. Since u is complete, all «, (1)
are complete as well. Some solutions considered above coincide in a tour-
nament:

1) the Condorcet winner coincides with the core {CW}=Cr;

2) all versions of the uncovered sets coincide with each other and are
denoted as UC;

3) all versions of the union of minimal weakly stable sets coincide with
each other and are denoted as MWS;

4) the union of minimal undominated sets MU and the untrapped set
UT coincide with the minimal dominant set MD, MU=UT=MD.

An alternative i is called generally stable if every other alternative in A
is reachable from i. Every alternative in A is reachable from i iff i belongs
to a minimal dominant set (Miller, 1977), thus all alternatives of a mini-
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mal dominant set and only they are generally stable. Since A is finite, if j is
reachable from i, then there is a path from i to j with a minimal length. Let
1(i, j) denote a minimal length function, i.e. 1(i, j) is equal to the length of
a minimal path from i to j. By definition 1(i, i)=0.

An alternative i is called a k-stable alternative if njleix 131, j)=Kk, i.e. if it

is possible to reach any other alternative in A from i in no more than k steps,
but there is at list one alternative reachable from i in exactly k steps (Ales-
kerov, Subocheyv, 2009). SP o denotes a class of k-stable alternatives in A.
P ® denotes a set of those generally stable alternatives, from which it is pos-
sible to reach any given alternative in A in no more than k steps,
P(k)ZSP(])+SP(2)+...+SP(k).

This definition and the fact that t=O together imply i€P <

(k)
IEMAX(x, (1)), i.e. P(k)ZMAX(Kk(u)). Let Py denote a characteristic vec-

tor of P(k). By Lemma 2 P= M ©* E)-a=M o' Since all matrices are

k
Boolean ones, the following equation holds E M' +E=(M+E)*. Conse-
i=1

k E
quently M, = 2 M' +E=U*andp,=U"-a.

i=1

Letsp © denote a characteristic vector of SP(k). By definition of P " iESP(k)

= iEP(k) & i&P(k_l). Therefore SP =P Pty = Py + Pty » that is

Sp(k)zp(k)-'-p(kfl) ZM( -a+1\_/[ '3=Uk'a+U“"-a_
=E.

k) (k-1)

Ifk=1then M E-a=0=sp =p,=(M+E)-a =cw—a Con-

(k-1)
dorcet winner.

Ifk=2thenM, =M+E. (M + E)-a =cw. Ifcw=o, i.e. if there isa Con-

(k-1)

dorcet winner, then (M? + M +E)-a =cw . cw+cw =a = SP,,= CW + CW

=a =o, that is SP(Z) is empty. If there is no Condorcet winner, cw=o0, then

P, =P, = (M?*+M +E)-a =uc, which corresponds to SP(2)=UC if
{CW}=J.
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It is also evident that p, = (M’ + M* + M+ E)-a =ucp.

Since A is finite there must be a finite number m= max (max I(i, j)) —
i jeA

a maximum of degrees of stability, i.e. a maximum of lengths of minimal
paths 1(i, j) from alternatives that belong to MD to all alternatives in A.
Then P(m)=MD and SP(k)=® for all k: k>m.

By definition a p-diameter of A, which was used in calculations of mu
and ut, is a maximum of lengths of minimal paths 1(i, j) from a// alterna-

tives in A to all other alternatives in A: d= max (max I(i, j)). Consequent-
i JEA

ly, m=max (max I(i, j))=max (max I(i, j))=d. Since in a tournament
ieMD JEA iEA JEA

MU=UT=MD=P(m), one needs not multiply matrices U till the value of d
is determined — it is enough to find m (which might be much smaller than
d) and then stop.

As it was shown in Subochev (2008) SP =& forall k: ksm and SP =0
for all k: k>m, the value of m can be determined from the condition
Pin-ty*Pian) & Py =Py 1-€-

P =MD < md=p .

A set B, BCA, is called a k-stable set if for any alternative j outside B,
JEA\B, there exists a p-path of length 1: 1<k to j from some alternative i
from B, i€B, but at the same time there is at list one alternative j outside B,
JEA\B, such that it is reachable in exactly k u-steps from any i: i€B (Subo-
chev, 2008). A k-stable set will be called a minimal k-stable set if none of its
proper subsets is a k-stable set. It follows from this definition that a weakly
stable set is a 1-stable set.

SS o denotes a class of those alternatives, which belong to some mini-
mal k-stable set, but do not belong to any minimal stable set with the de-
gree of stability less than k. By construction these classes do not intersect.
S © denotes a union of those minimal generally stable sets, from which it is
possible to reach any alternative outside a set in no more than k steps. Evi-
dently S =SS, +S8S,+...+SS .

A relation p is asymmetric, but if there is no Condorcet winner, all rela-
tions k, (1), k=2, possess a symmetric component, since all , (i) are com-
plete and |MAX(K2(]J))|:|P(2)|:|UC|23 for any A: |Al=4 (Miller, 1980). Let
Yy denote x, (1), v o K, (n). Let u(k)=n(Kk(u)) and r(k)=0(Kk(u)). 1t follows
from the definitions that v, =V, By, =H, T, =TUE.
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Let us consider v ,, and p,,, as new versions of relations v and p. If a set
B, BCA, is a k-stable set it follows from the definition of a k-stable set that
any alternative j outside B will be reachable from some alternative i from B
inone v -step, i.e. Vj: JEA\B = 3i: i€B & iv . j. If the degree of stability
of Bis greater than k, then 3j: JEA\B & Vi: iEB = (i, j)&v e Consequently,
if B is a minimal k-stable set with respect to ., it must be a minimal weakly
stable set (third version) with respect to v e Conversely, if B is a minimal
weakly stable set (third version) with respect to v ©? then it must be a mini-
mal stable set with degree of stability no less than k with respect to p.

Let SS ) and S denote characteristic vectors for classes of k-stable sets
SS,,and theirsums S =SS | )+SS o188, respectively. Let MWS!(y ™)
and mws'" (v () denote a union of minimal weakly stable sets (third ver-
sion) and its characteristic vector calculated with respect to the relation
v, on A. Then i€SS |/ = IEMWS" (v ) and iIEMWS"(v ) = iESS
x: x<k, that is SS(k)QMWS”‘(v(k)) and MWS“‘(v(k))QS(k). Consequently
s(k)=mws'”(v(k))+s(kfl). Since the first class SS | is nothing other than a un-
ion of weakly stable sets (with respect to ), we obtain the following induc-
tive formulae for calculation of S

e — _ Y172
s(l)—ss(l)—mws—(M+E)><p(2)—UxU -a

S +mws"(v +M-U+U)a +

® Sk ©) S

+diag(M +T)-M-U+E)-M),
where U =M, M —(M;;) + M(k)).
Since P CS CMD (Subochey, 2009) iterrations will stop some-

k)— (k)— (k+2)
where between k=m-2 and k=m, when St becomes equal to md=p(m). Fi-

nally i€SS | < i€S | & iS . Therefore ss =5, xS, | =S +Sqp »

thatisss, =s, +s,, -

6. Conclusion

The following Theorem summarizes the results of this paper.
Theorem. Let cw, cr, uc™ (N=I1+V) and uc™ , mws", mws'"', ucp, mu, ut
and md, respectively, denote characteristic vectors of the following solu-
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tions: the Condorcet winner {CW}, the core Cr, five versions of the uncov-
ered set UCYN (N=I+V) and their modifications UCN , the second and the
third versions of the union of minimal weakly stable sets MWS™ and MWS™,
the uncaptured set UCp, the union of minimal undominated sets (strong
top-cycles) MU, the untrapped set UT, the minimal dominant set (weak
top-cycle) MD. Let P> S P and s ® denote characteristic vectors for
classes of k-stable alternatives SP( o classes of k-stable sets SP(k), and their
sums P(k)—SP(1)+SP(2)+ +SP(k), S(k)—SS(l)+SSQ)+. +SS respectively. Let
a denote a characteristic vector of a universal set A. € denotes the relation
of identity, which is represented by the matrix E=[6ij] .d=d(p) isa p-diameter
of A. Let M, T, U denote Boolean matrices representing relations p, T and

k k
v=pUtUe on A. Finally, let M= Y M' +Eand U, =Y U".
i=1 i=1

1) cew=M+E)-a,

er=M+T+E)-a=U-a=M"-a

uc'=M-M+M+T+E)a=M-M+U)-a,

uc' =M-M+M+E)-a,

uc'=M-T+M-M+M+T+E)-a=M-U+U)-a,

uc' =M-T+M-M+M+E)-a=M-U+E)-a,

uc"=(T'M+M-M+M+T+E)-a=U-M+U)-a,

" =(T-M+M-M+M+E)-a={U-M+E)-a,

uc"'=T-M+M-T+M-M+M+T+E)-a=U-M+M-U+U)-a

uc” =T-M+M-T+M-M+M+E)-a=(U-M+M-U+E)-a,

wc'=T T+TM+M-T+M-M+M+T+E)-a=U-U-a,
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+M-U+U)-a+

(k)?

uc! =(T-T+T-M+M-T+M-M+M+E)-a= s(k)zs(k_l)+mws“'(v(k))zs(k_l)
(T-T+U-M+M-U+E)-a, +diag((M +T)-(M-U +E)-M ),
up=M-T-M+M-M-M+T-M+M-T+M-M+M+T+E)-a= $5,,= S, + Sy
~M-U-M+U-M+M-U+U)-a, where U =M, M=(M{, + M, ).

mws'=(M+E)x(T-M+M-M+M+T+E)-a =(M+E)x
(U-M+U)-a,
mws'"'= (M- U + U)-a +diag(M+T)x(M-U + E)- M),

mu=M , + M(‘;))-a ,d=d(p): (M =M ) & M =M., ),

ut=M, +T)-a,d=d(n): (M =M, ) &M =My, ),

md= U(d) -a, d=d(v): (U(d)#U ) & (U(d):U

(d-1) (d+l))'

2) If pis a tournament, then T=0, U=M+E, M(k)=U(k)=Uk and

= . = k.
p(k)—M(k) a=U"a,

=U"-a+U"" " a,

Py =Py * Py ~My-a+ M, -a

CW=p ,=Sp = M+E)-a=U-a,

uc=p(2)=(M2 +M+E)-a ~U’-a ,

ucp=p, =M’ + M’ + M +E)-a =ﬁ-a,

mu:ut:md:p(m)z (M(m) + E) -a = Um -a y m: p(m—])#p(m) & p(m)zp(m+]),

e — _ —TToTT2.
s(l)—ss(1)—mws—(M+E)><p(2)—UxU a,
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Appendix

Proof of Lemma 3. Suppose i€B, B is a minimal weakly stable set (third
version), BCMWS!, Then B\{i} is not weakly stable <> 3j: (B\{i})CL(j). At
the same time if j&B then BN(D()UH(j))=J. Consequently either j=i or
i€ED(j)UH()) holds, that is ieD(j)UH(j)U{j}. A condition iED () UH () U{j}
is equivalent to jEL(1)UH (1) U{i}.

A condition (B\{i})CL(j) is equivalent to BCL(j)U{i}. Since by assump-
tion B is a weakly stable set and BCL(j)U{i} then L(j)U{i} must be a weakly
stable set as well (monotonicity of weak stability). Consequently, if B is a min-
imal weakly stable set and i€B then it is necessary that Jj: jEL(i) UH (i) U{i}
& L(j)U{i} is a weakly stable set.

Let us prove that this condition is sufficient for the existence of a min-
imal weakly stable set B such that i€B. Suppose 3j: jELGH)UH®G)U{i} &
L(j)U{i} is a weakly stable set. If L(j)U{i} is minimal then B=L(j)U{i}. If it
is not then 3C: CCL(j)U{i} and C is a minimal weakly stable set. By defi-
nition L(j) is not a weakly stable set. Since C is weakly stable, C is not a
subset of L(j) (monotonicity of weak stability). But CCL(i)U{i}, therefore
ieC and B=C.

Thus, i belongs to a minimal weakly stable set iff Jj: jEL(G)UHG)U{i}
and L(j)U{i} is a weakly stable set.

L(i)U{i} is not a weakly stable set < Jk: (L(1)U{i})CL(k) < kui &
L()CL(k) < i¢UC". Therefore, L(i)U{i} is a weakly stable set iff i is un-
covered according to the second version of the covering relation, icUC™.

Suppose 3j: 1) jEL(i))UH(1) & 2) L(j)U{i} is not a weakly stable set. Then
(2) « Jk: (LGYU{iHCSL(Kk). Then (L(G)U{i})CL(k) « LG)CL(k) & {i}CL(k).
Then {i}CL(k) < ke€D(). Since by definition D({)N(L(I))UH(i))=9 for
any i€A, (EL(i))UH(i) & k&ED(i)) = k=j. Then (k=j & L()CL(k)) < j is
covered by k according to modified second version of the covering rela-
tion. Consequently, 3j: 1) JEL(i))UH(i) & 2) L(j)U{i} is not a weakly stable
set < Jj, k: 1) jEL({1)UH() & 2) keD(i) & 3) j is covered by k according to
modified second version of the covering relation. Therefore a set L(j)U{i}:
JEL@{)UHC() is weakly stable iff j is not covered by any alternative from the
upper contour set of i according to modified second version of the cover-
ing relation.
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Therefore Jj: 1) jEL(1)UH(1))U{i} and 2) L(j)U{i} is a weakly stable set
< either i€UC", or 3Jj: 1) jJEL(i)UH(i) & 2) j is not covered by any alter-
native from the upper contour set of i according to modified second ver-
sion of the covering relation.

As aresult, i belongs to a minimal weakly stable set (third version) MWS™
iff either x is uncovered according to the second definition of the covering
relation, or some alternative from the lower contour set of i or from the ho-
rizon of i is is not covered by any alternative from the upper contour set of
i according to modified second version of the covering relation.
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