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1. Introduction and basic notation

In this article X denotes a smooth complex surface. A curve C in X is an effective
divisor. This means that C is a locally finite formal sum C=)_; m; C;, where every C;
is a (closed) irreducible analytic set of (co)dimension 1, and m1; are positive integers.
We call C; (irreducible) the components of C and m; the multiplicities. The set
|C|:=U;C; is called the support of C. For an open subset UC X we define the
restriction of C to U as CNU:=)_, m;(C;NU).

With any component C; we associate the ideal sheaf I, whose group of sections
over an open set VCX is I'(V,J¢,) :={f€'(V,0) 1|, =0}. This is a coherent
analytic sheaf and supp (0/J¢,) = C;. Call I¢ := ]_[lN:1 J¢ the ideal sheaf of C, and
O¢ := Ox/J¢ the structure sheaf of C. The ideal sheaf J is locally principle, i.e. has
locally the form J¢|,, = fu - Ox. We call such fy; a local determining function of C in
U and CN U a divisor of fy;, CN U= Div(fy).

The pair (|C|,O¢) is a complex subspace of X (in general, not reduced and
reducible) which we shall also denote by C. This means that we can consider C as an
analytic cycle C=) _;m; C; and also as subspace C=(|C|,O¢) of X.

It is known (see, e.g. [1] or [2]) that one can associate to every curve C =", m;C,,
a closed positive integer (1, 1)-current n¢ such that, for any continuous 2-form ¢ with
the compact support in X,

ne(e) = (ne, ¢) == Zm /C ®.
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Moreover, C is completely determined by nc and every closed positive integer
(1, 1)-current n in X corresponds to some curve (see [1] or [2]). Thus, we identify the
set of curves in X with the space PJ"!'(X) of closed positive integer (1, 1)-currents in
X and induce the topology on a set of curves from the space D’»(X) of 2-currents
in X. Note that PJ"'(X) is closed subset in the space DL(X).

The (weak) topology in the space PJ"'(X) gives us the notion of weakly
continuous family of curves in X. Namely, a family {C,},.y, parameterized by a
topological space Y, is called weakly continuous, iff the induced map
F:Y—PI"(X), F(y):= Nc,» 1s continuous. It follows from the result of Stoll [3]
that this is equivalent to the following condition: There exist an open covering
{V4} of X x Y and continuous functions f, € C(V,, C) such that for any y€ Y the
restriction of f, on (X x {y})NV, is holomorphic and generates the ideal
sheaf Jc, = fo - Oxxy of C,. The f, are called local determining functions of a
family {C,}.

In particular, a sequence {C,} of curves in X converges weakly to a curve C iff
for any x € X there exist a neighbourhood V> x and a sequence of holomorphic
functions f,, € I'(V, O) which are determining for C,, and which converge uniformly in
V to a determining function f,, of C..

For the definition of the category of Banach analytic spaces, we refer to
[4, Section 3]. We note that for every Banach analytic space Y and Banach space E
the sheaf OWE):UCY — I'(U,Oy(E)) of holomorphic E-valued morphisms
between open subsets UC Y and E is a part of a definition of the structure of a
Banach analytic space. In the case E=C we denote this sheaf by Oy. Any morphism
F:Y— Z between two Banach analytic spaces defines a continuous map F: Y — Z
between corresponding topological spaces, and a morphism of sheaves
ng :F*Oz(E) — Oy(E) for any Banach space E. Here F*O,(E) denotes the
pull-back of the sheaf O (F) w.r.t. continuous map F. Moreover, a morphism
F:Y— Z is defined by the data F and F?,).

We say that a continuous map F:Y — Z is holomorphic if it is induced by a
morphism F: Y — Z. Note that such a morphism F: Y — Z can be not unique at the
sheaf level. In particular, two different morphisms Fy, F, € Mor(Y, E)=T(Y, Oy(E))
can induce the same continuous map F;=F,: Y — E. This reflects the fact that a
generic Banach analytic space Y is highly non-reduced.

Definition 1 We say that a Banach analytic space Y is of finite type iff ¥ can
covered by local charts Y, such that any Y, is isomorphic to a zero set of a
holomorphic map f, : B, — C", where B, denotes a ball in some Banach space.
In particular, we have an isomorphism OY|YD, >~ O0p,/(fads---sfan,), Where
(fa1s--->fan,) denotes the ideal sheaf generated by the components of f,. Such
spaces are also referred to as Banach analytic spaces of finite definition or Banach
analytic spaces of finite codimension.

Definition 2 A holomorphic family € = {C}}cy of curves in X parameterized by a
Banach analytic space Y is given by an open covering {V,} of X x Y and
holomorphic functions f, € I'(V,, Oy y) such that:

(i) if VoNVg# &, then f, = fop - fp for some invertible fog € T'(Vo N Vg, 0%, y);
(i1) for any y € Y the restriction of f, on V,N X x {y} is not identically zero and
is a local determining function for a curve C,.
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The functions f, are called local determining functions of the family {C,} cy.
The collection f, defines the sheaf of ideals Jo C Oy, y with Je\Vu ‘= fo Oxxy.
Two holomorphic families parameterized by the same Banach analytic space Y are
isomorphic iff they define the same sheaf of ideals over X x Y.

Now let C* be any curve in X and K € |C*| any compact subset of its support.
Our main result is the following theorem.

MaIN THEOREM  There exists an open set UC X containing K such that the set of
curves in U, which satisfy appropriate boundary conditions and which are sufficiently
close to C*NU, is a holomorphic family C=/{C,},cnt parameterized by a Banach
analytic space M of finite type. Moreover, for every continuous (resp. holomorphic)

SJamily {C,},cy with C* = Cy, for some y,€ Y, there exist a neighbourhood Yo C Y of

Yo and a continuous map (resp. a morphism) F: Yo — M such that C,N\ U= _Cp,y. Two
such families {C;}er and {C;}er coincide over Y iff they induce the same continuous
map (resp. morphism) F:Yq— M.

The theorem has several corollaries which are mainly due to the fact that Banach
analytic sets of finite type have sufficiently simple structure. In particular, if X, C* and
U are as in the Main Theorem, and if {C,} is a sequence of curves in X converging to C*,
then for any n > 1 there exists a holomorphic family {C, },ca of curves in U, which is
parameterized by a disk A C C and contains both C,,N U and C*N U. This allows to
obtain a generalization of the continuity principle of E. E. Levi.

The conclusion of the Main Theorem is obtained by an explicit construction of
the space M. The problem of deformation of a curve C leads to study of the normal
sheaf N¢ to C in X. It is defined as N¢ := Hamy (I¢/T¢, Oc).

To obtain a parameterizing space as an analytic set in Banach manifold, we
introduce the notion of a (Banach) smoothness S. This generalizes the usual
smoothness classes such as k times continuous differentiability C*, Sobolev
smoothness L*? or Holder smoothness C*. For such a smoothness S, we define a
Banach space I's(C,N¢) = Hg(C, N¢) of (holomorphic) sections of N which are
S-smooth up to boundary oC (or simply S-smooth).

The description of a moduli space M in a neighbourhood of a marked point y is
usual for a deformation theory:

There exists a ball B C Hg(C, N¢) and a holomorphic map ®: B— H'(C,N()
such that

(i) ®(0)=0, d®(0)=0;
(i) @:B— H'(CN() is a local chart for M.
(iii) 0 € B corresponds to yo € M, parameterizing C* N U.

The desired property of M is based on the fact that non-compact components of C
are Stein spaces, and consequently H'(C,N¢) is finite-dimensional. In particular,
On 2 O0p/(Py, ..., Dp), k:=dim H'(CN¢). Here ®; denote the components of & and
(P4, ..., Dy the ideal sheaf generated by @,..., O,

2. The local situation

The construction of the moduli space M is based on two special cases. One of them
describes local deformations of curves and the other one allows to match two
different local descriptions.
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We first consider the local situation. For this we suppose that X is a smooth
complex curve with a smooth nonempty boundary 9%. Set J:= X x A. Denote by
(X, 0") the Banach space of n-tuples of holomorphic uniformly bounded
functions on X. For every such f=(fi(2),...,[u(2)) €=(X,O0") we define a
Weierstral3 polynomial

n
Pr(z,w) :=w"+ Zf,-(z) W'l zeX, weA (2.1)

and a curve C,C V to be the zero divisor of P/(z,w).
LemMma 1 Every curve CC V=% x A satisfying condition
|IC| C . x A(r) for somer <1 (2.2)

is a zero divisor of a uniquely defined Weierstraf3 polynomial Pr(z,w) = w"+
S fi@) W with f=(fi, ... fu) € Tr=(E, 0").

The set M(L”;(V) of those f€ FLx(E O") for which C; satisfies condition (2.2) is
open in T'p<(3,0"). The map @ : M Y (V) = PIED), o(f) = nc,, s continuous
and injective. The topology on the image ®(M L°°(V)) coincides with the weak topology
of Tr=(%,0").

Remark 1 For C as in the lemma, we shall call the corresponding degree n of P the
degree of C. The weak topology of I'z~(2,0") is understood in the sence of
functional analysis (see, e.g. [5, Section 3.11]). Notice that the weak convergence
/Y — f of functions in I';~(E,O0") implies the uniform convergence on every
compact K € X but not the uniform convergence on the whole X.

Proof Since the group H*(V,Z) is trivial, any curve C in V admits a global
determining function F. For C satisfying condition (2.2) the Weierstral3 preparation
theorem (see, e.g. [6]) insures that C is a zero-divisor of a uniquely defined
WeierstraB polynomial Py(z,w) = w" + Y ", f(z) w"~", such that F=/h - P, for some
invertible 7€ T'(V, ©). We can view f:=(f1,...,f,) € (X, O") as a holomorphic map
from X into the n-th symmetric power Sym”A c Sym”C=C". Hence the f; are
necessarily uniformly bounded in . Moreover, for g€ I';«(X, O") sufficiently close
to £, the curve C, defined by WeierstraB polynomial Py(z, w) := w" + 1| gi(z) w" ™,
also satisfies cond1t10n (2.2). Thus the set M(Lo)c( V') is open in I'1«(Z, 0").

According to the Poincaré-Lelong formula (see [1] or [6]), the map @ is given by
formula

1
SET1(2,0" — — dlog| Py | e PIED).

Thus @ : T';~(Z, 0") - PIED(1) is continuous.

Now let /™ e M(L"O)O(V) C I'~(2,0") be a sequence. If { f ) converges weakly to
fe M(”) (V), then {Cyw} is bounded in P31y and any Cauchy subsequence of
{Crw} must converge to Cy. Vice versa, let {C/m } converge to a curve C satisfying
condition (2.2). Since M(") (V) C I'=(Z, 0" is a bounded subset, some subsequence
of { f (")} converges wedkly to fel~(X%,0") such that C,=C. Consequently,
VAS MLOO( V). u

We see that we have constructed a holomorphic family {C} e of curves

(1) (V)
which are ‘uniformly bounded’ in V. Later we shall show that this famlly possesses
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the universality property. To generalize this result to other classes of boundary
conditions on curves, we introduce the notion of a smoothness.

For 0<r<R<oo denote by A4,z the annulus {zeC:r<|z|<R}. Denote also
A (r):={zeC: |z| > r}. Recall that any Riemann surface ¥ with a complex
structure which is homeomorphic to an annulus and which boundary 9% consists of
two circles is in fact biholomorphic to some annulus 4, g, ¥ 2= A4, z. Recall also that
any holomorphic function f'€ I'(4, g, O) admits a unique decomposition into the sum

f=fT+f such that f* e T(A(R), ©) and f~ € (A~ (r), O) with f~(c0) =0. We call it

the Laurent decomposition of f.

Definition 3 A smoothness class S (or simply a smoothness) in A is defined by fixing
a subalgebra I'g(A, O) C I'z=(A, O) which satisfies the following conditions:

(Si) Ts(A, 0) is a Banach algebra' with the norm |-||s and 1/ ey < Csll flls
(Sii) T's(A, O) is invariant w.r.t. the action of the group U(1) by rotations on A.
(Siii) IffeTg(A, O), g€ (A4, O) with some r<1< R, and fg=(fg)" +(fg)~ is the
Laurent decomposition of the product, then (fg)*eI'g(A,O). Moreover,
102 1l < C(S.7. R) - 1 flls - 18]l (4, for some constant C(S, 7, R).

(Siv) If feTl;~(A4,,,0) has the Laurent decomposition f=f"+4f~ with

fTeTlg(A,0) and a bounded invertible g:=1/f€T1~(A4,1,0) with the Laurent

decomposition g=g" + g, then g e I'g(A, O).

We say that feT'g(A,O) is S-smooth. Conditions (Siii) and (Siv) show that
S-smoothness depends essentially only on the behaviour of f at the boundary of A.
Obvious examples are C*-Lipschitz—Hélder smoothness (up to the boundary)
S = Ck*(A) with keN and 0 < a < 1, Sobolev smoothness S = L*"(A) with k > 1,
1 <p<oo and kp>2 and also Sobolev smoothness S=L*(S') on boundary
S':=9A with k > 1 and 1 < p < oco. The later means that the trace f|q of feT'(A, O)
on S'=09A is well defined and belongs to the corresponding class.

Definition 4 Let ¥ be a smooth complex curve whose boundary 0% consists of
finitely many components y;, i=1,...,n, each of which is homeomorphic to a circle
S'. The smoothness S at 9F in ¥ is defined by fixing of a smoothness classes S; in A
and annuli 4;C X such that one of the components of boundary d4; coincides with
y; and the other one lies in the interior of ¥. For every i=1,...,n this induces a
biholomorphic map ¢; : 4; — A,,; which extends continuously up to the boundary
d4; and maps y; onto dA. We say that fel(X,0) is S-smooth in ¥ at 9%,

fels(X,0), iff for every i=1,...,n the Laurent decomposition

@isf = (0i/)" + (@isf)” yields (¢i4f)" €Ts,(A, 0).

LemmA 2 Let X, y;, @i 0 A — A1, and S; be as above. Then T's(X, O) is a Banach
algebra with respect to the norm || fllg:=Y; ||(<pi*f’)+||3,. Moreover,

1/l ey <Cs - I f1s (2.3)
with a constant Cg independent of fe I's(X,0). The subset
[g(T,0) = {fels(T,0) : [ el ~(T,0)}
is open in I's(X, O) and the map
F:Tg(Z,0)" = I'i~(2,0) Ff):=f""
is Ts(2, O)-valued and holomorphic.
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Proof Let feTg(A,0). Set f;:=¢;.f and let f; = f7 +f~ be the corresponding
Laurent decompositions. Due to (Si) of the definition of smoothness, f'is uniformly
bounded in X and takes its supremum on one of the boundary component y;. The
later means that there exists a sequence x,€X such that limx,ey; and

lim [ £ (o)l = 11/l s In particular, | /1l sy = 1/ill (4,

For this 4; we obviously have
L7 ey <My + 7 N 2.4)

On the other hand, ”fi_um )<8~ ||f_/‘||Lm(A‘) with §:=max{r;} <1. This is due
to f;(00) = 0 and the Schwarz inequality. Conséquently,

Comparing (2.4) and (2.5) we see that

_ 2 , 3-346
“f] ||L"°(A,')< m . ”f;r”Loo(A/) and ”_](‘I“L'x:(A,)< m : ”fj—”Loo(A]) (26)

Since §<1 is independent of f, from (Si) we obtain the estimate (2.3).
Consequently, every |-||s-Cauchy sequence converges to some element in ['g(X, O).
Moreover, the map

@ Ig(2,0)— [[Ts(A,0), (/) = (¢::/)7), 2.7)

i=1
is a closed imbedding.

Take another geT'g(Z,0) and set g;:=¢;.g¢ with the corresponding Laurent
decompositions g; = g + g;. Then

(pis(f- )" = 1&gl +(figDH™ +(ffg)"
For any i=1,...,n we obviously have

”f,'_”Loo(A*(,AI.)) <c(r) - ”fi”LOC(A,‘,_l) <csl fls
and the same estimates for g. Due to (Siii), we obtain

1f - glls<cs- 115 - gls

Condition (Siv) implies that T'g(Z, O)™ consists of those f€ I's(X, ) which are
invertible in 'g(32, O). Thus, the last statement of the lemma is a standard fact of the
theory of commutative Banach algebras (see, e.g. [7]). [ |

Definition 5 Let X and S be as above and V=% x A. A function F(z, w) e I'(V, Q) is
called S-smooth, FeT'g(V,0), iff F(z,a) e I'g(X, O) for every a € A and the induced
map F:A—T'g(X,0) is holomorphic and bounded. A curve CCV is called
S-smooth iff C satisfies condition (2.2) and C = Div(F) for some Fe I'g(V,0),i.e. Cis
defined by such an F. Let 3"%") denote the set of those Fel'g(V,0) such that
inf{|F(z,a)|:z€ X, ae A,,} >0 for some r<1 and for which the curve Cr:=Div(F)
has degree n.
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LEmMA 3 A4 set Tg(V,0) of S-smooth functions is a Banach space with a norm
[1Flls := sup{llF(z,a)lls : aeA}

Every S-smooth curve CCV of degree n is represented by a unique Weierstrafy
polynomlal P=Pr(z,w)=w'+ YL, fiz)w"™" with f (f1,- - fn) €Ts(Z, 0. The
set ff is open in Ts(V,0) and the map WV ff — (2,0, W:F—f, i
holomorphlc

Proof The part of the lemma concerning ['g(},0) is obvious. Let F lie in
3"(5") C I's(V,0) and Cr C X x A be the corresponding curve. For keN and ze X
we set

k
W
d
Ji@) = 2nz/|”| ,F(z W)8 (Z wydw,

where r< 1 is chosen sufficiently close to 1. Then f is constant and equals the degree
n of C, whereas f;, i=1,...,n, are the coefficient of the Weierstral} polynomial P,
of C. Since the operations in the definition of f, — taking inverse, differentiating,
integrating — are holomorphic, f; depends holomorphically on Fe T'g(V, 9"). [ |

Let M(")(V) be the image \D(&"(")) One can regard an embedding
JV[(")(V) C I's(2,0") as a local chart of a moduli space of curves on a complex
surface with an appropriate smoothness condition. To be able to patch such local
models together we need an invariant description of M(”)(V)

Take Fe 3"(;), set C:=Div(F), f:=W¥(F), and consider the tangent map

dVp: TpFY = Tg(V,0) — TeMP (V) = Tg(2, 07).

LemMA 4 Let w:|C|— X be the natural projection and 7w,0¢c a push-forward with
respect to w. The map dVy induces on Of a structure of a w,0c-module which is
independent of the choice of F with Div(F)= C. With respect to this structure, there
exists a 1,0 c-isomorphism Oc between 0% and the push-forward w,Nc of the normal
sheaf N¢ = Homy (I¢/I¢., Oc).

The isomorphism 6c admits the following characterization: Let F,(z,w), > € A(p),
be a holomorphic family of functions in S"S such that C = Div(Fy). Furthermore,
let ¢ := 0c(dVg,(F})) € T(C,N¢) where F| = "’F‘ i |- Then

¢ : [Foly € D(C.Ic/I0) = [Foly, € T(C, 0p/Tc). (28)

Proof For convenience, we slightly modify the definition of the map W. For
FeF? c Ts(V,0) and f=(fi,....[,)=WV(F)eTs(,0") we set WWP(F):= w'+
Yo fillow e Ts(V, ), where WP stands for ‘Weierstrall polynomial’.

Set P:=W"P(F) and g:=P'F. Then g is holomorphic and bounded in V,
g(z,a)eN's(X,0) for aeA,,, and the induced map g:4,;— I's(£,0) is holo-
morphic. Considering the Cauchy representation for g,

1 g(z,0)
gz w) = 2mi /“ W= dg,
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we see that geDg(V,0). By the same argumentation we have g 'eTg(V,0).
Moreover, the map Fe FU—s F/W"F(F) e Ts(V, 0) is holomorphic.

Now let F,(z, w), . € A(p), be a holomorphic family of functions in I'g(V, O) with
Fo=F. Put P, := \IIWP(F,\) and g, := F,/P,. Then P, and g, depend holomorphically
in . Differentiating the identity F, =g, - P; with respect to A in A =0, we obtain

Fy=gy-Po+g- Py
with go=g and Py= P. Thus the tangent map
AW T FY = Tg(V, 0) — Tg(V, 0)

is glven by the formula dW /7 (F') = {g o } the Weierstrall remainder of a division of
Lp by P. It is a unique polynom1a1 Ry = Y"1 f/(z)w"" of degree<n such that
Rf ¢! F(mod F). This implies that d¥ yields an isomorphism of Banach spaces

yr Ts(V,0)/(F-Ts(V,0)) = I's(E,0"),
Vr [H)p—h=(h,...,h,) with g7'H = Ry(mod F).

Due to its definition, ¥ is essentially local and induces the isomorphism of
Ox-modules

Vi 7 (Op/(F(z,w) - Op)) 22 Ox[w]/(P(z,w) - O5[w]) = 05,

Since OV/P(Z w) - Op=0¢, Y defines on 0%, a structure of a free 7,0 -module of
rank 1. If F e [s(V,0) is another function w1th DIV(F) = C, then F = h - F for some
invertible 7€ T'g(V,O). Then, by the definition, lﬂ;(H) Yr(h~'H). Consequently,
the induced structure of the 7,0-module on 0% is independent of the choice of F.

Using ¢, we define a 7,0 -homomorphism 0y : 05, — 7, N¢. For a local section
S=(1,....fn) of Of over an open set Q@ C ¥ we take a holomorphic function
HeTl(Q2xA,0) such that H=g- Rf (mod F) in Q x A, where g= P~ 'Fis as above.
Since C = Div(F), the sheaf J¢ /JC is free O-module of rank 1 with generator [F]jz
Using N¢ = Homol(flc/f]c, 0y/0¢), we define

OF(f) eT(QaNc) =T (2 x AYNC.Nc),  0p(f) : [Flp—[H];,.

If H el(2 x A,0) is another holomorphic function with H= g-Ry/(mod F),

then [H]g =[H];.. This shows that the definition of 64 f) is independent of the
choice of H.
_ Similarly, if Fe I's(V,0) is another defining function for C, C = DIV(F) then
F=h-F with helg(V,0) invertible. In this case P~ "F=h- g and hence
O0:(f): F]jv > [h- H];.. This means that 6z(f) = 0(f) as sections of N¢. Thus the
definition of Oc:=0r is independent of the choice of defining function F for the
curve C.

Now let Fi(z,w) e Ts(V,0), A € A(p), be a holomorphic family of functions such
that Fo=F and F'q= H. The relation (2.8) for ¢ :=0(dV{H)) follows immediately
from the construction of Wy and 6. |

Definition 6 Note that the constructed isomorphism 6. induces the bijection
Oc : T(C,N¢) 2 T'(%, 0%). A section ¢ of N¢ is called S-smooth, ¢ € I's(C, N¢), iff
0(p) € T's(Z, OF).
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As we have already noted, the map W : M(”) (V) - I's(%,0%) is a chart in a
moduli space of curves in V" with an appropriate smoothness condition at boundary.
However, the map W depends on the choice of local (holomorphic) coordinates (z, w)
in V. In particular, if in the construction of W we replace w by some other coordinate
function w = w(w), then the map W as well as a 7,0module structure on 0%, will
change. However, relation (2.8) remains valid, since it is independent of the choice of
coordinates in V. This leads us to the following corollary.

CorOLLARY 1| The tangent space TCMgD(V) is canonically isomorphic to
FS(C7 NC)

3. Curves in the ‘distorted cylinder’

To be able to patch local descriptions, we consider the following special situation.
In C* with standard coordinates (z, w) we consider an annulus A, gi={(zw):w=0,
r<l|z|<R}. We assume that in some neighbourhood U of the closure /I,,,R we are
given two holomorphic functions z; and z, which coincide with z along A4, . Without
loss of generality, we may also assume that the both pairs (z;,w) and (z», w) are
coordinates in U so that we can express z; = z(z2, w) and z, = z5(zy, w).

For p>0 let

Wirp ={xeU : |21(x)] > r,|22(x)] < R, [w(x)| < p}.

We shall always suppose that p>0 is chosen sufficiently small such that W, x ,E U
and that the sets

O Wiy = {xe U : |20 = r, w(x)| < p}
0 Wyry i= {x €U © |22(x)] = R, [w(x)| <p}

are disjoint. One can regard the set W, r, as a distorted cylinder with the
non-parallel lower side d_W, g , and upper side 0, W, g ,. Note also that there exist
real numbers r<r < R’ < R such that both sets

Vo= {xeU:r<|zi(x)| <7, |wx)| < p}
Vi g = {xeU: R <|zx)| < R, |wX)| < p}

are products of an annulus and a disk. This allows us to make the following
definition.

Definition 7 A smoothness S in W, g, is defined by fixing smoothness classes S~
and ST in A. A holomorphic function Fin W, x , is S-smooth, Fe T's(W, g ,, 0), iff
F|V_ els-(V,.,0) and F|V+ elg(Vh &> 0). Note that S also defines a smooth-
ness in A, g: It is suffucient to fix annuli 4~ = ={r<|z|<r}, AT ={R <|z| <R} and
smoothness classes ST and S~. We shall also denote this smoothness by S. Thus we
obtain a continuous projection map F € I's(W, g, O)'—>F]A’_R e's(4,.r,0).

A curve CC W, g ,is S-smooth iff CC W, g , for some p' < p and C=Div(F) for
some Fels(W, g, O). The degree of an S-smooth curve CC W, r, is an integer
degC:= [, dlogF, where FeT's(W,r, 0) is any function defining C and y
is a simple smooth loop (i.e. a closed real curve) in {xe W, g ,: Iw(x)|=p} with
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[,dlog w=1.1Itis obvious that deg C is a positive interger independent of the choice
of F and y. The set of S-smooth curves of degree n in W, r , will be denoted by
M(.;)(W,,R,p). Note that for every S-smooth curve CC W, r, the Weierstral3
polynomials P and P~ of CN V,. and CN V’,;,,R are uniquely defined. This
yields an injective map

K(n) . M?)(W,»’R’p) — st(A,,,./, O”) X F5+(AR/’R, On) (31)

A family {C,},cy of S-smooth curves of a degree n in W, g , parameterized by a
topological space Y is called continuous iff the induced map

WY = Ts (A, 0" x Tse(Ar, . 0", W(y) :=«"(Cy),

is continuous.

We say that {C,},cy is a holomorphic family of S-smooth curves, if it is a
continuous family of S-smooth curves, Y has a structure of a Banach analytic space,
and both restricted families C, NV, and C, N ng,’ g are given by holomorphic
morphisms ¥y : ¥ — I's-(V,,, 0) and vy Y > FS+(V}§,,R, 0). Note that l//jf, induce
local determining functions F*=(z,w,y) := y3(y)(z,w) on V;, x Y and V} X Y,
respectively.

To generalise the results of Section 2 for curves in W, g, one must find an
appropriate analogue of a Weierstral3 polynomial for W, g ,.

Definition 8 Let the components of f=(fi,...,f,) € Ts(4, &, O") have a Laurent
decomposition fi(z) = fi (z) + f; (z). A (distorted) Weierstra3 polynomial Py(zy, w) in
W, g, of degree n with coefficients (fi,...,f,) is defined as

Pz za.w) = w" + > (f7 () + £ (z2) o (3.2)
i=1

One can expect that there is one-to-one correspondence between S-smooth curves
in W, g, of degree n and distorted Weierstral3 polynomials P;(z1, zo, w) of the same
degree n with S-smooth coefficients. Since a difference of z; and z, introduces a ‘non-
linearity’, one can hope to obtain the corresponding relationship only in some
neighbourhood of a trivial case Py =w" and Co=n- A, g, when the coefficients
f=(f1,....fn) of Py are sufficiently small with respect to the norm in Is(4, g, 0").
The corresponding condition on a curve is that [|[«"(C)||s (with " from (3.1)) should
be small. Here ||-||s denotes the norm in Us-(4,,,0") @ Ts+(Arr,O").

LEMMA 5 Let zy, zo, w, r<r' <R' <R, p, and S have the same meaning as above.
There exists €>0 such that every S-smooth curve C of degree n in W, g ,, satisfying

(Ol s<e (3.3)

is a zero divisor of a uniquely defined distorted Weierstrafp polynomial }3/'(21, Zy, W).

If Y is a topological (resp. Banach analytic) space and {C,},cy is a continuous
(resp. holomorphic) family of curves satisfying (3.3), then the induced map
Yy: Y — Ls(4, g, O") with DiV(Py,(,)) = Cy is continuous (resp. holomorphic).

Proof Without loss of generality, we may assume that &£>0 1is chosen
sufficiently small so that CC W, g, for any given p'<p also small enough.



Downloaded by [Higher School of Economics] at 03:21 22 March 2013

Complex Variables and Elliptic Equations 11

Furthermore, we may also assume that

r < |zi(za,w)| < R, for any (zp,w) with |z5| =+ and |w|<p/, (3.4)
I < |za(zi,w)| < R, for any (z;,w) with |z;| = R’ and |w|<p. '

Then W, g, is a union of V=V, p ={r<|zj| <R, |w| <p}and Vy:=V] =
{r <l|z| <R, |w| < p}. Since V,=A;,xA(p') with A;:={r<|z|]<R'} and
A>:={r <|z| <R}, we can apply the result of Lemma 1. ~

Let B be a sufficiently small ball in I's(4, z, 0"), f=(f1,....f1)€B, and Py a
corresponding distorted Weierstral3 polynomial. Then the zero divisor Cy:= Div(lN’f)
is an S-smooth curve of degree n lying in W, g ,. Moreover, both curves C,NV;,
i=1,2, are Si-smooth and of degree n in V| and V>, respectively. Here we set
Sy:=S8" and S,:=S". Thus there exist uniquely defined WeierstraB3 polynomials P,
and P, in V; and V5, respectively, such that C,N V;=Div(P;). This defines the maps
©;: B — FS’.(AZ‘, On), i= 1,2

Formula (2.8) provides that the derivation of ¢; at f=0€ B is simply the
restriction map I's(4, g, 0") — s, (A4;,0"). Set Y :=Tg,(4;,0") & Is,(A42,0") and
o=(¢1, ¢2): B— Y so that ¢(f) = K(”)(DIV(Pf)) Since the differential dg(0) of ¢ at

f=0€ B consists of the pair of restrictions, dg(0) is an injection with a closed image.

This implies the injectivity of ¢ in some smaller ball B(0, &) C I's(4,.z, O").

We state our conclusion in the following way: there exists an ¢ >0 such that two
distorted Weierstral3 polynomials Pf and P in W, g, of given degree n with || flls < ¢
and ||g|ls < € coincide provided they deﬁne the same curve CC W, g .

Now let CC W, g, be a curve which satisfies the hypotheses of the lemma. In
particular, CNV, is S -smooth and CNV,;=Div(P) for a uniquely defined
WeierstraBl polynomial P =w"+ )" gi(z)w"'. Further, from CCW,r, we
obtain [|gkllze(4, ) <¢-p" where the constant ¢ is independent of the curve C.
This yields

Igkllrs- (4,00 <" (3.5)
Consider the restriction of P to the set
Wirp=1{xeU:|zi(x)| > r,|22(x)| <7, [wx)| < p.
Note that every S-smooth function F in W, , is uniquely represented in the form
F=Y (/) +/ Enw' ™ +w'(1+0) (3.6)
i=1
with Q € Ts(W, 5, 0) and f= (fi,..../u) €Ts(A4,r, O"). Here fi(z) = f(2) + 7 (2)

denotes the Laurent decomposition of the components of f(z). The corresponding f;
are obtained inductively by the formula

forle) = T 2 "“(f::,fl)ﬂ () W' Z|AW_,, k=0,...n—1, (3.7
so that
140 F—Y3 L (@) +f@)w (3.8)

Wl’l
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Let us denote P by Py. Define inductively 13/{+1 =(1- Qk)_lﬁk, where Qy is
determined by the relation

P =Y (G +faG)w'™ + (1 + Q). 3.9)
i=1

and fii(z) = f,:f (2) + fi(2) is the Laurent decomposition. We shall represent Py in the
form Pp=w"+ R +w"Qr with Ri(zy,z2,w) = YL (fif(z1) + f1(z2)) w*™". The
estimates (2.5) on the coefficients g; of Py and the recursive formulas for f; (z) and
Qo provide the estimate

[Roll + 1Qoll <" 0,

where ||-|| denotes the norm in I's(W, . ,, O) and the constant ¢’ independent of the
choice of a curve C. In the same way one obtains the estimate

IRt I <+ "Nk IRl and  [[Qrsr <™ (1Qk ]l + I RelD 1Ok,

where the constant ¢’ is independent of C and p'. Since Q and R, are small enough,

the iteration converges to Py = w" + Ry which is of the desired form.

To show the existence of a distorted Weierstral3-type polynomial P in the entire
set W, r, we additionally fix real numbers r” and R” with the property
' <r’"<R’<R' Then there exists a p”” >0 such that

¥ < |za(z1,w) < R, for any (zq,w) with |z;| = /" and |w|< ",

I . / ) . o ' Y (3.10)
" < |zi(z2,w)] < R,  for any (z,w) with |z;] = R” and |w|<p".

We may assume that >0 was fixed so small that every curve C satisfying the
hypotheses of the lemma lies in W, g ;.

Let C be such a curve. The above procedure allows us to construct t~h§_:
corresponding distorted WeierstraB3-type polynomials P in the set W, g/, and P
in the set Wy g . Due to condition (2’;1 0), the intersection W, g ;v N Wy g v is also
a distorted cylinder W, gr . Thus P: and P coincide and define the desired
distorted Weierstral3-type polynomial P in the whole set W, g .

Let Y be a topological space and {C,},cy a continuous family of curves satisfying
condition (2.3). Furthermore, let ¢y: Y — I's(4,r, O") be an induced map. The
explicit construction provides that vy is continuous.

Suppose also that Y is a Banach analytic space and {C,},cy is a holomorphic
family of S-smooth curves. Assume additionally that z; =z, i.e. W, g, is a usual
(not distorted) cylinder A, g xA(p). Let ¥y :Y — I's- (4. x A(p),0) and
Yy Y — Dse(Ar.r X A(p),0) be holomorphic maps, inducing corresponding
local determining functions F=(z,w,y) for the family {C)} in 4,,, xA(p) x Y and
Ap. r X A(p) x Y, respectively (Definition 7).

Lemma 3 implies that there exist holomorphic maps ¢; : ¥ — I's-(4,,, Q) such
that the WeierstraB polynomial w" + Y% f(z,»))w"~" with coefficients
J7(z,y) =97 (y)z) is a local determining function for the family {C,} in
A, x A(p) x Y. Indeed, the map ¢~ := (¢7,...,¢,) is obtained as a composition
of ¥y with the map W from Lemma 3. Repeating the same argumentation for v/}, we
obtain a holomorphic map ¢* = (¢f,...,¢): Y — Fs(A4r, g, 0") with similar
properties.
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The condition that both w" + "7, f£(z,y)w"" are local determining functions
for the same holomorphic family {C,} means that the map
(0=, 97): Y = Ts-(4,,,,0") x Ts+(Ar g, 0") takes values in the subset consisting
of the tuples (/*./7)=((fits-- - ;D). (fyseeif) €5 (A, O") x D5 (AR, g, O")
which are restrictions onto A,, and Agr g of some holomorphic function f=
(f1s----fn) €Ts(A,.1,O"). This implies that (p~,¢") takes value in [s(4, g, 0") C
Fg-(A4,,0") ® g (Ap, g, 0"). Thus any holomorphic family {C,} ey in 4, g x A(p)
of curves satisfying condition supp(C,)C 4, g x A(p’) with some p'<p of given
degree n is defined by a holomorphic map ¢y: Y — Ig(4, .z, O").

Now let us return to W, g , of the general type satisfying the conditions of the
lemma. Note that all the above constructions of the proof respect holomorphic
structure; in particular, they can be interpreted as holomorphic maps between
corresponding Banach manifolds. This implies that the statement of the lemma
about holomorphic families {C,},cy of S-smooth curves is valid. |

It follows from the above that a small ball in g4,z 0") is a local
chart for the space M?)(W,‘,R,p). In this situation an invariant description is also
possible.

LEMMA 6  The tangent space TCM?)(W,,’R,,,) at C=n-A, g is canonically isomorphic
to I's(A,.r, N¢). Formula (1.8) also remains valid.

Proof is identical to that for Lemma 4.

4. Globalization

Let U be an open set in a smooth complex surface X and PJ"D(U) be the set of all
curves in U. One can regard PID (U) as the base of the ‘universal’ (weakly
continuous) family of curves in U. However, the weak topology of currents in
PJED(U) is not convenient to deal with. As we have seen in the previous sections, it
is more useful to describe (a family of) curves by appropriate determining functions.
Here we shall show that every continuous family of curves in U can be locally
represented as a continuous deformation of determining functions.

It is enough to consider the situation when U=X x A with ¥ a smooth complex
curve. Let z be a (local) coordinate on ¥ and w a standard one on A. Fix a relatively
compact subcurve ¥’ € ¥ with a smooth boundary and a smoothness .S in ¥'. Thus
for every neighbourhood Q of ¥’ in ¥ the restriction map I'(22, 9) — I'(¥, O) takes
values in T'g(¥’, O) and is continuous w.r.t. usual Fréchet topology in I'(€2, O).

LEmma 7 Let O<r<R<1 and let Cy be a curve in U whose restriction CyN Vg,
Vz:=% x A(R), is S-smooth and lies in V.= x A(r). Suppose also that Cy does not
contain components of the form {z} x A with z€ ¥'. Then there exists a neighbourhood
U™ of Co in PIVD(U) with the following properties:

() For every CeU"™ the restriction CNV, is S-smooth in V, and has degree
deg(CNV)=deg(CoNV)=:n.
(i) The induced map k : U™ — M?)(V,A) is continuous with respect to the weak
topology in PIVD(U).
(iii) If {C,} ey is a holomorphic family of curves in U with C,, € W forall ye Y,
then the induced map ¢y : Y — M(;)(V,.) is holomorphic.
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Proof Define

U:={CePIMDW) : 1CIN (T x (AR\A®M)) = B}

Since the weak convergence C;— C of currents in PJ"(U) implies the Hausdorf
convergence of supports |C;| — |C|, the set U is open in PID(U).

Let {C;} be a sequence in U which converges to C € U with deg(C;N V,) =n. Then
Lemma 1 implies that deg(CN V,)=n. Thus U is a disjoint union of components
U™ :={CelU:deg(CNV,)=n} which are open in PI"D(U). Take any CeU™.
Since U is Stein and H*(U, Z) =0, there exists F e I'(U, 9) such that C = Div(F). But
then F |V eTI's(V,,0) and this proves the S-smoothness of CN V..

Since P7" ‘D(U) is a subset of a space of distributions, its topology is sequential.
This means that a set A c PI"D(U) is closed iff for any sequence {C;} C 4 which
converges to C=lim C;e PID(U), the limit point C belongs to A. In particular, a
map « : U™ — M?)(V,.) is continuous iff the image of every convergent sequence is
also a convergent sequence.

So let {C;} be a sequence in U™ converging to C € U™, Then there exists a
neighbourhood €2 of ¥ in ¥ such that |Cil N (2 x (A(R)\A(r))) = g forevery i> 1.
It follows that every restricted curve C;N Q2 x A(r) is a zero divisor of a uniquely

defined Weierstrall polynomial P, of degree n with coefficients f; = (fi1,....fin) €
I=(2,0"). Moreover, the coefficients f; are L*-bounded uniformly in i.
Consequently, f; weakly converge in Q to the coefficients g =1(g,...,g,)€

I1~(2,0") of the Weierstrall polynomial P, of the curve CNQ x A(r).

By the hypotheses of the lemma, the restrictions of f; onto ¥’ are S-smooth and
converge to g|y, with respect to the norm topology in I's(¥’, 0"). This shows that the
map «: U — M™(V,) is continuous.

Now let {C,},cy be a holomorphic family of curves in U with all C, e U™, Fix
some yo & Y. Then there exist a neighbourhood Y, of yo€ Y and a nelghbourhood Q
of £ in ¥ such that [Cyl N (2 X (A(R)\A(r))) & for every y € Y. Take z* € Q and
V" € Yy, and consider the set ({z*} x A(R)) N|C,+|. By the construction, it consists of
finitely many points xy, ..., x;. For every x; an appropriate multiplicity m; is defined
such that Y% m; =n.

By the definition of a holomorphic family of curves, in some neighbourhood
W;C Ux Y, of every (x;, y*) a holomorphic function Fyz,w; y) € D(W;, Oyyy) is
defined such that Div(F(-; y))=C,N W, As in the proof of Lemma 3, we can
construct local determining functions Pz, w; y) € I'(W;, Oy y) for C,N W; which are
polynomial in w, Piz,w;y)=w" + Z Sz, ), wm=. The  product
P(z,w; p) := ]_[l | Pi(z, w; y) is the Weierstral3 polynomlal of C,. This shows that in
a neighbourhood of (z%,)")eX xY the -coefficients f(z y)=(filz; »),.

Ju(z3¥)) € T (2, 0") depend holomorphically (i.e. analytically) on both variables z

and y. It follows that the induced map ¢y : ¥ — I';~(2,0"), sending y € Y into the
coefficients of the Weierstra3 polynomial of C, N (2 x A(r)) is holomorphic. To
finish the proof, we apply the restriction map I';~(L2,0") — [s(X', O"). |

Remark 2 1In fact, we have constructed a morphism ¢y: Y — T'g(X/, O7).

Definition 9 Let U be an open set in a smooth complex surface X and C a curve in
U. Suppose that there exists a finite collection {U; } *, of open subsets of U which
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satisfies the following properties:

() Every U;is a product U;= ¥; x A with ¥; being an annulus 4,, ;. Moreover,
in some neighbourhood U; of the closure U; there exists a holomorphic
function z; whose restriction on X; coincides with the standard coordinate z
ond, ={z:r<|z| <1}

() UNU;={xeU:|z(x)| < 1.

(ii1) For every U, there is a fixed smoothness S; such that CN U; is a zero divisor
of a Weierstrall polynomial P,, of a degree n; with S-smooth coefficients
g =(gits--»&n) € s, (2;,O").

(iv) Distinct U, are disjoint and |C|\ UY, U; is compact in U.

Then we say that S:={(U,,z; S))} is a smoothness in U and C is an S-smooth
curve in U. A family {C,},cy of S-smooth curves in U is called continuous
(resp. holomorphic) iff Y is a topological (resp. complex) space, {C,},cy is a
continuous family of curves in U and every restricted family {C\,N U}, ¢y is induced
by a continuous (resp. holomorphic) map F;: ¥ — Ig,(%;, 0™).

A section f of the structure sheaf O, (resp. the normal sheaf N¢) is called
S-smooth, fe 'g(C, O¢) (resp. feT's(C,N¢)), iff for every U, the restriction f|U is
S~smooth. An S-smooth curve C is called extendible iff there exists an (abstract)
holomorphic curve c (i.e. a complex analytic space of pure dimension 1) and an open
embedding C— C such that |C] is relatively compact in |C| ICl e |C| O¢le = Oc,
and such that the restriction map I'(C, OE) —> I'(C, O¢) takes values in I's(C, O¢).

THEOREM 1 Let X be a smooth complex surface, UCX an open subset, S a
smoothness in U, and C an S-smooth curve in U. Suppose that C is extendible. Then
there exists a ball BCTg (C,N¢) and a holomorphic map ®:B— H'(CN¢) with
®(0) =0 and d®(0)=0 such that the set Z:=®~'(0) is

(a) a Banach analytic set of finite codimension in B and

(b) the base of a holomorphic family C={C.} of S-smooth curves in U with Co=C
which possesses the following universality property:

(c) For every continuous (resp. holomorphic) family {C,} ey of S-smooth curves in
U with Cy, = C there exists a neighbourhood Y’ of yo in Y and a continuous
(resp. holomorphic) map Wy:Y — Z with Wy(y9) =0 and Cy,(y) = Cy.

Denote by Ms(U) the set of S-smooth curves in U. Due to Definition 9 this is a
subset of [[; I's,(£;, O™) with the induced topology. Thus Theorem 1 provides that in
a neighbourhood of an extendible curve Mg(U ) has the natural structure of a Banach
analytic space of finite type and that Z is a local chart for Mg(U) at C. We call
Mg(U) the moduli space of S-smooth curves in U.

Proof Let {U;} be as in Definition 9. We construct a special covering {V;} of |C| in
U which satisfy the following conditions:

(1) Every V; is biholomorphic to X; x A for some smooth complex curve X; with a
boundary 0%; consisting of finitely many smooth circles y;;, 9%, =LJ; y;;.

(i) If i < N, then Vi = A4, 1 x A C U; for some r;<r; < 1.

(ii’") With respect to the isomorphism V;= %, x A, the restricted curve CNV; is a
divisor of a Weierstrall polynomial P;. Moreover, for every i> N there is fixed a
smoothness S; on ¥; and the coefficients of P; are S;-smooth.
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(iv') An intersection V;NV; is either empty or is biholomorphic to a distorted
cylinder Wi := W, r;. p; W1th corresponding holomorphic coordinates zj;, zj;, and w,.
In the latter case |[C|NV;NV;is a (non-empty) annulus ¥; = 4,, g, = Dlv(m/) and
Cy _CﬂVﬂV_n,j A'UR/

(V') If y;; is a boundary component of ¥; with i> N, then y;C V.

rijs

The construction of {V;} can be realized as follows: First, for every i < N we find
r. with r;<r; <1 such that |C| is a smooth analytic set in a neighbourhood of
ICIN({xeZ;:|z(x)| = r}} x A). Next, we consider the singular points of |C|\(UY, V;)
and find an appropriate neighbourhood V;, i=N—+1,..., Ny, of every such a point,
so that V; and V; are disjoint for 1 < i, j < N,. Then the set |C|\(U 1 Vi) can be
covered by ﬁmtely many smooth complex non-closed curves C) w1th a smooth

boundary which we enumerate by k=N;+1,..., N>.

For any C we fix a nelghbourhood V. of a closure C/ such that |[C| N V) is also
smooth with a smooth boundary and H? (V}(, Z)=0.In partlcular the (holomorphlc)
line bundle Leny, corresponding to a divisor |C| N V7, is topologically trivial. Due to
a result of Siu [8] the set |[C| N V), admits a Stein neighbourhood ¥V} C V). The
condition of topological triviality of Lcny, provides the existence of a holomorphic
function wy e T(V7, O) such that |C| N V) = Div(wy).

We may assume that |C| N V7 is biholomorphic to a subdomain of the complex
plane C. Let z; be a holomorphic function on |C| N V) which corresponds to a
standard coordinate on C. Since J7 is Stein, we can extend z; to a holomorphic
function in Fj. Now one can see that, choosing appropriate X C |C|N V7,
k=N;+1,...,N,, and setting Vj := {x e V] : zx(x) € T |wi(x)| < ry}, it is possible
to obtain the desired covering {V;} with i=1,..., N>.

Due to the construction of V;=2X; x A, the boundary components y;; of %, are
naturally separated into two groups which consist respectively of ‘inner’ components
lying in U and ‘outer’ components lying on dU. It is easy to see that the property of a
curve C to be S-smooth in U is independent of the choice of inner smoothness classes
S;; which correspond to inner components y;;. Thus, without loss of generality we
may assume that all inner smoothnesses classes S;; are Hilbert, i.e. the corresponding
spaces I's,(A, O) are Hilbert spaces. For example, one can take all S; to be some
Sobolev smoothness class L*2.

For any index pair (i,j) with nonempty W;=V;NV; we denote by n; the
multiplicity of C;;=CnN W;. Note that for such (i, /) the smoothnesses S; and S; in
V;=%;x A and V X x A induce the smoothness S;; on X; with the continuous
projections I's, (V,, O) — [, (W, 0) and T's (V}, O) — T's, (W, 0). We fix sufficiently
small balls B;; C I's, (2, O"'/) which parameterize S;- smooth curves in W;; which are
sufficiently close to CN Wy

Now fix some V;. Then the restricted curve CN V; is a zero divisor of a uniquely
defined Weierstrall polynomial P; of the degree n; with S-smooth coefficients
gi=(gi1,...) el (X, 0"). Fix a sufficiently small ball B; := B(g;,a;) C I's,(%;, 0™)
centred at g;. If the radius «; of B; is chosen sufficiently small, then, for every j such
that W;# ¢ and for every f€ B;, the restricted curve Div(Py) N Wj; is a zero divisor
of a umquely defined distorted Weierstral3 polynomial P, of the degree n; with
S;-smooth coefficients g € I's (X, O").

This defines a map ¢;:B;— B; which is holomorphic (Lemma 5).
We may assume that the image of ¢; lies in the ball 1/2B;. Consider the
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holomorphic map

@ : HB — [[B5 @)= wi(f) — @il f)-

i<j

The product []; B; parameterized the space of tuples (C;), where every C;:= Div(f;) is
an Srsmooth curve in V; which is sufficiently close to CNV; Two such ‘local
deformations’ C; and C; coincide exactly when ¢;(f) = ¢;(/f;). It follows that the
analytic set 7= l(O) C [, B; satisfies property (ii) of the theorem.

Due to Lemmas 4, 6 and Definition 6, the tangent space to [[; B; at g=(g;) is
isomorphic to ), I's(X;,0") =", Is,(CNV;,N¢), whereas the tangent space to
[;<; B; at 0 is isomorphic to Zl<,FS ():,,, 0") =3 i.; Is,(CN Vy,Ne). Formula
(1.8) implies that the differential dCD of @ at g coincides with the Cecch coboundary
operator

dd, = 5 : chm ViNe)— Y Ts(CN Vi Ne), Uy =Flw, = filw,-

i<j

The key point of the proof is that for an extendible curve C the operator § has a
closed image and splits. To show this we fix some i < N so that V;= X, x A touches
the boundary dU. Let y;; be a boundary component of ¥; lying on 9U and S, the
corresponding smoothness class. Then there exists curves C; C C/ C C such that:

(@) |G N|C] =|C/IN|C| =1|C;| so that both C; and C} are extensions of C;
‘outwards’ from |C]. ~

(b) |C}] is relatively compact in |C| and the ‘outer’ part of the (topological)
boundary of |C}| lying outside |C| is smooth and consists of finitely many
circles y;; which lie in |C7].

(©) If feT(C},0p), then f |C, is S;;-smooth at the ‘outer’ part of the boundary of
|C,| which he on oU.

We repeat this construction for every 1 <i < N and set C; = C/ = C; and so on
for i>N. Set C":=CU; C: and C":=CU; C}. These are complex curves. The
boundary aC” of C’ consists of smooth circles Vz; Since the restriction N¢| c is trivial,
we can extend N to a rank 1 locally free Oc-module N with NC//|C,/ trivial.
For any component y}; of the ‘outer’ part of the boundary of |Ci| we fix a Hilbert
smoothness class S;. This defines the Hilbert space I's/(Ci, N¢) and a (continuous)
restriction map FS/(C N¢) — s (Ci,Ne).

Consider the induced Cech coboundary operators

ZFS/(C,,NC/)—> Y Ts,(CiNe) Oy =Fle, = fle,, @D

i<j
and

ZF(C;’,NO)—> Y T(CpNe)  G"UNy=fle, = Mo, 42)

i<j

By the construction, all C;/ are Stein spaces. Thus (4.2) is an acyclic
Cech resolvent for N Consequently, Ker(8")=H(C",N¢)=T(C",N¢) and
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Coker(8”)=H'(C”,N¢/). We note the canonical isomorphisms
H'(C", Ne) 22 H'(C,Ne) = HI(C, No).
These are finite-dimensional spaces. Denote by p the composition

D s (CjNe) = D T(Cy, Ne) = HI(C", Nev)
i<j i<j
and set 7:=Ker(p).
First, we note that p is a surjection onto H'(C",N¢). For this observe that one
can find an acyclic Cech resolvent

b Zr(cl,wa)—> ;r(c,,wc) GUNy =1l =Sz @3
for N¢ov with Cj € a, Then every [h]€ H'(C”,N¢) can be represented by h=(hy)
with £;; e I'(Cy;, N¢) so that the restriction gives h e ZK] [s,(Cyj, Ne).

Now take h=(h;) € T. Since p(h) =0, there exists [/ = (f”) € > . I(C!,N¢») such
that h=48"(f). Let f{ e T(C,, N¢) denote the restriction of f/ onto C;.

Now in fact f/ € I's(Ci, N¢). The corresponding smoothness of f/ at the outer
component y;; of the boundary dC; follows from the fact that f/ is holomorphic in a
neighbourhood of yl/j Similarly, if y;; is an inner component of the boundary 3C;,
then y;; lies in some V. In this casef/ is holomorphic in a neighbourhood of y;; and
fi=hy +f Since /;; is S;-smooth at > the same holds for f;.

This 1mp11es that the image of 8" is 7" and is of finite codimension. Consequently,
T'is a closed subspace of ), _; I's,(Cy, N¢). Since all the smoothnesses S; are Hilbert,
> ['s(C;,Nc) is a Hilbert space and Ker(¢') admits a complement. Therefore there
exists a splitting operator o : I's,(Cy, N¢) — »_, I's(C;, N¢) such that for every
he T holds §(o’'(h)) =h.

Let o: Is,(Cy, Ne) = 3, I's(Ci, N¢) denote the composition of o” with the
restriction map ), I's(C, N¢) — 2, I's,(Ci, N¢). Then again 8(o(h)) = h.

Recall that g = (g,)e [[; Bi is a tuple of coefficients Weierstrall polynomials
parameterizing our curve C and § is the differential ddD Denote by @7 the
composition of ® with the orthogonal prOJectlon on 7T and by ® the composition of
® with the projection onto Coker d®g = H'(C,No).

The implicit function theorem implies that the set Z; := <I> (O) is a complex
Banach submanifold of []; B; containing g with the tangent space 7,7, canoqlcally
isomorphic to Ker (dCDg) = HOS(C N¢). One can easily see that the set Z, = & (0) is
an analytic subset of Z; defined by the equation Z,={ye Z,: ®(y)=0}. Take a
neighbourhood B of g in Z; biholomorphic to a small ball in HOS(C, N¢) and set
Z:=7>NB. Then B, ® and Z satisfy the condition of the theorem. [ |

5. Applications and related questions

Proof of the Main Theorem Let X be a smooth complex surface, C* a curve in X and
K @ |C*| some compact subset. Repeating the constructions of the proof of Theorem
1, one can find an open neighbourhood U C X of K and appropriate collections {U,}
and {V;} of open sets in U such that C*NU is S-smooth with respect to an
appropriate smoothness S in U. Furthermore, {U,} and {V;} can be chosen to satisfy
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the conditions (i)-(iv) of the Definition 9 and (i')—(v') of the proof of
Theorem 1. Then the statement of the Main Theorem immediately follows
Theorem 1. |

It is important to underline the fact that Banach analytic sets of finite type, in
contrast to general Banach analytic sets, have a simple structure [9, Chapter II,
Section 3]). Namely, let B be a ball in a Banach space E and let Z be an analytic
subset of B, which is defined by finitely many holomorphic function and contains
0 € E. Then in a neighbourhood V' C B of 0 the set Z has finitely many components,
ZNV=UY,Z;, each of them is irreducible at 0 and is defined by finitely many
holomorphic functions too. Further, for every such component Z; of Z at 0 there
exist a closed (Banach) subspace E;C E of finite codimension and a (linear)
projection m;: E— E; such that in some smaller neighbourhood V;C V of 0 the
restricted projection 7;: Z;N V;— mw{V;) is a proper branched analytic covering with
77 1(0)N Z; = {0}
As a corollary of the Main Theorem we obtain the following statements.

ProrosiTioN 1 Let X, C* and U be as in the Main Theorem. Suppose that {C,} is a
sequence of curves in X converging (weakly) to C*. Then for any n which is sufficiently
big, there exists a holomorphic family {C,}yca of curves in U which is parameterized by
a disk A C C and contains both C,NU and C*NU.

Proof Denote C:=C*NU. Let BC T's(C,N¢) be a small balland Z:= &~ '(0)c Ba
local chart for Mg(U). Let Z=U Z; be the decomposition of Z into components such
that every Z; is a proper branched analytic covering of a ball B; in an appropriate
Banach subspace E; C I's(C,N¢) with respect to a projection 7 I's(C,N¢) — E;. Then
for n>> 1 a curve C,,N U is parameterized by a uniquely defined a, € Z, in particular,
a, lies in some Z,.

Set a), := mi(a,) and let L, be a complex line in E; through &, and 0. Then
77 (L,)NZ; is a complex curve which consists of finitely many irreducible
components, each of which contains 0. Consequently, there exists a holomorphic
map f,: A— I's(C,N¢) such that f,(1) € Z;, £,(0)=0 and f,,(,,) =a, for some A, €A.
The map f, defines the desired one parameter family {C,};ca connecting C*NU
and C,NU. [ |

As an application, the Main Theorem and Proposition 1 yields a
generalization of Levi’s continuity principle. For a precise statement we
need the notion of a meromorphic hull of a domain W in a complex
manifold X. Recall that this is a maximal Riemann domain (W,x) over
X containing W (ie. w:W— X is_a locally biholomorphic map and
there is given an inclusion i: W — W with moi=Idy), such that every
meromorphic function f on W extends to a function f on W. We refer
to [10,11] for details.

Theorem 2 (Continuity principle) Let X be a complex surface, W C X a domain, w
its meromorphic hull, and C a sequence of curves in W without multiple components.

Suppose that there exists a domain U € X, such that the projected curves C, := TL’(Cn)
are close in U and (weakly) converge to a curve Cy,. Suppose also the boundary of

Cog is not empty and lies in W. Then the sequence C, converge to a curve Co with
n(coo) =C



Downloaded by [Higher School of Economics] at 03:21 22 March 2013

20 V.V. Shevchishin

Remark 3 Theorem 2 has the following meaning. If f'is a meromorphic function in
W which extends meromorphically to a neighbourhood of every C, (possibly as a
several sheeted function), then it can be extended in a neighbourhood of |C..|. Thus,
we obtain the generalization of the classical result of E.E. Levi which deals with the
case where C,, and every C,, are disks.

Proof Set Ky:=|Co\W. Let K be the union of K, with those connected
components of |C,.| N W which are relatively compact in |C,|. Then K is compact.
According to the Main Theorem, we can find an open set U; C U and a smoothness S
in Uy such that KC U; and C,NU; is S-smooth.

Due to Proposition 1, for any n > 1 there exists a holomorphic family {Z,},ca of
curves in U; which contains C, and C.. Let Ay and A, be the corresponding
parameter values. If n was chosen big enough, the boundary of every Z, lies in W. In
an obvious way, this family defines a complex space Z C U, x A such that every Z; is
identified with ZN Uy x {A}. R R

Let f be a meromorphic function in W and f its extension on W. Using the
technique of [10,11] for meromorphic extension along a holomorphic family of
curves, one can show that the restriction of f onto Z,, extends to a holomorphic
function F on the entire space Z such that F coincides with f'in a neighbourhood of
boundary of every Z,. Since f can be any meromorphic function in W, this means
thzl'g the t}}mily {Z*}AEA can be lifted to a family {Z;}, co of curves in W such that
n(Z,) = Z; and Z, N W= Z, N W. For further details, see [10,11].

Now it is not difficult to show that the desired curve C, C W can be constructed
as Z, U (Cx N W). |

Trying to generalize the results of this article, one must overcome the following
difficulties:

(1) Considering deformation problem, a non-compact complex subspace Z in a
complex manifold X such that dimg Z> 1, one confronts with the fact that
non-compact components of Z can be non-Stein. Thus, an appropriate
cohomology group H'(ZN) can be infinite-dimensional and even worse
non-separated topological vector space.

(2) We illustrate the problem appeared by deformation of non-compact cycles by
the following example. Let n>2 and k> 2 be integers. Consider disc
Ag:=Ax {0} CAxC" and cycle Z:=k-Aq in X:=A x C". The problem of
deformation of Z leads to consideration of the space Hom(A, Sym* C") of
holomorphic maps between A and k-th symmetric power of C". The space
Sym"(D” is naturally realized as an analytic subset of some C". This gives a
natural inclusion Hom(A, Sym* €") c Hom(A, C"). Fixing some smoothness
class S, e.g. S= L™, we obtain the set Homg(A, Sym* C") of S-smooth maps
as an analytic subset of the Banach space Homg(A,C"). Thus
Homg(A, Sym”* C") is equipped with the natural structure of Banach analytic
space. However, Homg(A,Sym*C") is has infinite codimension in
Homg(A, C"). Moreover, there are infinitely many irreducible components
of Homg(A, Sym*C") in f=0 (zero map).

(3) One can obtain a statement similar to Theorem 1 considering the
deformation of stable maps from non-compact nodal curves to a given
smooth complex manifold X of arbitrary dimension. Recall, that an abstract
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nodal curve C is a complex space of dimension one whose singularities are
only ordinary double points. Such curves are also called semi-stable.
A holomorphic map f:C— X is called stable, if there are only finitely
many biholomorphisms g:C— C with the property fog=f. In [10] the
deformation problem of the stable maps (C,f) is considered under the
following additional assumptions.

(*) Curves C have finitely many irreducible components, each of them being of
finite genus and bordered by finitely many smooth circles, and maps f: C — X
are L'*”-smooth up to boundary dC.

The set of such pairs (C,f) is equipped with Gromov topology. The following

result is proved.

For given (Cy,fy) there exist Banach analytic spaces M, C of finite type and

holomorphic maps 7: C— M, F:C— X, such that:

() for any AeM the fibre C,:=n'(A) is a nodal curve and
fi:==F|c : G, — X is a stable map with the property (x);

(i1) for any stable map (C,f) with the property (x) sufficiently close to (Co, fo)
w.r.t. Gromov topology there exist a » € M and biholomorphism ¢: C — Cj
such that f=f; o .
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Note

1. This means that || fg|ls < csll fllsllglls, where ¢g is a constant independent of £, g € T's(A, Q)
and possibly greater than 1. This can always be corrected by introducing a new norm

|[ﬂ|§sup{%+f:g¢0€Fs(A, 0)} which 1is equivalent to |- and for which

Ifgls<IfI5lgls
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