

Abstract — The approaches based on applying of metamodeling

and domain-specific languages are widely used in software
engineering. There are many different tools for creating visual
domain-specific modeling languages with a possibility of determining
user’s graphical notations. However these tools possess
disadvantages. The article presents an approach to the development
of language workbench that allows to eliminate some restrictions of
existing DSM-platforms. The MetaLanguage system is designed for
creation of visual dynamic adaptable domain-specific modeling
languages and for models construction with these languages. It
allows executing transformations of the created models in various
textual and graphical notations. Basic metalanguage constructions of
this system are described. The formal description of modeling
languages metamodel used in MetaLanguage is given. The
architecture of MetaLanguage toolkit is presented.

Keywords — DSM-platform, graphs, metamodeling, visual
domain-specific languages.

I. INTRODUCTION
Creation of information systems with usage of the modern

tools is based on the development of the various models
describing the domain of information system, defining data
structures and algorithms of system functioning. At
implementation of model-driven approach to software
development the models become a central element at all stages
of system creation. The model-based approach is capable at
information system creation to unite efforts of developers and
domain experts. This approach makes the system more
flexible, since for its change there is no necessity of
modification of source code “by hand”, it is enough to modify
a visual model, and with this task even nonprofessional
programmers can cope [1], [2].

At usage of this approach the models describing system
from the various points of view, with a different level of
abstraction and with usage of various modeling languages are
created. For coordination of various system descriptions it is
necessary to construct the whole hierarchy of models: model,
metamodel, meta-metamodel, etc., where model is an abstract
description of system (object, process) characteristics that are

This work was supported in part by Russian Foundation for Basic

Research (grant 14-07-31330).
A. O. Sukhov is with the National Research University Higher School of

Economics, Perm, Russia (phone: (+7) 912-589-0986; e-mail:
Sukhov.psu@gmail.com).

L. N. Lyadova is with the National Research University Higher School of
Economics, Perm, Russia (e-mail: LNLyadova@gmail.com).

important from the point of view of the modeling purpose. A
model is created with usage of specific modeling language. A
metamodel is a model of the language, which is used for
models development, a meta-metamodel (metalanguage) is a
language, on which metamodels are described.

For model-based approach implementation it is necessary to
use toolkit, which will be convenient to various participants of
system development process. The general-purpose modeling
languages, such as UML, are not able to cope with this task,
because they have some disadvantages [3], [4]:

− Diagrams are complicated for understanding not only for
experts, who take part in system engineering, but in some
cases even for professional developers.

− Object-oriented diagrams can not adequately represent
domain concepts, since work is being done in terms of
“class”, “association”, “aggregation”, etc., rather than in
domain terms.

That is why at implementation of model-based approach the
domain-specific modeling languages (DSMLs), created to
work in specific domains, are increasingly used. Domain-
specific languages are more expressive, simple on applying
and easy to understand for different categories of users as they
operate with domain terms. For this reason now a large
number of DSMLs is designed for creation of systems in
different domains: artificial intelligence systems, distributed
systems, mobile applications, real-time and embedded systems,
simulation systems, etc. [5]–[7].

Despite of all DSMLs advantages they have one big
disadvantage – complexity of their designing. If general
purpose languages allow to create programs irrespectively to
domain, in case of DSMLs for each domain, and in some cases
for each task, it is necessary to create new domain-specific
language. Another shortcoming of visual domain-specific
language is that it is necessary to create convenient graphical
editors to work with it.

To support the process of development and maintenance of
DSMLs the special kind of software – language workbench
(DSM-platform) is used [8]. Usage at DSMLs creation of a
language workbench considerably simplifies the process of
their designing. There are various DSM-platforms for creating
visual DSMLs with the ability of determining user’s graphical
notation: MetaEdit+, Microsoft DSL Tools, Eclipse GMF,
QReal, etc. Let’s consider the most advanced language
workbenches [9], [10].

An Approach to Development of
Visual Modeling Toolkits

Alexander O. Sukhov, Lyudmila N. Lyadova

Advances in Information Science and Applications - Volume I

ISBN: 978-1-61804-236-1 61

II. RELATED WORKS
MetaEdit+ is a multiplatform language workbench that

enables users to simultaneously work with several projects,
each of which can have a few models [11], [12]. At usage of
this DSM-platform besides a possibility of domain-specific
language creation, the developer receives the CASE tool, into
which this language is integrated. MetaEdit+ allows to use
several DSMLs at system creation.

The approach based on metamodels (models of modeling
languages) interpretation, instead of code generation, which is
used in MetaEdit+ allows changing the DSMLs definition at
run-time. The system allows working with languages and
metalanguages universally, using the same tools. The
disadvantage of MetaEdit+ is that this DSM-platform for
export of models uses an own file format (MXT) and this
affects the openness of technology.

Microsoft DSL Tools [13] and Eclipse GMF [14]
technologies provide the user with advanced IDE MS Visual
Studio and Eclipse respectively. Thanks to this there is a
possibility of code completion on high-level languages “by
hand”, but it can lead to occasion of inconsistency of diagrams
and source code.

Technology Eclipse GMF is most powerful of the above.
However, its usage is impeded by high complexity, frequent
releases of new versions and lack of documentation. In fact,
Eclipse GMF is in a stage of intensive development.

Eclipse environment provides the user with tab GMF
Dashboard, which allows to accelerate DSMLs development
process by automatically generating some language
components. On GMF Dashboard tab the sequence of the
operations is represented. Tools of creation of plug-ins for
Eclipse, which allow to build diagrams in current domain are
realized with these operations.

The multiplatform system QReal [15] allows to define
metamodels both in visual and textual view, therefore
developers have a possibility to select the most suitable for
them format of language description representation.
Availability of an interpreter of behavioral diagrams and a
debugger of the generated code puts this system to the same
position as Microsoft DSL Tools, Eclipse GMF, which use for
these purposes IDE. In QReal there is not a possibility of
modification of DSMLs description at run-time.

Cases when DSMLs becomes part of other applications are
common. For example, a specially designed language for
describing business processes can be used in document
circulation model. Therefore one more important characteristic
of the DSM-platforms is the alienability of DSMLs from the
development environment. Microsoft DSL Tools, Eclipse
GMF are strongly associated with the development platforms –
MS Visual Studio and Eclipse, respectively, therefore
languages created by these workbenches can’t be exported to
external system.

The analysis of DSM-platforms has revealed some
restrictions inherent in the majority of the considered systems:

1. Impossibility of multilevel modeling. Presence of such

possibility would allow making changes at metalanguage
description, to extend it with new constructions, thus
bringing the metalanguage to the specifics of domain.

2. Modification of DSMLs description leads to necessity of
regeneration of language editor: for modification DSMLs
at first it is necessary to change its metamodel, to
regenerate the source code of the editor, and only then it is
possible to begin build models.

3. “Excess” functionality of the language workbench, which
is not used at DSMLs creation. This functionality
complicates the study of tools by the users, which are not
professional programmers.

4. Lack of tools of horizontal models transformations. These
means allow not only to create unified system description
on the basis of the models constructed at various stages of
system development, but also to generate source code
according to user-specified template or to make
conversion of the model described with one modeling
language to model fulfilled in other graphical notation.

The MetaLanguage system eliminates some restrictions of
the considered DSM-platforms.

III. METALANGUAGE SYSTEM
The DSM-platform MetaLanguage is designed to create

visual dynamic adaptable domain-specific modeling
languages, to construct models using these languages and to
transform created models in various textual and graphical
notations.

A. Metalanguage of MetaLanguage System
One of the basic elements of language workbench is the

metalanguage (meta-metamodel), which is the language for
describing of other languages. Thanks to presence of
metalanguage the DSM-platform allows to create domain-
specific languages for the various domains that operate with
familiar for the user concepts. The main difference between
metalanguage of MetaLanguage system from the MOF (Meta
Object Facility) approach, used in the majority of DSM-
platforms, is that thanks to interpretation of models at various
abstraction levels, instead of the source code generation on
their basis, it is possible to modify of DSML’s constructions in
dynamics, at models creation. Besides, the process of
metamodel creation becomes multilevel, so developer defining
metamodel and selecting it as the metalanguage, can use it to
create other metamodels, and this process can be infinite.

The basic elements of the metalanguage of MetaLanguage
system are entity, relationship and constraint.

The entity describes a particular construction of modeling
language, i.e. it is the domain object, important from the point
of view of the solving problem.

Visual language constructions in rare cases exist
independently, more often they are in some way related to each
other, therefore at metamodel creation importantly not only to
define the basic language constructions, but also correctly
specify the relationships between them. The relationship is
used for describing a physical or conceptual links between

Advances in Information Science and Applications - Volume I

ISBN: 978-1-61804-236-1 62

entities. Metamodel allows to create three types of
relationships: association, aggregation, inheritance.

In practice quite often there are cases when it is necessary to
impose some constraints on entities and relationships. Some of
constraints are set by metamodel structure, and others are
described on some languages. All constraints imposed on the
metamodel in MetaLanguage system can be divided into two
groups: constraints imposed on entities and constraints
imposed on relationships.

Let’s consider an example. A fragment of metamodel for
UML Use Case diagrams is shown in Fig. 1. The metamodel
contains two entities “Actor” and “Use Case”.

Use Case

Name: String
Description: Text
Creation_Date: Date

Actor

Name: String
Actor_PartUse_Case_Part

Fig. 1. Fragment of metamodel for UML Use Case diagrams

The entity “Use Case” has following attributes: “Name”,
“Description”, “Creation_Date”. The attribute “Name” has a
string type and defines the “Use Case” name. The attribute
“Description” sets the short description of the “Use Case”. An
attribute of entity “Actor” is a string attribute “Name”, which
specifies the name of the Actor.

B. Architecture of MetaLanguage System
The architecture of MetaLanguage is presented in Fig. 2.

Uniform storage of all information about the system is the
repository. It contains information about metamodels, models,
entities, relationships, attributes, constraints. Information about
the models and metamodels is stored uniformly, that allows to
work with it by the same tool.

Graphical
Editor

Models Browser

Transformer

Validator

Metamodel

Source
model

Model
List of
errors

Target
model

Transformation
rules

Model

Meta-
models

Repository

Metamodel

Model
Model

Model

Metamodel

Model
Model

Model

Fig. 2. Architecture of MetaLanguage system

The browser of models allows to load/save metamodels
together with the models created on their basis, to fulfill over
metamodels and models various operations (editing, constraint
checking, transformation, etc.). The graphical editor is the
component, which provides the user the tools for metamodels
and models creation. The validator allows to check constraints
specified by user at metamodel describing. The transformer is
the component that provides the ability to fulfill horizontal
transformations of models to text on target programming
language or to visual models, described in other graphical
notation.

Having described the basic components of a MetaLanguage
system, let’s consider how visual domain-specific modeling
languages are designed with these tools.

Process of DSML definition begins with metamodel
creation. For this purpose it is necessary to specify the main
constructions of created language, to define relationships
between them, to set constraints imposed on the metamodel
entities and relationships. After building of metamodel the
developer gets a customizable extensible visual modeling
language.

Then the user can design models containing objects that
describe specific domain concepts and links between them
with using created DSML.

The validator should check up whether model correspond to
constraints, which were imposed on metamodel elements.

Then the developer can save the constructed metamodels
and models in the form of XML-files or transform these
models to other textual or graphical notation.

At metamodel modification the system automatically makes
all necessary changes in the models, which are created on the
basis of this metamodel.

Using constructions “entity” and “relationship” it is possible
to build any model, including an incorrect model in the current
domain.

The metamodel of visual modeling language is a graph.
There are several types of graphs that can be used for
representation of visual languages: the classical graphs,
digraphs, multigraphs, pseudographs, hi-graphs, hypergraphs,
metagraphs and others [16]-[18].

As an analysis result of various types of graph it has been
defined that the most appropriate formalism for describing the
syntax of visual modeling languages in MetaLanguage system
is pseudo-metagraph [19].

Metagraph is an ordered pair (,)G V E= , where V is a finite
nonempty set of nodes, E is a set of edges. Each edge

(,), ,k i j i je V V V V V= ⊆ connects two subsets of nodes.
Let’s describe with usage of this formalism a metamodel of

a visual modeling language.

IV. FORMAL DESCRIPTION OF A MODELING LANGUAGE
METAMODEL

Let { },iEnt ent i= ∈ℵ (ℵ is a set of natural numbers) is a set
of metamodel entities, number of set elements is potentially
unlimited, but at every fixed point in time is finite.

The set of metamodel relationships denotes as
{ },iRel rel i= ∈ℵ , number of set elements is potentially

unlimited, but at every fixed point in time is finite.
Let’s introduce the following designations:

1) { }, 1, ,
ji iEAttr eattr i Ent j= = ∈ℵ is the set of metamodel

graph nodes, which correspondence to entities attributes;
2) { }, 1, ,

lk kRAttr rattr k Rel l= = ∈ℵ is the set of metamodel
graph nodes, which correspondence to relationships
attributes;

Advances in Information Science and Applications - Volume I

ISBN: 978-1-61804-236-1 63

3) { }, 1, ,
ji iERest erest i Ent j= = ∈ℵ is the set of metamodel

graph nodes, which correspondence to constraints
imposed on entities;

4) { }, 1, ,
lk kRRest rrest k Rel l= = ∈ℵ is the set of metamodel

graph nodes, which correspondence to constraints
imposed on relationships;

5) { }, 1,iEEA eea i Ent= = is the set of metamodel graph arcs
connecting each entity with the set of its attributes;

6) { }, 1,kERA era k Rel= = is the set of metamodel graph
arcs connecting each relationship with the set of its
attributes;

7) { }, 1,iEER eer i Ent= = is the set of metamodel graph arcs
connecting each entity with the set of its constraints;

8) { }, 1,kERR err k Rel= = is the set of metamodel graph arcs
connecting each relationship with the set of its
constraints;

9) { },iEERR eerr i= ∈ℵ is the set of arcs corresponding to
links between entities and relationships.

The number of elements of sets iEAttr , kRAttr , iERest ,

kRRest , EEA, ERA, EER, ERR, EERR potentially is not
limited, but it is finite at every fixed point in time.

The metamodel graph is the directed pseudo-metagraph
(,)GMM V E= , where V is a nonempty set of graph nodes, E

is set of graph arcs and these sets are defined by (1) and (2):

1 1

Ent Ent

i i
i i

V Ent EAttr ERest
= =

   =    
   


   

1 1

Rel Rel

k k
k k

Rel RAttr RRest
= =

   
   
   

    

(1)

E EEA EER ERA ERR EERR=     (2)
Let’s consider an example. We will construct a metamodel

graph for the entity “Use Case” of UML Use Case diagrams.
Metamodel of this diagram type is shown in Fig. 1. Attributes
of the entity “Use Case” are “Name”, “Description”,
“Creation_Date”, i.e. for given entity

iEAttr = {“Name”, “Description”, “Creation_Date”}.
The metamodel graph corresponding to the fragment of the

“Use Case” entity is shown in Fig. 3. As can be seen from the
figure:

iERest = ∅ , { }iEEA eea= , EER = ∅ , EERR = ∅ .

Name

eeai

Use Case
(enti)

Description Creation_DateEAttri

Fig. 3. Fragment of metamodel graph for “Use Case” entity

The model graph is defined similarly. The model graph is
directed pseudo-metagraph GM = (VI, EI) where VI is a
nonempty set of graph nodes, EI is set of graph arcs and these

sets are defined by (3) and (4):

1 1

i

j

Ent EAttr

i i
i j

VI EntI EAttrI
= =

  
=      


  

1 1

k

l

Rel RAttr

k k
k l

RelI RAttrI
= =

   
        
   

(3)

EI EEAI ERAI EERRI T=    (4)
In the graph model definition the following notation is used:

1) EntIi is the set of instances of i-th entity;
2)

jiEAttrI is the set of attribute values for j-th instance of

i-th entity;
3) kRelI is the set of instances of k-th relationship;
4)

lkRAttrI is the set of attribute values for l-th instance of
k-th relationship;

5) EEAI is the set of arcs connecting each entity instance
with set of attributes belonging to it;

6) ERAI is the set of arcs connecting each relationship
instance with set of attributes belonging to it;

7) EERRI is the set of arcs corresponding to the links
between entities instances and relationships instances;

8) T is the set of arcs of model graph, connecting instances
of entities and relationships with those entities and
relationships, on which basis they are created.

The number of elements of all these sets potentially is not
limited, but it is finite at every fixed point in time.

On the basis of this mathematical model the operations of
creation and interpretation of graph models were defined.

Actually these operations are algorithms of vertical
transformations of models in forward and reverse direction. So
at model creation the user, operating with metamodel entities
and relationships, creates their instances, thus actually there is
a mapping of metamodel graph to model graph. This mapping
corresponds to operation of graph model creation. After
model creation it is necessary to perform checking of the
constraints, imposed on metamodel, and, in case of need,
conversion of model description to other notation. At
execution of these operations the system makes interpretation
of model elements, i.e. defines with what entities and
relationships they have been created. The mapping of model
graph to metamodel graph is used for this purpose. This
mapping corresponds to operation of model graph
interpretation.

With usage of this formalism the mathematical model,
which is a basis for implementation of the MetaLanguage
system, has been constructed. According to the mathematical
model and the requirements to this language workbench, the
environment for visual DSMLs creation is designed and
algorithms of the MetaLanguage functioning are developed:
algorithms for creation/modification/removal of metamodels
and models elements, algorithms of constraints checking,
algorithms for vertical and horizontal models transformations.

Advances in Information Science and Applications - Volume I

ISBN: 978-1-61804-236-1 64

V. CREATION OF DSML WITH USAGE OF
THE METALANGUAGE SYSTEM

Let’s consider an example: construct with usage of the
MetaLanguage system the domain-specific language for
creation of models of “Smart House” systems.

At first let’s analyze the components, which can be a part of
“Smart House” systems. The basic elements of systems of this
type are:

− life-support systems: heating, air conditioning and
ventilation, lighting, security;

− sensors (devices that are responsible for obtaining of
various readings and their sending to central panel):
motion, leakings, fire and a smoke, closing/opening of
object;

− system management tools: voice control, remote control
(from a remote computer, from phone, etc.), touch
control (control by using of the touch screen of a central
panel);

− central panel, which is responsible for receiving of data
from sensors, management of life-support systems and
obtaining of commands from the user.

For a unified description of entities corresponding to the
different life-support systems, let’s define the abstract entity
“Life-support system”, which has the following attributes:
“Name”, “Manufacturer”, “Cost”, “State” (defines the state of
the system in current time). “Life-support system” entity has
the following child entities: “Heating system”, “Air
conditioning and ventilation system”, “Lighting system”,
“Security system” (see Fig. 4).

Fig. 4. Metamodel of visual DSML, created
in MetaLanguage system

Entities “Heating system” and “Air conditioning and
ventilation system” in addition to the inherited attributes have
their own attribute “Temperature” containing value of

temperature, which is necessary for supporting indoors. Entity
“Lighting system” also has its own attributes: “Level of
illumination”, “Light sources”. Entity “Security system”
includes system of protection from leakings and ignitions,
system of automatic fire extinguishing and video surveillance
system. In addition to inheriting from the entity “Life-support
system” attributes this entity has its own attribute “State of
security”, which can take one of two values: “There is a safety
violation” or “Violations of safety is not present”.

Abstract entity “Sensor” is the parent for entities
corresponding to all types of system sensors. It has the
following attributes: “Name”, “Manufacturer” and “Cost”.

Entities “Motion sensor” and “Closing/opening sensor” in
addition to inherited attributes have their own attribute “State”,
which detects movement in the room, closing/opening of the
object.

Entity “Leakings sensor” corresponds to a sensor, which is
created to detect emergency situations associated with water or
gas leakings. This entity has its own attribute “Pressure level”.

Entity “Fire sensor” in addition to parent’s attributes has its
own attribute “Sensitivity”, which determines the level of
sensor sensitivity to smoke blanketing and temperature
changing.

Entity “Temperature and humidity sensor” presents a
device, which is responsible for readings of temperature and
level of humidity. This entity has its own attributes
“Temperature” and “Humidity level”.

Entity “System management tool” defines one of the
devices, which allow the user to send commands to the central
control panel and to inspect the operation of the system. This
entity has the following attributes: “Name”, “Tool Type”
(remote, voice, touch panel), “Manufacturer” and “Cost”.

Entity “Central panel” describes the central element of the
“Smart House” system, it receives all necessary information
from sensors, and it is the center of management of all system
components. With a central panel the user interacts through
“System management tool”. Attributes of this entity are
“Manufacturer”, “Cost” and “System Components”.

After describing of all entities of a metamodel it is necessary
to define the relationships between them. The metamodel
contains following associations:

− “Send information” is the unidirectional relationship
connecting the abstract entity “Sensor” with concrete
entity “Central panel”.

− “Interact” is the bidirectional relationship describing the
interaction of the abstract entity “Life-support system”
and concrete entity “Central panel”.

− “Fulfill control” is the unidirectional relationship
connecting the entities “System management tool” and
“Central panel”.

In addition to associations the metamodel contains nine
inheritance relationships “Is”.

Fig. 5 shows one of many possible models of “Smart
House” system, constructed in MetaLanguage system with the
usage of designed DSML.

Advances in Information Science and Applications - Volume I

ISBN: 978-1-61804-236-1 65

Fig. 5. Model of “Smart House” system

VI. CONCLUSION
Approaches to development of tools for visual domain-

specific modeling languages creation are considered.
The MetaLanguage system allows to describe domain-

specific languages, to create models with their usage and to
fulfill transformations of the created models in other textual
and graphical notations.

This language workbench is simple to use, therefore not
only professional programmers, but also domain experts, for
example, business analysts, can work with this tools.

For unified models creation the mathematical model – graph
grammars based on pseudo-metagraphs – was constructed.
This formalism has allowed to describe basic elements of
metalanguage and algorithms, which are used at its
functioning: algorithms for creation/modification of domain
metamodels and models, algorithms for vertical and horizontal
models transformations, algorithms for constraints checking.

The MetaLanguage system was approved at the creation of
DSMLs and models for several domains (administrative
regulations, queuing systems, etc.).

REFERENCES
[1] R. France, B. Rumpe, “Model-driven development of complex software:

a research roadmap,” in Proc. of the Workshop on the Future of
Software Engineering, Washington, 2007, pp. 37–54.

[2] J. Hutchinson, M. Rouncefield, J. Whittle, “Model driven engineering
practices in industry,” in Proc. of the 33rd International Conference on
Software Engineering, New York, 2011, pp. 633–642.

[3] W. J. Dzidek, E. Arisholm, L. C. Briand, “A realistic empirical
evaluation of the costs and benefits of UML in software maintenance,”
IEEE Transactions on Software Engineering, vol. 34, pp. 407–432,
2008.

[4] M. Velter. (March 2011). MD*/DSL best practices Update March 2011.
[Online]. Available: http://www.voelter.de/data/pub/DSLBestPractices-
2011Update.pdf.

[5] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, E. Neema,
“Developing applications using model-driven design environments,”
Computer, vol. 39, pp. 33–40, 2006.

[6] M. Erwig, E. Walkingshaw, “A DSL for explaining probabilistic
reasoning,” in Proc. of the 2nd International Conference on Software
Language Engineering, Berlin, 2009, pp. 164–173.

[7] R. Walter, M. Masuch, “PULP scription: a DSL for mobile HTML5
game applications,” in Proc. of the 11th International Conference on
Entertainment Computing, Berlin, 2012, pp. 504–510.

[8] M. Fowler. (June 2005). Language workbenches: the killer-app for
domain specific languages? [Online]. Available:
http://www.martinfowler.com/articles/languageWorkbench.html.

[9] S. Kelly, “Comparison of Eclipse EMF/GEF and MetaEdit+ for DSM,”
in Proc. of the 19th Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications at OOPSLA
2004, Portland, 2004, pp. 87–96.

[10] T. Ozgur, “Comparison of Microsoft DSL Tools and Eclipse Modeling
Frameworks for domain-specific modeling in the context of the model-
driven development,” master thesis, Karlskrona, Blekinge Institute of
Technology, 2007.

[11] J. Karna, J.-P. Tolvanen, S. Kelly, “Evaluating the use of domain-
specific modeling in practice,” in Proc. of the 9th Workshop on
Domain-Specific Modeling at OOPSLA 2009, Orlando, 2009,
pp. 147–153.

[12] J.-P. Tolvanen, R. Pohjonen, S. Kelly, “Advanced tooling for domain-
specific modeling: MetaEdit+,” in Proc. of the 7th OOPSLA Workshop
on Domain-Specific Modeling at OOPSLA 2007, Montreal, 2007,
pp. 48–55.

[13] S. Cook, G. Jones, S. Kent, A. C. Wills, Domain-specific development
with Visual Studio DSL Tools. Reading. Addison-Wesley, 2007, 560 p.

[14] R. C. Gronback, Eclipse modeling project: a domain-specific language
toolkit. Reading: Addison-Wesley, 2009, 706 p.

[15] А. N. Terekhov, T. А. Bryksin, YU. V. Litvinov, “QReal: platform of
visual domain-specific modeling,” Software engineering, vol. 6, pp. 11–
19, 2013.

[16] A. Basu, R.W. Blanning, “Graphs, hypergraphs, and metagraphs,” in
Metagraphs and Their Applications. New York: Springer US, pp. 1–12,
2007.

[17] B. Courcelle, “Recognizable sets of graphs, hypergraphs and relational
structures: a Survey Developments in Language Theory,” in Lecture
Notes in Computer Science, pp. 1–11, 2005.

[18] J. Power, K. Tourlas, “Abstraction in reasoning about higraph-based
systems: foundations of software science and computation structures,”
in Lecture Notes in Computer Science, pp. 392-408, 2003.

[19] А. O. Sukhov. (March 2012). Analysis of formalisms for visual
modeling languages description. Modern Problem of Science and
Education. [Online]. Vol. 2. Available: http://www.science-
education.ru/102-5655.

Advances in Information Science and Applications - Volume I

ISBN: 978-1-61804-236-1 66

	COMPUTERS1-first
	COMPUTERS1-Papers
	a024901003
	a044876003
	I. INTRODUCTION
	II. Color Kernel PCA

	a064941007
	a084845003
	I. INTRODUCTION
	II. Problem Description
	III. Mathematical Model Formulation
	IV. Numerical Illustration
	V. Result Analysis and Discussion
	VI. Conclusion
	Acknowledgment
	References

	a104860019
	a124956003
	I. Introduction
	II. Related Works
	III. MetaLanguage System
	A. Metalanguage of MetaLanguage System
	B. Architecture of MetaLanguage System

	IV. Formal Description of a Modeling Language Metamodel
	V. Creation of DSML with Usage of the MetaLanguage System
	VI. Conclusion

	b014857007
	I. INTRODUCTION
	II. Problem Description
	A. State of Research
	B. Aim of Research

	III. Research Methods
	A. Approach
	B. Research design
	C. Questionnaires

	IV. DATA COLLECTION
	V. Analysis
	A. Correlation analysis
	B. Partial correlation analysis
	C. Regression analysis

	VI. Results

	b024951003
	I. INTRODUCTION
	II. related research
	III. icarus operation and architecture
	A. Overview
	B. Input/Output – Parser and Inverse Parser
	C. Database
	D. Deconfliction Engines
	1) Case-Based Reasoner
	2) Rule-Based Deconfliction
	3) Generate-And-Test Deconfliction

	E. Viewer

	IV. results
	V. Conclusions and future work

	b044955011
	b064854023
	b084818003
	I. INTRODUCTION
	II. Collaborative writing social networks
	III. The Data
	A. The novel ‘Rigor mortis’
	B. The novel ‘Sono stata brava’

	IV. Results Discussion
	A. ‘Rigor mortis’
	B. ‘Sono stata brava’

	V. Conclusion

	b104864007
	b124720007
	b144788015
	I. INTRODUCTION
	II. development and construction
	A. Controlled environment
	B. With Pc Interface Implementation
	C. Image Acquisition

	III. Design and implementation of Control Software
	IV. DISCUSSION
	The Sobel edge detector can also be applied to range images like. Edge detection using gradient operators approach tends to work well in cases that involve transitions of intensity images with clearly defined and relatively low noise. Sobel operator gets a good result compared to other operators such as the Laplacian, Prewitt or Frei-Chen, detects edges in all directions and does not increase the noise, but requires a lot of operations and time consuming. The Sobel operator is not as sensitive to noise as the Roberts Cross operator, it still amplifies high frequencies

	b164863003
	b184840007
	I. INTRODUCTION
	II. Information Retrieval Systems
	III. Term Weighting
	IV. Fuzzy Ontology
	V. Related Work
	VI. The Proposed Term Weighting Algorithm
	A. The Proposed Term Weighting Algorithm Phases
	The proposed algorithm phases are as follow:
	B. The proposed Algorithm

	VII. Tests and Results
	VIII. Conclusion

	b204856015
	I. INTRODUCTION
	II. The issue of cloud computing model
	III. Types of cloud computing services
	IV. Cloud computing from the SMEs perspective
	V. Barriers to adoption and usage of cloud computing. research results.
	VI. Conclusion

	b224968007
	b244853007
	b264845007
	I. INTRODUCTION
	II. Problem Description
	III. Mathematical Model Formulation
	IV. Parallel Algorithm for Minimal Makespan Determination
	V. Numerical Example
	VI. Results Analysis and Discussion
	VII. Conclusion
	Acknowledgment
	References

	b284720003
	I. INTRODUCTION
	II. Terminology and Background
	A. Object-Oriented Typestates
	B. Definitions

	III. Approach
	A. Monitoring Field Objects
	B. Mining Typestate Models

	IV. Preliminary Evaluation
	A. Threats to Validity

	V. Related Work
	VI. Conclusions
	References

	b304852007
	I. INTRODUCTION
	II. fuzzy ontology
	III. Fuzzy Ontology-based information retrieval
	IV. Related work
	V. the proposed Linguistic based fuzzy ontology information retrieval model
	A. The proposed Information Retrieval Structure
	B. The proposed Fuzzy Ontology Tool
	C. proposed model phases

	VI. Applying our proposed model on FROM case study
	 {(Information Retrieval, 0.632)}.
	 Concept set= {(Information Retrieval, 0.632), (Ontology, 0.79), (Fuzzy Logic, 0.792)},
	 D1Conf. Deg = 0.27, D2Conf. Deg =0.12, D3Conf. Deg =0.21, D4Conf. Deg =0.12}

	VII. Conclusion and Future work

	b324861003
	I. INTRODUCTION
	II. The accounting act and documentation of accounting policy
	III. Electronic Document as an Accounting Evidence
	IV. Accounting Specification and Accounting Act
	V. Accounting in the Cloud as a Bookkeeping
	VI. Data protection, Including the Protection of Personal Data
	VII. Conclusion

	b344862019
	I. INTRODUCTION
	II. Implementing and using the DSpace platform
	III. SHERPA RoMEO programming interface
	IV. Integrating SHERPA/RoMEO with DSpace
	V. Submitting the request
	VI. Conclusions
	The software application has practical implications and represents an original solution to the needs of the academic community. The application is created with a very low cost, both platforms are free to use, being the results of research projects. The proposed model can be also very useful to other universities with the same problems and obstacles in populating and developing institutional digital repositories. A practical implication concerns the easy, one-button, access to two applications simultaneously: archiving, in a digital platform, a published article and accessing the list of publishers enrolled in the platform SHERPA RoMEO’s database of publisher policies on open sharing. Another implication is to reduce the time of promoting the digital repository’s services and the archiving time. Regarding originality and article value, it is ascertained that a need identified in the self-archiving process is solved, a barrier to the use of digital repository through an original software application.

	b364844003
	b384864003
	I. INTRODUCTION
	II. methodology
	A. Static Visual Attention Model
	B. Dynamic Visual Attention Model

	III. experiment and results
	A. Comparison with Non-Visual Attention Based Video Summarization Techniques
	B. Comparison with Visual Attention Based Video Summarization Techniques

	IV. conclusion

	b404862055
	A Genetic Algorithm for Shuttering Underperforming Stores
	Introduction
	THE PROBLEM
	APPROACH
	RESULTS AND DISCUSSION
	CONCLUSION
	REFERENCES
	.

	b424858019
	I. INTRODUCTION
	II. Methods
	A. Method for rapid generation of computational model
	a)

	B. Theory of counter flow heat exchangers

	III. Results
	IV. Conclusions

	b444860007
	I. INTRODUCTION
	III. short-term user model based on previous queries
	IV. Future work

	b464927003
	I. INTRODUCTION
	II. DISTRIBUTED IMAGE COMPRESSION
	Before explaining the proposed model there are some terminologies and backgrounds needed to describe image compression as it is related to the proposed model.
	A. Background and Terminologies of Image Compression
	B. The Proposed Model Architecture for Distributed Image Compression over a Wireless Sensor Node
	Fig. 1 shows the proposed model architecture that has different phases including image splitting phase, sub-region multi-level wavelet, encoding using set partitioning in hierarchical trees (SPIHT), generating binary codebook and transmitting data usi...
	a) Image Splitting Phase
	b) Lifting Scheme for Wavelet Transform (Sub-band Coding)

	This row operation is known as one decomposition (1D) wavelet transforms. Next, the filtering is done for each column of the intermediate output data. This whole procedure including both row and column operations is called a two decomposition (2D) wav...
	c) Set Partitioning in Hierarchical Trees (SPIHT) Encoding Technique
	1) The majority of an image’s energy is concentrated in the low frequency components and a decrease in variance is observed as moving from the highest to the lowest levels of the sub-band pyramid
	2) It has been observed that there is a spatial self-similarity among the sub-bands, and the coefficients are likely to be better magnitude-ordered if moving downward in the pyramid along the same spatial orientation [15].
	d) Codebook (CB) Generation

	III. EXPERIMENTAL RESULTS
	A. Performance Measures
	a) Mean-Square-Error (MSE):
	b) Peak-Signal-To-Noise-Ratio (PSNR):
	c) Compression Ratio (CR):

	B. Results

	IV. CONCLUSION
	References

	b484899011
	b504862043
	I. INTRODUCTION
	II. Background
	III. Architecture
	IV. Communication
	V. Memory Management
	VI. Processing
	VII. Graphic User Interface
	VIII. Conclusion

	b524862027
	I. INTRODUCTION
	II. The Validated model for risk management system
	III. Risk management in the Romanian healthcare system
	IV. Methodology
	V. Results
	VI. Discussions
	VII. Open source risk management platform
	VIII. Conclusions

	b544850007
	b564922003
	b584862051
	I. INTRODUCTION
	II. The data structure
	A. Preliminary definitions
	B. Ordered hash data structure
	C. Implementation
	D. Complexity analysis
	E. Erase optimization
	F. Next/prev optimization

	III. Experiments
	A. Artificial data

	IV. Applications
	V. Conclusion
	VI. Funding

	b604941003
	b624922007
	b644952055
	I. INTRODUCTION
	II. Method
	A. Computed Tomography
	B. Conventional Radiography (X-Ray)
	C. CT-Guided Biopsy
	D. Proposed System

	III. Experiment
	IV. Future works

	b664819007
	I. Introduction
	II. An Overview of Wireless Sensor Networks
	III. Clustering in Wireless Sensor Networks
	IV. The Proposed Cluster-Head Selection Algorithm: Based on the VIKOR Technique
	V. Practical Experiment: A Case Study
	A. Nodes' ranking and Cluster-Head selection for Cluster1: Determining CH1
	B. Nodes' ranking and Cluster-Head selection for Cluster2: Determining CH2
	VI. Conclusion and Future Works
	References
	Author Biography

	b684931003
	I. INTRODUCTION
	II. SYSTEMIZATION OF ITIL® TOOLS
	A. Division by availabilit
	1) Proprietary SW
	a) Commercial SW
	b) Freeware

	2) Free and Open Source SW
	a) Open Source SW
	b) Free SW

	B. Division by main purpose.
	1) Service desk
	2) Monitoring, event & remote management
	3) Service life cycle
	4) Service portfolio and management
	5) Cloud
	6) Information security

	III. Conclusion

	b704824007
	I. Introduction
	II. EVALUATING THE ROLE OF CLOUD COMPUTING ON THE FUTURE PRODUCTS OF INFORMATION TECHNOLOY INDUSTRY
	III. performance comparison of two stage Kalman filtering technique for surveillance permeating tracking in cloud computing [17]:
	1. Statement of the Problem:
	2. Performance Evaluations:
	Using (27), (29) and (30), the operational savings and the percentage of the operational savings, of the OPSKE comparing to the OTSKE and the AUSKE for different values of , and are shown in Table 3. It can be inferred from Table 3 that the OPSKE has better overall performance than the AUSKE (averaged 32%) and the OTSKE (averaged 7.3%) [15].
	Table 1:Standard Kalman Estimator Arithmetic Operation Requirements
	Table 2:Input Estimation and Auxiliary Matrices Arithmetic Operation Requirements for the OPSKE
	Table 3:the Operational Savings and the Percentage of the Operational Savings of the OPSKE Compared to the AUSKE and the OTSKE
	3. Simulation Results:
	IV. Conclusion
	References

	b724911003
	Introduction
	References

	b744873003
	b764628003
	b784824011
	c024875003
	I. INTRODUCTION
	1) There are two styles of CBR; problem solving style and interpretive style. Problem solving style can support a variety of tasks including planning, diagnosis and design (e.g. Medicine [2] and Industry [3]). The interpretive style is useful for (a) situation classification, (b) evaluation of solution, (c) argumentation, (d) justification of solution interpretation or plan and (e) the projection of effects of a decision of plan. Lawyers and managers making strategic decisions use the interpretive style [4, 5]. CBR has already been applied in a number of different applications in medicine. Some real CBR-systems are: CASEY that gives a diagnosis for the heart disorders [1], GS.52 which is a diagnostic support system for dysmorphic syndromes, NIMON is a renal function monitoring system, COSYL that gives a consultation for a liver transplanted patient [6] and ICONS that presents a suitable calculated antibiotics therapy advise for intensive care patients [7].

	c044966011
	c064625011
	c084855027

	COMPUTERS1-Authors Index
	b444860007.pdf
	I. INTRODUCTION
	II. User model
	III. The short-term user model based on previous queries
	IV. Future work

