
Semantic clustering of Russian web search results:
possibilities and problems

Andrey Kutuzov

Mail.ru Group, National Research University Higher School of Economics

Abstract. The present paper deals with word sense induction from
lexical co-occurrence graphs. We construct such graphs on large Russian
corpora and then apply the data to cluster the results of Mail.ru search
according to meanings in the query. We compare different methods
of performing such clustering and different source corpora. Models of
applying distributional semantics to big linguistic data are described.

1 Introduction

The presented paper deals with the problem of semantic clustering of search
engine results page (SERP). The problem arises from the obvious fact that
many user queries are ambiguous in some way. Thus, search engines strive to
diversify their results and to present such results that are related to as many
query interpretations as possible. For example, Google search for the Russian
word ‘максим’ returns:

1. five results related to a popular singer,
2. two results for a magazine,
3. one result for http://lib.ru, Maxim Moshkow’s electronic library,
4. one result for a proper name.

However these results are not sorted by their meaning and are returned simply
according to their relevance ranking, which for many of them seems to be almost
equal. The obvious way to cluster the results is by the words their snippets share.
Unfortunately, often snippets for results belonging to one query sense do not have
a single content word in common (except for the query itself, which is useless).
Cf. two snippets for the first query meaning from the example above:

1. ‘МакSим начинает самостоятельно заниматься своей карьерой, пишет
новые песни. В этот период певица выступает как малобюджетный
проект, ...’

2. ‘МакSим презентовала видеоклип «Я буду жить», получивший широкую
огласку еще до момента появления видео в сети.’

They do not have a single common word, but still belong to one meaning (popular
singer).

Moreover, snippets for different query senses can share some words. Cf. two
snippets from the same search engine results page. They share the word ‘автор’
(‘author’), however the first snippet relates to the first meaning, while the second
snippet shows the third one:

ar
X

iv
:s

ub
m

it/
10

98
73

9 
 [

cs
.C

L
] 

 2
6 

O
ct

 2
01

4

http://lib.ru


1. ‘МакSим (Марина Абросимова) – одна из самых популярных и коммерче-
ски успешных певиц в России, являющаяся автором и исполнителем...’

2. ‘Работает с 1994 года. Книги и тексты, разбитые по жанрам и авто-
рам.’

That means that there is a need for more sophisticated way to cluster search
results. We should somehow learn which senses the query has and with which
words these meanings are (probabilistically) associated. One of the possible ways
to solve this problem is by extracting co-occurrence statistics from large corpora.
The idea behind this is that word meaning is in fact the sum (or the average) of
its uses. So, meaning is a function of distribution (cf. [1]). Thus, if we know with
which words the query typically co-occurs and how these neighbors are related to
each other, then we know the ‘sense set’ of the query. After that we can somehow
measure semantic similarity of each search snippet on the SERP with each of
the senses and map them to each other. This information can then be used to
either rank the results, or mark them with appropriate labels.

The structure of the paper is as follows. In Section 2 we briefly overview
work previously done on the subject. Section 3 describes the process of building
co-occurrence graphs from large Russian corpora. In Sections 4 and 5 we conduct
an experiment on clustering SERPs with ambiguous queries from Mail.ru search
engine with the help of the methods described before. The results are evaluated
in Section 6. Section 7 draws conclusions concludes and provides suggestions for
further research.

2 Related Work

As stated in the previous Section, we are inspired by a fundamental hypothesis
than meaning depends on the distribution [1] and that frequency of linguistic
phenomena (in our case, word co-occurrence) is important for determining these
phenomena’s place in the system of language [2]. Our work is also based on the
idea that the senses of ambiguous lexical units should be induced from the data
itself, not from a dictionary. No dictionary is perfect or comprehensive, because
‘senses as identified in the dictionary identify points on a continuum of possibilities
for how the word is used’ [5]. The only robust source of words’ meanings in the
text is the text itself. That’s why we shift our focus away from selecting the
most suitable senses from a pre-defined inventory towards discovering senses
automatically from the raw data, which is natural text.

One of the first notes on practical application of this idea to word sense disam-
biguation and word sense induction is found in [3], where vector representations
of word similarity derived from co-occurrence data are used. Broad review of
contemporary (by 2012) state of the field is provided in [4].

The main source of methods for our present research is [6], which describes
workflow for clustering web search results using graph analysis over co-occurrence
networks. Specifically, we use the notion of query graph, consisting of query terms
and words from search engine results page augmented with nearest neighbors and
relations from a reference corpus. For partitioning query graph and clustering



query senses we employed Curvature algorithm [6] and Hyperlex algorithm
proposed in [7].

3 Building Co-Occurrence Graph

The first thing we had to do was to select a text corpus to build the graph upon.
It is well known that the larger the corpus is the more co-occurrence information
it contains. However, increasing corpus size also leads to exponentially growing
computation time. Thus, for the sake of time and because of the preliminary
nature of our research, we restricted ourselves to three Russian corpora of smaller
but still decent size:

1. Open Corpora1 (1 million tokens), further ‘OC’ ;
2. Disambiguated fragment of Russian National Corpus2 (1 million tokens),

further ‘RNC’ ;
3. Corpus of random search queries from Mail.ru search engine3 (2 million

tokens), further ‘QC’.

The first two items are academic corpora of Russian texts, supposedly representing
(written) language in general. They differ in that the first one consists of full
texts published under various free and open licenses, while the second one is a
random sample of sentences from the larger Russian National Corpus. Both of
them come with morphological annotation.

The third corpus was taken for comparison. It is important in view of the
aim of our research (to test semantic SERP clustering). Our intuition was that
perhaps query corpus provides more ‘real-life’ sense inventory. It is two times as
big as its counterparts, because ‘connectivity’ between its members is lower (see
Table 2) and we had to compensate for this.

At the same time, it turned out that the first two corpora mixed into one
give better results, thus below we will often refer to such ‘meta-corpus’ as ‘Mix
corpus’.

Before constructing the graph itself, we preprocessed the corpora, namely:

1. Removed from QC all queries which did not contain Cyrillic characters (as
apparently they are not Russian),

2. Processed QC with Freeling analyzer [8] to extract lemmas and morphological
information for all tokens,

3. Removed stop words,
4. Removed all tokens except nouns, as we restrict ourselves to inducing only

nominal senses (the same strategy was applied in [6]).

Sizes of preprocessed corpora are given in Table 1. Average query length in
QC is 2.47 noun tokens per query.
1 http://opencorpora.org
2 http://ruscorpora.ru
3 http://go.mail.ru

http://opencorpora.org
http://ruscorpora.ru
http://go.mail.ru


Table 1. Sizes of corpora participating in the experiment

Corpus Size (tokens)
OC 490671
RNC 294849
Mix 785520
QC 1035483

After the corpus has been built, the process of constructing co-occurrence
graph is rather straightforward: we create an empty graph and then populate
it with vertexes denoting word types in the text (lemmas). After that for each
lemma we find all its immediate neighbors in the corpus, that is, words to the
left and to the right (sentence boundaries not crossed, queries considered to be
‘sentences’ as well). If two lemmas were neighbors at least one time, we draw an
edge between corresponding neighbors.

Finally, we have an undirected graph in which noun lemmas are vertexes and
co-occurrence relations are edges. For each edge we also calculate Dice coefficient
[9]. It measures the ‘strength’ of the collocation, based on absolute frequency (c)
of both words (w and w’ ) and collocation (w,w’ ):

𝐷𝑖𝑐𝑒(𝑤,𝑤′) =
2𝑐(𝑤,𝑤′)

𝑐(𝑤) + 𝑐(𝑤′)
(1)

One can also think about the graph as a matrix of Dice coefficient values for all
possible pairs of lemmas in the corpus.

Table 2 gives an overview of the basic features of the graphs.

Table 2. Parameters of the graphs

Corpus Vertexes Edges Average
degree

Average
path
length

Clustering
coefficient

OC 21881 257846 23.57 3.26 0.166
RNC 22467 163914 14.6 3.53 0.136
Mix 31984 395225 24.7 3.29 0.186
QC 85548 291033 6.8 4.07 0.16

One can see that the average degree of QC is lower in comparison with the
other corpora (because queries are typically shorter that sentences in natural
texts). That is one of the reasons for our decision to use a larger query corpus.

It should also be noted that all corpora comply to ‘small world’ definition
[10], because their average path length is approximately the same as in a random
graph with the same number of vertexes (𝑁𝑉 ) and average degree (𝐴𝐷), while
clustering coefficient is significantly higher than it should be in the random graph.



For example if Mix corpus were a random one, its average path length would be
equal to 3.24 (= 𝑙𝑜𝑔(𝑁𝑉 )

𝑙𝑜𝑔(𝐴𝐷) ), very close to the actual value. However, in this case,
its clustering coefficient should be 0.0015 (= 2×𝐴𝐷

𝑁𝑉
), which is significantly lower

than the actual value. The same is true for all other corpora.
‘Small world’ nature of our graphs means that vertexes in them tend to

bundle into clusters, which is typical of many real-world networks. This finding
supports the idea of extracting senses from such clusters. It also additionally
proves the applicability of graph sense induction methods to our corpora, as
English-language graphs in the related publications also showed such properties.

4 Building Query Graph

We experimented with clustering search engine results page on a set of sixty
ambiguous one-word Russian queries, taken from Analyzethis homonymous queries
analyzer4. Analyzethis is a search engines evaluation initiative, offering various
search performance analyzers, including one for ambiguous or homonymous
queries. We crawled Mail.ru search for these queries, getting titles and snippets
(10 for each result).

The procedure of semantic clustering starts with building the so called query
graph. Here we closely follow [6].

First, we lemmatize all snippets and titles and remove stop words and the
query word itself. Then we construct a graph 𝐺𝑞 with all nouns from snippets
and titles as vertexes. Then we use one of the large corpora graphs (those that
we built in Section 3) to find words strongly connected to the query word and
add these words to the query graph. We consider a connection ‘strong’ if it falls
under the following constraints:⎧⎨⎩

𝑐(𝑞,𝑤)

𝑐(𝑞)
≥ 0.01

𝐷𝑖𝑐𝑒(𝑞,𝑤) ≥ 0.005

(2)

where c is absolute frequency in the corpus, q is the query and w is the word
under analysis. Thresholds 0.01 and 0.005 were determined empirically while
experimenting on the above mentioned ambiguous queries set. These thresholds
produced most convincing sense clustering. However, the issue of choosing the
thresholds is a subject for thorough evaluation in future.

Thus, we now have 𝐺𝑞 with no edges and vertex set consisting of words from
the search result and strong neighbors of the query word. After that, for each
pair of words (w,w’ ) in 𝐺𝑞 we check if they co-occur in the large corpus. If they
do and 𝐷𝑖𝑐𝑒(𝑤,𝑤′) ≥ 0.005, we connect these words in 𝐺𝑞 with an edge with
weight = Dice(w,w’). Finally, we delete disconnected vertexes (those with the
degree equal to 0).

4 http://analyzethis.ru/?analyzer=homonymous

http://analyzethis.ru/?analyzer=homonymous


5 Processing Query Senses and Results

With query graph at hand, we are ready to find which senses the query has.
What we need is an optimal partition of the query graph, in which words related
to different senses are in different parts of the graph. We apply two techniques
for that, namely, Curvature from [6] and Hyperlex from [7].

5.1 Curvature

Fig. 1. Query graph for ‘амур’ (Curvature)

Curvature algorithm aims at
finding vertexes from 𝐺𝑞 with
low local clustering coefficient.
Our hypothesis is that these
are words which serve as ‘links’
between different senses or
‘uses’ of the query. Then we
remove vertexes with cluster-
ing coefficient below a cer-
tain threshold. It leads to
the graph disjointing into sev-
eral components related to
different senses. Vertexes in
these components represent
lexical inventory of each sense.
Disconnected vertexes are re-
moved from the final graph.

Let us illustrate the pro-
cess with the example of
‘амур’ (‘Amur’) query. Figure
1 shows its query graph. It is
already disconnected into two
components and the meaning
of love god (associated with
words ‘лук’, ‘стрела’ and ‘юноша’ ) is separated. However, other ‘senses’ of the
query remain hidden in the giant component. Vertexes shown as triangles have
low clustering coefficient and are thus marked for deletion.

So, we delete ‘triangular’ vertexes. Note that we chose threshold 0.3 – all
vertexes with clustering coefficient below this are removed. It is also important
that we do not delete vertexes with clustering coefficient = 0. This is because
neighbors of such vertexes are not connected to anything except this vertex. If we
remove it, a lot of disconnected vertexes will appear. Such clusters (consisting of
only one word) do not make much sense. For example, the word ‘лук’ on Figure
1 is characterized by clustering coefficient = 0. If we remove it, then the whole
component representing ‘love god’ meaning disappears.



Figure 2 shows the query graph after removing vertexes with low clustering
coefficient. We now have 6 components (note that the labels for these clusters
are introduced by us, not by the algorithm):

1. River (all vertexes except enumerated below)
2. Love god (‘юноша, лук, стрела’ )
3. Hockey club (‘клуб, болельщик’ )
4. Movie (‘любовь, фильм’ )
5. Dictionary-1 (‘календарь, словарь, википедия, энциклопедия, академик,

сюжет’ )
6. Dictionary-2 (‘значение, описание, характеристика’ )

Fig. 2. Disjointed query graph (Curvature)

First 4 components clearly
represent different meanings of
the word ‘амур’ . The last two
are rather ‘uses’, typical con-
texts. However they can still
be useful in clustering as they
allow to keep encyclopedic re-
sults together.

5.2 Hyperlex

Hyperlex algorithm described
in [7] introduces the notion of
‘hubs’ within the graph, mean-
ing most inter-connected ver-
texes and employs the graph’s
maximum spanning tree. Just
like the previous algorithm, it
takes as an input the query
graph 𝐺𝑞 we prepared in Sec-
tion 4 and the query itself.

First we create a list L
with all vertexes from 𝐺𝑞

sorted in decreasing order by
their absolute frequency in the
large corpus. Then for each

item of this list we check if the corresponding vertex complies to the follow-
ing constraints:

1. Vertex normalized degree is greater than or equal to 0.05,
2. Average Dice coefficient of vertex edges is greater than or equal to 0.007.

If the constraints are met, we add this word to the hub list, considering it to
be a kind of a connector. Simultaneously, we remove this vertex and its neighbors
from the list L and continue iterating. In case we meet a word which does not



satisfy the requirements above, we check whether the list of hubs has at least
two elements. If it does, we stop iterating, if not, we continue to the next item.
Note that it differs from the original Hyperlex algorithm, where one should stop
no matter how long the hub list is. In our Russian material it sometimes caused
the hub list to remain empty or contain only one item, which is useless.

After we have the list of hubs, we augment 𝐺𝑞 with query vertex and connect
this vertex to all hubs putting infinite (or very high) Dice coefficient on the
corresponding edges. Then, we produce a maximum spanning tree from this
graph. Maximum spanning tree is an attempt to keep all the vertexes connected
while eliminating cycles and using as few edges as possible with as high weights
(in our case it is Dice coefficient) on them as possible. In the spanning tree, there
is only one path between any two vertexes and this path lies through edges with
maximum Dice. Because the query vertex and the hubs are connected by edges
with infinite Dice, they are sure to be the center of the spanning tree and directly
linked.

Fig. 3. Query graph for ‘амур’ after augmenting it
with the query vertex (Hyperlex )

At last we remove the
query vertex from the span-
ning tree, producing dis-
jointed subtrees with hubs as
roots. These subtrees repre-
sent query meanings. Note
that we also delete all discon-
nected vertexes (those with de-
gree = 0).

Let us present an example
of Hyperlex at work with the
same query ‘амур’ . Our cor-
pus is Mix. Initial state of the
query graph 𝐺𝑞 is the same as
in Figure 1.

We add the word ‘амур’
to the graph 𝐺𝑞 and connect
it to vertexes selected as hubs:
‘область, фильм, команда’ .
The result is presented on
Figure 3 with query vertex
drawn as a diamond. For refer-
ence, vertexes which were in-
troduced from the corpus and
not from search results (‘сю-
жет’, ‘океан’ , etc) are drawn as triangles.

Now we produce maximum spanning tree from 𝐺𝑞 with Dice coefficient as
weight measure. The tree is visualized on Figure 4. Note that it has much fewer
edges than the initial 𝐺𝑞.



Finally, we remove the query vertex and all vertexes that become disconnected
after this removal. As a result, we have a disjointed graph shown in Figure 5.
The number of the components has grown from 2 to 4 (once again, labels are
assigned by us):

1. Love god (‘юноша, лук, стрела’ )
2. Movie (‘любовь, фильм’ )
3. Hockey club (‘клуб, игра, болельщик, команда, цвет’ )
4. River (all the remaining vertexes)

Fig. 4. Maximum spanning tree for ‘амур’ query
graph (Hyperlex )

One can see that Hyper-
lex successfully extracted the
same four important meanings
as the previous algorithm. At
the same time, unlike Curva-
ture, it managed to avoid two
‘encyclopedic’ clusters (obvi-
ously in common for too many
queries) and leave their ver-
texes in the ‘river’ cluster.
Also, Hyperlex is better be-
cause it describes ‘hockey club’
cluster in a richer way, using
5 relevant words instead of 2.

One can again note that in
fact what we call ‘senses’ are
not senses like meanings in the
dictionaries. We agree with
Jean Veronis who argues that
co-occurrence networks reflect
‘uses’ rather than senses. So,
what we have are typical en-
vironments where the word is
used, and these environments
are only loosely connected to

what a lexicographer would call ‘senses’ or ‘meanings’. However, we are fine
with that, as we assume that clustering SERP according to ‘typical uses’ is at
least equally important as clustering according to ‘proper senses’. Perhaps, these
senses are in fact less related to real-life, as even linguists sometimes have trouble
matching the ‘senses’ found in a dictionary and the occurrences found in a corpus
[7]. Additionally, as has already been stated, dictionary senses are always limited
and by design cannot cover new semantic trends and subtle meanings quickly
appearing and disappearing in the modern world. Thus, theoretically typical
uses are more relevant for clustering than academic dictionary senses. To strictly
prove it for the Russian material, one needs manually clustered data set (see
Section 6), and we leave it for further research.



5.3 Mapping Results to Senses

Once we possess the sense inventory for the query, we can combine it with
bags-of-words for each search result to finally perform SERP clustering. We do
that in a rather straightforward way.

Given a set of senses represented by a lemma set each and a set of results
(snippet and title) represented by lemma sets as well, for each pair of result
(𝑟) and sense (𝑠) we calculate similarity measure 𝑠𝑖𝑚. It is a simple number of
lemmas in common for both sets divided by the number of lemmas in the result:

𝑠𝑖𝑚(𝑟,𝑠) =
𝑟 ∩ 𝑠

𝑙𝑒𝑛𝑔𝑡ℎ(𝑟)
(3)

Then we choose the sense with maximum similarity and link this sense to the
result. Thus, each result receives some sense, and is ‘understood’.

In the future we plan to explore other means of calculating similarity measure
as well, for example, counting tokens not types or considering weights on edges
in the intersection.

6 Evaluation of SERP clustering

Fig. 5. Maximum spanning tree after removing query
vertex (Hyperlex )

Generally, evaluation of clus-
tering is a rather harsh task.
Perhaps, the best way to do
this is to employ human as-
sessment, but for the time be-
ing we limited ourselves to sim-
ple evaluation of the correct-
ness of cluster number (that
is, number of meanings).

Analyzethis service pro-
vides data about how many
senses of an ambiguous query
are there in the SERP. Thus
we consider it to be an expert
opinion and check how strong
is our deviation from this ‘gold
standard’. For example, if An-
alyzethis believes that there
are three senses present on the
SERP, and our clustering algo-
rithm puts all the results into
one cluster, this signals that
the algorithm is not optimal.
The same is true if the num-
ber of clusters is, for example,



eight. The less our deviation from Analyzethis assessment is, the better. So, in
fact we check that the employed algorithms do not produce senseless results (too
many or too few meanings). We once again note that in order to evaluate the
contents of the clusters themselves, one needs manually clustered SERPs for
ambiguous queries. To our knowledge, there is no such a data set for Russian.
We are working on creating it.

For the time being, we compared the number of clusters for each of ambiguous
queries in four different settings (two corpora and two word sense induction
methods). Then we calculated average deviation of our clustering number from
that of Analyzethis. Table 3 provides the results of this comparison. Note that
the average number of senses per query in Analyzethis data set was 2.65.

Table 3. Evaluation of SERP clustering (average deviation from Analyzethis assessment
in number of senses and in percent from the average number of senses in the set)

Corpus Curvature Hyperlex
Mix 1.636 (61%) 1.288 (49%)

Query 1.742 (66%) 1.379 (52%)

It is clear that Hyperlex consistently outperforms Curvature, and that Mix
corpus does the same with the query corpus. Hyperlex victory comes as no
surprise, as it uses maximum spanning tree notion, which seems to allow deeper
grasping of graph structure. The victory of Mix corpus (which is smaller than
the query corpus) is much less expected. We believe that there are two reasons
for this:

1. As we have already mentioned, the query corpus is less ‘dense’ because of low
length of queries. Thus, there are fewer edges and less data for algorithms.

2. Query corpus was lemmatized with Freeling while Mix corpus consists of
manually annotated corpora. Glitches and outright errors of Freeling could
impact graph quality. This can be fixed in the future either by improving
Freeling or by using another lemmatizer.

Thus, at the moment, using Mix corpus and Hyperlex algorithm of word sense
induction seems to be the best option. However, things surely can be different if
we employ larger corpora (which we plan to do in the future).

7 Conclusion and future work

We showed that state-of-the-art methods of word sense induction and search
results clustering based on semantic graphs do work for Russian data.

Application of such methods can lead to search engine results presentation
getting closer to actual semantics of the results, not simply term frequency



ranking. For a user, it would mean the possibility to immediately grasp which
results in the SERP are actually related to the query sense, and which other
senses exist. The power of this approach can be increased by wider employment
of Semantic Web paradigm: semantically marked up web pages are represented
by generally better and clearer snippets. Such snippets, in turn, should provide
better data for graph-based word sense induction algorithms.

We plan to experiment on more types of query graph processing and launch
a full-scale human evaluation of results. Also, it seems profitable to use not
only separate words, but also compound phrases, as well as to construct graphs
with not only immediate neighbors, but also with second-order co-occurrences
(neighbors of neighbors). Additionally, experiments with larger query corpora
may lead to new and inspiring insights in this field.

References

1. Harris, Z.S.: Distributional structure. Springer (1970)
2. Bybee, J.: Frequency of use and the organization of language. Oxford University

Press, USA (2006)
3. Schütze, H., Pedersen, J.O.: Information retrieval based on word senses. In: Pro-

ceedings 4th Annual Symposium on Document Analysis and Information Retrieval
(SDAIR 1995). (1995) 161–175

4. Navigli, R.: A quick tour of word sense disambiguation, induction and related
approaches. In: SOFSEM 2012: Theory and practice of computer science. Springer
(2012) 115–129

5. Kilgarriff, A.: Dictionary word sense distinctions: An enquiry into their nature.
Computers and the Humanities 26(5-6) (1992) 365–387

6. Marco, A.D., Navigli, R.: Clustering and diversifying web search results with
graph-based word sense induction. Computational Linguistics 39(3) (2013) 709–754

7. Véronis, J.: Hyperlex: lexical cartography for information retrieval. Computer
Speech & Language 18(3) (2004) 223–252

8. Padró, L., Stanilovsky, E.: Freeling 3.0: Towards wider multilinguality. In Calzolari,
N., Choukri, K., Declerck, T., Doğan, M.U., Maegaard, B., Mariani, J., Odijk,
J., Piperidis, S., eds.: Proceedings of the Eight International Conference on Lan-
guage Resources and Evaluation (LREC’12), Istanbul, Turkey, European Language
Resources Association (ELRA) (may 2012)

9. Smadja, F., McKeown, K.R., Hatzivassiloglou, V.: Translating collocations for
bilingual lexicons: A statistical approach. Computational Linguistics 22(1) (1996)
1–38

10. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’networks. Nature
393(6684) (1998) 440–442


	Semantic clustering of Russian web search results: possibilities and problems

