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MAPPINGS OF BOUNDED &-VARIATION WITH
ARBITRARY FUNCTION ¢

V.V. CHISTYAKOV, O.E. GALKIN

In memory of Evgenit Mikhatlovich Landis

ABSTRACT. We develop the general theory of mappings of bounded
$-variation in the sense of L. C. Young that are defined on a subset
of the real line and take values in metric or normed spaces. We sin-
gle out the characterizing properties for these mappings, prove the
structural theorem for them, and study their continuity properties.
We obtain the existence of a geodesic path of bounded ®-variation
between two points of a compact set with certain regularity of its
modulus of continuity. The classical Helly selection principle from the
theory of functions of bounded variation is generalized for mappings
of bounded ®-variation. Under natural restrictions on the function ®,
we show that the space of all normed space-valued mappings under
consideration can be endowed with a metric. Finally, we consider
the problem of existence of selections of a continuous set-valued map-
ping F of bounded ®-variation with respect to the Hausdorff distance.
We show that if ®/(0) is finite > 0, then F has a continuous selection
of bounded ¢-variation; if $'(0) = oo, then F is a constant mapping;
and if $/(0) = 0, then, under additional assumptions on ¥, we give
examples of mappings F' with no continuous selection and with no
selection of bounded ®-variation.

1. INTRODUCTION

In the theory of functions of bounded variation [17}, Ch. 8 the following
criterion is well known (Jordan’s decomposition): a real-valued function on
an interval of the real line is of bounded variation if and only if it is the
difference of two bounded nondecreasing functions. Most of the classical
facts of the theory follow from this criterion, among them Helly’s selection
principle, etc. Considering problems of existence of selections of set-valued
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mappings in the optimal control theory {14], [15], [16], we encounter map-
pings of bounded variation with values in a metric space with respect to the
Hausdorff distance. Hence, it is important to know if these mappings can
be characterized in a similar manner. It was shown in [4], Theorem 3.19
and (5], Theorem 3.1 that, if X is a metric space, then f : EC R = X
is of bounded variation if and only if it is the composition f = go ¢ of a
bounded nondecreasing function ¢ : ¥ — R and an X-valued mapping ¢
defined on the image of ¢ and satisfying the Lipschitz condition with the
Lipschitz constant < 1. From this, the main results of the theory follow
(among others, the existence of Lipschitz continuous geodesic paths and
Helly’s selection principle) in a parallel fashion to the classical theory; and,
moreover, it becomes clear that the Jordan decomposition theorem is a very
specific feature of real-valued functions. In addition, under certain natural
assumptions (continuous) set-valued mappings of bounded variation (also,
Lipschitz or absolutely continuous mappings) with respect to the Hausdorff
distance admit (continuous) selections of bounded variation (respectively,
Lipschitz or absolutely continuous selections) (5], Theorem 9.1, [6], Theo-
rem 6.1.

In [5] a number of properties was singled out which lead to almost com-
plete characterization of mappings of bounded variation. In particular, in [7]
by checking these properties for mappings of bounded p-variation, p > 1 (see
Sec. 2 below), it was shown that any mapping f : E C R = X of bounded
p-variation is decomposable as f = g o ¢ with ¢ : E — R a bounded non-
decreasing function and g : ¢(E) — X a Holder continuous mapping of
exponent 1/p and the Holder constant < 1. Up to now, this is the only
criterion known for mappings of bounded p-variation with p > 1; and it
gives the complete picture of the theory of these mappings. However, in
this case the situation is different for selections of set-valued mappings,
since, contrary to Lipschitz continuous set-valued mappings, Hélder contin-
uous set-valued mappings of (any) exponent 8 < v < 1 do not, in general,
have continuous selections, [7], Proposition 8.2. It is not known whether
set-valued mappings of bounded p-variation with p > 1 admit selections of
bounded p-variation.

The purpose of the present paper is to develop the general theory of
mappings of bounded ®-variation valued in metric or normed spaces with
“arbitrary” function ¢ (see Sec. 2 for definitions). The plan of presentation
is as follows. In Sec. 2 we establish the main properties of mappings of
bounded ®-variation and obtain relations between various spaces of map-
pings of bounded variation with different functions ®. In Sec. 3 we prove
the decomposition theorem: a mapping f : E C R — X is of bounded
®-variation if and only if it can be written in the form f = g o ¢, where
¢ : E — R is a bounded nondecreasing function and g : ¢(E) - X is a
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mapping having the modulus of continuity bounded from above by the in-
verse function ®~1. If, in addition, X is a Banach space, then we show that
g can be extended from E onto R with the preservation of certain properties
of its modulus of continuity sufficient for Helly’s selection principle to be
held without the continuity assumption on the family of mappings. Also,
we show that if the derivative ®(0) = oo, then any continuous mapping
f :la,b] = X of bounded ®-variation is a constant mapping. In Sec. 4 we
prove that any mapping of bounded ®-variation is continuous almost every-
where (more precisely, outside of a subset which is at most countable) and
provide estimates for the shocks in terms of the moduli of continuity of ¢
and ®~!. In Sec. 5 we obtain the existence of a geodesic path of bounded
®-variation between two given points of a compact subset of the metric
space X having certain regularity properties with respect to its modulus
of continuity. In Sec. 6 we prove the following generalization of the Helly
selection principle: any infinite family of mappings of uniformly bounded
®-variation defined on the compact interval in R with values in the compact
subset of a Banach space contains a sequence which converges pointwise to a
mapping of bounded ®-variation. Under more restrictive assumption (7.1),
in Sec. 7 we show that the space of all mappings of bounded ®-variation
with values in a normed vector space X can be endowed with a metric in
such a way that it becomes a complete metric vector space if X is complete.
Finally, in Sec. 8 we treat the problem of existence of selections of a con-
tinuous set-valued mapping F' of bounded ®-variation with respect to the
Hausdorff metric. Roughly speaking, we show that if ®(0) is finite > 0,
then F has a continuous selection of bounded ®-variation (which is, in fact,
of bounded variation); if ®'(0) is infinite, then F is a constant set-valued
mapping, and if ®(0) = 0, then, under additional assumptions on ®, we
give examples of continuous mappings F with no continuous selection and
with no selection of bounded ®-variation.

2. PROPERTIES OF THE $-VARIATION

The following notation will be used throughout this paper:

@ #ECR,

E ={s€E|s<t}andEf ={scE|t<s}ifteE,

Eb = EfnE; = (E; ) ifa, b€ E, a < b (in particular, [a,b] = R} and
Ry ={teR|0<t}=[0,00[),

X is a metric space with a fixed metric (or distance function) d = d(-, -},

XE is the set of all mappings f : E — X from E into X.
If f € XE, we denote by

f(EY={f(t)|t€ E} the image of f in X,

D(f,E) = diam f(E) = sup{d(f(t), f(s)) | t, s € E} the diameter of
the image f(E) (in other words, D(f, E) is the oscillation of f on E).
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Given two mappings f : £ — X and ¢ : E; — E, the composition
fo: Ey — X is defined (as usual) by (f o ¢)(T) = f(p(7)) for all T € E.

We write A := B or B =: A to indicate that A is defined by means of B.

We denote by F the set of all functions  : R — R such that & is con-
tinuous, strictly increasing, ®(0) = 0, and ®(o0) = co. The set F is closed
under sums, products, multiplication by positive constants, compositions,
and taking inverse mappings, i.e., if ®, ¥ € F and ¢ > 0, then &+ ¥, &- ¥,
c®, ® o ¥ and ®~! belong to F; also, we have ® A U = min{®, ¥} and
& v ¥ = max{®, I'} belong to F. A generic function from F will usually
be denoted by ®.

Definition. Let
TE)={T={t}re CE|meNU{0}, t;1 <t;,i=1,...,m} (2.1)

be the set of all partitions of E by finite ordered collections of points from E.
Forgiven® e F, f: E— X,and T = {t;}2, € T(E) we set

Volf,T) = Vo 4lf,T] = f; do d(f(ti), f(ti_l)), (2.2)
where l
@0 d(f(t:), f(ti-1)) = (d(F(t:), F(timn))), (29)
and define Va(f, E) € [0, 00] by
Va(f,E) = sup{ Valf, T} | T € T(E) }. (2.9)

The value Vg (f, E) is called the total ®-variation of f on E. If Vg(f,E) <
00, the mapping f is said to be of bounded ®-variation. The set of all
mappings of bounded ®-variation from F into X is denoted by Vs (E; X).
If @ # ACE, we set Va(f, A) = Va(f|a,A), where f|4 is the restriction
of f to A, and we set 7(2) = & and Va(f,) = 0. The functional V3 :
XE x 28 45 RY U {oo} is called the ®-variation.

For real-valued functions the definition of Vg(f, E) was introduced by
Young in {20] and [21]. If &(t) =P, ¢t > 0, p > 1, the p-variation V,,(f, E) =
Va(f, E) was originally considered by Wiener [19], and if p = 1, the total
variation V(f, E) = Vi(f,E) was classically defined by Jordan [12] (see
also Schwartz [18], Ch. 4, Sec. 9. Note that this definition is suitable for
mappings defined on any linearly ordered set E. In this respect, some results
of this paper are valid also in the case where < is a linear ordering on F.

Recently the notion of V(f,E) of Jordan was revisited by the first
author, [4], [5], and [6], so as to obtain the main properties of the vari-
ation in the general situation and to get a structural theorem for (various
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classes of ) mappings of bounded variation. Then the general properties were
reformulated (almost without change) for mappings of bounded p-variation
in the sense of Wiener with p > 1 in [7]. The aim of this section is to refor-
mulate the general properties for the ®-variation in the sense of Young (for
the motivation of these properties see [5], the remarks after (P7), p. 264, or
(7], Remarks 2.2-2.4).

General properties of the d-variation Vg. Let f : E — X be an
arbitrary mapping, and let ® € F. Then we have:

(P1) if t, s € E, then ®(d(f(t), f(s))) < ®(D(f,E)) < Va(f, E) (mini-
mality);
(P2) ifa,t,s,be Fand a <t < s <b then Va(f, Ey) < Va(f, E]),
Vo(f, EF) < Va(f, E}) and Vo (£, E?) < Va(f, Eb) (monotonicity);
(P3) if t € E, then Va(f, E; )+ Va(f, E;) < Va(f, E) (semi-additivity);
(P4) if Ey C R andp : E; — E is a (not necessarily strictly) monotone
function, then Vo (f, ¢(E1)) = Va(f o, E1) (change of a variable);
(P5) Va(f, E) = sup{ Va(f, E%) | a, b€ E, a < b} (regularity);
(P8) if s=supE e RU{oo} and ¢ = inf E € RU {~o00}, we have (limit
properties):
(P6,) if s ¢ E, then Va(f, E) = limgsi,s Va(f, E;),
(P65) if i ¢ E, then Va(f, E) = limgsers: Vo (f, EF),
(P83) if s ¢ F and ¢ ¢ E, then, in addition to (P6;) and (P6;), we have

V@(f» E) = 1imE9a—)i V‘P(f, Eg) = m lim .Vé(fa Eg) =

li
ESbors E3b—s Eda—ri

= lim lim Vq,(f,Eg);

E3a—i ESb—s

(P7) if, as n = oo, the sequence of functions {®,}52, C F converges
pointwise to & € F and the sequence of mappings {f,}>>, C X¥
converges pointwise on E (in the metric d) to f € X%, then

Va(f, E) < liminf Vg, (fn, E)
(sequential lower semi-continuity).

Proof. Properties (P1) and (P2) are obvious. The proof of (P4)-(P6) is
implied by the same lines of reasoning as in [6], Sec. 2 or (7], Sec. 2.
(P3) For any two partitions T1 € T(E;") and Tz € T(E;") we have

Volf, Th) + Va[f, To) < Va[f, T U {t}] + Va[f, To U {t}] =
=Velf, AU {t}UTL) < Vo (£, E).

It suffices to take the supremum over all 77 and 75 as above.
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(P7) For any T = {t;}2, € T(E) and n € N we have Vg _|[fn,T] <

Vs, (fnaE) It Pin = d(fn(ti),fn(ti—l)) and p; = d(f(ti)sf(ti—-l))a then B

Va, [, T] = Valf, T = Y _(®n(pin) — B(p3))-
i=1
Since d(-, -) is continuous and f, — f pointwise on the finite set T, we
have p; n = p; asn - oo foralli =1, ..., m, and since $, — & pointwise
on RY, (as is shown below) ®,(p;n) — ®(p;) as n — oo. It follows that
Vo, [fn, T] = Va[f,T) as n — oo; and, hence,

Valf,T) < liminf Va,, (fn, E).

As T is arbitrary, we get (P7).

Now we show that ®,(pn) — ®(p) if pr, = p > 0 as n — oo (deliberately
omitting the subscript ¢ in p; , and p;). Given € > 0, by continuity of ®
choose § = é(¢) > 0 such that 6 < p and

|®(t) — ®(p)| < /2 for all t>0 with |t — p| < 4.

Let o, 3 € R} be such that p— 6 < a < p < B < p+ 4. Since p, — p and
®,, — ® pointwise as n — oo, there exists N = N(g) € N such that for all
n > N we have

a<p, < B, |®u(a)—-®(a) <e/2 and |D,(B) — (B)] <e/2.
As &, is nondecreasing, for n > N it follows that

Bn(pn) < Ba(B) < B(B) +¢/2 < B(p) +¢/2+¢/2,
Bulpn) = Ba(a) > B(a) — /2 2 B(p) — /2 - £/2,

and hence, |®,(p,) — ®(p)| < e foralln > N.
The case p, = p =0 as n — oo is now obvious. [J

Proposition 2.1 (minimality of V3). Let & € F be fized, and assume
that the mapping W : XB x 2 — [0,00] satisfies, for all f € XF and
0 #£ A C E, the following conditions (W(f,@) = 0):

() @(d(f(2), f(s))) < W(f,A4) forall t, s € A

(b) W(f,A}) SW(f,A) forall t,s€ A, t<s;

(c) W(£,47) +W(f,A) SW(f,A) for all t € A.
Then Vo (f,A) <W(f,A) forallf . E— X and ACE.

Proof. The proof is analogous to the one given for the p-variation V,, (p > 1)
in [7], Proposition 2.1. [

Property (P1) implies that if f € V§(E; X), then f is bounded in the
sense that D(f, E) < co. A refinement of this property is the following.
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Proposition 2.2, If f € Vg(F; X), then the image f(E) C X is totally
bounded and separable. If, in addition, X is a complete metric space, then
F(E) is precompact (i.e., the closure of f(E) in X is compact).

Proof. The proof proceeds as in [5], Proposition 2.1 or [7], Proposi-
tion 2.2. [

Proposition 2.8, Let &, ¥ € F be two functions such that there exist
two positive constants C > 0 and 6 > 0 for which ¥(t) < C®(t) for all
t €[0,8). Then Vo(E; X) C Vo(E; X).

Proof. Let f € Vo(E; X). If T = {t;}2, is a partition of E, then

m
Valf,T) =Y ®(p;) < Va(f, E) <00, where p; =d(f(t:), f(ti1)).
i=1
There are less than Vg (f, E)/®(J) terms in the above sum which are greater
than ®(4); and hence, the number of p;’s which are greater than § is less
than Va(f, E)/®(8). If p; < 6, then ¥(p;) < C®(p;) according to the
assumption; and if p; > 8, we have ¥(p;) < ¥(D(f, E)). It follows that

Valf,T) =3 ¥(p:) < C Y &(pi) + U(D(f, B)Va(f, E)/B(6) <

=1 i=1
< CVs(f, E) + ¥(D(f, E))Va(f, E)/2(5) < co.
Since the last inequality holds for all T € T(E), we have f € Vg (E; X). O
Remark. In the case of real- (or complex-) valued functions Proposi-
tion 2.3 is due to Golubov [9], the remark after Definition 1, where he
presented it without proof.

A function ® € F is said to be superadditive (resp., subadditive) if for
all £, s > 0 we have

O(t) + (s) < ®(t+s) (resp., ®(t+s) < B(t) +P(s)). (2.5)

Note that & € F is superadditive if and only if ~!(€ F) is subadditive.
Also recall that the function ®(¢) = t?, t > 0, satisfies the following inequal-
ities: if ¢, s > 0, then

4P <(t+sP <P +), p21, (2.6)
(t+s)P <tP+sP <2P(t4+5)P, O<p<l. )

Proposition 2.4. If f : E — R is a bounded monotone function and
® € F is superadditive, then

Va(f, E) = (D(f, B)) = #(sup (¢) ~ inf /).
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Proof. By virtue of (P1), we have ®(D(f, E)) < Va(f,E). On the other
hand, if T = {t;}[2, € T(E) and t € E is such that ty_; <t < ¢, for some
1 < k < m, then the monotonicity of f implies that

[£(t) — F(e-1)] = |f(E) = FO + [£(8) = fte-1),
so that applying the first inequality in (2.5), we obtain
Valf, T U {t}] = Vo[£, T1 + (£ (t) — fte-1)]) +
+@(1f(te) = FO) — @(1f () ~ f(tr-1)]) < Valf TT.
It follows that
Valf, T] < Valf, {to, tm}] = 2(|f(tm) = f(t0)l) < 2(D(f, B))
for all T € T(E); and hence, Va(f, E) < &(D(f,E)). O

Proposition 2.5. Let®, V€ F, e >0, and f : E — X. Then we have:

(a) Voru(f, E) = Va(f, E) + Vo(f, E);

(b) Vo.u(f,E) < Vo(f, E) - Va(f, E);

(c) Vea(f, E) = cVa(f, E);

(d) if e F is superadditive (subadditive), then

V@o‘P(f» E)S(I)(V‘I/(.ﬂ E))

(resp‘i V@o\ll(fa E) 2 d)(V\I/(fa E)))|

(e) if ® € F is superadditive (subadditive), then Vo (f, E)<®(Vi(f, E))
(resp., ®(Vi(f, E)) < Va(f,E)); and in particular, V1(E;X) C
Vo(E; X) (resp., Va(E; X) C V1i(E; X)).

Proof. Properties (a), (b), (c), and (d) follow by a direct verification. To
prove (e), let ® be superadditive; since (81 o®){t) =¢,t >0, and &1 € F
is subadditive, by virtue of (d), we have

Vi(f, B) = Va-106(f, E) 2 @1 (Va(f,E)). O
3. A DECOMPOSITION THEOREM

First of all we recall that the modulus of continuity of a bounded mapping
f+ E — X is the function wy g :]0, 0o[ — [0, 0o defined by

wr,p(p) =sup{d(f(t), f(s)) |t, s € E and |t—s|<p} =
= sup sup{d(f(t), f(s)) [t € E and [t —s| < p}, p>0.
se€EE
Clearly, wy,g(p) < D(f,E) for all p > 0. It is a classical fact that the
modulus of continuity wy g has the following properties.

Proposition 3.1. For any bounded mapping f : E — X we have:
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(a) wy g s nondecreasing on |0, oof;

(b) wy g(0) :=lim,rowys E(p) =infosowys g(p) = 0 is finite;
(c) f is uniformly continuous on E if and only if wy g(0) =0;
(d) if E is an interval (open or closed), then wy g is subadditive:

wsg(p1 + p2) Swpelp) +wselp2) Vo1, p2 >0;

(e) if E is an interval (open or closed) and f : E — X is uniformly
continuous on E, then wy g is continuous on {0, oof;
(f) for a nondecreasing function w : Rf — R the following two con-
ditions are equivalent:
() d(f(2), f(s)) Sw(jt—s|) forallt, s€ E;
(i) wr,e Sw on Ry (ie., wyE(p) < wlp) for all p > 0).

From now on in this section we assume that ® € F is a fixed function.
The main result of this section is the following decomposition theorem.

Theorem 3.2. The mapping [ : E — X is of bounded d-variation on E
if and only if there exist a bounded nondecreasing function o E - R and a
mapping g : E1 := ¢(E) » X such that wyp, < ® ' on R} and f =gop
on E.

Moreover, if X is a Banach space, the mapping g : E1 — X can be
extended to a mapping g* : R — X such that wpg < Qo5 on R, where
Qa,r € F is defined by Qg 5 := 36! + we-1,(0,L] with L := Vg (f, E).

We divide the proof of this theorem into three steps which constitute the
following three lemmas. The first lemma (sufficiency) gives typical examples
of mappings of bounded ®-variation.

Lemma 3.3. Let ¢ : E — R be bounded monotone, g : ¢(E) = X be a
mapping such that wy ,(g) < & ! onRY, and let f :=goyp on E. Then
f€Vse(E; X).

Proof. For any partition T = {t;}[%, of E we have
m
Valf, 71 = Y- @ 0 d{g(e(t)), 9((tin)))-
i=1

Now the estimate wy 5y < ®~! and monotonicity and boundedness of ¢
imply that

Volf, T} < Z lp(ti) — e(tim1)] = le(tm) — @(to)] <

=1

< sup(t) - inf (t) = D(, E) < oo.
teE teE
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The conclusion of Lemma 3.3 follows by taking the supremum over all par-
titions T of £. O

Remark. In particular, if f : E — X is such that ws, g < ®~! on R} and
E C R is a bounded set, then (choosing ¢(t) = ¢t in Lemma 3.3) we have:
f is of bounded ®-variation on E and Vg (f, F) < supE — inf E.

Next, in the second lemma (necessity) we obtain the canonical decompo-
sition of a mapping of bounded ®-variation.

Lemma 38.4. If f : E — X is a mapping of bounded ®-variation, then
there exist a bounded nondecreasing nonnegative function ¢ : E — R and a
mapping g : E1 = p(E) = X satisfying w, g, < ®~1 on RE such that

(a) f = gop on E; (b) g{E1) = f(E) in X, and (c) Va(g, E1) = Va([, E).

Proof. The function ¢ : E — R defined by ¢(t) = Vo(f,E, ) fort € E
is nonnegative, bounded (since ¢(t) < Va(f, F)), and nondecreasing due
to (P2). For t, s € E, t < s, by virtue of (P1) and (P3), we have

d(d(f(s), £(1))) < Va(f, E?) < 0(s) — (). (3.1)

If o(t) = ¢(s), then (3.1) implies that f(¢) = f(s), so that the mapping
g: By — X given by

g(7) := f(t) for any t € E such that ¢(t) =1 (3.2)

for 7 € Ey = ¢(FE) is well defined on E;. Now (a) follows from (3.2), and
the assertions (b) and (c) follow from (a) and (P4).

It remains to prove that wy g, < ®~!. Indeed, for o, B € E1, we have
a = ¢(t) and B = ¢(s) for some ¢, s € E; and hence, by virtue of (3.1)
and (3.2) it follows that

o(d(g(a), 9(8))) = 2(d(f(1), (5))) < le(t) —p(s)| =la=Bl. O

Remark. If ¢ : E — E; in the proof of Lemma 3.4 is strictly increasing,
it is a bijection, so that the equality f = g o ¢ on F is equivalent to the
equality g = f o™ ! on Ey, where ¢! : E; — E is the inverse function
of . An algebraic aspect in the construction of the mapping such as g in
Lemma 3.4 was considered in [5], at the end of Sec. 3.

The second part of Theorem 3.2 follows from Lemma 3.5 below by setting
L=Vg(f,E)and ¥ = L.

Lemma 3.5. Suppose that ¥V € F, By C[0,L] with0 < L < o0, Xis a
Banach space (over the field R or C) with the norm || - ||, and g: E1 —» X
is a mapping satisfying

lg(t) ~g(s) Il <¥(lt~sl) Vi s€Ey. (3.3)
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Then there exists a mapping g* : R — X extending g such that
lg®) —g" ()| < T (t—sl) Vi, s€eR, (3.4)
where the function U* € F is defined by ¥* = 3V + wy jo,1)-

Proof. Since g is uniformly continuous on Ey, it admits an extension g to
the closure E; of E; such that g : E; — X satisfies (3.3) on E;. We define
g* to be equal to g on Ej. The complement R\ E; of E; in R is open; and
hence, it is at most a countable union of nonempty disjoint open intervals
lak, bk for k € J with at most countable J C N. On intervals |ay, bx[ with
by — ay < oo we define g* as follows:

g* (&) = glak) + cx¥(t —ax), cx:= %%‘l,

where || cx || < 1. If a = —o0, we set g*(t) = g(bi) for all t €] — o0, bi[, and
if by = 0o, we set g*(t) = g(ax) for all t €jax, oo|.

It is clear that ¢g* extends g to R, so that we have to show that g*
satisfies (3.4). For t, s € R, s < ¢, we have the following four possibilities:
()tekE,scB; (2t¢E,secE; (3)tecE,s¢E; (4)t ¢ E,
s¢ E.

Case (1) is clear since g* = § on E; and g satisfies (3.3) on Ej.

In case (2) we have s < ap <t < by for some k € J. If by = oo, then
g*(t) = g(ag), so that

g™ () —g*(s) | = [ glak) — g(s) || < ¥(ak — 5) < [t~ 3).
If by, < 0o, then (3.5) and properties of § yield
ho* @) —g*(s) < Nl g*(t) — g"(ar) | + 1| 9% (ax) — g*(s) || =
= || g*(t) — Glax) || + 1| 9(ax) — () || <
< \lew [Pt — ak) + U(ak — 5) < 2¥(t — s).

t G]a,k, bk[, (3.5)

In case (3) we have ar, < s < by <t for some & € J. If ap = —o0, then
g*(s) = g(bx), so that

lg*(@®) — g™ () [ = [g(t) — g(bw) | < ¥(t — o) < W(¢ - s).

If a, > —oo, then [ax,bx] C [0,L]; and hence, (3.5) and properties of g
imply that

Ng*@®) ~g" (&) < g™ () —g* () | + | g™ (Be) — g*(s) || =
= 15(2) — 9(be) | + ) x (¥ (b — a) = ¥(s —ar)) || <
S U(t— bg) +wyjo,zj(bk —8) <
< U(t - 8) + wy o, (t — 9).
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In case (4) we have s €Jay, bk and t €]am,bn| for some k, m € J.
Suppose that m = k, so that ag < s <t < by. If a = —00 or b, = o0, then
Il g*(t) — g*(s) || = 0; and if ax > —oo and by < oo, then [ax,bx] C [0, L],
and by virtue of (3.5) we have

llg*(®) —g* ()| < Nexll - [¥(E —ar) = U(s — a)| < wy o,r)(t — 8).

Now suppose that m # k, so that ap < s < by < t. If ap = —o0, then
g*(s) = g*(bx); and as in case (2), we have

lg"(t) =g ()Ml =l g7 (1) — g" (b&) || < 2W(t — br) < 2¥(¢ - 5).

If ax, > —oo, then [ak,bx] C [0, L]; and as in cases (2) and (3), we have

g™ (t) ~g*(s) | < N1 g" (&) — g" i) I + [} 4" (bx) — g™ (s) || <
< 28{t — b} + (\I’(bk - 8) + wq,'[g,L](bk - S)) <
<3U(t - s) +wy,o,r)(t — 8) = U (t — ).

Thus, in all the cases we have obtained the desired estimate (3.4). It
remains to note that U* € F which is a consequence of the fact that ¥ € F
and Proposition 3.1(a}, (b), (¢), and (e). O

Corollary 3.6. Suppose that ® € F is such that limy_, 9 t/®(t) = 0 (or,
equivalently, that ®(+0) = oo, where ®'(+0) denotes the right derivative
of ® att =0). Then any continuous mapping from [a,b] into X of bounded
®-variation is a constant mapping on (a, b].

In order to prove the corollary we need a lemma. The following lemma
(which is interesting in its own right) seems to be known; however, we could
not find an appropriate reference, and hence, we present it with the proof.

Lemma 3.7. Let ¥ € F be such that ¥'(4+0) = lim;— 4o ¥(t)/t = 0. If
for g : [a,b] = X we have d(g(t), 9(s)) < U(jt — s|) for all t, s € [a,b], then
g is a constant mapping on [a, b].

Proof. Let B{X;R) be the Banach space of all bounded mappings from X
into R endowed with the sup-norm || R||, = sup,cx |R(z)], R € B(X;R).
The mapping

X 32+ R, — Ry, € B(X;R),

where R, (y) := d(z,y), y € X, and z¢ € X is a fixed element, defines an
imbedding of X into B(X;R) such that

| Ry — Ry llu = d(z,v) Ve, ye X.
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The composed mapping [a,b] 3 t = G(t) := Ry) — Ryy € B(X;R) (see the
diagram)
le,b} — X — B(X;R),
t — g(t) — Rg(t) - Rmo

satisfies the inequality
| G(t) — G(s) lu = d(g(t), 9(s)) S ¥(t—s]) Vi s€ab].
Hence, for any fixed ty € (a, b] we have

| ~Ct) ¥ttt

—0 as t—to.
t—to  lu= " [t—to] 0

Since the left-hand side tends to the sup-norm of the derivative G'(tp), it
follows that G'(t) = 0 for all ¢ € {a, ], so that, by the mean value theorem,
G is a constant mapping from {a, b] into B(X;R): 3Gy € B(X;R) such that
G(t) = Ry(t) — Ry = Go for all t € [a,b]. Thus, for any t, s € [a, b] we have

d(g(t)’g(s)) = H (Rg(t) - Rro) - (Rg(s) - Rﬂ:o) “u = “ Go — Go ”u =0,
so that g is a constant mapping from [a,b] into X. [

Proof of Corollary 3.6. Let f : [a,b] = X be a continuous mapping of
bounded ®-variation. According to Theorem 4.2(a) below (see also (4.7)),
the function ¢(t) = Vs(f,[a,t]), t € [a,b], is continuous on [a,b], so that
E1 = ¢([a,b]) = [0, €], where £ = V(f,[a,b]). Thanks to Theorem 3.2, we
have f = g o on [a,b], where g : [0,] = X is such that w, g q < 7!
on RY. We are going to show that £ = 0, so that the assertion of Corol-
lary 3.6 is obvious from (P1). On the contrary, suppose that £ > 0. Since

1 o1(¢)

(g = 700 =) Jim, = = i 75 =0

we can apply Lemma 3.7 with ¥ = ®~! and conclude that g is constant on
[0,¢], which implies that f = g o ¢ is a constant mapping on [a,]. Thus,
¢ =0, a contradiction. [J

4. CONTINUITY PROPERTIES OF MAPPINGS OF BOUNDED $-VARIATION

In this section we address continuity properties of mappings of bounded
®-variation. We show that these mappings have the same continuity prop-
erties as mappings of bounded variation in the sense of Jordan (cf. [5],
Sec. 4), but the method of the proof is closer to the one given for mappings
of bounded p-variation (p > 1) in the sense of Wiener, (7], Sec. 4.
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Throughout this section we assume that (X, d) is a metric space, & € F
is a given function, f : £ C R — X is a fixed mapping of bounded &-
variation, and the function ¢ : E — R is defined by ¢(t) = Va(f, E;") for
te k.

We begin with a preliminary lemma.

Lemma 4.1. Ift € E is a limit point of the set E;, then d(f(t), f(3))
has a limit in [0,00[ as E 3 s — t — 0. If, in addition, X is complete, then,
as E>s—t-0, f(s) has a one-sided limit in X denoted by f(t—), and

d(f(s), £(t)) tends to d(f(t-), f(¢)).
Analogous assertion holds if t € E is a limit point of E;, with the one-
sided limit f(t+) 1= limgss—evo0 f(8) € X if X is complete.

Proof. 1f 51, 83 € E, 81 < 83 < t, then, using continuity of the metric d and
applying (P1) and (P3), we have

B(|d(f(t), F(51)) — A(f(), f(s2))]) < B(d(f(51), f(s2))) <
< Va(f, E32) £ Vo(f, Eg,) — Va(f, ES)) = p(s2) — p(s1)-

Since ¢ is nondecreasing and bounded, the limit

(4.1)

plt=) =, Jim_ o(s) =sup{p(s) | s € By, s £ 1)
is finite; and hence, applying the Cauchy criterion in R and using (4.1), we
obtain the existence of the limit of d(f(t), f(s)) as E5>s =t ~0.

If X is complete and s1, s2 € E, s; € s3 < t, then, as in (4.1) above,
we have d(f(s1), f(s2)) < ®71(¢(s2) — ¢(s1)); and hence, the existence of
the limit f{t~) follows from the Cauchy criterion in the complete metric
space X. From the continuity of d we have, as £ 3 s — ¢t — 0,

[d(f(s), 7(2)) — d(f(t=), F®))| < d(f(s), f(¢-)) = O.

The case where ¢ € E is a limit point of the set E; is completely analo-
gous. [0

Theorem 4.2. (a) f is continuous at the point t € E if and only if the
function ¢ is continuous at t. (b) f is continuous on E outside, possibly,
of a subset of E which is at most countable. (c) If X is complete and
{t:}¥., ¢ E, N € NU {00}, is the set of points of discontinuity of f such
that every t; is the limit point of each of the sets E; and E';f , then

N

N B(d(fti-), £(t:+)) < Valf, E). (4.2)

i=1
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Proof. {(a) The only interesting case is where t € E is a limit point of E. In
addition, we suppose that t is a limit point of both E; and E; .
Sufficiency follows from the inequality (cf., (4.1)):

d(f(s), f(8)) < 37 (je(s) — (¥)l), s€E. (4.3)

Necessity (which is the most difficult hard part of this theorem) follows
from Lemma 4.3 below and Proposition 3.1.

(b) The function ¢ is nondecreasing on F; and hence, it has at maost
countably many points of discontinuity. It remains to note that, by (a), the
sets of discontinuity points of f and ¢ are the same.

(C) It {Si,Ti}:;l C EFand s; <t < <s3<s Ty < vov < 8y <y < T,y
then

n
D ®(d(f(s0), () < Va(/, B),
i=1
so that passing to the limits as s; =+ ¢; — 0, 7, = t; + 0 and n = N (if
N = 00) and applying Lemma 4.1, we arrive at (4.2). O

Remark. In the case where ®(t) = t?, ¢t > 0, p > 1, N. Wiener [19]
was the first who proved the inequality (4.2) for real-valued functions f
under the additional condition that f has at most countably many points
of discontinuity.

Remark. The inequality (4.3) and Lemma 4.1 imply that
Llm d(7(0), £(5)) < 87 ((e) - (e-)),
golm  d(f(s), £(2) < @71 plt+) — (1))

Lemma 4.3. Ift € E is a limit point of each of the sets E; and E},
then

p(t+) — p(t-) < w(A) +w(B), (4.4)

where w(p) = wg 0,)(p) for p >0, w(+0) =0, L = D(f,E) and
A=A = Jim A7), 1(6)), (15
B=B(,)= _lim d(f(s), /(). (4.6)

Before the proof of this lemma two remarks are in order.
Remark. If X is complete, then (4.4) assumes the form
p(t+) — p(t-) S w(d(f(t), f(t-))) +w(d(f(+), f(2)))-

If, in addition, ®(t) = t, then p(t+)—@(t—) <d(f(t), f(t=))+d(f(t+), f(t)).
The last inequality turns out to be the equality (see [5], Lemma 5.2(a,b)).
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Remark. If t = inf E € F is a limit point of F, then (4.4) holds if we
replace A by zero and ¢(t—) by ¢(t). If t € E is a limit point of E; , then
(4.4) holds as well if we replace B by zero and ¢(t+) by ¢(t). In particular,
this and Lemma 4.3 imply that if f : [a,b] = X is a continuous mapping
of bounded ®-variation, then

[a,b] 3 t = ©(t) = Va(f,[a,t]) is also continuous. 4.7)
In order to prove Lemma 4.3, we need one more lemma.
Lemma 4.4. If a, s, b€ E, then
@ o d(f(b), f(a)) < P od(f(s), f(a)) +w(d(f(b), £(5))),
where the function w is the same as in Lemma 4.3.
Proof. Clearly,
B0 d(f(2), f(a)) < ® 0 d(f(s), f(a)) +

+ (@0 d(f(b), f(a)) — o d(f(s), f(a))l,
(4.8)

and since d(f(t), f(7)) € D(f,E) for all t, 7 € E, by definition of w and
continuity of d, we have

|© 0 d(f(b), f(a)) — @od(f(s), f(a))| <
S w(ld(f(b), f(a)) = d(f(s), f(a))]) <
< w(d(f(b), f(s)))-
The last inequality and (4.8) prove the lemma. [

Proof of Lemma 4.3. Let € > 0 be fixed. By virtue of (4.5) and (4.6),
choose ag, by € E, ap < t < by, such that
[d(f(t), f(s))— Al <e Vs€FE ag<s<t, (4.9)
[d(f(s), f(t))—Bl<e VseE, t<s<b. (4.10)

Let T'= {to < t1 < ... <tm_1 < tm} be a partition of the set E, with
the property (following from the definition of ¢(bo) = Va(f, Ey,) )

p(bo) — e < Va[f, T). (4.11)

We will consider only the case where ¢y < t < t,, since it is clear how to
(similarly) handle the cases where t < tp and ¢, < t.
We have two possibilities: (I)t ¢ T and (II) t € T.
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(I) Let t ¢ T. Then there exists k € {1, ... ,m} such that t;_; <t < ¢y,
so that from the properties of the ®-variation we have

k-1
Valf,T) =Y _ ®od(f(t:), f(tic1)) + o d(f(tr), f(te—1)) +
1=1

+ Y @od(f(ti), fltic) <

i=k+1
< p(th-1) + @ o d(f(tk), f(tr—1)) + Va(f, E) <

< (ti-1) + Qo d{f(te), F(te—1)) + o(bo) — @(t+);
(4.12)

in the last inequality we have used the fact that, by (P3),
Vo (f, i) < o(bo) — p(te) < @(bo) ~ o(t+).

There are two cases: (a) ag < tg_1 and (b) tx—1 < ao.
(a) If ap < tg-1, then taking into account the definition of w, (4.9), (4.10),
and the triangle inequality for d, we have

® o d(f(tr), ftk-1)) < w(d(f(tr), ftr-1))) <

S w(d(f(), f(tx-1)) +d(f(t), £(1)) <
Sw(A+e+ B+e).

By virtue of (4.12), it follows that
Volf, T) < pt=) + w(A + B +2¢) + g(bo) — g(t+).  (4.13)

(b) If tx—1 < ap, then applying Lemma 4.4 with a = ¢3_1, s = ap, and
b = ti, using the triangle inequality for d, (4.9) and (4.10), we have

® o d(f(tx), f(tk-1)) < @ 0 d(f(ao), f(tr=1)) + w(d(f(tk), f(a0))) <
< @ od(f(ao), f(tk-1)) +w( d(f(t), f(ao)) +
+d(f(te), (1) ) <
< ®od(f(ag), fltk—1)) +w(A+ B+ 2¢).
By virtue of (4.12) and (P3), it follows that
Valf,T) < p(ter) + @ 0 d(f(a0), f(ter)) +w(A+ B +2¢) +

+ @(bo) ~ p(t+) <

< ¢(ao) + w(A + B+ 2¢) + ¢(bo) — p(t+) <

< p(t=) + w(A+ B + 2¢) + p(bo) — p(t+). (4.14)
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(II) Consider the second possibility ¢ € T'. There exists 1 <k < m —1
such that ¢ = tx; and we have

k=1
Valf,T) =) ®od(f(t:), f(ti-1)) + Do d(f(t), f(te—1)) +
i=1

+@o0d(f(thpr), F(B) + Y Bod(f(t), f(ti1)) <

imk+2
< @(tk-1) + @ o d(f(t), f(tk-1)) + w(B +¢) +
+ ¢(bo) — p(t+), (4.15)

where we have used the definition of w and (4.10} in the last inequality. As
above, the following two cases are possible: (a) ap < tx—1 and (b) tx—1 < ao.

(a) If ap < tg—1, then taking into account the definition of w and (4.9),
we have

B o d(f(t), f(th-1)) < w(d(f(), f(th-1))) S w(A+e¢),
so that by virtue of (4.15), it follows that
Valf, T) < (=) + w(A + &) + w(B +&) + plbo) ~ p(t+).  (4.16)

(b) If tx_1 < ag, then applying Lemma 4.4 with a = t;..1, $ = ag, and
b =t = t, and using (4.9), we have

D o d(f(t), f(tr-1)) < @ o d(f(ao), ftk-1)) + w(d(f(t), flan))) <
< ®od(f(ao), f(tk-1)) + w(4 +¢).
By virtue of (4.15), it follows that
Volf, T] € o(te-1) + @ 0 d(f(ao), f(tk-1)) + w(A +¢) +
+w(B+e) +p(bo) — p(t+) <
<L o(t=) +w(A +e€) +w(B +¢) + ¢(bo) — p(t+). (4.17)

Summing up, from (4.13), (4.14), (4.16), (4.17), and Proposition 3.1(d)
we conclude that in both cases (I) and (II) we have the inequality

Valf,T] < @(bo) + p(t—) — p(t+) + w(A+e) +w(B +¢). (4.18)

(Now it is clear from the above that (4.18) can be similarly proved if ¢ < ¢,
or ty, <t.) From (4.18) and (4.11) we find that

e(t+) —p(t—) S w(A+e)+w(B+e)+e Ve>0.

It remains to let € tend to +0 and take into account Proposition 3.1(e). [J
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5. PATHS OF MINIMAL ®-VARIATION

The following theorem asserts the existence of a geodesic path between
two points in a compact set with respect to the ®-variation; it extends the
results which were previously given in [2], Ch. 1, (5.18), 5], Theorem 6.1,
and [7], Theorem 5.1.

Theorem 5.1. Let & € F, K be a compact subset of X, and let x,
y € K. Suppose that there is a continuous mapping fo : [0,1] — K of
finite ®-variation such that fo(0) = z and fo(1) = y. Then there exists
a continuous mapping h : [0,1] = K of minimal ®-variation such that
h(0) =z, h(1) =y, and for some 0 < L < oo,

®(d(h(t),h(s))) < Lit—s| Vt,s€(0,1].

Proof. In the proof below we borrow some ideas from [5], Theorem 6.1. Let
z#£y W(z,y)={f:[0,1] = K | f continuous, f(0) ==z, f(1) =y}, and
let

¢=inf{Va(f,[0,1]) | f € W(z,9) }. (5.1)

By (P1), Va(f,[0,1]) > ®(d(£(0), f(1))) = ®(d(=,y)) > O for f € W(z,y),
so that £ > ®(d(z,y)). By assumption, £ < Va(fo,[0,1]) < oo; and hence,
there exists a sequence {f,}32, of mappings in W(z,y) such that £, :=
Vo(frn,[0,1]) — £ as n — oo, where £, > 0, so that L := sup,cn¥n is
finite > 0. By Lemma 3.4, for any n € N there exists a continuous mapping
gn :[0,€,] = K such that f, = gn 09, on [0,1] and

d(gn(a)agn(ﬂ)) < Q_l(la - ﬁ')) a,fe [O’En]a

where ¢, (t) = Va(fa,[0,t]) for 0 <t < 1 is continuous by Theorem 4.2(a)
(or (4.7)), gn(0) = Z, gn(€s) = y and Vi(gn,[0,£,]) = Va(fn,[0,1]) = £n,
by (P4). Setting hn(7) = g.(7¢,) for T € [0,1}, we have h,, € W(z,y),
Vo (hn,[0,1]) = £, = £ as n — oo (by (P4)) and

d(hn(0), hn(B)) S @ (lnla— B)) < @7 '(Lle - B]), «,B€0, 11-( )
5.2

The last estimate shows that the sequence {hn} of mappings h, : [0,1] =
K is equicontinuous, so that by Ascoli-Arzelad’s theorem (see [8], Theo-
rem (4.44)) it has a uniformly convergent subsequence {hn, }32, with the
uniform limit & : [0,1] — K. Clearly, h € W{z,y) and h satisfies (5.2).
Now (P7) implies that

Vo (h, [0,1]) < liminf Va (hn,, [0,1)) = lim £, =£.

From (5.1) we know that £ < Vg (h,[0,1]), so that £ = Vs (h,[0,1]); this is
what is required. [J
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6. HELLY SELECTION PRINCIPLE

The following result is a compactness theorem relative to the ®-variation,
which, in the theory of mappings of bounded p-variation with p > 1, is
known as the E. Helly selection principle (cf., [17], Ch. 8, Sec. 4, Helly
theorem, (5], Sec. 7, [6], Sec. 5, and (7], Sec. 6).

Theorem 6.1. Let ® € F, K be a compact subset of the metric space X,
and let § be an infinite family of continuous mappings from the interval [a, b]
into K of uniformly bounded ®-variation, i.e., supscg Vo(f,[a,b]) < oo.
Then there exists a sequence of mappings from § that converges pointwise
on [a,b] to a mapping from [a,b] into K of bounded ®-variation.

Moreover, if X s a Banach space, then the theorem holds without the
continuity assumption on the family §.

Proof. We adapt the proof from [5], Theorem 7.1 for the case considered,
and divide it into three steps.

Step 1 (common auxiliary part). According to Theorem 3.2 we can write
any mapping f € § in the form f = g o ¢f on [a,b], where ¢f(t) =
Va(f,[a,t]) for t € [a,b] and g; : E1y = ¢f([a,b]) - K is a mapping
such that wy, g, , < ®-1 on R}. The family of nondecreasing nonnegative
functions { ¢ | f € F} (with ¢;(a) = 0) is infinite and uniformly bounded
on [a, b] since

Dipy,[a,5)) = ¢7(6) = Va (£, [a,b]);
and hence, it contains a sequence of functions {¢,}32, corresponding to
the decompositions fn, = gn 0 ¢, (i€, Yn = ¢y, and g, = gy,) for all
n € N, which converges pointwise on [a, b] to a nondecreasing and bounded
function ¢ : [a,b] — R (see [17], Ch. 8, Sec. 4, Lemma 2). If £ = ¢(b) and
£y, = pp(b), then 0 < £ < oo and £, = £ as n — oo.

Step 2. Suppose that the family ¥ consists of continuous mappings.
Since f, € § is continuous, then ¢, is continuous as well by Theorem 4.2(a)
(or (4.7)), so that the mapping g, is defined on the interval E;, =
en(la,b]) = [0,4,]. If £, > ¢, then we consider g, only on the interval
[0,4], and if £, < ¢, then we extend g, onto )¢, £] by setting gn(7) = gn(¢s)
for all 7 €]¢y,4). It follows that wg, 0 < ®~' on RY, so that the se-
quence {gn}22; C K4 is equicontinuous, and hence, by the Ascoli-
Arzela theorem, it is precompact in the space C([0,£]; K) of all continu-
ous mappings from [0, ¢] into K, and hence, it has a uniformly convergent
subsequence {gn, }32, with the uniform limit g : [0,£] —» K such that
Wy l0,g < ®~! on Rf. By virtue of Lemma 3.3, the composed mapping
fi=gop:[a,b = K is of bounded ®-variation. Now, if ¢ € [a, b], we have

A(fni (8), £(2)) = d((gns © Pni)(8), (g0 9)(2)) <
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< d(gny (#ni (1)), 9ni (#(2)) + dlgn, (2(2)), 9(0(1))) <
< @7 (|pn, (8) — (D) + dlgn, (#(2)), 9 (1)))-

The terms in the last sum tend to zero as k — oo, so that the sequence
{frs }32, C § converges pointwise on [a,b] to f € Vg([a, b]; K).

Step 3. Let X be a Banach space and § be an infinite family of mappings
from [a,b] into K of uniformly bounded ®-variation. Using the argument
of step 1, in this case we have Fy, = ¢n([a,d]) C [0,4,]. If L = sup, ¢y 4y,
then 0 £ L < oo and ¢ = lim, 00 én < L. Denote by g, the restriction
to [0, L] of the mapping g} given by Lemma 3.5 with ¥ = ®~!. For all
n € N we have wg; 0,) < ¥* on [0,L], and hence, by the Ascoli-Arzela
theorem, the equicontinuous sequence {g}3%, C K®I has a uniformly
convergent subsequence {gn, }3>,, whose uniform limit we denote by g.
Setting f = Foyp : [a,b] = K, for all ¢ € [a,b] we have (as at the end of
step 2)

d(fr (8); (1)) = d(Gns (P (8)), (9 (2)) <
< U (lpn (8) — (1)) + d(@ni (4(2)), 5((1))).

Thus, fp, converges pointwise on [a,b] to f as k = oo. Applying pro-
perty (P7), we obtain f € Vg([a,b]; K). O

Open question. Is it possible to replace the condition “§ C K% with a
compact subset K C X” in Theorem 6.1 by the following weaker condition:
“for every t € [a,b] the set F(t) := { f(t) | f € §} is precompact in X”?

7. MAPPINGS WITH VALUES IN A NORMED VECTOR SPACE

In this section we assume that X is a normed vector space over the field
K = R or C with the norm || - ||, and as usual, @ # E C R. We are going to
prove that if the function ® € F satisfies the condition (see (2.6)):

3C € R such that ®(t+s) < C(®(t) + ®(s)) Vt, s >0, (7.1)

then the convergence of sequences of mappings from Vs (E; X) in (the sense
of) variation is given by a metric A = Ag on V3(E;X); moreover, the
metric space (Va(E;X),A) is complete if X is a Banach space. (Note
that condition (7.1) can be replaced by the following: 3C € R such that
®(2t) < C®(t) Vt > 0; in fact, the latter condition implies that for all
t,s>0

B(t + s) < P(2max{t,s}) < C®(max{t,s}) < C((t) + B(s)). )

Choosing s =0 and ¢t > 0 in (7.1), we have 1 < C < 0. Since F is fixed
throughout this section, for brevity, we will write Vg (f) := Va(f, E).
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From (7.1) we have that if f, g € Vo(E; X) and « € K, then

Va(f +9) < C(Va(f) + Val9)), (7.2)
Vo(af) < CaVa(f),

where
c. _ { la|Cle=1 if a=0o0r |a| > 1,

1, if 0<|al <1,
and hence, Vg (F; X) is a vector space over K.
In what follows, tg € E is a fixed point.

Definition. A sequence of mappings {f,}3%; C Vs(E; X) is said to be
(a) convergent to a mapping f € X¥ in (the sense of ®-) variation if
| fa(to) — f(to) | + Va(fu — f) 20 as n — oo;
(b) Cauchy in (the sense of ®-) variation if
| fa(to) — fm(to) | + Va(fn — fm) =0 as n,m— oo.

If C = 1in (7.1), then from the properties of the ®-variation and (7.2)
it follows that the mapping

A(f,9) =11 o) —g(to) | + Va(f —g), [, 9 € Va(E; X),

is a metric on Vg(E; X) which induces the convergence in variation.

If C > 1 in (7.1), then the definition of a metric on Vg (FE; X) is more
complicated. We derive the construction of the metric A below from the
metrization lemma, [13], Lemma 6.12, which gives a pseudometric corre-
sponding to the uniform structure with a countable base. Clearly, the base
of the uniform structure, which gives rise to the convergence in variation,
consists of the sets

1
Un ={(£,9) | 11 £to) —g(to) I +Va(f ~9) < -}, neN,
where f, g € Vo (E; X).
Definition. Let C > 1in (7.1). For f, g € Vs(E; X) we set
1/
A1(f,9) = (Il £(to) = alto) | + Va(f = 9))
and define the mapping A : V§(E; X) x Va(E; X) = R by

7= 10g2(302))

A(f,9) =inf Y Di(fi, fir),

i=1
where the infimum is taken over all finite sequences {f;}%, of mappings

from Vy(FE; X) such that fo = f and f, =g.
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The main result of this section is the following theorem.

Theorem 7.1. (a) A is a metric on Vg(E; X).

(b) Let {fn}2, C Va(E;X). Then the sequence f, converges to
f € Va(E; X) in variation (is Cauchy in variation) if and only if
limp—y00 A(fn, f) = 0 (respectively, limy m—o00 A(fn, fm) =0).

(c) If X is a Banach space, then (Vo(E; X),A) is a complete metric
vector space.

In order to prove this theorem, we need two lemmas.

Lemma 7.2. If S € RY and Ay(fi,fic1) < S fori =1, 2, 3, then
Aq(fs, fo) < 28.

Proof. From (7.1), using that C > 1, we have
Vo (fs — fo) < C?*(Va(f1 — fo) + Va(fa — f1) + Va(fa — f2))

which, by virtue of the triangle inequality for the norm | - ||, implies that

3
A fo) < (3001 itto) = Fimlto) [ +C2Va(fi — fim)) <

i=1

3 1/~
< (02 Z(Al(fi; fi—l))v) .

i=1
It follows that if A;(f;, fi-1) < S for i =1, 2, 3, then the choice of « yields
B1(fs, fo) < (3C28M)Y7 =28,
a
Lemma 7.3. A(f,g) > 3A1(f,9) for all f, g € Vs(E; X).

Proof. By the definition of A(f,g), it suffices to show that for any finite
sequence of mappings {fi}y C Vao(E; X) we have

ZAl(fivfi—l) > %Al(fn,fo)- (7.3)
i=1

This is done by induction in » € N as follows. The inequality is obvious if
n = 1. Let m € N, and suppose that (7.3) holds for any sequence {f;}?,
with n < m. Let us prove that the corresponding inequality also holds
for arbitrary sequence {f; :';‘81. Set S = E:’:{l Aq(fi, fi—1) and choose a
number k € {0, 1,...,m} in such a way that

k k+1

> Ailfi fia) € 55 <D0 Aulli fid)
i=1

i=1
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(note that we use the convention that 37g_, .- = Y7+ 4o+ =0). Clearly,
m+1 1
> A(fir fimr) < 75
i=k+2

Using the induction assumption, we have

k
S A(fiy fim1) 2 %Al(fk’fo);
i=1

m+1

Z Ai(fis fi1) > ';‘Al(fm+1,fk+l),

i=k+2
and hence,
Ai(fe o) £5, A1(fmtr, frr) £
Since (obviously) Ai(fr+1,fx) < S, by Lemma 7.2 we have

A1(fm+1, fo) < 28;
this is the desired inequality. O
Now we are in a position to prove Theorem 7.1.

Proof of Theorem 7.1. (a) Clearly, A is nonnegative, symmetric, and sat-
isfies the triangle inequality. Let us show that A(f,g) = 0 < f = g.
Indeed, if A(f,g) = 0, then A;(f,g9) = 0 according to Lemma 7.3, or
| f(to) — g(to) | = 0 and Vu(f —g) = 0. The last equality and property (P1)
imply that f —g is a constant mapping, and since f(to) = g(¢), then f = g.
The other implication is obvious.

(b) The necessity follows from the inequality A(fy, f) < A1(fa, f), and
the sufficiency is a consequence of Lemma 7.3. An analogous argument
applies to Cauchy sequences.

(c) Let {fn}52; be a A-Cauchy sequence in Vg (E; X). By virtue of (b),
the sequence {f,} is Cauchy in variation, and hence, as n, m — o0,
| £alto) — fm(to) || = 0 and

Va(fn — fm) — 0. (7.4)
For all t € E and n, m € N we have, by (P1),

| fa(®) = Fn @) | < || fulto) — fm(t0) I+ | (fn = fm)(2) = (Fn = ) (Bo)
< ” fn(tO) - fm(tO) ” + ‘I)—l(vé(fn - fm))
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Thus, the sequence {f(t)}52, is Cauchy in X for all t € E, so that {f,}32,
has a pointwise limit f € X¥, and in particular,

| fa(to) — f(to) | » 0 as n — oo, (7.5)

Let us show that f is of bounded ®-variation. By (7.4), the sequence
{Va(fn — f1)}$2, is bounded, so that, Va(f1) < oo and (7.2) imply that
{Va(frn)}52, is bounded as well. Now property (P7) yields

Va(f) < liminf Ve (fa) < oo,

e, feVe(E; X).

It remains to show that f, converges to f in variation. In view of (7.5),
it suffices to verify that Va(f, — f) = 0 as n = oo. By virtue of (P7)
and (7.4), we have

limsup Vg (fn — f) < limsup liminf Va(fn — fm) = 0;

n—roo n—00 m—00

this ensures that lim,_,o, Vo (f, — f) = 0. The proof is complete. O

Remark. If ®(t) =7, ¢ >0, p > 1, then Vg (E; X) is, actually, a normed
vector space, which is complete whenever X is complete (see [5], Sec. 8 for
p=1and [7], Sec. 7 for p > 1).

8. SET-VALUED MAPPINGS AND THEIR SELECTIONS

We begin with the definitions of the Hausdorff distance and set-valued
mappings (for more detail see [1], Ch. 1, Secs. 1, 5 and [3], Ch. 2, Sec. 1).
Given two nonempty subsets A, B C X of a metric space (X,d), the
Hausdorff distance dy between A and B is defined by
dy (A, B) = max{e (A, B),e(B, A)}, where e(A,B):= sup inf d(z,y).
z€A yeB
The mapping dg (-, - ) is a metric on the set of all nonempty closed bounded
subsets of X, and hence, on the set of all nonempty compact subsets of X.
Let E and X be two metric spaces, 2X be the set of all subsets of X
and 2% = 2X\ {@}. A set-valued mapping from E into X is a mapping
F: E — 2%, so that F(t) C X for every t € E. The set-valued mapping
F: FE — 2% is said to be
(a) compact if its graph Gr(F) := {(t,z) e Ex X |z € F(t)} is a
compact subset of F x X (and hence, F'(t) is a compact subset of X
for every t € E but not vice versa);
(b) of bounded ®-variation on £ = [a,b] C R, where & € F if
(see (2.1)~(2.4))

Vab,q,(F) = sup { Vo,ay [F,T) | T € T([a, b)) } < o0;
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(c) Hausdorff continuous at tg € E if for any € > 0 there exists § =
d(e) > 0 such that dg (F(t), F(to)) < eforallt € E with dg(t,tp) <
6; Hausdorff continuous on E if it is continuous at every point
to € E.

The mapping f : E — X is said to be a (regular) selection of the set-
valued mapping F : E — 2X if f(t) € F(t) forallt € E.

Continuous selections of convex-valued set-valued mappings under very
general conditions are known to exist due to Michael [15]. Here we consider
mainly the nonconvex case. The first result of this section addresses the
question of existence of continuous regular selections of a set-valued mapping
of bounded ®-variation. It generalizes some results for mappings of bounded
variation in the sense of Jordan in [10] and [11] in the finite-dimensional case
and [16], Supplement, Theorem 1.8, [5], Theorem 9.1, and [6], Theorem 6.1
in the infinite-dimensional case.

Theorem 8.1. Suppose that ® € F and there are 0 < ¢; < ¢2 < ©
and § > 0 such that c;t < ®(t) < et for all 0 £ t < § (in particular, this
holds if ®'(4+0) = ¢ for some 0 < ¢ < 00). Let X be a Banach space (over
the field R or C), F : [a,b] — 2% be a compact Hausdorff continuous set-
valued mapping of bounded ®-variation on [a,b], to € [a,b] and xo € F(to).
Then there exists a continuous selection f : [a,b] — X of F of bounded
®-variation (and bounded 1-variation) such that f(tp) = xzo.

Proof. Proposition 2.3, the inequality ¢t < ®(t) on [0,4], and Proposi-
tion 2.5(c) imply that

‘/at:q,(t)(F) < 00 = ClV:’t(F) = V:’clt(F) < 00.

Thus, F' is of bounded variation on [a,b] in the sense of Jordan, so that
applying Theorem 9.1 from [5], we get a continuous selection f : [a,b] = X
of F of bounded 1-variation such that f(Zp) = zo. Again, thanks to Propo-
sition 2.3 and the inequality ®(t) < cat on [0, 8], we have

Vcﬁ(f’ [0,, b]) = c2‘/t(fa [aa b]) <o = V@(t)(fv [a3 b]) < oo,
and hence, f is of bounded ®-variation; this is what is required. [

Remark. If ® in Theorem 8.1 is such that ®'(+0) = oo (or, equivalently,
limg, 1o ®(t)/t = 00), then F is a constant set-valued mapping on [a, b] (see
Corollary 3.6), so that F trivially admits continuous selections of bounded
(in fact, zero) ®-variation.

We note that the limiting behavior of the function ®(t)/t as t - +0
plays an important role. Now we are going to consider the case where
(ﬁ'(+0) = limt_H.() @(t)/t =0.

Theorem 8.2. Let ® € F, and set ¢(t) := ®(t)/t, t €]0,00].
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(a) If ®'(+0) = 0 and ¢ is strictly increasing on ]0,00[, then there
exists a compact set-valued mapping F : [-1,1] — R satisfying

dH(F(t)’F(S)) < q)-l(|t - SI) Vtr SE [—1’ 1] (81)

(and hence, F is Hausdorff continuous of bounded ®-variation),
which admits no continuous selection.
(b) If there is a constant cg > 0 such that

B(2t) > co(p(t)V2  for all 0<t <2, (8.2)

then there erists a compact set-valued mapping F : [-1,1] — oR?
which satisfies (8.1) and has no selection of bounded ®-variation.

Remark. Examples of functions ® in Theorem 8.2 (a) and (b) are given,
respectively, by ®(t) = t? with p > 1 and ®(t) = te~1/*' with ¢ > 1.

Proof of Theorem 8.2. (a) Step 1. The example below is a generalization of
Example 1 in [1], Ch. 1, Sec. 6 and Proposition 8.2 in [7]. Let C = {(z,y) €
R2? | 22 + y? = 1} be the unit circle in R%. For 0 < ¢ < 1 set

at) = —1—, B(t) = arcsind)"l(ﬁ) with e =1+ g + 8—(1—1—)

a

The function B(t) is well defined since ¢ is strictly increasing and t2/a <
1/a < ¢(1) for t €]0, 1], so that

il
2
Since ¢(t) —» 0 as t — +0, there exists ng € N such that for all n € N with
n > ng the unique positive solution T = 7, of the equation 8(7) = n/2"+2,
which is of the form 7, = (ag(sin(r/2"+2))) 1/2, lies in ]0,1]. Clearly,
{Tn}32 0, is & decreasing sequence which tends to zero as n — oco.

Now we define the mapping F : [-1,1] — 9R* as follows. Let ¢ €0, 1].
Then, either t €]7,41,7,] for some n = n(t) > ng, or t € [1,,,1). If
t €]Tn+1, Tnl, we set 6,(t) = B(7,) — B(t), and for m =10, 1, ... 2" — 1, we
define open arcs A,,(t), B,.(t) C C as follows:

0<B(t) < Vo<t<l1. (8.3)

Am(t) = {(z,y) € C | z = cos b,y =sinb,
m

olt) + iy <0 < aft) +m2nL_l +26() },

Bn(t) = {(z,y) € C | = cosf,y =sin¥,
aft) + sz”_—l + Qin +2B(Tns1) — 20n(t) < 6 <

<at)+may + 50 +2B(mi) b
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and we set
2" -1 2" —1
Aty = | Am®, B = {J Bn®). (8.4)
m=0 m=0

If t € (Tng, 1], we set A(t) = A(rp,) and B(t) = B(7p,), where A(Tn,)
and B(7p,) are defined in (8.4).
We define the set-valued mapping F': [-1,1] = 9R* by setting

) = {C\ (A(‘tg U B(|t)) i I iﬁ

For t # 0, F(t) is the unit circle in R? from which a finite number of sections
(depending on t) are removed. As t gets smaller, the arclengths of the holes
decrease while the initial angles increase as 1/|t], i.e., the holes spin around
the origin with increasing angular speed. Any continuous selection f(t) =
(z(t),y(t)) defined on [—1,0[ or on ]0,1] (for instance, z(t) = cos(1/|t|),
y(t) = sin(1/|t])) cannot be continuously extended to the whole [-1,1].
In fact, the holes in the circumference should force this selection to rotate
around the origin, and hence, the limits lim; 1o f(¢) cannot exist.

However, F is Hausdorff continuous on [—1,1] and satisfies (8.1). To see
this, let 0 < s <t < 1. We have

dy(F(t), F(s)) < min{sin(a(s) — a(t)), sin8(¢t) }.

The inequality a(s)—a(t) < B(t) is equivalent to the inequality s > so(t) :=
t/(1 + tB(t)), so that

sin B(t) if 0<s< so(t),
sin(a(s) —a(t)) if sp(t) <s <t

dy (F(t), F(s)) < {

The right-hand side is estimated in steps 2 and 3 below.
Step 2. sinB(t) < ®~1(t — sp(t)) forall 0 < ¢t < 1.
In fact, e > 1 and 14+ ¢8(¢) <1+ 7/2 < a by (8.3), so that

t28(t)  tB()
t=so(t) = 1180 > a
which implies the desired inequality.
Step 3. sin(a(s) — a(t)) < ®71(t —s) for all sp(t) <s < t.
In fact, setting z = a(s) —a(t) = 1 — 1, we have 0 < z < B(t) < 7/2,
s =t/(1+1t2), and t — s = t22/(1 + tz), so that the desired inequality is
equivalent to sinz < ®~1(¢22/(1 + tz)), which follows from

= ¢(sin B(1)) - B(t) > @ (sin A(1)),

2 2z t22

®(sin z) = ¢(sin z) sin z < P(sin B(t))z = - < 15 (n/3) < Tt
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Step 4. To complete the proof of (a), let 0 < s < s¢(t); then, by step 2,
we have

du(F(t), F(s)) < sinB(t) < &7t — so(t)) < &7t — s).
If s0(t) < s < t, then, by step 3, we have
du(F(t),F(s)) < sin(a(s) — a(t)) < &7t — s).

Thus, dg(F(t), F(s)) < @ (t—s) forall0<s<t < 1.
Ifs=0<t<1, then

du(F(t), F(s)) <sinf(t) < 7'(t).

The cases -1 <t <s<0and -1 <t<0<s<1 are treated similarly.

(b) Suppose that f is a selection of the mapping F, constructed in the
proof of (a). If t, := 1/(2mn), then a(t,) = 27n, n € N. From the
definitions of the sets A,,(t) and Bp,(t), it follows that for any t €]0, 7]
the set A(t) consists of at least 7/(88(t)) arcs A, (t) of the angle 28(t).
Hence, for any n € N with n > ny := 1/7,,, we have one of the following
two possibilities: (1) the interval [¢n.41,tn] contains a pair of points an, by,
such that || f(bn) — f(as) IRz > V2, or (2) there are M, > 7/(166(t,))
pairs of points Cnm, dnm in the interval [tni1,4n), 1 < m < My, such that
[| flenm) — f(dnm) |lrz = 2s8inB(¢,). In this latter case, by virtue of (8.2),
we have

M.,

>~ &l £(cnm) = f(dnm) [r2) 2 T ﬁ(t )<I>(2s1nﬁ(t n)) >

m=1

> 16,6(t) -2sin B(ty) - ¢(2sin B(t,)) >

T80 o (gGsin B(ta)) 2 2

B(tn)

v

ool 3 ool

v

3=

§l.

It follows that

VQ(f’ [_1) 1]) _>_

EM

n
=N

and hence, F' admits no selection of bounded ®-variation. O
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