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We show that under mild boundary conditions the moduli space of
non-compact curves on a complex surface is (locally) an analytic subset of a
ball in a Banach manifold, defined by finitely many holomorphic functions.

Keywords: complex variables; moduli space; Banach analytic set

AMS Subject Classifications: 32G13; 32K05; 32D15

1. Introduction and basic notation

In this article X denotes a smooth complex surface. A curve C in X is an effective

divisor. This means that C is a locally finite formal sum C¼
P

i mi Ci, where every Ci

is a (closed) irreducible analytic set of (co)dimension 1, and mi are positive integers.

We call Ci (irreducible) the components of C and mi the multiplicities. The set

jCj :¼[iCi is called the support of C. For an open subset U�X we define the

restriction of C to U as C\U:¼
P

i mi (Ci\U ).
With any component Ci we associate the ideal sheaf ICi

whose group of sections

over an open set V�X is �ðV, ICi
Þ :¼ ff2�ðV,OÞ : V\Ci

� 0g. This is a coherent

analytic sheaf and supp ðO=ICi
Þ ¼ Ci. Call IC :¼

QN
i¼1 Imi

Ci
the ideal sheaf of C, and

OC :¼ OX=IC the structure sheaf of C. The ideal sheaf IC is locally principle, i.e. has

locally the form IC U ¼ fU � OX. We call such fU a local determining function of C in

U and C\U a divisor of fU, C\U¼Div( fU).
The pair (jCj,OC) is a complex subspace of X (in general, not reduced and

reducible) which we shall also denote by C. This means that we can consider C as an

analytic cycle C¼
P

i mi Ci and also as subspace C¼ (jCj,OC) of X.
It is known (see, e.g. [1] or [2]) that one can associate to every curve C¼

P
i miCi,

a closed positive integer (1, 1)-current �C such that, for any continuous 2-form ’ with

the compact support in X,

�Cð’Þ ¼ h�C, ’i :¼
X
i

mi

Z
Ci

’:
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Moreover, C is completely determined by �C and every closed positive integer
(1, 1)-current � in X corresponds to some curve (see [1] or [2]). Thus, we identify the
set of curves in X with the space PI1,1(X ) of closed positive integer (1, 1)-currents in
X and induce the topology on a set of curves from the space D02(X ) of 2-currents
in X. Note that PI1,1(X ) is closed subset in the space D02ðX Þ.

The (weak) topology in the space PI1,1(X ) gives us the notion of weakly
continuous family of curves in X. Namely, a family fCygy2Y, parameterized by a
topological space Y, is called weakly continuous, iff the induced map
F :Y!PI1,1(X ), Fð yÞ :¼ �Cy

, is continuous. It follows from the result of Stoll [3]
that this is equivalent to the following condition: There exist an open covering
{V�} of X�Y and continuous functions f�2C(V�,C) such that for any y2Y the
restriction of f� on (X� {y})\V� is holomorphic and generates the ideal
sheaf ICy

¼ f� � OX�fyg of Cy. The f� are called local determining functions of a
family {Cy}.

In particular, a sequence {C�} of curves in X converges weakly to a curve C1 iff
for any x2X there exist a neighbourhood V3 x and a sequence of holomorphic
functions f�2�(V,O) which are determining for C� and which converge uniformly in
V to a determining function f1 of C1.

For the definition of the category of Banach analytic spaces, we refer to
[4, Section 3]. We note that for every Banach analytic space Y and Banach space E
the sheaf OY(E ) :U�Y � �(U,OY(E )) of holomorphic E-valued morphisms
between open subsets U�Y and E is a part of a definition of the structure of a
Banach analytic space. In the case E¼C we denote this sheaf by OY. Any morphism
F :Y!Z between two Banach analytic spaces defines a continuous map F :Y!Z
between corresponding topological spaces, and a morphism of sheaves
F]E : F�OZðE Þ ! OYðE Þ for any Banach space E. Here F�OZ(E ) denotes the
pull-back of the sheaf OZ(E ) w.r.t. continuous map F. Moreover, a morphism
F :Y!Z is defined by the data F and F]

ð�Þ
.

We say that a continuous map F :Y!Z is holomorphic if it is induced by a
morphism F :Y!Z. Note that such a morphism F :Y!Z can be not unique at the
sheaf level. In particular, two different morphisms F1, F22Mor(Y,E )¼�(Y,OY(E ))
can induce the same continuous map F1¼F2 :Y!E. This reflects the fact that a
generic Banach analytic space Y is highly non-reduced.

Definition 1 We say that a Banach analytic space Y is of finite type iff Y can
covered by local charts Y� such that any Y� is isomorphic to a zero set of a
holomorphic map f� : B� ! C

n� , where B� denotes a ball in some Banach space.
In particular, we have an isomorphism OY Y�

ffi OB�=ð f�,1, . . . , f�,n� Þ, where
ð f�,1, . . . , f�,n� Þ denotes the ideal sheaf generated by the components of f�. Such
spaces are also referred to as Banach analytic spaces of finite definition or Banach
analytic spaces of finite codimension.

Definition 2 A holomorphic family C ¼ fCygy2Y of curves in X parameterized by a
Banach analytic space Y is given by an open covering {V�} of X�Y and
holomorphic functions f�2�(V�,OX�Y) such that:

(i) if V�\V� 6¼1, then f� ¼ f�� � f� for some invertible f�� 2 �ðV� \ V�,O
�
X�YÞ;

(ii) for any y2Y the restriction of f� on V�\X� {y} is not identically zero and
is a local determining function for a curve Cy.

2 V.V. Shevchishin
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The functions f� are called local determining functions of the family {Cy}y2Y.
The collection f� defines the sheaf of ideals IC�OX�Y with IC V�

:¼ f� � OX�Y.
Two holomorphic families parameterized by the same Banach analytic space Y are
isomorphic iff they define the same sheaf of ideals over X�Y.

Now let C� be any curve in X and K! jC�j any compact subset of its support.
Our main result is the following theorem.

MAIN THEOREM There exists an open set U�X containing K such that the set of
curves in U, which satisfy appropriate boundary conditions and which are sufficiently
close to C� \U, is a holomorphic family C¼ {Ct}t2M parameterized by a Banach
analytic space M of finite type. Moreover, for every continuous (resp. holomorphic)
family {Cy}y2Y with C� ¼ Cy0 for some y02Y, there exist a neighbourhood Y0�Y of
y0 and a continuous map (resp. a morphism) F :Y0!M such that Cy\U¼CF( y). Two
such families fC0ygy2Y and fC00ygy2Y coincide over Y0 iff they induce the same continuous
map (resp. morphism) F :Y0!M.

The theorem has several corollaries which are mainly due to the fact that Banach
analytic sets of finite type have sufficiently simple structure. In particular, if X, C� and
U are as in theMain Theorem, and if {Cn} is a sequence of curves inX converging toC�,
then for any n� 1 there exists a holomorphic family {C�}�2D of curves in U, which is
parameterized by a disk D�C and contains both Cn\U and C� \U. This allows to
obtain a generalization of the continuity principle of E. E. Levi.

The conclusion of the Main Theorem is obtained by an explicit construction of
the space M. The problem of deformation of a curve C leads to study of the normal
sheaf NC to C in X. It is defined as NC :¼ HomOX

ðIC=I
2
C,OCÞ.

To obtain a parameterizing space as an analytic set in Banach manifold, we
introduce the notion of a (Banach) smoothness S. This generalizes the usual
smoothness classes such as k times continuous differentiability Ck, Sobolev
smoothness Lk,p or Hölder smoothness Ck,�. For such a smoothness S, we define a
Banach space �SðC,NCÞ � H0

SðC,NCÞ of (holomorphic) sections of NC which are
S-smooth up to boundary @C (or simply S-smooth).

The description of a moduli space M in a neighbourhood of a marked point y0 is
usual for a deformation theory:

There exists a ball B � H0
SðC,NCÞ and a holomorphic map � :B!H1(C,NC)

such that

(i) �(0)¼ 0, d�(0)¼ 0;
(ii) � :B!H1(C,NC) is a local chart for M.
(iii) 02B corresponds to y02M, parameterizing C� \U.

The desired property of M is based on the fact that non-compact components of C
are Stein spaces, and consequently H1(C,NC) is finite-dimensional. In particular,
OMffiOB/(�1, . . . ,�k), k :¼ dim H1(C,NC). Here �i denote the components of � and
(�1, . . . ,�k) the ideal sheaf generated by �1, . . . ,�k.

2. The local situation

The construction of the moduli space M is based on two special cases. One of them
describes local deformations of curves and the other one allows to match two
different local descriptions.

Complex Variables and Elliptic Equations 3
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We first consider the local situation. For this we suppose that � is a smooth
complex curve with a smooth nonempty boundary @�. Set V :¼��D. Denote by
�L1ð�,OnÞ the Banach space of n-tuples of holomorphic uniformly bounded
functions on �. For every such f ¼ ð f1ðzÞ, . . . , fnðzÞÞ 2�L1ð�,OnÞ we define a
Weierstraß polynomial

Pf ðz,wÞ :¼ wn þ
Xn
i¼1

fiðzÞw
n	i, z2�, w2D ð2:1Þ

and a curve Cf�V to be the zero divisor of Pf (z,w).

LEMMA 1 Every curve C�V¼��D satisfying condition

jCj � �� DðrÞ for some r5 1 ð2:2Þ

is a zero divisor of a uniquely defined Weierstraß polynomial Pf ðz,wÞ ¼ wnþPn
i¼1 fiðzÞ ,w

n	i with f ¼ ð f1, . . . , fnÞ 2�L1ð�,OnÞ.
The set M

ðnÞ
L1ðV Þ of those f2�L1ð�,OnÞ for which Cf satisfies condition (2.2) is

open in �L1ð�,OnÞ. The map � : M
ðnÞ
L1ðV Þ ! PIð1,1ÞðV Þ, �ð f Þ :¼ �Cf

, is continuous
and injective. The topology on the image �ðM

ðnÞ
L1ðV ÞÞ coincides with the weak topology

of �L1ð�,OnÞ.

Remark 1 For C as in the lemma, we shall call the corresponding degree n of P the
degree of C. The weak topology of �L1ð�,OnÞ is understood in the sence of
functional analysis (see, e.g. [5, Section 3.11]). Notice that the weak convergence
f (�)+ f of functions in �L1ð�,OnÞ implies the uniform convergence on every
compact K! � but not the uniform convergence on the whole �.

Proof Since the group H2(V,Z) is trivial, any curve C in V admits a global
determining function F. For C satisfying condition (2.2) the Weierstraß preparation
theorem (see, e.g. [6]) insures that C is a zero-divisor of a uniquely defined
Weierstraß polynomial Pf ðz,wÞ ¼ wn þ

Pn
i¼1 fiðzÞw

n	i, such that F¼ h � Pf for some
invertible h2�(V,O). We can view f :¼ ( f1, . . . , fn)2�(�, On) as a holomorphic map
from � into the n-th symmetric power SymnD�Symn

CffiC
n. Hence the fi are

necessarily uniformly bounded in �. Moreover, for g2�L1ð�,OnÞ sufficiently close
to f, the curve Cg defined by Weierstraß polynomial Pgðz,wÞ :¼ wn þ

Pn
i¼1 giðzÞw

n	i,
also satisfies condition (2.2). Thus the set M

ðnÞ
L1ðV Þ is open in �L1ð�,OnÞ.

According to the Poincaré-Lelong formula (see [1] or [6]), the map � is given by
formula

f2�L1ð�,OnÞ 	!
1

i�
@@ logjPf j 2PIð1,1ÞðV Þ:

Thus � : �L1ð�,OnÞ ! PIð1,1ÞðV Þ is continuous.
Now let f ð�Þ 2M

ðnÞ
L1ðV Þ � �L1ð�,OnÞ be a sequence. If { f (�)} converges weakly to

f2M
ðnÞ
L1ðV Þ, then fCf ð�Þ g is bounded in PI(1,1)(V) and any Cauchy subsequence of

fCf ð�Þ g must converge to Cf. Vice versa, let fCf ð�Þ g converge to a curve C satisfying
condition (2.2). Since M

ðnÞ
L1ðV Þ � �L1ð�,OnÞ is a bounded subset, some subsequence

of { f (�)} converges weakly to f2�L1ð�,OnÞ such that Cf¼C. Consequently,
f2M

ðnÞ
L1ðV Þ. g

We see that we have constructed a holomorphic family fCfgf2M
ðnÞ

L1
ðV Þ

of curves

which are ‘uniformly bounded’ in V. Later we shall show that this family possesses

4 V.V. Shevchishin
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the universality property. To generalize this result to other classes of boundary
conditions on curves, we introduce the notion of a smoothness.

For 05r5R51 denote by Ar,R the annulus {z2C : r5jzj5R}. Denote also
D	ðrÞ :¼ fz2 �C : jzj4 rg. Recall that any Riemann surface � with a complex
structure which is homeomorphic to an annulus and which boundary @� consists of
two circles is in fact biholomorphic to some annulus Ar,R, �ffiAr,R. Recall also that
any holomorphic function f2�(Ar,R,O) admits a unique decomposition into the sum
f¼ fþþ f	 such that fþ2�(D(R),O) and f	2�(D	(r),O) with f	(1)¼ 0. We call it
the Laurent decomposition of f.

Definition 3 A smoothness class S (or simply a smoothness) in D is defined by fixing
a subalgebra �SðD,OÞ � �L1ðD,OÞ which satisfies the following conditions:

(Si) �S(D, O) is a Banach algebra1 with the norm k�kS and k f kL1ðDÞ4CSk f kS
(Sii) �S(D, O) is invariant w.r.t. the action of the group U(1) by rotations on D.
(Siii) If f2�S(D, O), g2�(Ar,R,O) with some r515R, and fg¼ ( fg)þþ ( fg)	 is the
Laurent decomposition of the product, then ( fg)þ2�S(D,O). Moreover,
kð fgÞþkS4CðS, r,RÞ � k f kS � kgkL1ðAr,RÞ

for some constant C(S, r,R).
(Siv) If f2�L1ðAr, 1,OÞ has the Laurent decomposition f¼ fþþ f	 with
fþ2�S(D,O) and a bounded invertible g :¼ 1=f2�L1ðAr,1,OÞ with the Laurent
decomposition g¼ gþþ g	, then gþ2�S(D,O).

We say that f2�S(D,O) is S-smooth. Conditions (Siii) and (Siv) show that
S-smoothness depends essentially only on the behaviour of f at the boundary of D.
Obvious examples are Ck-Lipschitz–Hölder smoothness (up to the boundary)
S ¼ Ck,�ð �DÞ with k2N and 04�4 1, Sobolev smoothness S¼Lk,p(D) with k5 1,
14 p41 and kp42 and also Sobolev smoothness S¼Lk,p(S1) on boundary
S1 :¼ @D with k5 1 and 14 p41. The later means that the trace f S1 of f2�(D,O)
on S1

¼ @D is well defined and belongs to the corresponding class.

Definition 4 Let � be a smooth complex curve whose boundary @� consists of
finitely many components 	 i, i¼ 1, . . . , n, each of which is homeomorphic to a circle
S1. The smoothness S at @� in � is defined by fixing of a smoothness classes Si in D
and annuli Ai�� such that one of the components of boundary @Ai coincides with
	 i and the other one lies in the interior of �. For every i¼ 1, . . . , n this induces a
biholomorphic map ’i : Ai ! Ari,1 which extends continuously up to the boundary
@Ai and maps 	 i onto @D. We say that f2�(�,O) is S-smooth in � at @�,
f2�S(�,O), iff for every i¼ 1, . . . , n the Laurent decomposition
’i �f ¼ ð’i �f Þ

þ
þ ð’i �f Þ

	 yields ð’i �f Þ
þ
2�Si
ðD,OÞ.

LEMMA 2 Let �, 	i, ’i : A! Ari,1, and Si be as above. Then �S(�,O) is a Banach
algebra with respect to the norm k f kS :¼

P
i kð’i �f Þ

þ
kSi

. Moreover,

k f kL1ð�Þ4CS � k f kS ð2:3Þ

with a constant CS independent of f2�S(�,O). The subset

�Sð�,OÞ� :¼ ff2�Sð�,OÞ : f	1 2�L1ð�,OÞg

is open in �S(�,O) and the map

F : �Sð�,OÞ� ! �L1ð�,OÞ Fð f Þ :¼ f 	1

is �S(�,O)-valued and holomorphic.

Complex Variables and Elliptic Equations 5
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Proof Let f2�S(D,O). Set fi :¼ ’i �f and let fi ¼ fþi þ f	i be the corresponding

Laurent decompositions. Due to (Si) of the definition of smoothness, f is uniformly

bounded in � and takes its supremum on one of the boundary component 	 j. The
later means that there exists a sequence x�2� such that lim x�2 	 j and

lim j f ðx�Þj ¼ k f kL1ð�Þ. In particular, k f kL1ð�Þ ¼ k f jkL1ðAj Þ
.

For this Aj we obviously have

k f 	j kL1ðAj Þ
4k f jkL1ðAj Þ

þ k f þj kL1ðAj Þ
: ð2:4Þ

On the other hand, k f 	j kL1ð	j Þ
4
 � k f 	j kL1ðAj Þ

with 
 :¼max{ri}51. This is due

to f	j ð1Þ ¼ 0 and the Schwarz inequality. Consequently,

k f jkL1ðAj Þ
4
 � k f 	j kL1ðAj Þ

þ k f þj kL1ðAj Þ
: ð2:5Þ

Comparing (2.4) and (2.5) we see that

k f 	j kL1ðAj Þ
4

2

1	 

� k f þj kL1ðAj Þ

and k f jkL1ðAj Þ
4

3	 


1	 

� k f þj kL1ðAj Þ

: ð2:6Þ

Since 
51 is independent of f, from (Si) we obtain the estimate (2.3).

Consequently, every k�kS-Cauchy sequence converges to some element in �S(�,O).

Moreover, the map

� : �Sð�,OÞ 	!
Yn
i¼1

�Si
ðD,OÞ, �ð f Þ :¼ ðð’i �f Þ

þ
�
, ð2:7Þ

is a closed imbedding.
Take another g2�S(�,O) and set gi :¼’i�g with the corresponding Laurent

decompositions gi ¼ gþi þ g	i . Then

ð’i �ð f � gÞÞ
þ
¼ fþi g

þ
i þ ð f

	
i g
þ
i Þ
þ
þ ð fþi g

	
i Þ
þ:

For any i¼ 1, . . . , n we obviously have

k f 	i kL1ðD	ðriÞÞ4cðriÞ � k f ikL1ðAri ,1
Þ4cSk f kS

and the same estimates for g. Due to (Siii), we obtain

k f � gkS4c0S � k f kS � kgkS:

Condition (Siv) implies that �S(�,O)� consists of those f2�S(�,O) which are

invertible in �S(�,O). Thus, the last statement of the lemma is a standard fact of the

theory of commutative Banach algebras (see, e.g. [7]). g

Definition 5 Let � and S be as above and V¼��D. A function F(z,w)2�(V,O) is

called S-smooth, F2�S(V,O), iff F(z, a)2�S(�,O) for every a2D and the induced

map F :D!�S(�,O) is holomorphic and bounded. A curve C�V is called

S-smooth iff C satisfies condition (2.2) and C¼Div(F ) for some F2�S(V,O), i.e. C is

defined by such an F. Let F
ðnÞ
S denote the set of those F2�S(V,O) such that

inf{jF(z,a)j : z2�, a2Ar,1}40 for some r51 and for which the curve CF :¼Div(F )

has degree n.

6 V.V. Shevchishin
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LEMMA 3 A set �S(V,O) of S-smooth functions is a Banach space with a norm

kFkS :¼ supfkFðz, aÞkS : a2Dg:

Every S-smooth curve C�V of degree n is represented by a unique Weierstraß

polynomial P ¼ Pf ðz,wÞ ¼ wn þ
Pn

i¼1 fiðzÞw
n	i with f¼ ( f1, . . . , fn)2�S(�,On). The

set F
ðnÞ
S is open in �S(V,O) and the map � : F

ðnÞ
S ! �Sð�,OnÞ, � :F � f, is

holomorphic.

Proof The part of the lemma concerning �S(V,O) is obvious. Let F lie in

F
ðnÞ
S � �SðV,OÞ and CF � �� D be the corresponding curve. For k2N and z2�

we set

fkðzÞ :¼
1

2�i

Z
jwj¼r

wk

Fðz,wÞ

@F

@w
ðz,wÞdw,

where r51 is chosen sufficiently close to 1. Then f0 is constant and equals the degree

n of C, whereas fi, i¼ 1, . . . , n, are the coefficient of the Weierstraß polynomial Pf

of C. Since the operations in the definition of fk – taking inverse, differentiating,

integrating – are holomorphic, fk depends holomorphically on F2�S(V,O
n). g

Let M
ðnÞ
S ðV Þ be the image �ðF

ðnÞ
S Þ. One can regard an embedding

M
ðnÞ
S ðV Þ � �Sð�,OnÞ as a local chart of a moduli space of curves on a complex

surface with an appropriate smoothness condition. To be able to patch such local

models together we need an invariant description of M
ðnÞ
S ðV Þ.

Take F2F
ðnÞ
S , set C :¼Div(F ), f :¼�(F ), and consider the tangent map

d�F : TFF
ðnÞ
S ¼ �SðV,OÞ 	!TCM

ðnÞ
S ðV Þ ¼ �Sð�,OnÞ:

LEMMA 4 Let � : jCj!� be the natural projection and ��OC a push-forward with

respect to �. The map d�F induces on On
� a structure of a ��OC-module which is

independent of the choice of F with Div(F )¼C. With respect to this structure, there

exists a ��OC-isomorphism �C between On
� and the push-forward ��NC of the normal

sheaf NC ¼ HomOV
ðIC=I

2
C,OCÞ.

The isomorphism �C admits the following characterization: Let F�(z,w), �2D(�),
be a holomorphic family of functions in F

ðnÞ
S such that C ¼ DivðF0Þ. Furthermore,

let ’ :¼ �Cðd�F0
ðF 00ÞÞ 2�ðC,NCÞ where F 00 :¼

@F�
@� �¼0. Then

’ : ½F0
I2C
2�ðC, IC=I

2
CÞ� ½F

0
0
IC 2�ðC,OV=ICÞ: ð2:8Þ

Proof For convenience, we slightly modify the definition of the map �. For

F2F
ðnÞ
S � �SðV,OÞ and f¼ ( f1, . . . , fn)¼�(F )2�S(�,On) we set �WPðF Þ :¼ wnþPn

i¼1 fiðzÞw
n	i 2�SðV,OÞ, where WP stands for ‘Weierstraß polynomial’.

Set P :¼�WP(F ) and g :¼P	1F. Then g is holomorphic and bounded in V,

g(z, a)2�S(�,O) for a2Ar,1, and the induced map g :Ar,1!�S(�,O) is holo-

morphic. Considering the Cauchy representation for g,

gðz,wÞ ¼
1

2�i

Z
j
j¼r

gðz, 
Þ

w	 

d
,
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we see that g2�S(V,O). By the same argumentation we have g	12�S(V,O).

Moreover, the map F2F
ðnÞ
S 7 	!F=�WPðF Þ 2�SðV,OÞ is holomorphic.

Now let F�(z,w), �2D(�), be a holomorphic family of functions in �S(V,O) with

F0¼F. Put P� :¼�WP(F�) and g� :¼F�/P�. Then P� and g� depend holomorphically

in �. Differentiating the identity F�¼ g� � P� with respect to � in �¼ 0, we obtain

F 00 ¼ g00 � P0 þ g0 � P
0
0

with g0¼ g and P0¼P. Thus the tangent map

d�WP
F : TFF

ðnÞ
S ¼ �SðV,OÞ ! �SðV,OÞ

is given by the formula d�WP
F ðF

0Þ ¼ f
g	1F 0

P g the Weierstraß remainder of a division of

g	1 F0 by P. It is a unique polynomial Rf 0 ¼
Pn

i¼1 f
0
i ðzÞw

n	i of degree5n such that

Rf0 � g	1 F0(mod F ). This implies that d�F yields an isomorphism of Banach spaces

 F :�SðV,OÞ= ðF � �SðV,OÞ
�
ffi �Sð�,OnÞ,

 F :½H 
F 7 	!h ¼ ðh1, . . . , hnÞ with g	1H � RhðmodF Þ:

Due to its definition,  F is essentially local and induces the isomorphism of

O�-modules

 F : �� ðOV=ðFðz,wÞ � OVÞ
�
ffi O�½w
=ðPðz,wÞ � O�½w
Þ ffi On

�:

Since OV/P(z,w) � OV¼OC,  F defines on On
� a structure of a free ��OC-module of

rank 1. If eF2�SðV,OÞ is another function with DivðeF Þ ¼ C, then eF ¼ h � F for some

invertible h2�S(V,O). Then, by the definition,  eFðHÞ ¼  Fðh
	1H Þ. Consequently,

the induced structure of the ��OC-module on On
� is independent of the choice of F.

Using  F, we define a ��OC-homomorphism �F : On
� ! ��NC. For a local section

f¼ ( f1, . . . , fn) of On
� over an open set � � � we take a holomorphic function

H2�(��D,O) such that H� g �Rf (mod F ) in ��D, where g¼P	1F is as above.

Since C¼Div(F ), the sheaf IC=I
2
C is free OC-module of rank 1 with generator ½F
I2C

.

Using NC ¼ HomOV
ðIC=I

2
C,OV=OCÞ, we define

�Fð f Þ 2�ð�,��NCÞ ¼ � ðð�� DÞ \ C,NC

�
, �Fð f Þ : ½F
I2C

7 	!½H 
IC :

If eH2�ð�� D,OÞ is another holomorphic function with eH � g � Rf ðmodF Þ,

then ½eH
IC ¼ ½H 
IC . This shows that the definition of �F( f ) is independent of the

choice of H.
Similarly, if eF2�SðV,OÞ is another defining function for C, C ¼ DivðeFÞ, theneF ¼ h � F with h2�S(V,O) invertible. In this case P	1eF ¼ h � g and hence

� ~Fð f Þ : ½
eF
I2C � ½h �H 
IC . This means that � ~Fð f Þ ¼ �Fð f Þ as sections of NC. Thus the

definition of �C :¼ �F is independent of the choice of defining function F for the

curve C.
Now let F�(z,w)2�S(V,O), �2D(�), be a holomorphic family of functions such

that F0¼F and F 00¼H. The relation (2.8) for ’ :¼ �C(d�F(H )) follows immediately

from the construction of �F and �C. g

Definition 6 Note that the constructed isomorphism �C induces the bijection

�C : �ðC,NCÞ ffi �ð�,On
�Þ. A section ’ of NC is called S-smooth, ’2�S(C,NC), iff

�ð’Þ 2�Sð�,On
�Þ.
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As we have already noted, the map � : M
ðnÞ
S ðV Þ ! �Sð�,On

�Þ is a chart in a
moduli space of curves in V with an appropriate smoothness condition at boundary.
However, the map � depends on the choice of local (holomorphic) coordinates (z,w)
in V. In particular, if in the construction of � we replace w by some other coordinate
function ~w ¼ ~wðwÞ, then the map � as well as a ��OC-module structure on On

� will
change. However, relation (2.8) remains valid, since it is independent of the choice of
coordinates in V. This leads us to the following corollary.

COROLLARY 1 The tangent space TCM
ðnÞ
S ðV Þ is canonically isomorphic to

�S(C,NC).

3. Curves in the ‘distorted cylinder’

To be able to patch local descriptions, we consider the following special situation.
In C

2 with standard coordinates (z,w) we consider an annulus Ar,R :¼ {(z,w) :w¼ 0,
r5jzj5R}. We assume that in some neighbourhood U of the closure �Ar,R we are
given two holomorphic functions z1 and z2 which coincide with z along Ar,R. Without
loss of generality, we may also assume that the both pairs (z1,w) and (z2,w) are
coordinates in U so that we can express z1¼ z1(z2,w) and z2¼ z2(z1,w).

For �40 let

Wr,R,� :¼ fx2U : jz1ðxÞj4 r, jz2ðxÞj5R, jwðxÞj5 �g:

We shall always suppose that �40 is chosen sufficiently small such that Wr,R,�!U
and that the sets

@	Wr,R,� :¼ fx2U : jz1ðxÞj ¼ r, jwðxÞj4�g

@þWr,R,� :¼ fx2U : jz2ðxÞj ¼ R, jwðxÞj4�g

are disjoint. One can regard the set Wr,R,� as a distorted cylinder with the
non-parallel lower side @	Wr,R,� and upper side @þWr,R,�. Note also that there exist
real numbers r5r05R05R such that both sets

V	r,r0 :¼ fx2U : r5 jz1ðxÞj5 r0, jwðxÞj5 �g

VþR0,R :¼ fx2U : R05 jz2ðxÞj5R, jwðxÞj5 �g

are products of an annulus and a disk. This allows us to make the following
definition.

Definition 7 A smoothness S in Wr,R,� is defined by fixing smoothness classes S	

and Sþ in D. A holomorphic function F in Wr,R,� is S-smooth, F2�S(Wr,R,�,O), iff
F V	

r,r0
2�S	ðV

	
r,r0 ,OÞ and F Vþ

R0 ,R

2�SþðV
þ
R0,R,OÞ. Note that S also defines a smooth-

ness in Ar,R: It is suffucient to fix annuli A	¼ {r5jzj5r0}, Aþ¼ {R05jzj5R} and
smoothness classes Sþ and S	. We shall also denote this smoothness by S. Thus we
obtain a continuous projection map F 2�SðWr,R,�,OÞ�F Ar,R

2�SðAr,R,OÞ.

A curve C�Wr,R,� is S-smooth iff C�Wr,R,�0 for some �05� and C¼Div(F ) for
some F2�S(Wr,R,�,O). The degree of an S-smooth curve C�Wr,R,� is an integer
degC :¼

R
	 d logF, where F2�S(Wr,R,�,O) is any function defining C and 	

is a simple smooth loop (i.e. a closed real curve) in {x2Wr,R,� : jw(x)j ¼ �} with
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R
	d log w¼ 1. It is obvious that degC is a positive interger independent of the choice

of F and 	. The set of S-smooth curves of degree n in Wr,R,� will be denoted by
M
ðnÞ
S ðWr,R,�Þ. Note that for every S-smooth curve C�Wr,R,� the Weierstraß

polynomials Pþ and P	 of C \ V	r,r0 and C \ VþR0,R are uniquely defined. This
yields an injective map

�ðnÞ : M
ðnÞ
S ðWr,R,�Þ ! �S	ðAr,r0 ,O

nÞ � �SþðAR0,R,O
nÞ: ð3:1Þ

A family {Cy}y2Y of S-smooth curves of a degree n in Wr,R,� parameterized by a
topological space Y is called continuous iff the induced map

� : Y! �S	ðAr,r0 ,O
nÞ � �SþðAR0,R,O

nÞ, �ð yÞ :¼ �ðnÞðCyÞ,

is continuous.
We say that {Cy}y2Y is a holomorphic family of S-smooth curves, if it is a

continuous family of S-smooth curves, Y has a structure of a Banach analytic space,
and both restricted families Cy \ V

	
r,r0 and Cy \ V

þ
R0,R are given by holomorphic

morphisms w	Y : Y! �S	ðV
	
r,r0 ,OÞ and wþY : Y! �SþðV

þ
R0,R,OÞ. Note that w�Y induce

local determining functions F�ðz,w, yÞ :¼  �Yð yÞðz,wÞ on V	r,r0 � Y and VþR0,R � Y,
respectively.

To generalise the results of Section 2 for curves in Wr,R,�, one must find an
appropriate analogue of a Weierstraß polynomial for Wr,R,�.

Definition 8 Let the components of f¼ ( f1, . . . , fn)2�S(Ar,R,O
n) have a Laurent

decomposition fiðzÞ ¼ fþi ðzÞ þ f	i ðzÞ. A (distorted) Weierstraß polynomial ePf ðz1,wÞ in
Wr,R,� of degree n with coefficients ( f1, . . . , fn) is defined as

ePf ðz1, z2,wÞ :¼ wn þ
Xn
i¼1

�
f	i ðz1Þ þ fþi ðz2Þ

�
,wn	i: ð3:2Þ

One can expect that there is one-to-one correspondence between S-smooth curves
in Wr,R,� of degree n and distorted Weierstraß polynomials ePf ðz1, z2,wÞ of the same
degree n with S-smooth coefficients. Since a difference of z1 and z2 introduces a ‘non-
linearity’, one can hope to obtain the corresponding relationship only in some
neighbourhood of a trivial case eP0 ¼ wn and C0¼ n �Ar,R, when the coefficients
f¼ ( f1, . . . , fn) of ePf are sufficiently small with respect to the norm in �S(Ar,R,O

n).
The corresponding condition on a curve is that k�(n)(C )kS (with �

n from (3.1)) should
be small. Here k�kS denotes the norm in �S	ðAr,r0 ,O

nÞ � �SþðAR,R0 ,O
nÞ.

LEMMA 5 Let z1, z2, w, r5r05R05R, �, and S have the same meaning as above.
There exists "40 such that every S-smooth curve C of degree n in Wr,R,�, satisfying

k�ðnÞðCÞkS4" ð3:3Þ

is a zero divisor of a uniquely defined distorted Weierstraß polynomial ePf ðz1, z2,wÞ.
If Y is a topological (resp. Banach analytic) space and {Cy}y2Y is a continuous

(resp. holomorphic) family of curves satisfying (3.3), then the induced map
 Y :Y!�S(Ar,R, On) with DivðeP Yð yÞÞ ¼ Cy is continuous (resp. holomorphic).

Proof Without loss of generality, we may assume that "40 is chosen
sufficiently small so that C�Wr,R,�0 for any given �05� also small enough.

10 V.V. Shevchishin
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Furthermore, we may also assume that

r 5 jz1ðz2,wÞj5R0, for any ðz2,wÞ with jz2j ¼ r0 and jwj4�0,

r05 jz2ðz1,wÞj5R, for any ðz1,wÞ with jz1j ¼ R0 and jwj4�0.
ð3:4Þ

Then Wr,R,�0 is a union of V1 :¼ V	r,R0 ¼ fr5 jz1j5R0, jwj5 �0g and V2 :¼ Vþr0,R ¼

fr05 jz2j5R, jwj5 �0g. Since Vi¼Ai�D(�0) with A1 :¼ {r5jzj5R0} and

A2 :¼ {r05jzj5R}, we can apply the result of Lemma 1.
Let B be a sufficiently small ball in �S(Ar,R, On), f¼ ( f1, . . . , f1)2B, and ePf a

corresponding distorted Weierstraß polynomial. Then the zero divisor Cf :¼ DivðePf Þ

is an S-smooth curve of degree n lying in Wr,R,�. Moreover, both curves Cf\Vi,

i¼ 1, 2, are Si-smooth and of degree n in V1 and V2, respectively. Here we set

S1 :¼S	 and S2 :¼Sþ. Thus there exist uniquely defined Weierstraß polynomials P1

and P2 in V1 and V2, respectively, such that Cf\Vi¼Div(Pi). This defines the maps

’i : B! �Si
ðAi,O

nÞ, i¼ 1, 2.
Formula (2.8) provides that the derivation of ’i at f� 02B is simply the

restriction map �SðAr,R,O
nÞ ! �Si

ðAi,O
nÞ. Set Y :¼ �S1

ðA1,O
nÞ � �S2

ðA2,O
nÞ and

’¼ (’1, ’2) :B!Y so that ’ð f Þ ¼ �ðnÞðDivðePf ÞÞ. Since the differential d’(0) of ’ at

f� 02B consists of the pair of restrictions, d’(0) is an injection with a closed image.

This implies the injectivity of ’ in some smaller ball B(0, ")��S(Ar,R, On).

We state our conclusion in the following way: there exists an "40 such that two

distorted Weierstraß polynomials ePf and ePg in Wr,R,� of given degree n with k fkS4 "
and kgkS4 " coincide provided they define the same curve C�Wr,R,�.

Now let C�Wr,R,� be a curve which satisfies the hypotheses of the lemma. In

particular, C\V1 is S	-smooth and C\V1¼Div(P) for a uniquely defined

Weierstraß polynomial P ¼ wn þ
Pn

i¼1 giðz1Þw
n	i. Further, from C�Wr,R,�0 we

obtain kgkkL1ðAr,R0 Þ
4c � �0 where the constant c is independent of the curve C.

This yields

kgkk�S	 ðAr,r0 ,OÞ
4c0 � �0: ð3:5Þ

Consider the restriction of P to the set

Wr,r0, � ¼ fx2U : jz1ðxÞj4 r, jz2ðxÞj5 r0, jwðxÞj5 �:

Note that every S-smooth function F in Wr,r0, � is uniquely represented in the form

F ¼
Xn
i¼1

ð fþi ðz1Þ þ f	i ðz2ÞÞw
n	i þ wnð1þQÞ ð3:6Þ

with Q2�SðWr,r0, �,OÞ and f ¼ ð f1, . . . , fnÞ 2�SðAr,r0 ,O
nÞ. Here fiðzÞ ¼ fþi ðzÞ þ f	i ðzÞ

denotes the Laurent decomposition of the components of f (z). The corresponding fi
are obtained inductively by the formula

fn	kðzÞ :¼
F	

Pn
i¼n	kþ1ð f

þ
i ðz1Þ þ f	i ðz2ÞÞw

n	i

wk Ar,r0
, k ¼ 0, . . . , n	 1, ð3:7Þ

so that

1þQ :¼
F	

Pn
i¼1ð f

þ
i ðz1Þ þ f	i ðz2ÞÞw

n	i

wn
� ð3:8Þ
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Let us denote P by eP0. Define inductively ePkþ1 :¼ ð1	QkÞ
	1ePk, where Qk is

determined by the relation

ePk ¼
Xn
i¼1

ð fþk,iðz1Þ þ f	k,iðz2ÞÞw
n	i þ wnð1þQkÞ, ð3:9Þ

and fk,iðzÞ ¼ fþk,iðzÞ þ f	k,iðzÞ is the Laurent decomposition. We shall represent ePk in the

form ePk ¼ wn þ Rk þ wnQk with Rkðz1, z2,wÞ :¼
Pn

i¼1ð f
þ
k,iðz1Þ þ f	k,iðz2ÞÞw

n	i. The

estimates (2.5) on the coefficients gi of eP0 and the recursive formulas for f0,i(z) and

Q0 provide the estimate

kR0k þ kQ0k4c00 � �0 ,

where k�k denotes the norm in �SðWr,r0, �,OÞ and the constant c00 independent of the

choice of a curve C. In the same way one obtains the estimate

kRkþ1k4ð1þ c000 kQkkÞ kRkk and kQkþ1k4c000 ðkQkk þ kRkkÞ kQkk,

where the constant c000 is independent of C and �0. Since Q0 and R0 are small enough,

the iteration converges to eP1 ¼ wn þ R1 which is of the desired form.
To show the existence of a distorted Weierstraß-type polynomial eP in the entire

set Wr,R,�, we additionally fix real numbers r00 and R00 with the property

r05r005R005R0. Then there exists a �0040 such that

r0 5 jz2ðz1,wÞj5R00, for any ðz1,wÞ with jz1j ¼ r00 and jwj4�00,

r005 jz1ðz2,wÞj5R0, for any ðz2,wÞ with jz2j ¼ R00 and jwj4�00.
ð3:10Þ

We may assume that "40 was fixed so small that every curve C satisfying the

hypotheses of the lemma lies in Wr,R,�0 0.
Let C be such a curve. The above procedure allows us to construct the

corresponding distorted Weierstraß-type polynomials eP	 in the set Wr,R00,�00 and ePþ
in the set Wr00,R, �00 . Due to condition (2.10), the intersection Wr,R00, �00 \Wr00,R,�00 is also

a distorted cylinder Wr00,R00,�00 . Thus eP	 and ePþ coincide and define the desired

distorted Weierstraß-type polynomial eP in the whole set Wr,R,�.
Let Y be a topological space and {Cy}y2Y a continuous family of curves satisfying

condition (2.3). Furthermore, let  Y :Y!�S(Ar,R,O
n) be an induced map. The

explicit construction provides that  Y is continuous.
Suppose also that Y is a Banach analytic space and {Cy}y2Y is a holomorphic

family of S-smooth curves. Assume additionally that z1� z2, i.e. Wr,R,� is a usual

(not distorted) cylinder Ar,R�D(�). Let  	Y : Y! �S	ðAr,r0 � Dð�Þ,OÞ and

 þY : Y! �SþðAR0,R � Dð�Þ,OÞ be holomorphic maps, inducing corresponding

local determining functions F�(z,w,y) for the family {Cy} in Ar,r0 �D(�)�Y and

AR0,R � Dð�Þ � Y, respectively (Definition 7).
Lemma 3 implies that there exist holomorphic maps ’	i : Y! �S	ðAr,r0 ,OÞ such

that the Weierstraß polynomial wn þ
Pn

i¼1 f
	
i ðz, yÞw

n	i with coefficients

f	i ðz, yÞ :¼ ’
	
i ð yÞðzÞ is a local determining function for the family {Cy} in

Ar,r0 �D(�)�Y. Indeed, the map ’	 :¼ ð’	1 , . . . , ’	n Þ is obtained as a composition

of  	Y with the map � from Lemma 3. Repeating the same argumentation for  þY , we
obtain a holomorphic map ’þ ¼ ð’þ1 , . . . , ’þn Þ : Y! �SþðAR0,R,O

nÞ with similar

properties.
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The condition that both wn þ
Pn

i¼1 f
�
i ðz, yÞw

n	i are local determining functions
for the same holomorphic family {Cy} means that the map
ð’	, ’þÞ : Y! �S	ðAr,r0 ,O

nÞ � �SþðAR0,R,O
nÞ takes values in the subset consisting

of the tuples ð fþ, f	Þ ¼ ðð fþ1 , . . . , fþn Þ, ð f
	
1 , . . . , f	n ÞÞ 2�S	ðAr,r0 ,O

nÞ � �SþðAR0,R,O
nÞ

which are restrictions onto Ar,r0 and AR0,R of some holomorphic function f¼
( f1, . . . , fn)2�S(Ar,R,O

n). This implies that (’	, ’þ) takes value in �SðAr,R,O
nÞ �

�S	ðAr,r0 ,O
nÞ � �SþðAR0,R,O

nÞ. Thus any holomorphic family {Cy}y2Y in Ar,R�D(�)
of curves satisfying condition supp(Cy)�Ar,R�D(�0) with some �05� of given
degree n is defined by a holomorphic map ’Y :Y!�S(Ar,R, On).

Now let us return to Wr,R,� of the general type satisfying the conditions of the
lemma. Note that all the above constructions of the proof respect holomorphic
structure; in particular, they can be interpreted as holomorphic maps between
corresponding Banach manifolds. This implies that the statement of the lemma
about holomorphic families {Cy}y2Y of S-smooth curves is valid. g

It follows from the above that a small ball in �S(Ar,R,O
n) is a local

chart for the space M
ðnÞ
S ðWr,R,�Þ. In this situation an invariant description is also

possible.

LEMMA 6 The tangent space TCM
ðnÞ
S ðWr,R,�Þ at C¼ n�Ar,R is canonically isomorphic

to �S(Ar,R, NC). Formula (1.8) also remains valid.

Proof is identical to that for Lemma 4.

4. Globalization

Let U be an open set in a smooth complex surface X and PI(1,1)(U ) be the set of all
curves in U. One can regard PI(1,1) (U ) as the base of the ‘universal’ (weakly
continuous) family of curves in U. However, the weak topology of currents in
PI(1,1)(U ) is not convenient to deal with. As we have seen in the previous sections, it
is more useful to describe (a family of) curves by appropriate determining functions.
Here we shall show that every continuous family of curves in U can be locally
represented as a continuous deformation of determining functions.

It is enough to consider the situation when U¼��D with � a smooth complex
curve. Let z be a (local) coordinate on � and w a standard one on D. Fix a relatively
compact subcurve �0! � with a smooth boundary and a smoothness S in �0. Thus
for every neighbourhood � of ��0 in � the restriction map �(�,O)!�(�0,O) takes
values in �S(�

0,O) and is continuous w.r.t. usual Fréchet topology in �(�,O).

LEMMA 7 Let 05r5R51 and let C0 be a curve in U whose restriction C0\VR,
VR :¼�0 �D(R), is S-smooth and lies in Vr¼�0 �D(r). Suppose also that C0 does not
contain components of the form {z}�D with z2 ��0. Then there exists a neighbourhood
U(n) of C0 in PI(1,1)(U ) with the following properties:

(i) For every C2U(n) the restriction C\Vr is S-smooth in Vr and has degree
deg(C\V )¼deg(C0\V )¼: n.

(ii) The induced map � : UðnÞ !M
ðnÞ
S ðVrÞ is continuous with respect to the weak

topology in PI(1,1)(U ).
(iii) If {Cy}y2Y is a holomorphic family of curves in U with Cy2 {U}(n) for all y2Y,

then the induced map ’Y : Y!M
ðnÞ
S ðVrÞ is holomorphic.

Complex Variables and Elliptic Equations 13
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Proof Define

U :¼ fC2PIð1,1ÞðUÞ : jCj \ ð ��0 � ð �DðRÞnDðrÞ
�
¼1g:

Since the weak convergence Ci!C of currents in PI(1,1)(U ) implies the Hausdorf

convergence of supports jCij! jCj, the set U is open in PI(1,1)(U ).
Let {Ci} be a sequence in U which converges to C2U with deg(Ci\Vr)¼ n. Then

Lemma 1 implies that deg(C\Vr)¼ n. Thus U is a disjoint union of components

U(n) :¼ {C2U : deg(C\Vr)¼ n} which are open in PI(1,1)(U ). Take any C2U(n).

Since U is Stein and H2(U,Z)¼ 0, there exists F2�(U,O) such that C¼Div(F ). But

then F Vr
2�SðVr,OÞ and this proves the S-smoothness of C\Vr.

Since PI(1,1)(U ) is a subset of a space of distributions, its topology is sequential.

This means that a set A�PI(1,1)(U ) is closed iff for any sequence {Ci}�A which

converges to C¼ limCi2PI(1,1)(U ), the limit point C belongs to A. In particular, a

map � : UðnÞ !M
ðnÞ
S ðVrÞ is continuous iff the image of every convergent sequence is

also a convergent sequence.
So let {Ci} be a sequence in U(n) converging to C2U(n). Then there exists a

neighbourhood � of ��
0
in � such that jCij \ ð�� ð �DðRÞnDðrÞÞ

�
¼1 for every i� 1.

It follows that every restricted curve Ci\��D(r) is a zero divisor of a uniquely

defined Weierstraß polynomial Pfi of degree n with coefficients fi ¼ ð fi 1, . . . , fi ,nÞ 2

�L1ð�,OnÞ. Moreover, the coefficients fi are L1-bounded uniformly in i.

Consequently, fi weakly converge in � to the coefficients g ¼ ð g1, . . . , gnÞ 2

�L1ð�,OnÞ of the Weierstraß polynomial Pg of the curve C\��D(r).
By the hypotheses of the lemma, the restrictions of fi onto �0 are S-smooth and

converge to g �0 with respect to the norm topology in �S(�
0, On). This shows that the

map � :U(n)
!M(n)(Vr) is continuous.

Now let {Cy}y2Y be a holomorphic family of curves in U with all Cy2U(n). Fix

some y02Y. Then there exist a neighbourhood Y0 of y02Y and a neighbourhood �

of ��
0
in � such that jCyj \ ð�� ð �DðRÞnDðrÞÞ

�
¼1 for every y2Y0. Take z

� 2 �� and

y� 2Y0, and consider the set ðfz�g � DðRÞÞ \ jCy� j. By the construction, it consists of

finitely many points x1, . . . , xk. For every xi an appropriate multiplicity mi is defined

such that
Pk

i¼1 mi ¼ n.
By the definition of a holomorphic family of curves, in some neighbourhood

Wi�U�Y0 of every (xi, y
�) a holomorphic function Fi(z,w; y)2�(Wi, OU�Y) is

defined such that Div(Fi(�; y))¼Cy\Wi. As in the proof of Lemma 3, we can

construct local determining functions Pi(z,w; y)2�(Wi, OU�Y) for Cy\Wi which are

polynomial in w, Piðz,w; yÞ ¼ wmi þ
Pmi

j¼1 fijðz, yÞ ,w
mi	j. The product

Pðz,w; yÞ :¼
Qk

i¼1 Piðz,w; yÞ is the Weierstraß polynomial of Cy. This shows that in

a neighbourhood of (z�, y�)2��Y the coefficients f ðz; yÞ ¼ ð f1ðz; yÞ, . . . ,

fnðz; yÞÞ 2�L1ð�,OnÞ depend holomorphically (i.e. analytically) on both variables z

and y. It follows that the induced map ’Y : Y! �L1ð�,OnÞ, sending y2Y into the

coefficients of the Weierstraß polynomial of Cy \ ð�� DðrÞÞ is holomorphic. To

finish the proof, we apply the restriction map �L1ð�,OnÞ ! �Sð�
0,OnÞ. g

Remark 2 In fact, we have constructed a morphism ’Y :Y!�S(�
0, On).

Definition 9 Let U be an open set in a smooth complex surface X and C a curve in

U. Suppose that there exists a finite collection fUig
N
i¼1 of open subsets of U which

14 V.V. Shevchishin
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satisfies the following properties:

(i) Every Ui is a product Ui¼�i�D with �i being an annulus Ari,1. Moreover,
in some neighbourhood eUi of the closure �Ui there exists a holomorphic
function zi whose restriction on �i coincides with the standard coordinate z
on Ari,1 ¼ fz : ri 5 jzj5 1g.

(ii) U \ eUi ¼ fx2U : jziðxÞj5 1g.
(iii) For every Ui there is a fixed smoothness Si such that C\Ui is a zero divisor

of a Weierstraß polynomial Pgi of a degree ni with Si-smooth coefficients
gi ¼ ð gi 1, . . . , gini Þ 2�Si

ð�i,O
ni Þ.

(iv) Distinct Ui are disjoint and jCjn [Ni¼1 Ui is compact in U.

Then we say that S :¼ {(Ui, zi,Si)} is a smoothness in U and C is an S-smooth
curve in U. A family {Cy}y2Y of S-smooth curves in U is called continuous
(resp. holomorphic) iff Y is a topological (resp. complex) space, {Cy}y2Y is a
continuous family of curves in U and every restricted family {Cy\Ui}y2Y is induced
by a continuous (resp. holomorphic) map Fi : Y! �Si

ð�i,O
ni Þ.

A section f of the structure sheaf OC (resp. the normal sheaf NC) is called
S-smooth, f2�S(C,OC) (resp. f2�S(C,NC)), iff for every Ui the restriction f Ui

is
Si-smooth. An S-smooth curve C is called extendible iff there exists an (abstract)
holomorphic curve eC (i.e. a complex analytic space of pure dimension 1) and an open
embedding C ,! eC, such that jCj is relatively compact in jeCj, jCjb jeCj, O ~C C ¼ OC,
and such that the restriction map �ðC,OeCÞ 	!�ðC,OCÞ takes values in �S(C,OC).

THEOREM 1 Let X be a smooth complex surface, U�X an open subset, S a
smoothness in U, and C an S-smooth curve in U. Suppose that C is extendible. Then
there exists a ball B��S (C,NC) and a holomorphic map � :B!H1(C,NC) with
�(0)¼ 0 and d�(0)¼ 0 such that the set Z :¼�	1(0) is

(a) a Banach analytic set of finite codimension in B and
(b) the base of a holomorphic family C¼ {Cz} of S-smooth curves in U with C0¼C

which possesses the following universality property:
(c) For every continuous (resp. holomorphic) family {Cy}y2Y of S-smooth curves in

U with Cy0 ¼ C there exists a neighbourhood Y0 of y0 in Y and a continuous
(resp. holomorphic) map �Y :Y

0 !Z with �Y( y0)¼ 0 and C�Yð yÞ ¼ Cy.

Denote by MS(U ) the set of S-smooth curves in U. Due to Definition 9 this is a
subset of

Q
i �Si
ð�i,O

niÞ with the induced topology. Thus Theorem 1 provides that in
a neighbourhood of an extendible curve MS(U ) has the natural structure of a Banach
analytic space of finite type and that Z is a local chart for MS(U ) at C. We call
MS(U ) the moduli space of S-smooth curves in U.

Proof Let {Ui} be as in Definition 9. We construct a special covering {Vi} of jCj in
U which satisfy the following conditions:

(i0) Every Vi is biholomorphic to �i�D for some smooth complex curve �i with a
boundary @�i consisting of finitely many smooth circles 	 ij, @�i¼tj 	 ij.
(ii0) If i4N, then Vi ¼ Ar0

i
, 1 � D � Ui for some ri4r0i 5 1.

(iii0) With respect to the isomorphism Viffi�i�D, the restricted curve C\Vi is a
divisor of a Weierstraß polynomial Pi. Moreover, for every i4N there is fixed a
smoothness Si on �i and the coefficients of Pi are Si-smooth.

Complex Variables and Elliptic Equations 15
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(iv0) An intersection Vi\Vj is either empty or is biholomorphic to a distorted
cylinderWij :¼Wrij,Rij,�ij with corresponding holomorphic coordinates z0ij, z

00
ij, and wij.

In the latter case jCj \Vi\Vj is a (non-empty) annulus �ij ¼ Arij,Rij
¼ DivðwijÞ and

Cij :¼ C \ Vi \ Vj ¼ nij � Arij,Rij
.

(v0) If 	 ij is a boundary component of �i with i4N, then 	 ij�Vj.

The construction of {Vi} can be realized as follows: First, for every i4N we find
r0i with ri4r0i 5 1 such that jCj is a smooth analytic set in a neighbourhood of
jCj \ ðfx2�i : jzðxÞj ¼ r0ig � DÞ. Next, we consider the singular points of jCjnð[Ni¼1ViÞ

and find an appropriate neighbourhood Vi, i¼Nþ 1, . . . ,N1, of every such a point,
so that Vi and Vj are disjoint for 14 i, j4N1. Then the set jCjnð[N1

i¼1ViÞ can be
covered by finitely many smooth complex non-closed curves C0k with a smooth
boundary which we enumerate by k¼N1þ 1, . . . ,N2.

For any C0k we fix a neighbourhood V0k of a closure �C0k such that jCj \ V0k is also
smooth with a smooth boundary and H2

ðV0k,ZÞ ¼ 0. In particular, the (holomorphic)
line bundle LC\V0

k
, corresponding to a divisor jCj \ V0k, is topologically trivial. Due to

a result of Siu [8], the set jCj \ V0k admits a Stein neighbourhood V00k � V0k. The
condition of topological triviality of LC\V0

k
provides the existence of a holomorphic

function wk 2�ðV00k,OÞ such that jCj \ V00k ¼ DivðwkÞ.
We may assume that jCj \ V00k is biholomorphic to a subdomain of the complex

plane C. Let zk be a holomorphic function on jCj \ V00k which corresponds to a
standard coordinate on C. Since V00k is Stein, we can extend zk to a holomorphic
function in V00k. Now one can see that, choosing appropriate �k � jCj \ V

00
k,

k¼N1þ 1, . . . ,N2, and setting Vk :¼ fx2V
00
k : zkðxÞ 2�kjwkðxÞj5 rkg, it is possible

to obtain the desired covering {Vi} with i¼ 1, . . . ,N2.
Due to the construction of Vi¼�i�D, the boundary components 	 ij of �i are

naturally separated into two groups which consist respectively of ‘inner’ components
lying in U and ‘outer’ components lying on @U. It is easy to see that the property of a
curve C to be S-smooth in U is independent of the choice of inner smoothness classes
Sij which correspond to inner components 	 ij. Thus, without loss of generality we
may assume that all inner smoothnesses classes Sij are Hilbert, i.e. the corresponding
spaces �Si

ðD,OÞ are Hilbert spaces. For example, one can take all Si to be some
Sobolev smoothness class Lk,2.

For any index pair (i, j) with nonempty Wij¼Vi\Vj we denote by nij the
multiplicity of Cij¼C\Wij. Note that for such (i, j) the smoothnesses Si and Sj in
Vi¼�i�D and Vj¼�j�D induce the smoothness Sij on �ij with the continuous
projections �Si

ðVi,OÞ ! �Sij
ðWij,OÞ and �Sj

ðVj,OÞ ! �Sij
ðWij,OÞ. We fix sufficiently

small balls Bij � �Sij
ð�ij,O

nijÞ which parameterize Sij-smooth curves in Wij which are
sufficiently close to C\Wij.

Now fix some Vi. Then the restricted curve C\Vi is a zero divisor of a uniquely
defined Weierstraß polynomial Pi of the degree ni with Si-smooth coefficients
gi ¼ ð gi 1, . . .Þ 2�Si

ð�i,O
ni Þ. Fix a sufficiently small ball Bi :¼ Bð gi, aiÞ � �Si

ð�i,O
ni Þ

centred at gi. If the radius ai of Bi is chosen sufficiently small, then, for every j such
that Wij 6¼1 and for every f2Bi, the restricted curve Div(Pf)\Wij is a zero divisor
of a uniquely defined distorted Weierstraß polynomial ePg of the degree nij with
Sij-smooth coefficients g2�Sij

ð�ij,O
nij Þ.

This defines a map ’ij :Bi!Bij which is holomorphic (Lemma 5).
We may assume that the image of ’ij lies in the ball 1=2Bij. Consider the

16 V.V. Shevchishin

D
ow

nl
oa

de
d 

by
 [

H
ig

he
r 

Sc
ho

ol
 o

f 
E

co
no

m
ic

s]
 a

t 0
3:

21
 2

2 
M

ar
ch

 2
01

3 



holomorphic map

e� :
Y
i

Bi	!
Y
i5j

Bij, ðe�ð f ÞÞij :¼ ’ijð fiÞ 	 ’jið fj Þ:
The product

Q
i Bi parameterized the space of tuples (Ci), where every Ci :¼Div( fi) is

an Si-smooth curve in Vi which is sufficiently close to C\Vi. Two such ‘local

deformations’ Ci and Cj coincide exactly when ’ij( fi)¼ ’ji( fj). It follows that the

analytic set eZ :¼ e�	1ð0Þ �Qi Bi satisfies property (ii) of the theorem.
Due to Lemmas 4, 6 and Definition 6, the tangent space to

Q
i Bi at g¼ (gi) is

isomorphic to
P

i �Si
ð�i,O

ni Þ ¼
P

i �Si
ðC \ Vi,NCÞ, whereas the tangent space toQ

i5j Bij at 0 is isomorphic to
P

i5j �Sij
ð�ij,O

nijÞ ¼
P

i5j �Sij
ðC \ Vij,NCÞ. Formula

(1.8) implies that the differential de�g of e� at g coincides with the Čecch coboundary

operator

de�g ¼ 
S :
X
i

�Si
ðC \ Vi,NCÞ 	!

X
i5j

�Sij
ðC \ Vij,NCÞ, ð
ð fiÞÞij ¼ fi Wij

	 fj Wij
:

The key point of the proof is that for an extendible curve C the operator 
 has a
closed image and splits. To show this we fix some i4N so that Vi¼�i�D touches

the boundary @U. Let 	 i1 be a boundary component of �i lying on @U and Si1 the

corresponding smoothness class. Then there exists curves C0i � C00i �
eC such that:

(a) jC0ij \ jCj ¼ jC
00
i j \ jCj ¼ jCij so that both C0i and C00i are extensions of Ci

‘outwards’ from jCj.
(b) jC0ij is relatively compact in jeCj and the ‘outer’ part of the (topological)

boundary of jC0ij lying outside jCj is smooth and consists of finitely many

circles 	 0ij which lie in jC00i j.
(c) If f2�ðC0i,O ~CÞ, then f C0

i
is Si1-smooth at the ‘outer’ part of the boundary of

jCij which lie on @U.

We repeat this construction for every 14 i4N and set C0i ¼ C00i ¼ Ci and so on

for i4N. Set C0 :¼ C [i C
0
i and C00 :¼ C [i C

00
i . These are complex curves. The

boundary @C0 of C0 consists of smooth circles 	 0ij. Since the restriction NC Ci
is trivial,

we can extend NC to a rank 1 locally free OC0 0-module NC0 0 with NC00 C00
i
trivial.

For any component 	 0ij of the ‘outer’ part of the boundary of jC0ij we fix a Hilbert

smoothness class S0ij. This defines the Hilbert space �S0
i
ðC0i,NC0 Þ and a (continuous)

restriction map �S0
i
ðC0i,NC0 Þ ! �Si

ðCi,NCÞ.
Consider the induced Čech coboundary operators


0 :
X
i

�S0
i
ðC0i,NC0 Þ 	!

X
i5j

�Sij
ðCij,NCÞ, ð
0ð fiÞÞij :¼ fi Cij

	 fj Cij
, ð4:1Þ

and


00 :
X
i

�ðC00i ,NC00 Þ 	!
X
i5j

�ðCij,NCÞ, ð
00ð fiÞÞij :¼ fi Cij
	 fj Cij

: ð4:2Þ

By the construction, all C00i are Stein spaces. Thus (4.2) is an acyclic

Čech resolvent for NC0 0. Consequently, Ker(
00)¼H0(C00,NC0 0)¼�(C00,NC0 0) and

Complex Variables and Elliptic Equations 17
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Coker(
00)¼H1(C00,NC0 0). We note the canonical isomorphisms

H1
ðC00,NC00 Þ ffi H1

ðC0,NC0 Þ ffi H1
ðC,NCÞ:

These are finite-dimensional spaces. Denote by p the compositionX
i5j

�Sij
ðCij,NCÞ ,!

X
i5j

�ðCij,NCÞ !! H1
ðC00,NC00 Þ

and set T :¼Ker( p).
First, we note that p is a surjection onto H1(C00,NC0 0). For this observe that one

can find an acyclic Čech resolvent


̂ :
X
i

�ðbCi,NC00 Þ 	!
X
i5j

�ðbCij,NCÞ, ð
̂ð fiÞÞij :¼ fibCij

	 fjbCij

, ð4:3Þ

for NC0 0 with Cijb
bCij. Then every [h]2H1(C00,NC0 0) can be represented by h¼ (hij)

with hij 2�ðbCij,NCÞ so that the restriction gives h2
P

i5j �Sij
ðCij,NCÞ.

Now take h¼ (hij)2T. Since p(h)¼ 0, there exists f00 ¼ ð f00i Þ 2
P

i �ðC
00
i ,NC00 Þ such

that h¼ 
00( f ). Let f 0i 2�ðC0i,NC0 Þ denote the restriction of f00i onto C0i.
Now in fact f 0i 2�S0

i
ðC0i,NC0 Þ. The corresponding smoothness of f 0i at the outer

component 	 0ij of the boundary @C
0
i follows from the fact that f 0i is holomorphic in a

neighbourhood of 	 0ij. Similarly, if 	 ij is an inner component of the boundary @C0i,
then 	 ij lies in some Vj. In this case f 0j is holomorphic in a neighbourhood of 	ij and
f 0i ¼ hij þ f 0j . Since hij is Sij-smooth at 	 ij, the same holds for f 0i .

This implies that the image of 
0 is T and is of finite codimension. Consequently,
T is a closed subspace of

P
i5j �Sij

ðCij,NCÞ. Since all the smoothnesses Si are Hilbert,P
i �S0

i
ðC0i,NC0 Þ is a Hilbert space and Ker(
0) admits a complement. Therefore there

exists a splitting operator �0 : �Sij
ðCij,NCÞ !

P
i �S0

i
ðC0i,NC0 Þ such that for every

h2T holds 
0(�0(h))¼ h.
Let � : �Sij

ðCij,NCÞ !
P

i �S0
i
ðC0i,NC0 Þ denote the composition of �0 with the

restriction map
P

i �S0
i
ðC0i,NC0 Þ !

P
i �Si
ðCi,NCÞ. Then again 
(�(h))¼ h.

Recall that g ¼ ð giÞ 2
Q

i Bi is a tuple of coefficients Weierstraß polynomials
parameterizing our curve C and 
 is the differential de�g. Denote by e�T the
composition of e� with the orthogonal projection on T and by � the composition ofe� with the projection onto Coker de�g ¼ H1

ðC,NCÞ.
The implicit function theorem implies that the set Z1 :¼ e�	1T ð0Þ is a complex

Banach submanifold of
Q

i Bi containing g with the tangent space TgZ1 canonically
isomorphic to Ker ðde�gÞ ¼ H0

SðC,NCÞ. One can easily see that the set Z2 ¼ e�	1ð0Þ is
an analytic subset of Z1 defined by the equation Z2¼ {y2Z1 :�( y)¼ 0}. Take a
neighbourhood B of g in Z1 biholomorphic to a small ball in H0

SðC,NCÞ and set
Z :¼Z2\B. Then B, � and Z satisfy the condition of the theorem. g

5. Applications and related questions

Proof of the Main Theorem Let X be a smooth complex surface, C� a curve in X and
K! jC�j some compact subset. Repeating the constructions of the proof of Theorem
1, one can find an open neighbourhood U�X of K and appropriate collections {Ui}
and {Vi} of open sets in U such that C� \U is S-smooth with respect to an
appropriate smoothness S in U. Furthermore, {Ui} and {Vi} can be chosen to satisfy

18 V.V. Shevchishin

D
ow

nl
oa

de
d 

by
 [

H
ig

he
r 

Sc
ho

ol
 o

f 
E

co
no

m
ic

s]
 a

t 0
3:

21
 2

2 
M

ar
ch

 2
01

3 



the conditions (i)–(iv) of the Definition 9 and (i0)–(v0) of the proof of
Theorem 1. Then the statement of the Main Theorem immediately follows
Theorem 1. g

It is important to underline the fact that Banach analytic sets of finite type, in
contrast to general Banach analytic sets, have a simple structure [9, Chapter II,
Section 3]). Namely, let B be a ball in a Banach space E and let Z be an analytic
subset of B, which is defined by finitely many holomorphic function and contains
02E. Then in a neighbourhood V�B of 0 the set Z has finitely many components,
Z \ V ¼ [Ni¼1Zi, each of them is irreducible at 0 and is defined by finitely many
holomorphic functions too. Further, for every such component Zi of Z at 0 there
exist a closed (Banach) subspace Ei�E of finite codimension and a (linear)
projection �i :E!Ei such that in some smaller neighbourhood Vi�V of 0 the
restricted projection �i :Zi\Vi!�i(Vi) is a proper branched analytic covering with
�	1i ð0Þ \ Zi ¼ f0g.

As a corollary of the Main Theorem we obtain the following statements.

PROPOSITION 1 Let X, C� and U be as in the Main Theorem. Suppose that {Cn} is a
sequence of curves in X converging (weakly) to C�. Then for any n which is sufficiently
big, there exists a holomorphic family {C�}�2D of curves in U which is parameterized by
a disk D�C and contains both Cn\U and C� \U.

Proof Denote C :¼C� \U. Let B��S(C,NC) be a small ball and Z :¼�	1(0)�B a
local chart for MS(U ). Let Z¼[Zi be the decomposition of Z into components such
that every Zi is a proper branched analytic covering of a ball Bi in an appropriate
Banach subspace Ei��S(C,NC) with respect to a projection �i: �S(C,NC)!Ei. Then
for n� 1 a curve Cn\U is parameterized by a uniquely defined an2Z, in particular,
an lies in some Zi.

Set a0n :¼ �iðanÞ and let Ln be a complex line in Ei through a0n and 0. Then
�	1i ðLnÞ \ Zi is a complex curve which consists of finitely many irreducible
components, each of which contains 0. Consequently, there exists a holomorphic
map fn :D!�S(C,NC) such that fn(�)2Zi, fn(0)¼ 0 and fn(�n)¼ an for some �n2D.
The map fn defines the desired one parameter family {C�}�2D connecting C� \U
and Cn\U. g

As an application, the Main Theorem and Proposition 1 yields a
generalization of Levi’s continuity principle. For a precise statement we
need the notion of a meromorphic hull of a domain W in a complex
manifold X. Recall that this is a maximal Riemann domain ð bW,�Þ over
X containing W (i.e. � : bW! X is a locally biholomorphic map and
there is given an inclusion i : W! bW with � 
 i¼ IdW), such that every
meromorphic function f on W extends to a function f̂ on bW. We refer
to [10,11] for details.

THEOREM 2 (Continuity principle) Let X be a complex surface, W�X a domain, bW
its meromorphic hull, and bCn a sequence of curves in bW without multiple components.
Suppose that there exists a domain U!X, such that the projected curves Cn :¼ �ðbCnÞ

are close in U and (weakly) converge to a curve C1. Suppose also the boundary of
C1 is not empty and lies in W. Then the sequence bCn converge to a curve bC1 with
�ðbC1Þ ¼ C1.

Complex Variables and Elliptic Equations 19
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Remark 3 Theorem 2 has the following meaning. If f is a meromorphic function in
W which extends meromorphically to a neighbourhood of every Cn (possibly as a
several sheeted function), then it can be extended in a neighbourhood of jC1j. Thus,
we obtain the generalization of the classical result of E.E. Levi which deals with the
case where C1 and every Cn are disks.

Proof Set K0 :¼ jC1jnW. Let K be the union of K0 with those connected
components of jC1j\W which are relatively compact in jC1j. Then K is compact.
According to the Main Theorem, we can find an open set U1�U and a smoothness S
in U1 such that K�U1 and C1\U1 is S-smooth.

Due to Proposition 1, for any n� 1 there exists a holomorphic family {Z�}�2D of
curves in U1 which contains Cn and C1. Let �0 and �1 be the corresponding
parameter values. If n was chosen big enough, the boundary of every Z� lies in W. In
an obvious way, this family defines a complex space Z�U1�D such that every Z� is
identified with Z\U1� {�}.

Let f be a meromorphic function in W and f̂ its extension on bW. Using the
technique of [10,11] for meromorphic extension along a holomorphic family of
curves, one can show that the restriction of f onto Z�0 extends to a holomorphic
function F on the entire space Z such that F coincides with f in a neighbourhood of
boundary of every Z�. Since f can be any meromorphic function in W, this means
that the family {Z�}�2D can be lifted to a family fbZ�g�2D of curves in bW such that
�ðbZ�Þ ¼ bZ� and bZ� \W ¼ Z� \W. For further details, see [10,11].

Now it is not difficult to show that the desired curve bC1 � bW can be constructed
as bZ�1 [ ðC1 \W Þ. g

Trying to generalize the results of this article, one must overcome the following
difficulties:

(1) Considering deformation problem, a non-compact complex subspace Z in a
complex manifold X such that dimC Z41, one confronts with the fact that
non-compact components of Z can be non-Stein. Thus, an appropriate
cohomology group H1(Z,NZ) can be infinite-dimensional and even worse
non-separated topological vector space.

(2) We illustrate the problem appeared by deformation of non-compact cycles by
the following example. Let n5 2 and k5 2 be integers. Consider disc
D0 :¼D� {0}�D�C

n and cycle Z :¼ k �D0 in X :¼D�C
n. The problem of

deformation of Z leads to consideration of the space Hom(D,Symk
C
n) of

holomorphic maps between D and k-th symmetric power of C
n. The space

Symk
C
n is naturally realized as an analytic subset of some C

N. This gives a
natural inclusion Hom(D,Symk

C
n)�Hom(D,CN). Fixing some smoothness

class S, e.g. S¼L1, we obtain the set HomS(D,Symk
C
n) of S-smooth maps

as an analytic subset of the Banach space HomS(D,C
N). Thus

HomS(D,Symk
C
n) is equipped with the natural structure of Banach analytic

space. However, HomS(D,Symk
C
n) is has infinite codimension in

HomS(D,C
N). Moreover, there are infinitely many irreducible components

of HomS(D,Symk
C
n) in f� 0 (zero map).

(3) One can obtain a statement similar to Theorem 1 considering the
deformation of stable maps from non-compact nodal curves to a given
smooth complex manifold X of arbitrary dimension. Recall, that an abstract
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nodal curve C is a complex space of dimension one whose singularities are
only ordinary double points. Such curves are also called semi-stable.
A holomorphic map f :C!X is called stable, if there are only finitely
many biholomorphisms g :C!C with the property f 
 g¼ f. In [10] the
deformation problem of the stable maps (C, f ) is considered under the
following additional assumptions.

(�) Curves C have finitely many irreducible components, each of them being of
finite genus and bordered by finitely many smooth circles, and maps f :C!X
are L1, p-smooth up to boundary @C.

The set of such pairs (C, f ) is equipped with Gromov topology. The following
result is proved.

For given (C0, f0) there exist Banach analytic spaces M, C of finite type and
holomorphic maps � :C!M, F :C!X, such that:

(i) for any �2M the fibre C� :¼�
	1(�) is a nodal curve and

f� :¼ F C�
: C� ! X is a stable map with the property (�);

(ii) for any stable map (C, f ) with the property (�) sufficiently close to (C0, f0)
w.r.t. Gromov topology there exist a �2M and biholomorphism ’ :C!C�
such that f¼ f� 
 ’.
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Note

1. This means that k fgkS4 cSk f kSkgkS, where cS is a constant independent of f, g2�S(D,O)
and possibly greater than 1. This can always be corrected by introducing a new norm

kfk�S supf
kfgkS
kgkS

: g 6¼ 02�SðD;OÞ g which is equivalent to k�k and for which

k f gk�S4k f k
�
Skgk

�
S.
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