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Problem of Erd�os - Vershik for golden ratioZ.I. Bezhaeva ∗ V.I. Oseledets †Deember 15, 2008AbstratWe study the properties of the Erd�os measure and the invariant Erd�osmeasure in the ase of the golden ratio and for all values of the Bernoulliparameter. We prove that the two - sided shift on the Fibonai ompatset with the invariant Erd�os measure is isomorphi to an integral auto-morphism over the Bernoulli shift with a ountable alphabet. We providean e�etive algorithm for the alulations of the entropy of the invariantErd�os measure. We show that for ertain values of the Bernoulli parame-ter that algorithm gives the Hausdor� dimension of the Erd�os measure tothe �fteen deimal plaes.1 IntrodutionAlmost seventy years ago Erd�os posed the following problem:What one an say about the distribution funtion of the random variable :
ζ = ζ1ρ + ζ2ρ

2 + ..., where ζ1, ζ2, ... are independent, identially distributedrandom variables taking values 0, 1 and 0 < P (ζi = 0) = 1/2, (0 < ρ < 1).We will all this distribution of the random variable ζ the Erd�os measure onthe real line .The problem of Erd�os has been the subjet of the large number of papers.In [2℄ the authors gave the de�nitions of the Erd�os measure on the unit interval
[0, 1], on the Fibonai ompatum and the invariant Erd�os measure on theFibonai ompatum for the ase ρ = (

√
5 − 1)/2 (the inverse β ), where

β = (
√

5 + 1)/2 is the golden ratio. In [2℄ the authors proved that the Erd�osmeasure is equivalent the invariant Erd�os measure on the Fibonai ompatum.Vershik posed the problem about the ergodi properties of the invariantErd�os measure on the Fibonai ompatum. This problem was solved in [2℄ .
∗MIEM
†Mosow State University.The work of the authors was partially supported by RFBR grant 07-01-00203, the work ofseond author was partially supported by RFBR-CNRS grant 07-01-92215.2000 Mathematis Subjet Classi�ation. Primary: 28D05. Seondary: 69J10.Key words and phrases: hodden Markov hain, Erd�os measure, invariant Erd�os measure,goldenshift, integral automorphism, entropy, Hausdor� dimension of a measure.1



In the previous paper [1℄ we disovered the onnetion of the Erd�os - Vershikproblem with the hidden Markov hains for more general ase 0 < P (ζi = 0) =
q < 1, P (ζi = 1) = p, ρ = (

√
5−1)/2. With the help of this onnetion we shallprove the result, analogous to one of the main results of the paper [2℄. Namely,we onsider the shift on the two-sided Fibonai ompatum with the invariantErd�os measure. It is isomorphi to theintegral automorphism over the Bernoulliautomorphism with the ountable alphabet. Also we obtain the formula for theentropy of the invariant Erd�os measure.The ratio of the entropy of the invariant Erd�os measure and ln(β) is theHausdor� dimension of the invariant Erd�os measure on the Fibonai om-patum with the metri d(x, y) = ρn(x,y), where n(x, y) is the length of thelongest ommon pre�x of the words x and y. This dimension is equal to theHausdor� dimension of the Erd�os measure on the real line.The formula for the Hausdor� dimension of the Erd�os measure on the realline was obtained by Feng in [5℄(theorem 4.29). Our formula oinides with theFeng's formula. Therefore we gave a new derivation of the Feng's formula. Thediret alulation of the Hausdor� dimension with the help of Feng's formula isimpossible beause the series for the Hausdor� dimension onverges too slowlyfor the e�etive omputation.In our ase Lalley [4℄ obtained another formula for the Hausdor� dimensionof the Erd�os measure on the real line. Using this formula and Monte Carlomethod he was able to obtain the estimates of the Hausdor� dimension of theErd�os measure with the auray (to on�dene level .99) to within ±.002 for thevarious values of p. For those values of p that are in [4℄ we alulate the Hausdor�dimension of the Erd�os measure with a larger number of deimal digits. Thisallows to estimate the auray of Lalley's estimates. In our alulations we usethe aeleration of the onvergene of the series in the formula for the Hausdor�dimension. This aeleration is analogues to the aeleration from the paper ofAlexander - Zagier [3℄. Remark that the Lalley's alulations are the alulationsof the Lyapunov exponent for some sequene of random matries(see [4℄). Onean say the same about our alulations but our sequene of random matriesis another sequene.2 Invariant Erd�os measure on Fibonai ompatum.We shall give the de�nition of invariant Erd�os measure on Fibonai ompatum(see [1℄). In [1℄ the problem about the ergodi properties of the invariant Erd�osmeasure was redued to the study of the hidden Markov hain {ηi = f(ξi)},with generating Markov hain {ξi} with 5 states 1, 2, 3, 4, 5 and the transitionmatrix P of form

P =




q 0 0 pq p2

q 0 qp 0 p2

0 1 0 0 0
1 0 0 0 0
0 1 0 0 0




.2



The initial distribution l is the stationary distribution, the �gluing� funtion
f equals 0 for the states 1, 2, 3 and equals 1 for the states 4, 5. The hiddenMarkov hain generates the distribution of probabilities µ on the spae of itsrealizations.A useful fat is that the distribution µ is the distribution of the in�nite ran-dom 0−1 word η1η2....ηn... = f(ξ1)f(ξ2)....f(ξn).... Its support is the Fibonaiompatum of the in�nite 0 − 1 Fibonai words of without the subwords 11.This set is the ompat set with the respet to the metri d(x, y) = ρn(x,y),where n(x, y) is the length of the longest ommon pre�x of words x and y. Themeasure µ is the invariant Erd�os measure on the Fibonai ompatum [1℄.In the matrix P we take bloks P (00), P (01), P (10), P (11), orresponding tothe partition of the set {1, 2, 3, 4, 5} into two subsets, {1, 2, 3}and {4, 5} :

P (00) =




q 0 0
q 0 qp
0 1 0


 ,

P (01) =




pq p2

0 p2

0 0


 ,

P (10) =

(
1 0 0
0 1 0

)
.Denote by l(0) the row whose elements are �rst three elements of the row

l, where the row l is the stationary distribution of the Markov hain with thetransition matrix P. Also denote by r(0) the olumn (1, 1, 1)⊤ and denote by
r(1) the olumn (1, 1)⊤.Let n ≥ 2 and a = a1...an be a �nite Fibonai word. We set

P (a) = P (a1a2)...P (an−1an).Then
µ({x : x1x2...xn = a}) = µ(a) = l(a1)P (a)r(an), µ(a1) = l(a1)r(a1).Let X̃ be the two-sided Fibonai ompatum of the in�nite two-sided 0− 1Fibonai words without subwords 11 and with the �xed �rst position. Let Tbe a two-sided shift on the spae X̃. De�ne the measure µ̃ on the two-sidedFibonai ompatum :

µ̃({x : x1+jx2+j ...xn+j = a1...an = a}) = µ(a), ∀j ∈ Z, n ≥ 1The measure µ̃ is the invariant Erd�os measure on the spae X̃.3



3 Golden shift.A �nite Fibonai word is alled elementary word if it has form 10k+1, k =
0, 1, 2, ... An elementary word 10k+1 is alled even word if k is even and it isalled odd word if k is odd.In [2℄ the authors introdue the subset of regular words. Reall the de�nitionof the regular word whih was given in [2℄. Let X̃1 be the subset of Fibonaiwords from the spae X̃ with x1 = 1, ontaining 1-s in�nitely many times bothto the left and to the right with respet to the �rst position. For any x from thespae X̃1 we introdue the numbers yi(x), i ∈ Z, where yi(x) + 1 is the numberof zeros between i− th 1 and (i + 10− th 1 in the word x (the 1 with number 1stands on the �rst position).De�nition. A word x ∈ X̃1 alled a regular word if in this word the oddnumbers yi(x) our in�nitely many times both to the left and to the right withrespet to the �rst position and the number y0(x) is odd. (A word x ∈ X̃1alled a regular word if in this word the odd elementary Fibonai words ourin�nitely many times both to the left and to the right with respet to the �rstposition and the elementary Fibonai word to the left of the �rst position isodd, y0(x) is odd.)Following [2℄ denote the set of the regular words as X̃0. Let µ̃0 be the on-ditional Erd�os measure on the spae X̃0. This measure is proportional to themeasure µ̃ and µ̃0(X̃0) = 1.Aording to [2℄ the �nite Fibonai word b is alled a blok if it is an oddelementary word or the onatenation c1c2...cs−1cs, s ≥ 2, where ci, i ≤ s − 1are even elementary words and the elementary word cs is odd.Let B be the set of all bloks. We an identify this set with the set B′ of the�nite words b′ = k1k2...ks, suh that if s = 1 then k1 is an odd number, if s > 1then k1, ..., ks−1 are even numbers and ks is an odd number. The length of theblok b with b′ = k1...ks is equal to φ(b) = k1 + ...+ks +2s. The orrespondene
b → b′ gives for us an important parameterization of the bloks. In [2℄ authorsused the another parameterization of bloks.Any regular word x ∈ X̃0 has a unique blok expansion with bloks bi(x), i ∈
Z. This expansion starts from the �rst position. It is just the beginning of the�rst blok b1(x). The blok b2(x) starts after the �rst blok, et. The blok
b0(x) ends on the plae with item 0. The blok b−1(x) ends before the blok
b0(x), et.Let x ∈ X̃0 and j is the least positive integer,suh thatT jx ∈ X̃0.Then jequals to the length of the blok b1(x). Denote the length of the blok b1(x) by
F (x) = φ(b1(x)), then the derivative automorphism S = T ′F (x)x. This map ofthe set of regular words is the two - sided goldenshift from [2℄. It is lear that
bi(x) = b1(S

i−1(x)), i ∈ Z. Remark that the measure µ̃0 on the spae X̃0 is theinvariant measure with respet to the two-sided golden shift.From previous onstrution we see that the goldenshift S an be identi�edwith the shift S̃ on the spae Z̃ of two-sided words with distinguished �rst4



position and with the alphabet B. The isomorphism is given by rule :
x 7→ ...b−1(x)b0(x)b1(x)....Now let Z̃ = {z̃ = ...z−1z0z1...} be the spae two-sided in�nite words withdistinguished �rst position and the alphabet B.Reall that the funtion φ(b) on the spae B is de�ned by the formula :

φ(b) = k1 + ... + ks + 2s, b′ = k1k2..ks. De�ne the funtion F̃ (z̃) = φ(z1(z̃)).We all that 10k+11 is an elementary yle. An elementary yle is odd if kis odd number.In [2℄ the subset X̃reg ⊂ X̃ was introdued.De�nition. The subset X̃reg ⊂ X̃ is the subset of Fibonai words x =
..., x−1x0x1..., in whih odd yles our in�nitely many times both to the leftand to the right with respet to the �rst position.The subset X̃reg is the invariant set with respet to the two-sided shift Tand µ̃(X̃reg) = 1.The integral automorphism T̂ , de�ned by the shift S̃, and the N - val-ued funtions F̃ (z̃) is a transformation of the spae Ẑ of the pairs (z̃, j), j =

0, ..., F (z̃) − 1, z̃ ∈ Z̃ de�ned by
(z̃, j) −→ (z̃, j + 1),if j < F̃ (z̃) − 1 �438 (z̃, F̃ (z̃) − 1) −→ (S̃z̃, 0).Theorem1([2℄.) The shift T on the spae X̃reg is isomorphi to the integralautomorphism T̂ on the spae Ẑ. The isomorphism is given by formula T jx 7→

(...b−1(x)b0(x)b1(x)...., j), 0 ≤ j ≤ F (x) − 1, x ∈ X̃0.4 Golden shift and the invariant Erd�os measureDe�ne the matrix M(k) by
M(k) = P (10)P k(00)P (01), k = 0, 1, 2, ...The following lemma is valid.Lemma 1. The following is true:

M(k) =

{
Mo(n), k = 2n + 1

Me(n), k = 2n
,

Mo(n) =




pq2n+2 p2q2n+1

pqn+2 pn+1
−qn+1

p−q
p2qn+1 pn+1

−qn+1

p−q


 ,5



Me(n) =




pq2n+1 p2q2n

pqn+2 pn
−qn

p−q
p2qn pn+1

−qn+1

p−q


 .Proof. The harateristi polynomial of the matrix P (00) equals x3 − qx2 −

pqx + pq2. (By the Hamilton - Cayley theorem). Dyley gives the reurrentrelation for the sequene of matries M(k) = P (10)(P (00))kP (01), k = 0, 1, 2, ..:
M(k + 3) = qM(k + 2) + pqM(k + 1) − pq2M(k), k = 0, 1, ..Diret hek shows that the sequene of matries

M̂(k) =

{
Mo(n), k = 2n + 1

Me(n), k = 2nsatis�es the same reurrent relation. Moreover, diret hek gives that M(0) =

M̂(0), M(1) = M̂(1), M(2) = M̂(2). Hene M(k) = M̂(k), k ≥ 0. End ofproof.Matries Me(n) are nonsingular and matries Mo(n) are singular. We anwrite matries Mo(n) in the following form: Mo(n) = u(n)v, where the olumn
u(n) =

(
q2n+1

qn+1 pn+1
−qn+1

p−q

)
,and the row v = (pq, p2).Consider the set B′ of �nite words b′ = k1k2...ks suh that if s = 1 then

k1 = 2n1 + 1, if s > 1 then kj = 2nj, j ≤ s− 1, �430 ks = 2ns + 1.For any blok b ∈ B with b′ = k1k2...ks de�ne the matrix
M(b) = M(k1k2...ks) = M(k1)...M(ks) =

= Me(n1)...Me(ns−1)Mo(ns).Introdue the notations : u(b) = u(ns), Me(b) = Me(n1)...Me(ns−1) if s > 2,and if s = 1, Me(b) is the identity matrix. Hene
M(b) = Me(b)u(b)vAlso de�ne p(b) as
p(b) = vMe(b)u(b).Now alulate the distribution of the random variable b1(x) on the set X̃0with the measure µ̃0:

µ̃0({x ∈ X̃0 : b1(x) = b}).From the de�nition of the m easure µ̃0 follow, that
µ̃0({x ∈ X̃0 : b1(x) = b}) =

∞∑

n=0

µ̃({x ∈ X̃0 : y0(x) = 2n+1, b1(x) = b})/µ̃(X̃0) =6



=

∞∑

n=0

l(1)u(n)vM(b)r(1)/µ̃(X̃0) =

=
∞∑

n=0

l(1)u(n)vMe(b)u(b)vr(1)/µ̃(X̃0) = vMe(b)u(b)
∞∑

n=0

l(1)u(n)vr(1)/µ̃(X̃0) =

= vMe(b)u(b)[

∞∑

n=0

µ̃({x ∈ X̃0 : y0(x) = 2n + 1})/µ̃(X̃0)] = p(b).Hene, in partiular, we obtain the equality∑b∈B p(b) = 1.Sine golden shift S preserves the measure µ̃0 on the spae X̃0, then randomvariables bi(x) = b1(S
i−1x), i ∈ Z are identially distributed and

µ̃0({x ∈ X̃0 : bi(x) = b}) = p(b).In similar way we an alulate the joint distribution of random variables
b1(x), b2(x), ..., bm(x)on the set X̃0 with the measure µ̃0.

µ̃0({x ∈ X̃0 : b1(x) = b1, ..., bm(x) = bm}) =

=

∞∑

n=0

µ̃0({x ∈ X̃0 : y0(x) = 2n + 1, b1(x) = b1, ..., bm(x) = bm}) =

=
∞∑

n=0

l(1)u(n)vMe(b
1)u(b1)vMe(b

2)u(b2)...vMe(b
m)u(bm)vr(1)/µ̃(X̃0) =

= p(b1)...p(bm).Thus identially distributed random variables bj(x) (de�ned on the spae X̃0with the measure µ̃0) are independent.Consider Bernoulli measure ν̂ on the spae Z̃ with one-dimensional distri-bution
p(b) = ν̂({z̃ : zj = b}) = vMe(b)u(b), b ∈ B, j ∈ Z.Reall that F (x) = φ(b1(x)), F̃ (z̃) = φ(z1(z̃)).De�ne the T̂− invariant measure µ̂ on the spae of pairs {(z̃, j), z̃ ∈ Z̃, 0 ≤

j ≤ F̃ (z̃) − 1}. The set of pairs (z̃, 0), z̃ ∈ Z̃ an be identi�ed with the set Z̃. ν̂is the measure on this set. De�ne the measure µ̂ as
∫

f(z̃, j)dµ̂(z̃, j) =

∫ ∑eF (ez)−1
j=0 f(z̃, j)dν̂(z̃)
∫

F̃ (z̃)dν̂(z̃)Theorem 2. The shift T on the subset X̃reg with invariant Erd�os measure isan isomorphi integral automorphism T̂ with the measure µ̂ The isomorphism7



given by the formula T jx 7→ (...b−1(x)b0(x)b1(x)...., j), 0 ≤ j ≤ F (x)−1, x ∈ X̃0.From previous onsiderations it is easy to prove theorem 2. From this the-orem for the ase p = 1/2 one an obtain a new proof of one of main results ofthe paper [2℄.5 Probabilities of bloks and transition to binarywords.For the probabilities of bloks b and b′ = k1, ..., ks, kj = 2nj, j < s, ks = 2ns + 1we have the formula
p(b) = vMe(b)u(ns).If s = 1, then
Me(b) =

(
1 0
0 1

)if s ≥ 2 then
Me(b) = Me(n1)..Me(ns−1).Introdue the funtion [n]α = 1 + α + α2 + ... + αn−1, α = p/q and de�nethe matrix

A(n) =

(
α[n + 1]α [n]α

α 1

)Evidently
A(n) =

(
α 1
0 1

)n(
α 0
α 1

)We shall use this relation.Rewrite the formula for p(b) in another form by using the following relation:
CMe(n)C = pq2n+1A(n),

C =

(
0 1
1 0

)
.If s ≥ 2, then

p(b) = vMe(n1)...Me(ns−1)u(ns) = ps−1qk1+...+ks−1+s−1vCA(n1)...A(ns−1)Cu(ns).It is lear that Cu(ns) = q2ns+1 1
α
A(ns){1, 0}⊤. Hene

p(b) = p(n1...ns) = αs−1qφ(b){α, 1}A(n1)...A(ns){1, 0}⊤,

φ(b) = k1 + ... + ks + 2s.8



Now let us obtain a new formula for p(n1...ns) with the transition to binarywords.Introdue the matries M̃(0), M̃(1) :

M̃(0) =

(
α 1
0 1

)
,

M̃(1) =

(
α2 0
α2 α

)
.Then

αA(n) = (M̃(0))nM̃(1).Set u = {α, α}⊤. Reall that by de�nition q = 1/(1 + α). Beause
(1 + α)φ(b)p(b) = αs−1{α, 1}A(n1)...A(ns){1, 0}⊤ =

= {α, 1}M̃(0)n1M̃(1)....M̃(0)ns−1M̃(1)M̃(0)nsM̃(1){1, 0}⊤/α =

= {α, 1}M̃(0)n1M̃(1)....M̃(0)ns−1M̃(1)M̃(0)nsu = {α, 1}M̃(b)u.In this formula
M̃(b) = M̃(0)n1M̃(1)....M̃(0)ns−1M̃(1)M̃(0)ns .Denote by Dn−1, n = 1, 2, ... the set of all binary words of the length n−1. D1ontaining the empty word. Let us relate to the blok b with b′ = 2n1.....2ns+1and n1 + ... + ns + s = n, n ≥ 2 (the length of the blok b equals 2n + 1) thebinary word d ∈ Dn−1 by rule d = i1....in−1 = 0n11...0ns−110ns. In this word, if

ni = 0, then 0ni is the empty word.The produt of matries orresponding to this binary word has the form
M̃(d) = M̃(i1)....M̃(in−1) = M̃(b).The empty word gives the identity matrix.Thus, we have that for any word b with b′ = 2n1...2ns + 1 and with thelength of word φ(b) = 2n + 1

p(b) = {α, 1}M̃(b){α, α}⊤q2n+1.6 Generating funtion of the length of the blok.The length of the blok b equals φ(b). Generating funtion of length of the blokequals
Φ(z) =

∑

b

p(b)zφ(b) =

=
∑

b

{α, 1}M̃(b){α, α}⊤q2n+1zφ(b) =9



=
∑

n=1

∑

d∈Dn−1

{α, 1}M̃(d){α, α}⊤q2n+1z2n+1 =

= q3z3{α, 1}(Id− q2z2M̃)−1{α, α}⊤,where M̃ = M̃(0) + M̃(1), Id is the identity matrix.Hene we obtain:
Φ(z) =

pqz3

1 − (1 − pq)z2
.Now we alulate the mean value of the length of blok:

Eφ(b) = Φ′(1) = 1 +
2

pq
.Expand Φ(z),

Φ(z) =

∞∑

n=0

pq(1 − pq)n−1z2n+1,and obtain that the probability that the length equals 2n +1 is equal to pq(1−
pq)n−1.6. Formula for alulation of entropy. In this setion for the de�nitionof the entropy we shall use the binary logarithm. It is shown that

p(b) =
1

(1 + α)φ(b)
{α, 1}M̃(b){α, α}⊤.Hene

log2 p(b) = −φ(b) log2(1 + α) + log2{α, 1}M̃(b){α, α}⊤.Therefore
E(− log2 p(b)) = Eφ(b) log2(1 + α) − E(log2{α, 1}M̃(b){α, α}⊤).From the theorem 2 and the Abramov formula [6℄ for the entropy of the in-tegral automorphism we obtain that the entropy of the invariant Erd�os measureequals

H =
E(− log2 p(b))

Eφ(b)
,

H = log2(1+α)− 1

Eφ(b)

∞∑

n=1

[
∑

b∈Bn

log2({α, 1}M̃(b){α, α}T){α, 1}M̃(b){α, α}⊤
]

1

(1 + α)2n+1We know that
Eφ(b) = 1 +

2

pq
= 1 +

2(1 + α)2

α
.Let Bn be the set of words b with b′ = 2n1...2ns + 1, n1 + ... + ns + s = n.Introdue the notation

kn =
∑

b∈Bn

log2({α, 1}M̃(b){α, α}⊤)({α, 1}M̃(b){α, α}⊤),10



or
kn =

∑

d∈Dn−1

log2({α, 1}M̃(d){α, α}top)({α, 1}M̃(d){α, α}⊤).Then
H = log2(1 + α) − 1

1 +
2(1+α)2

α

∞∑

n=1

kn

(
1

1 + α

)2n+1

,If q = 1/2, then
H = 1 − 1

9

∞∑

n=1

kn

1

22n+1
.Note that the formula for the Hausdor� dimension of the invariant Erd�osmeasure H/ log2(β) oinides with the Alexander - Zagier formula for the Garsiaentropy [3℄. The Alexander - Zagier formula was obtained with the help of theombinatoris of the Eulidean tree. It is possible that our formula orrespondsto the ombinatoris of the α−Eulidean tree.The main di�ulty for the alulation of the entropy H is the slow onver-gene of the orresponding series. The series for H onverges too slowly for thee�etive omputation. Following the approah of Alexander - Zagier [3℄, we usesome rearrangement of the series for H.Introdue

µn = kn − [3]αkn−1Then
(1 − [3]αx)

(
∞∑

n=1

knxn

)
=

∞∑

n=1

µnxnConsider
λn = 2λn−1 − λn−2 + µn − [3]αµn−1It is lear that

∞∑

n=1

knxn =
1

1 − [3]αx

∞∑

n=1

µnxn

(1 − x)2
∞∑

n=1

λnxn = (1 − [3]αx)

∞∑

n=1

µnxn

∞∑

n=1

knxn =
(1 − x)2

(1 − [3]αx)2

∞∑

n=1

λnxnUse this relation and set x = ( 1
1+α

)2, obtain
H = log2(1 + α) − α(2 + α)

(1 + 2α)

∞∑

n=1

λn

(
1

1 + α

)2n+1

.This series onverges more rapidly than the initial series.The following relation holds: entropy H under the substitution α by 1
α
isthe same. Of ourse, the series for α > 1 onverges more rapidly. Below we usethis relation for the alulation of the Hausdor� dimension.11



7 Results of alulations.In the following table we give the values of the Hausdor� dimension Hdim =
H/ log2 β ofthe invariant Erd�os measure on the Fibonai ompatum with the metri
d(x, y) = ρn(x,y), where n(x, y) is the length of the longest ommon pre�x of thewords x and y.In the table the seond olumn gives the values of the Hausdor� dimensionof the Erd�os measure for di�erent probabilities p. In the third olumn it isshown how many terms of the series are hosen in the formula for the Hausdor�dimension of the Erd�os measure. In the fourth olumn shows the results ofLalley alulations.p Hdim n Lalley0.05 0.392167680782199076 15 0.3877± 0.030.05 0.392167680782199076 140.1 0.6101383374950678578 20 0.6085± 0.0080.1 0.6101383374950678578 190.2 0.849903398027151976 23 0.8499± 0.0040.2 0.849903398027151972 220.3 0.9513889802259870 24 0.9501± 0.0020.3 0.9513889802259869 230.4 0.9875456832532938 25 0.9868± 0.0010.4 0.9875456832532931 240.5 0.995713126685555526 24 0.9954± 0.00080.5 0.9957131266855555560 23Referenes[1℄ Bezhaeva Z.I., Oseledets V.I. Erd�os measures, so� measures, and Markovhains, Zap.Nauh.Sem.POMI, 326, 28-47 (2005).(in Russian)[2℄ Sidorov N., Vershik A. Ergodi properties of the Erdos measures, the entropyof the goldenshift, and related problems, Monatsh. Math. 126 No 3, 215-261(1998).[3℄ Alexander I.C., Zagier D. The entropy of ertain in�nitely onvolvedBernoulli measure. J. London Math. So. 44, 121-134 (1991).[4℄ Lalley Steven P. Random series in powers of algebrai number: Hausdor�dimension of the limit distribution, J. London Math. So.(2), 57, n.3, 628-654 (1998).[5℄ Feng De-Jun The limited Rademaher funtion and Bernoulli onvolutionsassoiated with Pisot numbers, Advanes in Mathematis 195, 24-101,(2005)[6℄ Abramov L.M. Entropy of indued automorphism, Dokladi Akad Nauk�421�421�421R, 128 , 647 - 650(1959).12


