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Abstract

We study the properties of the Erdos measure and the invariant Erdoés
measure in the case of the golden ratio and for all values of the Bernoulli
parameter. We prove that the two - sided shift on the Fibonacci compact
set with the invariant Erdds measure is isomorphic to an integral auto-
morphism over the Bernoulli shift with a countable alphabet. We provide
an effective algorithm for the calculations of the entropy of the invariant
Erdos measure. We show that for certain values of the Bernoulli parame-
ter that algorithm gives the Hausdorff dimension of the Erdés measure to
the fifteen decimal places.

1 Introduction

Almost seventy years ago Erdés posed the following problem:
What one can say about the distribution function of the random variable :
C=Cp+ Gp? + ..., where (1, o, ... are independent, identically distributed
random variables taking values 0, 1 and 0 < P((; =0)=1/2, (0 < p < 1).
We will call this distribution of the random variable ¢ the Erdés measure on
the real line .
The problem of Erdés has been the subject of the large number of papers.
In [2] the authors gave the definitions of the Erdés measure on the unit interval
[0,1], on the Fibonacci compactum and the invariant Erdds measure on the
Fibonacci compactum for the case p = (v/5 — 1)/2 (the inverse 3 ), where
B = (V54 1)/2 is the golden ratio. In [2] the authors proved that the Erdds
measure is equivalent the invariant Frdés measure on the Fibonacci compactum.
Vershik posed the problem about the ergodic properties of the invariant
Erdos measure on the Fibonacci compactum. This problem was solved in [2] .
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In the previous paper [1] we discovered the connection of the Erdos - Vershik
problem with the hidden Markov chains for more general case 0 < P(¢; = 0) =
q<1, P(¢;=1)=p, p=(v/5—1)/2. With the help of this connection we shall
prove the result, analogous to one of the main results of the paper [2]. Namely,
we consider the shift on the two-sided Fibonacci compactum with the invariant
Erdés measure. 1t is 1somorphic to theintegral automorphism over the Bernoulli
automorphism with the countable alphabet. Also we obtain the formula for the
entropy of the invariant Erdés measure.

The ratio of the entropy of the invariant Erdés measure and In(3) is the
Hausdorff dimension of the invariant Erdés measure on the Fibonacci com-
pactum with the metric d(x,y) = p*(®¥), where n(z,y) is the length of the
longest common prefix of the words x and y. This dimension is equal to the
Hausdorff dimension of the Erdés measure on the real line.

The formula for the Hausdorff dimension of the Erdds measure on the real
line was obtained by Feng in [5](theorem 4.29). Our formula coincides with the
Feng’s formula. Therefore we gave a new derivation of the Feng’s formula. The
direct calculation of the Hausdorff dimension with the help of Feng’s formula is
impossible because the series for the Hausdorff dimension converges too slowly
for the effective computation.

In our case Lalley [4] obtained another formula for the Hausdorfl’ dimension
of the Erdds measure on the real line. Using this formula and Monte Carlo
method he was able to obtain the estimates of the Hausdorff dimension of the
Erdés measure with the accuracy (to confidence level .99) to within £.002 for the
various values of p. For those values of p that are in [4] we calculate the Hausdorff
dimension of the Erdés measure with a larger number of decimal digits. This
allows to estimate the accuracy of Lalley’s estimates. In our calculations we use
the acceleration of the convergence of the series in the formula for the Hausdorff
dimension. This acceleration i1s analogues to the acceleration from the paper of
Alexander - Zagier [3]. Remark that the Lalley’s calculations are the calculations
of the Lyapunov exponent for some sequence of random matrices(see [4]). One
can say the same about our calculations but our sequence of random matrices
1s another sequence.

2 Invariant Erd6s measure on Fibonacci compactum.

We shall give the definition of invariant Erdds measure on Fibonacci compactum
(see [1]). In [1] the problem about the ergodic properties of the invariant Frdds
measure was reduced to the study of the hidden Markov chain {n; = f(&)},
with generating Markov chain {&;} with 5 states 1,2,3,4,5 and the transition
matrix P of form

g 0 0 pg p?
g 0 gp 0 p?
P=l01 0 0 0
10 0 0 0
01 0 0 0



The initial distribution [ is the stationary distribution, the “gluing” function
f equals 0 for the states 1,2,3 and equals 1 for the states 4,5. The hidden
Markov chain generates the distribution of probabilities p on the space of its
realizations.

A useful fact is that the distribution p is the distribution of the infinite ran-
dom 0—1 word min2....0n... = f(&1)f(&2).... f(&n)-... Its support is the Fibonacci
compactum of the infinite 0 — 1 Fibonacci words of without the subwords 11.
This set is the compact set with the respect to the metric d(z,y) = prE)
where n(z,y) is the length of the longest common prefix of words = and y. The
measure g is the invariant Erdés measure on the Fibonacci compactum [1].

In the matrix P we take blocks P(00), P(01), P(10), P(11), corresponding to
the partition of the set {1,2,3,4,5} into two subsets, {1,2,3}and {4,5} :

q 0 O
PO0)=1{( ¢ 0 qp |,
01 0
pqg p?
pon=1{ 0 p* |,
0 0

P(IO):((I) ; 8)

Denote by 1(0) the row whose elements are first three elements of the row
l, where the row [ is the stationary distribution of the Markov chain with the
transition matrix P. Also denote by r(0) the column (1,1,1)T and denote by
r(1) the column (1,1)".

Let n > 2 and a = a;...a, be a finite Fibonacci word. We set

P(a) = P(a1az)...P(an—1a4).
Then
wl{z : vrxe..xn = a}) = pla) = lar)P(a)r(an), ular) = l(ar)r(aq).

Let X be the two-sided Fibonacci compactum of the infinite two-sided 0 — 1
Fibonacci words without subwords 11 and with the fixed first position. Let T
be a two-sided shift on the space X. Define the measure ;i on the two-sided
Fibonacci compactum :

a{z : x14jToyj. Tnyj = a1...0n = a}) = pla), ¥j € Z,n>1

The measure i is the invariant Erdds measure on the space X.



3 Golden shift.

A finite Fibonacci word is called elementary word if it has form 10! &k =
0,1,2,... An elementary word 10**! is called even word if k is even and it is
called odd word if £ is odd.

In [2] the authors introduce the subset of regular words. Recall the definition
of the regular word which was given in [2]. Let X1 be the subset of Fibonacci
words from the space X with x1 = 1, containing 1-s infinitely many times both
to the left and to the right with respect to the first position. For any x from the
space X7 we introduce the numbers y;(z),i € Z, where y;(x) 4+ 1 is the number
of zeros between ¢ —th 1 and (i 4+ 10 — th 1 in the word z (the 1 with number 1
stands on the first position).

Definition. A word z € X; called a regular word if in this word the odd
numbers y;(x) occur infinitely many times both to the left and to the right with
respect to the first position and the number yo(z) is odd. (A word z € X,
called a regular word if in this word the odd elementary Fibonacci words occur
infinitely many times both to the left and to the right with respect to the first
position and the elementary Fibonacci word to the left of the first position is
odd, yo(z) is odd.)

Following [2] denote the set of the regular words as Xo. Let 110 be the con-
ditional Erddés measure on the space )?0. This measure is proportional to the
measure 1 and fio(Xp) = 1.

According to [2] the finite Fibonacci word b is called a block if it is an odd
elementary word or the concatenation cics...cs_1¢s, 8 > 2, where ¢;,1 < s — 1
are even elementary words and the elementary word ¢, 1s odd.

Let B be the set of all blocks. We can identify this set with the set B’ of the
finite words b’ = kiks...ks, such that if s = 1 then k; is an odd number, if s > 1
then ki, ..., ks_1 are even numbers and ks is an odd number. The length of the
block b with V' = kj...ks is equal to ¢(b) = k1 + ... + ks +2s. The correspondence
b — b gives for us an important parameterization of the blocks. In [2] authors
used the another parameterization of blocks.

Any regular word z € Xy has a unique block expansion with blocks b;(x),i €
Z. This expansion starts from the first position. It is just the beginning of the
first block by(x). The block by(x) starts after the first block, etc. The block
bo(z) ends on the place with item 0. The block b_1(z) ends before the block
bo(x), etc.

Let z € X and j is the least positive integer,such thatT7z € Xo.Then J
equals to the length of the block by(x). Denote the length of the block by (x) by
F(x) = ¢(b1(x)), then the derivative automorphism S = T"F(®)z. This map of
the set of regular words is the two - sided goldenshift from [2]. Tt is clear that
bi(x) = by (S (z)),i € Z. Remark that the measure Jip on the space Xy is the
invariant measure with respect to the two-sided golden shift.

From previous construction we see that the goldenshift S can be identified
with the shift S on the space Z of two-sided words with distinguished first



position and with the alphabet B. The isomorphism is given by rule :

2 b1 (2)bo(z)by ().

Now let Z = {Z = ...z_12021...} be the space two-sided infinite words with
distinguished first position and the alphabet B.
Recall that the function ¢(b) on the space B is defined by the formula :

G(b) = k1 + ... + ks + 25, b’ = kiky..ks. Define the function F(Z) = ¢(z1(%)).

We call that 10**11 is an elementary cycle. An elementary cycle is odd if k
is odd number.

n [2] the subset X" C X was introduced.
Definition. The subset X"°9 C X is the subset of Fibonacci words z =
., T_120x1..., In which odd cycles occur infinitely many times both to the left

and to the right with respect to the first position.

The subset X"Y is the invariant set with respect to the two-sided shift T
and p(X"9) = 1.

The integral automorphism T defined by the shift S and the N - val-
ued functions F(A) is a transformation of the space Z of the pairs (Z,j), j =
0,..F(Z—-1,z¢ Z defined by

(z,7) — (Zi+1),

if j < F(2)— 1438 (3, F(3) — 1) — (5%,0).
Theoreml([?].) The shift T on the space X9 is isomorphic to the integral
automorphism T on the space Z. The isomorphism 1s given by formula Tig s

(b1 (@)bo (2)b1 ()., 1), 0 < 5 < F(z) — 1,2 € X,

4 Golden shift and the invariant Erdos measure
Define the matrix M (k) by
M (k) = P(10)P*(00)P(01),k = 0,1,2, ...

The following lemma is valid.
Lemma 1. The following is true:

My(n),k=2n+1

M(k) = {]We(n), k=2n ’

2n+2 p2q2n+1
ntl_ ntl ntl  ntl
M.(n) = n+2p___ —4q 2.n+lp '~ —g
o(n) pq —i— 1p%q = :



pq2n+1 pQ?jn B
_ n+2p"—q" 2 np" T —q"
Mc(n) = | pg""?*E=L pPq"—-1

Proof. The characteristic polynomial of the matrix P(00) equals 23 — gz? —
pgr + pg®. (By the Hamilton - Cayley theorem). Dyley gives the recurrent
relation for the sequence of matrices M (k) = P(10)(P(00))*P(01), k =0,1,2, ..

M(k+3) = qM(k +2) + pgM(k + 1) — pg®M(k), k=0,1, ..
Direct check shows that the sequence of matrices

]/VT(I@) ) My(n),k=2n+1
| M(n), k= 2n

satisfies the same recurrent relation. Moreover, direct check gives that M (0) =
M(0), M(1) = M(1), M(2) = M(2). Hence M (k) = M(k), k > 0. End of
proof.

Matrices M, (n) are nonsingular and matrices M,(n) are singular. We can
write matrices M,(n) in the following form: M,(n) = u(n)v, where the column

2n+1
- q
u(n) = s [ A I
p—q

and the row v = (pq, p?).

Consider the set B’ of finite words b = kiks...ks such that if s = 1 then
k1 =2n; 4+ 1,if s > 1 then k; = 2n;, j<s—1,430 ky = 2n, + 1.

For any block b € B with V' = kiks...ks define the matrix

M(b) = M(kiks...ky) = M(ky)..M (k) =

= Me(n1)..Mc(ns—1)My(ng).
Introduce the notations : u(b) = u(ns), Mc(b) = Mc(ny)...Mc(ns—1) if s > 2,
and if s =1, M.(b) is the identity matrix. Hence
M(b) = M.(b)u(b)v
Also define p(b) as
p(b) = vM, (b)u(b).

Now calculate the distribution of the random variable by (z) on the set X
with the measure fig:

fio({z € Xo : by(z) = b}).

From the definition of the m easure g follow, that

fio({z € Xo : bi(w) = b}) = > fi({w € Xo : yo(x) = 2n+1, by (z) = b})/fi(X0) =

n=0



= > I()u(n)vM (b)r(1)/fi(Xo) =
n=0

(oo}

= > lVu(n)oMe (b)u(b)or(1)/E(Xo) = vMe( Z i (1)/i(Xo) =
n=0

= vM( ZM {z € Xo: yo(z) = 2n+ 1})/i(Xo)] = p(b)-

Hence, in particular, we obtain the equality ), 5 p(b) = 1.

Since golden shift S preserves the measure jip on the space )?0, then random
variables b;(z) = b1 (S""12), i € Z are identically distributed and

fio({ € Xo : bi(w) = b}) = p(b).

In similar way we can calculate the joint distribution of random variables

bl (.T), bQ(JJ), couy bm(.T)

on the set )?0 with the measure .

fio({z € Xo : by(x) = b, ..., bn(a) = b™}) =

= fio{z € Xo 1 yo(x) = 2n+ 1,by(x) = b', ..., b(z) = b™}) =

n=0
= Zl n)v M. (b")u (b oM. (62)u(b?).. oM (B™)u(b™)vr(1) /(X)) =

= p(b")...p(b™).

Thus identically distributed random variables bj(x) (defined on the space X
with the measure [ig) are independent.

Consider Bernoulli measure © on the space Z with one-dimensional distri-
bution

p(b) =v({Z: z; = b}) = vM(b)u(db),be B, j € L.
Recall that F( ) = ¢(b1(x)), F ~(A7 d(21(2)).

Define the T— invariant measure i on the space of pairs {(Z,j),Z € Z,0 <
j < F(Z) — 1}. The set of pairs (,0),% € Z can be identified with the set Z. ©

is the measure on this set. Define the measure i as
S35 1o )
[ F3do)

Theorem 2. The shift T on the subset X7e9 with invariant Erdés measure is
an isomorphic integral automorphism T with the measure i The isomorphism

/ G J)AG. j) =



given by the formula T9z — (...b_1(2)bo(2)b1(2)...., §),0 < j < F(z)—1,2 € X,

From previous considerations it is easy to prove theorem 2. From this the-
orem for the case p = 1/2 one can obtain a new proof of one of main results of
the paper [2].

5 Probabilities of blocks and transition to binary
words.
For the probabilities of blocks b and b' = k1, ..., ks, kj = 2n;,j < s, ks = 2ns+1

we have the formula

p(b) = vM.(b)u(ng).

Me<b>=(§ ?)

M. (b) = Mc(n1)..Me(ns—1).
Introduce the function [n], =1+ a+a?+...+a" 1, a = p/q and define

the matrix ( 1] ] >
A(n) = aln a |Na

If s =1, then

if s > 2 then

a 1

am=(5 1) (2 V)

We shall use this relation.

Evidently

Rewrite the formula for p(b) in another form by using the following relation

CM.(n)C = pg®" T A(n),

o-(21).

p(b) = vMc(ny)...Me(ns—1)u(ng) = ps_lqk1+“'+ks‘1+S_1vC’A(n1)...A(ns_l)Cu(ns).

If s > 2, then

It is clear that Cu(n,) = ¢*"*1 L A(n,){1,0} . Hence
p(b) = p(n1..ns) = a* ' ¢*P{a, 1} A(m1)... A(n,){1,0} T,

d(b) = ky + ... + ks + 2.



Now let us obtain a new formula for p(n;...ns) with the transition to binary
words. o
Introduce the matrices M (0), M(1) :

M«n:(g }),
M@):(Zi 2)

aA(n) = (M(0))"M(1).
Set u = {a,a}". Recall that by definition ¢ = 1/(1 + o). Because

Then

(1+a)?®p(b) = a* Ha, 1}A(n1)... A(ns){1,0} T =
= {a, 1}M(0)™ M (1)....M(0)™~* M(1)M(0)" M(1){1,0} T Ja =
= {a, 1}M(0)™ M (1)....M(0)™~* M(1)M(0)"u = {c, 1} M(b)u.

In this formula
M(b) = M(0)™ M(1)....M(0)™~* M (1)M(0)".

Denote by D,,_1,n = 1,2, ... the set of all binary words of the length n—1. D,
containing the empty word. Let us relate to the block b with b’ = 2n;....2ns+1
and ny + ... +ns + s =n, n > 2 (the length of the block b equals 2n 4 1) the
binary word d € D,,_1 by rule d = iy....7,,_1 = 0™ 1...0"=110™=. In this word, if
n; = 0, then 0™ 1is the empty word.

__ The product of matrices corresponding to this binary word has the form
M(d) = M(iy)....M(in_1) = M(b).

The empty word gives the identity matrix.

Thus, we have that for any word b with o/ = 2n;...2ns + 1 and with the
length of word ¢(b) =2n + 1

p(b) = {a, }M(b){a,a} T¢*" .

6 Generating function of the length of the block.

The length of the block b equals ¢(b). Generating function of length of the block
equals

D(z) = 3 p(b)=") =
b

= Z{aa M) {a, a} T g2t 220) =
b



- Z Z {o, 1} M (d){a, o} Tg?" 12241 =

n=1deD,,_1
=¢*2*{o, 1}(Id - ¢** M) {a, 0},

where M = M(0) + M(1), Id is the identity matrix.
Hence we obtain:

3
pgz
P(z) = ———m.
=1 (1—pq)2?
Now we calculate the mean value of the length of block:
2
E¢) =o' (1) =1+ —.
pq

Expand ®(z),
O(z) =Y pa(1—pg)" 2",
n=0
and obtain that the probability that the length equals 2n 41 is equal to pg(1 —
pa)"

6. Formula for calculation of entropy. In this section for the definition
of the entropy we shall use the binary logarithm. It is shown that

p0) = ey {0 DT}

Hence
log, p(b) = —¢(b) log, (1 + a) + logy{er, 1} M (b){or, 0} "
Therefore
E(—log, p(b)) = E¢(b) log,(1 + o) — E(logy{er, 1}M(b){er, 0} 7).

From the theorem 2 and the Abramov formula [6] for the entropy of the in-
tegral automorphism we obtain that the entropy of the invariant Erdés measure
equals

E(=log, p(b))

H=""5o0)
H= 1og2(1+a)—#(b)1;1 beZBn log,({a, 1}M (0){a, a}T){a, 11 M (0){a, a} T W
We know that
Bo) =1+ 2 <14 2020

Let B,, be the set of words b with ¥/ = 2n;...2n,+ 1, n1 + ... +ns +s = n.
Introduce the notation

ko= Y logs({a, 1M (B){a, a} ) ({a, 1}M(0){a,a} "),

beB,

10



or

Ba= Y log({a, M) {a,a} ) (o, 1HE(@){a, a} ).

d€Dy 1
Then
) o 1 2n+1
If ¢ = 1/2, then
1 & 1

Note that the formula for the Hausdorff dimension of the invariant Erdos
measure H/log, (/) coincides with the Alexander - Zagier formula for the Garsia
entropy [3]. The Alexander - Zagier formula was obtained with the help of the
combinatorics of the Euclidean tree. It is possible that our formula corresponds
to the combinatorics of the a—FEuclidean tree.

The main difficulty for the calculation of the entropy H is the slow conver-
gence of the corresponding series. The series for H converges too slowly for the
effective computation. Following the approach of Alexander - Zagier [3], we use
some rearrangement of the series for H.

Introduce
Hn = kn - [3]akn—1
Then
(1= [3Jaz) <Z knTn> = Z Hn "
n=1 n=1
Consider

)\n = 2)\11—1 - )\n—2 + Hn — [3]04/411—1
It is clear that

Use this relation and set z = (14%1)2’ obtain

B ‘ 01(2—|-O/) ) 1 2n+1
H_10g2(1+a)—(1+2Q);)\n<1+a> .

This series converges more rapidly than the initial series.

The following relation holds: entropy H under the substitution « by % is
the same. Of course, the series for a > 1 converges more rapidly. Below we use
this relation for the calculation of the Hausdorff dimension.

11



7 Results of calculations.

In the following table we give the values of the Hausdorff dimension Hg;, =
H/log, (3 of

the invariant Erdés measure on the Fibonacci compactum with the metric
d(x,y) = p"®¥) where n(z,y) is the length of the longest common prefix of the
words x and y.

In the table the second column gives the values of the Hausdorff dimension
of the Erdds measure for different probabilities p. In the third column it 1is
shown how many terms of the series are chosen in the formula for the Hausdorff
dimension of the Erdds measure. In the fourth column shows the results of
Lalley calculations.

p Haim n Lalley
0.05 | 0.392167680782199076 | 15 | 0.3877+0.03
0.05 | 0.392167680782199076 | 14
0.1 | 0.6101383374950678578 | 20 | 0.6085 % 0.008
0.1 | 0.6101383374950678578 | 19
0.2 | 0.849903398027151976 | 23 | 0.8499 + 0.004
0.2 | 0.849903398027151972 | 22
0.3 0.9513889802259870 24 | 0.9501 £ 0.002
0.3 0.9513889802259869 23
0.4 0.9875456832532938 25 | 0.9868 £ 0.001
0.4 0.9875456832532931 24
0.5 | 0.995713126685555526 | 24 | 0.9954 + 0.0008
0.5 | 0.9957131266855555560 | 23

References

[1] Bezhaeva Z.1., Oseledets V.I. Erdos measures, sofic measures, and Markov

chains, Zap.Nauch.Sem.POMI, 326, 28-47 (2005).(in Russian)

[2] Sidorov N., Vershik A. Ergodic properties of the Erdos measures, the entropy
of the goldenshift, and related problems, Monatsh. Math. 126 No 3, 215-261
(1998).

[3] Alexander I1.C., Zagier D. The entropy of certain infinitely convolved
Bernoulli measure. J. London Math. Soc. 44, 121-134 (1991).

[4] Lalley Steven P. Random series in powers of algebraic number: Hausdorff
dimension of the limit distribution, J. London Math. Soc.(2), 57, n.3, 628-
654 (1998).

[5] Feng De-Jun The limited Rademacher function and Bernoulli convolutions
associated with Pisot numbers, Advances in Mathematics 195, 24-101,(2005)

[6] Abramov L.M. Entropy of induced automorphism, Dokladi Akad Nauk
421421421R, 128 | 647 - 650(1959).

12



