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Abstract. We study (set-valued) mappings of bounded Φ-variation defined on the
compact interval I and taking values in metric or normed linear spaces X. We prove
a new structural theorem for these mappings and extend Medvedev’s criterion from
real valued functions onto mappings with values in a reflexive Banach space, which
permits us to establish an explicit integral formula for the Φ-variation of a metric
space valued mapping. We show that the linear span GVΦ(I ; X) of the set of all
mappings of bounded Φ-variation is automatically a Banach algebra provided X is a
Banach algebra. If h : I×X → Y is a given mapping and the composition operator H
is defined by (Hf)(t) = h(t, f(t)), where t ∈ I and f : I → X, we show that
H : GVΦ(I ; X) → GVΨ(I ; Y ) is Lipschitzian if and only if h(t, x) = h0(t) + h1(t)x,
t ∈ I , x ∈ X. This result is further extended to multivalued composition operators H
with values compact convex sets. We prove that any (not necessarily convex valued)
multifunction of bounded Φ-variation with respect to the Hausdorff metric, whose
graph is compact, admits regular selections of bounded Φ-variation.
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1. Introduction

In this paper we study mappings of bounded generalized Φ-variation
defined on the closed interval I = [a, b] of the real line R (a, b ∈ R,
a < b) and taking values in a metric space (X, d). The notion of the
Φ-variation of a mapping f ∈ XI , where XI is the set of all mappings
f : I → X from I into X, is introduced as follows. Let N be the
set of all convex continuous functions Φ : R

+ = [0,∞) → R
+ such

that Φ vanishes at zero only and limρ→∞ Φ(ρ)/ρ = ∞. If Φ ∈ N and
T = {ti}m

i=0 is a partition of I (i.e. a = t0 < t1 < . . . < tm−1 < tm = b),
we set

VΦ[f, T ] ≡ VΦ,d[f, T ] :=
m∑

i=1

Φ
(

d(f(ti), f(ti−1))
ti − ti−1

)
(ti − ti−1) (1.1)

and define the (total) generalized Φ-variation of f on I by

VΦ(f) ≡ VΦ(f, I) := sup {VΦ[f, T ] | T ∈ T (I) }, (1.2)
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where T (I) designates the set of all partitions of I. The set of all
mappings of bounded (generalized) Φ-variation is denoted by

BVΦ(I;X) = { f : I → X | VΦ(f) < ∞}. (1.3)

The notion of the Φ-variation of a mapping is a generalization of the
classical concepts of variation introduced by C. Jordan and F. Riesz
for real valued functions. If Φ(ρ) = ρq (ρ ∈ R

+, 1 ≤ q < ∞), we write
Vq(f) and BVq(I;X) instead of (1.2) and (1.3), respectively, and say
that f ∈ BV1(I;X) is a mapping of bounded variation in the sense of
Jordan ([17], [39, Ch. 8, 9]) and f ∈ BVq(I;X) with q > 1 is a mapping
of bounded q-variation in the sense of Riesz ([42], [43, Ch. 2, Sec. 3.36]).

The following three criteria for real valued functions are well known.
Jordan’s criterion [17]: f ∈ BV1(I; R) if and only if f is the difference
of two bounded nondecreasing functions on I. Riesz’s criterion [42]: if
q > 1, then f ∈ BVq(I; R) if and only if f : I → R is absolutely contin-
uous (f ∈ AC(I; R), for short) and its derivative defined almost every-
where on I is Lebesgue q-summable; moreover, Vq(f) =

∫
I |f ′(t)|qdt.

Medvedev’s criterion [32]: if Φ ∈ N , then f ∈ BVΦ(I; R) if and only
if f ∈ AC(I; R) and

∫
I Φ(|f ′(t)|) dt < ∞. Also, it is known that the

space BVq(I; R) equipped with the norm |f |q = |f(a)| + (Vq(f))1/q is a
Banach algebra for all q ≥ 1 (cf. [45] if q > 1).

It is clearly seen that the above criteria are inapplicable for mappings
from BVΦ(I;X) if X is an arbitrary metric space. For these mappings
we establish a new criterion (Theorem 2.4) which reveals their struc-
ture: a mapping f ∈ XI belongs to BVΦ(I;X) if and only if f is repre-
sented as the composition f = g ◦ϕ, where ϕ ∈ BVΦ(I; R) and g maps
the image of ϕ into X and satisfies a Lipschitz condition with the Lips-
chitz constant not exceeding 1; moreover, the function ϕ can be chosen
such that VΦ(ϕ) = VΦ(f). Earlier, a structural theorem of this type was
shown to be valid for mappings from BV1(I;X) [4], absolutely contin-
uous mappings f ∈ AC(I;X) [5] and mappings from BVq(I;X) with
q > 1 [7] (see also [6]). Using the differentiability properties of map-
pings from BVΦ(I;X) (Theorem 3.1) we extend the Riesz-Medvedev
criterion onto mappings with values in a reflexive Banach space X and
obtain an explicit integral formula for the Φ-variation of a mapping
with values in an arbitrary metric space (Corollary 3.2). As an imme-
diate consequence of the structural theorem, Medvedev’s criterion and
the fact that the space L1(I; R) of Lebesgue integrable functions is the
union of Orlicz classes LΦ(I; R) over all Φ ∈ N (cf. [22, Sec. 8.1]), we
find that AC(I;X) =

⋃
Φ∈N BVΦ(I;X).

The assumption that X is a normed linear space does not, in general,
imply that the convex set BVΦ(I;X) is a linear space. In Section 3 we
define the space GVΦ(I;X) to be the linear span of BVΦ(I;X) and
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endow it with a norm. This is done in such a way that if Φ(ρ) = ρq,
q ≥ 1, then GVΦ(I;X) = BVq(I;X). Having proved the counterpart of
the above structural theorem for the space GVΦ(I;X) (Lemma 3.5), we
show that this space is a Banach algebra provided X is a Banach algebra
(Theorem 3.6). Also, we obtain relations between spaces GVΦ(I;X)
corresponding to different functions Φ ∈ N (Theorems 3.3 and 3.7).

In Section 4 we characterize Lipschitzian composition operators between
spaces of mappings of bounded generalized Φ-variation. Let X and Y
be normed linear spaces and h : I × X → Y a given mapping of two
variables. The mapping H : XI → Y I defined by

(Hf)(t) ≡ H(f)(t) := h(t, f(t)), t ∈ I, f ∈ XI , (1.4)

is called a composition operator (or the Nemytskĭı operator of substitu-
tion) generated by h. For the purpose of introduction we temporarily
let X = Y = R. Let F(I) ⊂ R

I be a Banach function space with the
norm | · |F . In order to solve the functional equation f(t) = h(t, f(t)),
t ∈ I, also written as f = Hf , with respect to the unknown function
f ∈ F(I), one can try the classical Banach fixed point theorem, in
which case the operator H : F(I) → F(I) should satisfy the following
Lipschitz condition:

|Hf1 −Hf2|F ≤ µ|f1 − f2|F , f1, f2 ∈ F(I), (1.5)

where µ is a constant, 0 < µ < 1. However, as was observed in [27] in
the case of Lipschitz functions F(I) = C0,1(I), condition (1.5) implies
that the generating function h of the operator H has to be of the form:

h(t, x) = h0(t) + h1(t)x for all t ∈ I and x ∈ R, (1.6)

where h0, h1 ∈ F(I). Consequently, Banach’s contraction principle
cannot be applied directly in F(I) if h is a “nonlinear” function in the
second variable (and hence a more powerful tool must be invoked, such
as the Schauder fixed point theorem, etc.). Subsequently, this result
has been extended by several authors: [19, 26, 28, 29] (for Hölder and
differentiable functions and Lipschitz mappings) and [30, 31, 33, 35]
(for functions of bounded variation in the sense of Jordan and Riesz
and functions of bounded second p-variation). In Theorems 4.1 and 4.5
we show that for any functions Φ, Ψ ∈ N the generating function
h of Lipschitzian composition operator H, which maps GVΦ(I;X) into
GVΨ(I;Y ), is (roughly) of the form (1.6) for all (t, x) ∈ I×X. Moreover,
if Φ grows at infinity “significantly slower” than Ψ, any operator H of
this kind is constant (Theorem 4.3). These results are new even for real
valued functions (Corollaries 4.4 and 4.6); they were established in [8].
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In Section 5 we address set-valued mappings and multivalued com-
position operators. In Section 5.1 we treat the problem of the exis-
tence of selections of multifunctions (= set-valued mappings) of bound-
ed generalized Φ-variation. Let Pcb(X) be the family of all nonempty
closed bounded subsets of a metric space X, D the Hausdorff met-
ric on Pcb(X) and F : I → Pcb(X) a multifunction. Measurable (or
Baire) selections of F were shown to exist in [23, 11] if I is a metric
space, X a complete (and separable) metric space and F is continu-
ous (or lower semicontinuous); moreover, if X is a Banach space and
the values of F are convex, then F admits a continuous selection [36]
(under much more general conditions on I). However, if the values of F
are nonconvex (but compact), continuous selections of F may fail to
exist, for example, if (a) F : [a, b] → Pcb(R2) is continuous with respect
to D [15] (or even Hölder continuous of any exponent 0 < γ < 1 [9]), or
(b) F : R

3 → Pcb(R3) is Lipschitzian with respect to D [15, 38]. On the
other hand, the following results depend upon the domain of F being
the real line R ⊃ I (the values of F are not assumed to be convex): If
X is a Banach space and the graph of F is compact, selections of F
of the same functional class as F , i.e. the so called regular selections,
exist in the cases: F is Lipschitzian [16, 18, 37], absolutely continu-
ous [47, 5], of bounded Jordan variation [4, 5] or of bounded Riesz
q-variation with respect to D [7]. In Theorem 5.1 we show that any
multifunction F ∈ BVΦ(I;Pcb(X)) with compact graph admits regular
selections f ∈ BVΦ(I;X). In particular, if X is reflexive, selections f
are almost everywhere strongly differentiable.

Finally, in Section 5.2 we introduce the metric space BVΨ(I;Pcc(Y ))
of multifunctions of bounded Ψ-variation taking values in Pcc(Y ), the
set of all nonempty compact convex subsets of a normed linear space Y .
Here the metric space structure is made possible thanks to the trans-
lation invariance of the Hausdorff metric D on Pcc(Y ). In Section 5.3
we extend the results of Section 4 onto multivalued Lipschitzian com-
position operators H : GVΦ(I;X) → BVΨ(I;Pcc(Y )) generated by a
multivalued mapping h : I × X → Pcc(Y ). Recently, Lipschitzian set-
valued composition operators H were characterized in [44] in the class
of Lipschitz multifunctions and in [46] and [34] in the case of multi-
functions of bounded Jordan and Riesz variation, respectively.

2. Metric Space Valued Mappings

Let (X, d) be a metric space. Recall that a mapping f : I → X is called
absolutely continuous if for any ε > 0 there exists δ(ε) > 0 such that for
any finite number of points a ≤ a1 < b1 ≤ a2 < b2 ≤ . . . ≤ an < bn ≤ b
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the condition
∑n

i=1(bi − ai) ≤ δ(ε) implies
∑n

i=1 d(f(bi), f(ai)) ≤ ε.
The set of all absolutely continuous mappings is denoted by AC(I;X).
A mapping f ∈ XI is said to be Lipschitzian (or Lipschitz continuous)
if the (least) Lipschitz constant of f ,

Lip(f) := sup { d(f(t), f(s))/|t − s| ; t, s ∈ I, t 
= s },

is finite. We denote by C0,1(I;X) the set of all Lipschitzian mappings. If
(X, ‖·‖) is a normed linear space, we denote by ‖f‖0,1 = ‖f(a)‖+Lip(f)
the norm in C0,1(I;X), so that C0,1(I;X) is a Banach space provided
X is a Banach space.

Observe that any function Φ ∈ N is strictly increasing, and so there
exists the inverse function of Φ denoted by Φ−1, and that the functions
ρ �→ Φ(ρ)/ρ and ρ �→ ρΦ−1(1/ρ) are nondecreasing for ρ > 0. Note that
unlike N -functions from [22, Ch. 1], functions from the set N are not
subject to the condition Φ′(0) = limρ→0 Φ(ρ)/ρ = 0. Also, since Φ ∈ N
is convex and continuous, we have Jensen’s inequality for sums:

Φ
(∑n

i=1 αixi∑n
i=1 αi

)
≤

∑n
i=1 αiΦ(xi)∑n

i=1 αi
, {αi, xi}n

i=1 ⊂ R
+,

∑n
i=1αi > 0,

(2.1)
and (a particular case of) Jensen’s integral inequality, which holds for
functions x : I → R

+ such that the integrals in (2.2) are finite:

Φ
(

1
|I|

∫
I
x(t) dt

)
≤ 1

|I|

∫
I
Φ(x(t)) dt, where |I| := b − a. (2.2)

The following lemma lists some elementary properties of mappings
of bounded generalized Φ-variation.

LEMMA 2.1. Let (X, d) be a metric space, f : I → X and Φ ∈ N .
(a) If J is a closed subinterval of I, then VΦ(f, J) ≤ VΦ(f, I).
(b) If a < t < b, then VΦ(f, I) = VΦ(f, [a, t]) + VΦ(f, [t, b]).
(c) If fn ∈ XI , Φn ∈ N (n ∈ N), limn→∞ d(fn(t), f(t)) = 0 (t ∈ I) and

limn→∞ Φn(ρ) = Φ(ρ) (ρ ≥ 0), then VΦ(f) ≤ lim infn→∞ VΦn(fn).
(d) C0,1(I;X) ⊂ BVΦ(I;X) ⊂ AC(I;X) and (we set |I| = b − a)

VΦ(f) ≤ |I|Φ(Lip(f)) if f ∈ C0,1(I;X), (2.3)

V1(f) ≤ |I|Φ−1(VΦ(f)/|I|) if f ∈ BVΦ(I;X). (2.4)

Proof. Property (a) follows immediately from (1.1) and (1.2).
(b) For any partition T1 of the interval [a, t] and any partition T2

of [t, b] we have T1 ∪ T2 ∈ T (I), so that (1.1) and (1.2) yield:

VΦ[f, T1] + VΦ[f, T2] = VΦ[f, T1 ∪ T2] ≤ VΦ(f, I),
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and hence VΦ(f, [a, t]) + VΦ(f, [t, b]) ≤ VΦ(f, I). To prove the reverse
inequality, let T = {ti}m

i=0 ∈ T (I). We may suppose that tk−1 < t < tk
for some k ∈ {1, . . . ,m}. Setting, for t, s ∈ I, s < t,

�f (t, s) = d(f(t), f(s))/(t − s), UΦ,f (t, s) = (t − s)Φ(�f (t, s)), (2.5)

using the monotonicity of Φ, the triangle inequality for d and Jensen’s
inequality (2.1) with α1 = tk − t, α2 = t − tk−1, x1 = �f (tk, t) and
x2 = �f (t, tk−1) we find that

UΦ,f (tk, tk−1) ≤ UΦ,f (tk, t) + UΦ,f (t, tk−1).

Since {ti}k−1
i=0 ∪ {t} and {t} ∪ {ti}m

i=k are partitions of [a, t] and [t, b],
respectively, from (1.1) and (1.2) we have (omitting subscripts Φ, f):

VΦ[f, T ] ≤
(k−1∑

i=1

U(ti, ti−1) + U(t, tk−1)
)

+
(
U(tk, t)+

m∑
i=k+1

U(ti, ti−1)
)
≤

≤ VΦ(f, [a, t]) + VΦ(f, [t, b]),

and the reverse inequality follows.
(c) If T = {ti}m

i=0 ∈ T (I), the definition of VΦn(fn) and (2.5) imply

m∑
i=1

UΦn,fn(ti, ti−1) = VΦn [fn, T ] ≤ VΦn(fn), n ∈ N.

Had we shown that UΦn,fn(ti, ti−1) → UΦ,f (ti, ti−1) as n → ∞, then
taking the limit inferior in both sides of the last inequality we obtain:

VΦ[f, T ] ≤ lim inf
n→∞ VΦn(fn), T ∈ T (I).

It suffices to prove that if ρn = �fn(ti, ti−1) and ρ = �f (ti, ti−1), then
Φn(ρn) → Φ(ρ) as n → ∞. Let ρ > 0 and ε > 0. By the continuity
of Φ there is 0 < δ = δ(ε) < ρ such that |Φ(r) − Φ(ρ)| ≤ ε/2 for all
r ≥ 0, |r − ρ| ≤ δ. As ρn → ρ (by the continuity of d and the pointwise
convergence of fn to f) and Φn → Φ pointwise as n → ∞, there exists
N(ε) ∈ N such that for all n ≥ N(ε) we have: ρ − δ < ρn < ρ + δ and

|Φn(ρ − δ) − Φ(ρ − δ)| ≤ ε/2, |Φn(ρ + δ) − Φ(ρ + δ)| ≤ ε/2.

Since Φn is increasing, for all n ≥ N(ε) it follows that

Φn(ρn) < Φn(ρ + δ) ≤ Φ(ρ + δ) + (ε/2) ≤ Φ(ρ) + ε,

Φn(ρn) > Φn(ρ − δ) ≥ Φ(ρ − δ) − (ε/2) ≥ Φ(ρ) − ε,

or |Φn(ρn)−Φ(ρ)| < ε. The case ρ = 0 readily follows now with obvious
modifications.
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(d) In view of (1.1) and (1.2), the first inclusion and inequality (2.3)
are obvious. To prove the second inclusion, let f ∈ BVΦ(I;X) and
a ≤ a1 < b1 ≤ a2 < b2 ≤ . . . ≤ an < bn ≤ b. Applying Jensen’s
inequality for sums with αi = bi − ai and xi = d(f(bi), f(ai))/(bi − ai)
we have:

Φ
(∑n

i=1 d(f(bi), f(ai))∑n
i=1(bi − ai)

)
≤ VΦ(f)∑n

i=1(bi − ai)
,

and taking the inverse function Φ−1 from both sides of this inequality,
we get

n∑
i=1

d(f(bi), f(ai))≤
[∑n

i=1(bi − ai)
]
·Φ−1

(
VΦ(f)∑n

i=1(bi − ai)

)
. (2.6)

Suppose that v := VΦ(f) 
= 0 (otherwise f is a constant mapping).
Since Φ ∈ N ,

lim
r→0

rΦ−1(v/r) = v lim
ρ→∞ ρ/Φ(ρ) = 0, (2.7)

and hence, given ε > 0, there exists δ(ε) > 0 such that rΦ−1(v/r) ≤ ε
for all 0 < r ≤ δ(ε). Now, (2.6) implies that

if
n∑

i=1

(bi − ai) ≤ δ(ε), then
n∑

i=1

d(f(bi), f(ai)) ≤ ε.

Thus, f ∈ AC(I;X) and, in particular, f ∈ BV1(I;X). The estimate
(2.4) follows from (2.6) if we set t0 = a1 = a, ti = bi = ai+1 for
i = 1, . . . , n − 1 and tn = bn = b, and note that {ti}n

i=0 is a partition
of I and

∑n
i=1(ti − ti−1) = b − a = |I|. �

The following theorem is the counterpart of E. Helly’s selection prin-
ciple (cf. [14], [39, Ch. 8] for the case of real valued functions and [4, 5, 7]
for the case of metric space valued mappings of bounded variation in
the sense of Jordan and Riesz):

THEOREM 2.2. Let X be a complete metric space, Φ ∈ N and F an
infinite family of mappings from XI such that (a) supf∈F VΦ(f) =: v is
finite, and (b) for any t ∈ I the set {f(t) | f ∈ F} is precompact in X.
Then the family F contains a sequence of mappings which converges
uniformly on I to a mapping from BVΦ(I;X).

Proof. Let us show that the family F is equicontinuous. For all f ∈ F

and all t, s ∈ I, s < t, by (a) and the definition of VΦ(f), we get:

d(f(t), f(s)) ≤ (t−s)Φ−1(VΦ(f)/(t−s)) ≤ (t−s)Φ−1(v/(t−s)). (2.8)
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By virtue of (2.7), for any ε > 0 we can find δ(ε, v) > 0 such that
if 0 < r ≤ δ(ε, v), then rΦ−1(v/r) ≤ ε. Now, inequality (2.8) implies
supf∈F d(f(t), f(s)) ≤ ε for all t, s ∈ I such that 0 < t−s ≤ δ(ε, v), and
the equicontinuity of F follows. Taking into account the completeness
of X and condition (b) and applying Ascoli-Arzelà’s theorem (e.g., [24,
Ch. 3, Sec. 3]), we can choose a sequence of mappings {fn}∞n=1 in F

which uniformly on I converges to a continuous mapping f ∈ XI as
n → ∞. It remains to note that, by (a) and Lemma 2.1(c), VΦ(f) ≤ v,
and so f ∈ BVΦ(I;X). �

As a corollary, we establish the existence of “geodesics” of bounded
Φ-variation between any two points of a compact metric space.

COROLLARY 2.3. Suppose that X is a compact metric space, x, y∈X,
Φ ∈ N and there is a f0 ∈ BVΦ(I;X) such that f0(a)=x and f0(b)=y.
Then there exists a mapping f ∈ BVΦ(I;X) of minimal Φ-variation
such that f(a) = x and f(b) = y.

Proof. Set � := inf {VΦ(f) | f ∈ BVΦ(I;X), f(a) = x, f(b) = y}. By
the assumption, 0 ≤ � < ∞, so that there exists a sequence of mappings
{fn}∞n=1 in BVΦ(I;X) such that fn(a) = x, fn(b) = y for all n ∈ N and
limn→∞ VΦ(fn) = �. Since the sequence VΦ(fn), n ∈ N, is bounded and
X is compact, by Theorem 2.2 there exists a subsequence {fnk

}∞k=1 in
{fn}∞n=1 which uniformly on I converges to a mapping f ∈ BVΦ(I;X)
as k → ∞. Clearly, f(a) = x and f(b) = y. The definition of � and
Lemma 2.1(c) imply that

� ≤ VΦ(f) ≤ lim inf
k→∞

VΦ(fnk
) = lim

n→∞VΦ(fn) = �,

i.e., VΦ(f) = �, which was to be proved. �

Another consequence of Theorem 2.2 is the existence of regular selec-
tions of set-valued mappings of bounded Φ-variation which we postpone
until Section 5 (see Theorem 5.1).

Now we present a structural theorem which shows that any map-
ping from BVΦ(I;X) can be characterized by a real valued function of
bounded Φ-variation modulo a Lipschitzian mapping (similar structural
theorems hold for absolutely continuous mappings [5] and mappings of
bounded variation in the sense of Jordan [4], Riesz [7], Wiener [9] and
Young [10]). The composition g ◦ ϕ of two mappings ϕ : I → J and
g : J → X is defined as usual by (g ◦ ϕ)(t) = g(ϕ(t)), t ∈ I. We have:

THEOREM 2.4. Let X be a metric space, Φ ∈ N and f ∈ BV1(I;X).
Define ϕ : I → R

+ by ϕ(t) = V1(f, [a, t]), t ∈ I, and let J = ϕ(I)
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be the image of ϕ. Then f ∈ BVΦ(I;X) if and only if ϕ ∈ BVΦ(I; R)
and there exists a mapping g ∈ C0,1(J ;X) with Lip(g) ≤ 1 such that
f = g ◦ ϕ on I. Moreover, in this case VΦ(ϕ) = VΦ(f).

Proof. Sufficiency. By Lemma 2.1(d), the function ϕ is absolutely
continuous, and so the image J = ϕ(I) is a compact interval. For any
partition T = {ti}m

i=0 of the interval I we have:

VΦ[g ◦ ϕ, T ] =
m∑

i=1

Φ
(

d(g(ϕ(ti)), g(ϕ(ti−1)))
ti − ti−1

)
(ti − ti−1) ≤

≤
m∑

i=1

Φ
(

Lip(g)
|ϕ(ti) − ϕ(ti−1)|

ti − ti−1

)
(ti − ti−1) ≤

≤ VΦ(Lip(g)ϕ),

and hence

VΦ(f) = VΦ(g ◦ ϕ) ≤ VΦ(Lip(g)ϕ) ≤ VΦ(ϕ). (2.9)

Necessity. By virtue of Lemma 2.1(d), ϕ is well defined, bounded,
nondecreasing and continuous on I. Hence, J = ϕ(I) = [0, �] where
� = V1(f).

Let us show that ϕ ∈ BVΦ(I; R). If T = {ti}m
i=0 ∈ T (I), Ii = [ti−1, ti]

and |Ii| = ti − ti−1, i = 1, . . . ,m, then from the additivity of Jordan’s
variation and inequality (2.4) we have:

ϕ(ti) − ϕ(ti−1) = V1(f, Ii) ≤ |Ii|Φ−1(VΦ(f, Ii)/|Ii|),

so that the monotonicity of Φ and Lemma 2.1(b) give:

VΦ[ϕ, T ] =
m∑

i=1

Φ
( |ϕ(ti) − ϕ(ti−1)|

|Ii|

)
|Ii| ≤

m∑
i=1

VΦ(f, Ii) = VΦ(f),

whence
VΦ(ϕ) ≤ VΦ(f). (2.10)

Now we prove the existence of mapping g. For τ ∈ [0, �] denote
by ϕ−1({τ}) = {t ∈ I | ϕ(t) = τ} the inverse image of the one-
point set {τ} under the function ϕ. We define the desired mapping
g : [0, �] → X as follows: if τ ∈ [0, �], we set

g(τ) = f(t) for any point t ∈ ϕ−1({τ}). (2.11)

This is correct, i.e., the value f(t) ∈ X is independent of t ∈ ϕ−1({τ}),
since

d(f(t), f(s)) ≤ |ϕ(t) − ϕ(s)|, t, s ∈ I. (2.12)

POST94.tex; 15/04/2006; 11:27; no v.; p.9



10 V. V. Chistyakov

The representation f = g ◦ϕ follows from (2.11), inequality Lip(g) ≤ 1
is a consequence of (2.12), and equality VΦ(ϕ) = VΦ(f) follows from
(2.9) and (2.10). �

3. Normed Linear Space Valued Mappings

In this section we assume that X is a normed linear space with the
norm ‖ · ‖. Naturally, XI becomes a linear space with respect to point-
wise operations of addition and multiplication by a scalar.

It is well known (see [2, Ch. 1, Sec. 2.1], [20, 21]) that a Lipschitzian
mapping f : I → X with values in an arbitrary Banach space X
need not be differentiable (strongly or weakly) at points of I. The
same references show that for any mapping f ∈ AC(I;X), where X
is a reflexive Banach space, the strong derivative f ′(t) ∈ X (i.e. the
derivative with respect to the norm ‖·‖) exists for almost all t ∈ I and f
can be represented as the Bochner integral of its derivative. Under these
circumstances in the following theorem we derive an explicit formula
for the Φ-variation of a mapping.

THEOREM 3.1. Let X be a reflexive Banach space, Φ ∈ N and f be in
BVΦ(I;X). Then f is almost everywhere on I strongly differentiable,
its derivative f ′ is strongly measurable and Bochner integrable, f is
represented as f(t) = f(a) +

∫ t
a f ′(τ) dτ for all t ∈ I and

VΦ(f) =
∫

I
Φ(‖f ′(t)‖) dt. (3.1)

Proof. 1. First we prove the following auxiliary inequality:∫ b−s

a
Φ(‖f(t + s) − f(t)‖/s) dt ≤ VΦ(f), 0 < s < b − a. (3.2)

By Lemma 2.1(a) the function t �→ VΦ(f, [a, t]) is nondecreasing on I
and hence it is Riemann integrable. Let 0 < s < b−a. By Lemma 2.1(d),
f ∈ AC(I;X), so that the function [a, b − s] � t �→ ‖f(t + s)− f(t)‖ is
continuous. From the definition of the Φ-variation and Lemma 2.1(b)
for all t ∈ [a, b − s] we have:

Φ(‖f(t + s) − f(t)‖/s) ≤ 1
s

(VΦ(f, [a, t + s]) − VΦ(f, [a, t])).

It remains to integrate this inequality over the interval [a, b − s] with
respect to t and change variables appropriately:∫ b−s

a
Φ(‖f(t + s) − f(t)‖/s) dt ≤ 1

s

∫ b

b−s
VΦ(f, [a, t]) dt ≤ VΦ(f, I).
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2. Since f is absolutely continuous, all assertions of the theorem,
except (3.1), follow, e.g., from [2, Ch. 1, Thm. 2.1]. To obtain (3.1),
note that

‖f ′(t)‖ ≤ lim inf
s→0

‖(f(t + s) − f(t))/s‖ for almost all t ∈ I,

and so inequality (3.2) and Fatou’s lemma imply that∫
I
Φ(‖f ′(t)‖) dt ≤ lim inf

s→0

∫ b−s

a
Φ(‖f(t + s) − f(t)‖/s) dt ≤ VΦ(f).

The reverse inequality follows from the integral representation of f and
Jensen’s integral inequality (2.2): if T = {ti}m

i=0 ∈ T (I), Ii = [ti−1, ti]
and |Ii| = ti − ti−1, then

VΦ[f, T ]≤
m∑

i=1

Φ
(

1
|Ii|

∫
Ii

‖f ′(t)‖ dt

)
|Ii| ≤

≤
m∑

i=1

∫
Ii

Φ(‖f ′(t)‖) dt =
∫

I
Φ(‖f ′(t)‖) dt,

and so VΦ(f) ≤
∫
I Φ(‖f ′(t)‖) dt, which completes the proof. �

COROLLARY 3.2. Let f : I → X and Φ ∈ N .
(a) If X is a reflexive Banach space, then f is in BVΦ(I;X) if and only

if f ∈ AC(I;X) and
∫
I Φ(‖f ′(t)‖) dt < ∞.

(b) If X is an arbitrary metric space and ϕ(t) = V1(f, [a, t]), t ∈ I,
then f ∈ BVΦ(I;X) if and only if ϕ ∈ BVΦ(I; R) if and only if
ϕ ∈ AC(I; R) and

∫
I Φ(|ϕ′(t)|) dt < ∞. Moreover,

VΦ(f) = VΦ(ϕ) =
∫

I
Φ(|ϕ′(t)|) dt =

∫
I
Φ

(
| d
dt V1(f, [a, t])|

)
dt.

(c) If X is a normed linear space and f ∈ C1(I;X) (a continuously
differentiable mapping), then VΦ(f) =

∫
I Φ(‖f ′(t)‖) dt.

Proof. (a) follows immediately from Theorem 3.1. Item (b) is a con-
sequence of (a), the reflexivity of R and Theorem 2.4. The formula in (c)
follows from (b), since ϕ(t) = V1(f, [a, t]) =

∫ t
a ‖f ′(τ)‖ dτ for t ∈ I. �

As Φ ∈ N is a convex function, the set BVΦ(I;X) is convex and the
mapping f �→ VΦ(f) is a convex functional on it, i.e.

VΦ(θf + (1 − θ)g) ≤ θ VΦ(f) + (1 − θ)VΦ(g) (3.3)
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12 V. V. Chistyakov

for all f , g ∈ BVΦ(I;X) and θ ∈ [0, 1]. However, the set BVΦ(I;X)
need not be a linear space in general. Using the technique from [22,
Ch. 2] one can show that if X is a Banach space, then BVΦ(I;X) is a
linear space if and only if Φ satisfies the ∆2-condition, i.e., there exist
constants ρ0 ≥ 0 and C > 0 such that Φ(2ρ) ≤ CΦ(ρ) for all ρ ≥ ρ0.

We define the space GVΦ(I;X) with Φ ∈ N as the linear span of
BVΦ(I;X) and call it the space of mappings of bounded (generalized)
Φ-variation. It is clear that a mapping f : I → X belongs to GVΦ(I;X)
if and only if there exists a constant r > 0, depending on f , such that
f/r ∈ BVΦ(I;X). Note that

BVΦ(I;X) ⊂ GVΦ(I;X) ⊂ AC(I;X), Φ ∈ N .

Moreover, for any normed linear space X, we have:

AC(I;X) =
⋃

Φ∈N
GVΦ(I;X). (3.4)

In fact, if f ∈ AC(I;X), the function t �→ ϕ(t) = V1(f, [a, t]) is
in AC(I; R) and so its derivative ϕ′ is Lebesgue integrable on I. It
follows from [22, Sec. 8.1] that there exists a function Φ ∈ N such
that

∫
I Φ(|ϕ′(t)|) dt < ∞. By Corollary 3.2(b) we conclude that f ∈

BVΦ(I;X), which proves the inclusion ⊂ in (3.4).
Now we study the inclusion relations between spaces GVΦ(I;X) cor-

responding to different functions Φ ∈ N . They resemble the relations
between Orlicz spaces (cf. [22, Thm. 13.1]). Let us recall a few defini-
tions [22, Secs. 3, 13]. Let Φ, Ψ ∈ N . We say that Ψ precedes Φ (at
infinity) and write Ψ � Φ if there exist constants ρ0 ≥ 0 and C > 0
such that Ψ(ρ) ≤ Φ(Cρ) for all ρ ≥ ρ0. For instance, if Φ(ρ) = ρp,
Ψ(ρ) = ρq, where p, q ≥ 1, then Ψ � Φ if and only if q ≤ p. Two
functions Φ and Ψ are said to be equivalent (at infinity), denoted by
Φ ∼ Ψ, if Φ � Ψ and Ψ � Φ. Clearly, Φ ∼ Ψ if and only if there exist
constants ρ0 ≥ 0 and C1, C2 > 0 such that Φ(C1ρ) ≤ Ψ(ρ) ≤ Φ(C2ρ)
for all ρ ≥ ρ0. For example, if the limit of Φ(ρ)/Ψ(ρ) as ρ → ∞ is
finite > 0, then Φ ∼ Ψ.

THEOREM 3.3. Let X be a normed linear space and Φ, Ψ ∈ N . If
Ψ � Φ, then GVΦ(I;X) ⊂ GVΨ(I;X). If X is a Banach space and
GVΦ(I;X) ⊂ GVΨ(I;X), then Ψ � Φ. Consequently, spaces GVΦ(I;X)
and GVΨ(I;X) consist of the same mappings if and only if Φ ∼ Ψ.

Proof. Suppose that Ψ � Φ. Then there exist constants ρ0 ≥ 0 and
C > 0 such that Ψ(ρ) ≤ Φ(Cρ) for all ρ ≥ ρ0. If f ∈ GVΦ(I;X),
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then VΦ(f/r) < ∞ for some r > 0, and so for any partition T of the
interval I, we have:

VΨ[f/(rC), T ] ≤ Ψ(ρ0)|I| + VΦ(f/r).

It follows that VΨ(f/(rC)) < ∞ and therefore f ∈ GVΨ(I;X).
Let X be a Banach space, and assume that condition Ψ � Φ does not

hold. There exists an increasing sequence {ρn}∞n=1 of positive numbers
such that limn→∞ ρn = ∞ and Ψ(ρn) > Φ(n2nρn) for all n ∈ N. From
Φ(θρ) ≤ θΦ(ρ) with θ = 1/2n and ρ = n2nρn we obtain Φ(n2nρn) ≥
2nΦ(nρn), so that

Ψ(ρn) > 2nΦ(nρn), n ∈ N. (3.5)

Let {an}∞n=0 ⊂ I be an increasing sequence such that a0 = a and

an − an−1 = 2−n|I|Φ(ρ1)/Φ(nρn), n ∈ N.

For t ∈ I define χ(t) = nρn if an−1 ≤ t < an, n ∈ N, and χ(t) = 0
otherwise, and define f : I → X by setting f(t) =

(∫ t
a χ(τ) dτ

)
x0, t ∈ I,

where x0 ∈ X, ‖x0‖ = 1. We are going to show that f ∈ GVΦ(I;X)
and, at the same time, f /∈ GVΨ(I;X). In fact,

VΦ(f)=
∞∑

n=1

Φ
(‖f(an) − f(an−1)‖

an − an−1

)
(an − an−1) =

=
∞∑

n=1

Φ(nρn)(an − an−1) = |I|Φ(ρ1).

It follows that f ∈ BVΦ(I;X). Taking into account (3.5), for any r ≥ 1
and any m ∈ N such that m ≥ r, we have:

VΨ(f/r)≥
2m∑

n=m

Ψ
(‖f(an) − f(an−1)‖

r(an − an−1)

)
(an − an−1) ≥

≥
2m∑

n=m

Ψ(ρn)(an − an−1) ≥ m|I|Φ(ρ1).

Therefore VΨ(f/r) = ∞ for all r ≥ 1. �

On the linear space GVΦ(I;X) we define the following nonnegative
Luxemburg type functional (cf. [25], [22, Chap. 2, Sec. 9.7]):

pΦ(f) := inf { r > 0 | VΦ(f/r) ≤ 1 }, f ∈GVΦ(I;X), Φ∈N . (3.6)
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14 V. V. Chistyakov

Since the mapping pΦ is the Minkowski functional of the convex set
EΦ = {f ∈ BVΦ(I;X) | VΦ(f) ≤ 1}, the core of EΦ contains the zero
mapping and λEΦ ⊂ EΦ (see (3.3)) for all scalars λ such that |λ| < 1,
pΦ is a seminorm on GVΦ(I;X) (cf. [12, Ch. 1, Sec. 3, Lemma 2]). For
instance, if Φ(ρ) = ρq, q ≥ 1, then pΦ(f) = (Vq(f))1/q, f ∈ BVq(I;X).
Also, we will need the following properties of pΦ:

LEMMA 3.4. Let Φ ∈ N and f ∈ GVΦ(I;X). We have:
(a) if t, s ∈ I, t 
= s, then ‖f(t) − f(s)‖ ≤ |t − s|Φ−1(1/|t − s|)pΦ(f);
(b) if pΦ(f) > 0, then VΦ(f/pΦ(f)) ≤ 1;
(c) if r > 0, then VΦ(f/r) ≤ 1 if and only if pΦ(f) ≤ r;
(d) if r > 0 and VΦ(f/r) = 1, then pΦ(f) = r (but not vice versa in

general);
(e) if the sequence {fn}∞n=1 ⊂ GVΦ(I;X) converges to f ∈ XI point-

wise on I as n → ∞, then pΦ(f) ≤ lim supn→∞ pΦ(fn);
(f) the following inequalities hold :

Φ−1(1/|I|)pΦ(f) ≤ Lip(f) if f ∈ C0,1(I;X), (3.7)

V1(f) ≤ |I|Φ−1(1/|I|)pΦ(f) if f ∈ GVΦ(I;X). (3.8)

Proof. (a) If t, s ∈ I, s < t, then according to (1.1), (1.2) and (3.6)
we have:

Φ
(‖f(t) − f(s)‖

(t − s) r

)
(t − s) ≤ VΦ(f/r) ≤ 1 for all r > pΦ(f),

so taking the inverse function Φ−1 we arrive at

‖f(t) − f(s)‖ ≤ (t − s)Φ−1(1/(t − s))r, r > pΦ(f).

(b) The definition of pΦ(f) implies VΦ(f/r) ≤ 1 for all r > pΦ(f).
Choose a sequence rn > pΦ(f), n ∈ N, which converges to pΦ(f) as
n → ∞. Then f/rn converges to f/pΦ(f) uniformly on I, so that
Lemma 2.1(c) yields:

VΦ(f/pΦ(f)) ≤ lim inf
n→∞ VΦ(f/rn) ≤ 1.

It follows that pΦ(f) ∈ {r > 0 | VΦ(f/r) ≤ 1} =: Λ and pΦ(f) = min Λ.
(c) If VΦ(f/r) ≤ 1, definition (3.6) implies pΦ(f) ≤ r. If pΦ(f) = r,

then VΦ(f/r) ≤ 1 by (b). Let us show that

if pΦ(f) < r, then VΦ(f/r) < 1. (3.9)

By (a), if pΦ(f) = 0, then f is a constant mapping and VΦ(f/r) = 0,
so assume that pΦ(f) > 0. From (3.3) and item (b) we have:

VΦ(f/r) ≤ (pΦ(f)/r)VΦ(f/pΦ(f)) ≤ pΦ(f)/r < 1.
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(d) Let VΦ(f/r) = 1. By (c), if pΦ(f) > r, then VΦ(f/r) > 1, which
is impossible. Taking into account (3.9) we conclude that pΦ(f) = r.

(e) Set α = lim supn→∞ pΦ(fn). If α = ∞, the inequality in (e)
is obvious. Suppose now that α is finite. Then there exists n0 ∈ N

such that αn := supk≥n pΦ(fk) is finite for all n ≥ n0. Let ε > 0. Since
αn+ε>pΦ(fn), by the definition of pΦ(fn) we have: VΦ(fn/(αn+ε))≤1,
n ≥ n0. The pointwise convergence of fn to f and the convergence of
αn to α imply that fn/(αn + ε) converges to f/(α + ε) pointwise on I
as n → ∞. Applying Lemma 2.1(c) we find that

VΦ(f/(α + ε)) ≤ lim inf
n→∞ VΦ(fn/(αn + ε)) ≤ 1.

From the definition of pΦ(f) it follows that pΦ(f) ≤ α+ ε for all ε > 0.
(f) Set r = Lip(f)/Φ−1(1/|I|). If Lip(f) = 0, then pΦ(f) = 0. Let

Lip(f)>0. Using inequality (2.3) we have:

VΦ(f/r) ≤ |I|Φ(Lip(f/r)) = |I|Φ(Lip(f)/r) = 1,

so (c) yields pΦ(f) ≤ r, which proves (3.7).
Put r = V1(f)/(|I|Φ−1(1/|I|)). We can assume that r > 0. Applying

inequality (2.4) we get:

VΦ(f/r) ≥ |I|Φ(V1(f/r)/|I|) = |I|Φ(V1(f)/(r|I|)) = 1.

Now (3.9) gives pΦ(f) ≥ r, which yields (3.8). �

Now let us show that mappings from GVΦ(I;X) have the same struc-
ture as mappings from BVΦ(I;X) (cf. Theorem 2.4).

LEMMA 3.5. Let X be a normed linear space, Φ ∈ N and f be in
BV1(I;X). Set ϕf (t) = V1(f, [a, t]), t ∈ I, and J = ϕf (I). Then f
belongs to GVΦ(I;X) if and only if ϕf ∈ GVΦ(I; R) and there exists a
mapping g ∈ C0,1(J ;X) with Lip(g) ≤ 1 such that f = g ◦ ϕf on I.
Moreover, pΦ(ϕf ) = pΦ(f).

Proof. Sufficiency. Since ϕf ∈ GVΦ(I; R), there exists r > 0 such
that ϕf/r is in BVΦ(I; R), so if f = g ◦ ϕf , where Lip(g) ≤ 1, then
by (2.9) we have:

VΦ(f/r) ≤ VΦ(Lip(g/r)ϕf ) ≤ VΦ(ϕf/r),

and hence f ∈ GVΦ(I;X).
Necessity. From the definition of ϕf we have: ϕf/r = ϕf/r, r > 0.

Since f ∈ GVΦ(I;X), then f/r ∈ BVΦ(I;X) for some r > 0, and so
Theorem 2.4 implies ϕf/r ∈ BVΦ(I; R) and there exists a mapping g̃
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16 V. V. Chistyakov

in C0,1(J/r;X) with Lip(g̃) ≤ 1 such that f/r = g̃ ◦ϕf/r on I. Setting
g(s) = rg̃(s/r), s ∈ J , we find that g ∈ C0,1(J ;X), Lip(g) ≤ 1 and
f = g ◦ ϕf on I, where ϕf ∈ GVΦ(I; R).

Finally, since, by Theorem 2.4, VΦ(ϕf/r) = VΦ(ϕf/r) = VΦ(f/r) for
all r > 0, we conclude that pΦ(ϕf ) = pΦ(f). �

Remark 3.1. Theorem 2.2 holds if we replace the set BVΦ(I;X) by
GVΦ(I;X), where X is a Banach space, and condition (a) there—by:
the family {pΦ(f) | f ∈ F} is uniformly bounded. To see this, it suffices
to apply Lemma 3.4(a) instead of inequality (2.8) and Lemma 3.4(e)
in place of Lemma 2.1(c).

We define the norm ‖ · ‖Φ on the space GVΦ(I;X) as follows:

‖f‖Φ := ‖f(a)‖ + pΦ(f), f ∈ GVΦ(I;X), Φ ∈ N . (3.10)

In particular, ‖f‖Φ = ‖f‖q := ‖f(a)‖+(Vq(f))1/q if Φ(ρ) = ρq (q ≥ 1).
To formulate the next theorem, we introduce some terminology. Let

X, Y and Z be normed linear spaces over the same field and the norms
denoted by the same symbol ‖·‖ (which won’t lead to ambiguities). We
say that the triple (X,Y,Z) is multiplicative if there exists a bilinear
mapping M : X ×Y → Z such that ‖M(x, y)‖ ≤ ‖x‖·‖y‖ for all x ∈ X
and y ∈ Y . The mapping M is called the product mapping and the
value M(x, y) ∈ Z is written simply as xy. If f ∈ XI and g ∈ Y I , we
define the product fg ∈ ZI by (fg)(t) := f(t)g(t), t ∈ I.

THEOREM 3.6. Let (X,Y,Z) be a multiplicative triple of normed lin-
ear spaces and Φ ∈ N . If f ∈ GVΦ(I;X) and g ∈ GVΦ(I;Y ), then their
product fg belongs to GVΦ(I;Z) and the following inequality holds:

‖fg‖Φ ≤ γ‖f‖Φ‖g‖Φ, (3.11)

where γ ≡ γ(Φ, |I|) := max{1, 2|I|Φ−1(1/|I|)}.
If X is a Banach space, then GVΦ(I;X) is also a Banach space.
Consequently, if X is a normed (respectively, Banach) algebra, then

GVΦ(I;X) is also a normed (respectively, Banach) algebra.

Proof. 1. Let us prove the following inequality:

pΦ(fg) ≤ pΦ(f)‖g‖u + ‖f‖upΦ(g), (3.12)

where ‖f‖u = supt∈I ‖f(t)‖ and ‖g‖u = supt∈I ‖g(t)‖. Using the defi-
nition of the function ϕf from Lemma 3.5, estimating the sums for the
Jordan variation and using the triangle inequality, we have:

ϕfg(t) = V1(fg, [a, t]) ≤ ϕf (t)‖g‖u + ‖f‖uϕg(t), t ∈ I. (3.13)
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Applying Lemma 3.5 we get (3.12):

pΦ(fg)=pΦ(ϕfg) ≤ pΦ(ϕf‖g‖u + ‖f‖uϕg) ≤
≤pΦ(ϕf )‖g‖u + ‖f‖upΦ(ϕg) = pΦ(f)‖g‖u + ‖f‖upΦ(g).

To obtain inequality (3.11), observe that, by virtue of (3.8),

‖f‖u ≤ ‖f‖1 = ‖f(a)‖ + V1(f) ≤ ‖f(a)‖ + |I|Φ−1(1/|I|)pΦ(f), (3.14)

and so it remains to take into account (3.10) and (3.12).
2. If X is a Banach space, let us prove that GVΦ(I;X) is complete.

Suppose that {fn}∞n=1 is a Cauchy sequence in GVΦ(I;X), i.e.

‖fn − fm‖Φ = ‖fn(a) − fm(a)‖ + pΦ(fn − fm) → 0 as n, m → ∞.

By Lemma 3.4(a) it follows that the sequence {fn(t)}∞n=1 is Cauchy
in X for all t ∈ I and therefore, by the completeness of X, there exists
a mapping f ∈ XI such that fn converges to f pointwise as n → ∞.
Since fn − fm converges to fn − f pointwise as m → ∞, Lemma 3.4(e)
yields:

‖fn − f‖Φ ≤ lim sup
m→∞

‖fn − fm‖Φ = lim
m→∞ ‖fn − fm‖Φ ∈ R

+, n ∈ N.

Taking into account that {fn}∞n=1 is Cauchy in GVΦ(I;X) we have:

lim sup
n→∞

‖fn − f‖Φ ≤ lim
n→∞ lim

m→∞ ‖fn − fm‖Φ = 0.

Hence ‖fn − f‖Φ → 0 as n → ∞. It follows that there exists n0 ∈ N

such that ‖fn0 − f‖Φ ≤ 1 from which

‖f‖Φ ≤ ‖f − fn0‖Φ + ‖fn0‖Φ ≤ 1 + ‖fn0‖Φ < ∞.

Therefore f ∈ GVΦ(I;X), and this completes the proof. �

Remark 3.2. If X is a normed or Banach algebra, the norm (3.10)
can always be replaced by an equivalent norm | · |Φ such that

|fg|Φ ≤ |f |Φ|g|Φ for all f , g ∈ GVΦ(I;X). (3.15)

This is a consequence of the following (general) observation. For any
f from GVΦ(I;X) consider the linear continuous operator Mf from
GVΦ(I;X) into itself defined by Mf (g) = fg whenever g ∈ GVΦ(I;X).
The operator norm |f |Φ = ‖Mf‖ := sup{‖fg‖Φ ; ‖g‖Φ = 1} is the
desired norm on GVΦ(I;X) satisfying (3.15) and |f |Φ ≤ ‖f‖Φ ≤ γ|f |Φ
for all f ∈ GVΦ(I;X).
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18 V. V. Chistyakov

We finish this section with the following theorem.

THEOREM 3.7. (a) Let (X,Y,Z) be a multiplicative triple of Banach
spaces, Φ1, Φ2, Ψ ∈ N , and suppose that the product fg belongs to
GVΨ(I;Z) provided f ∈ GVΦ1(I;X) and g ∈ GVΦ2(I;Y ). Then there
exists a constant κ0 such that ‖fg‖Ψ ≤ κ0‖f‖Φ1‖g‖Φ2 .

(b) Let X be a Banach space, Φ, Ψ ∈ N and Ψ � Φ (so that
GVΦ(I;X) ⊂ GVΨ(I;X)). Then there exists a constant κ > 0 such
that

‖f‖Ψ ≤ κ‖f‖Φ, f ∈ GVΦ(I;X). (3.16)

(Conversely, it is clear that if (3.16) holds, then Ψ � Φ.)
(c) Let X be a Banach space and Φ, Ψ ∈ N . Then the spaces

GVΦ(I;X) and GVΨ(I;X) are equal if and only if Φ ∼ Ψ if and only
if the norms ‖ · ‖Φ and ‖ · ‖Ψ are equivalent.

Proof. (a) For f ∈GVΦ1(I;X) and g∈GVΦ2(I;Y ) set M(f, g) = fg.
By the assumption, M(f, g) ∈ GVΨ(I;Z).

1. The linear operator M( · , g) : GVΦ1(I;X) → GVΨ(I;Z) is closed
for any g ∈ GVΦ2(I;Y ). To see this, let fn, f ∈ GVΦ1(I;X), n ∈ N,
w ∈ GVΨ(I;Z), ‖fn − f‖Φ1 → 0 and ‖M(fn, g) − w‖Ψ → 0 as n → ∞.
Then, by virtue of (3.14), fn converges to f uniformly on I, so that
M(fn, g) = fng converges uniformly to fg; similarly, fng = M(fn, g)
converges uniformly to w. Thus, w = fg = M(f, g), and so M( · , g) is
closed. By the closed graph theorem M( · , g) is continuous and hence
there exists a constant κ(g) > 0 such that

‖fg‖Ψ = ‖M(f, g)‖Ψ ≤ κ(g)‖f‖Φ1 , f ∈ GVΦ1(I;X).

2. Set B1 = {f ∈ GVΦ1(I;X) ; ‖f‖Φ1 ≤ 1}. The last estimate shows
that the family B = {M(f, · ) | f ∈ B1} of linear continuous operators,
which map GVΦ2(I;Y ) into GVΨ(I;Z), is pointwise bounded:

‖fg‖Ψ ≤ κ(g)‖f‖Φ1 ≤ κ(g), f ∈ B1.

By the uniform boundedness principle the family B is uniformly bound-
ed, i.e. there exists a positive constant κ0 such that ‖fg‖Ψ ≤ κ0‖g‖Φ2

for all f ∈ B1 and g ∈ GVΦ2(I;Y ). It remains to note that

‖fg‖Ψ = ‖(f/‖f‖Φ1)g‖Ψ‖f‖Φ1 ≤ κ0‖f‖Φ1‖g‖Φ2

for all 0 
= f ∈ GVΦ1(I;X) and g ∈ GVΦ2(I;Y ).
(b) It suffices to set Φ1 = Φ, g ≡ 1 and κ = κ(1) in step 1 in (a).
(c) is a consequence of Theorem 3.3 and item (b). �
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4. Lipschitzian Composition Operators

In this section we characterize Lipschitzian composition operators between
spaces of mappings of bounded generalized Φ-variation. Let X and Y
be two normed linear spaces with the norms ‖·‖. We denote by L(X;Y )
the space of all linear continuous operators from X into Y equipped
with the standard norm.

THEOREM 4.1. Assume that the composition operator H : XI → Y I

is generated by a mapping h : I×X → Y according to formula (1.4). Let
Φ, Ψ ∈ N , and let F(I;X) designate either GVΦ(I;X) or C0,1(I;X).

If H maps F(I;X) into GVΨ(I;Y ) and is Lipschitzian, then there
exists a function µ0 : I → R

+ such that

‖h(t, x1) − h(t, x2)‖ ≤ µ0(t)‖x1 − x2‖, t ∈ I, x1, x2 ∈ X, (4.1)

and there exist mappings h0 ∈ GVΨ(I;Y ) and h1 ∈ L(X;Y )I such that
the mapping t �→ h1(t)x belongs to GVΨ(I;Y ) for all x ∈ X and

h(t, x) = h0(t) + h1(t)x, t ∈ I, x ∈ X. (4.2)

Conversely, if h0 ∈ GVΨ(I;Y ), h1 ∈ GVΨ(I;L(X;Y )) and h is of
the form (4.2), and, moreover, if Ψ � Φ and X is a Banach space in
the case F(I;X) = GVΦ(I;X), then H maps F(I;X) into GVΨ(I;Y )
and is Lipschitzian.

Proof. For α, β ∈ R, α < β, we define functions ηα,β : R → R by

ηα,β(t) =

⎧⎪⎪⎨⎪⎪⎩
0 if t ≤ α,
t − α

β − α
if α ≤ t ≤ β,

1 if β ≤ t.

(4.3)

1. First, we obtain an auxiliary inequality which will be used later
several times. Since H : F(I;X) → GVΨ(I;Y ) is Lipschitzian, there
exists a constant µ > 0 such that ‖Hf1 −Hf2‖Ψ ≤ µ‖f1 − f2‖F for all
f1, f2 ∈ F(I;X), where ‖ · ‖F is the norm in F(I;X). The definition of
the norm ‖ · ‖Ψ implies, in particular, pΨ(Hf1 −Hf2) ≤ µ‖f1 − f2‖F .
By Lemma 3.4(c), if ‖f1−f2‖F > 0, the last inequality is equivalent to

VΨ

( Hf1 −Hf2

µ‖f1 − f2‖F

)
≤ 1.

From definitions of VΨ(·) and H, for any α, β ∈ I, α < β, it follows
that

Ψ
(‖h(β, f1(β))−h(β, f2(β))−h(α, f1(α))+h(α, f2(α))‖

µ‖f1 − f2‖F (β − α)

)
(β − α) ≤ 1,
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20 V. V. Chistyakov

or, by taking the inverse function Ψ−1 from both sides, that

‖h(β, f1(β)) − h(β, f2(β)) − h(α, f1(α)) + h(α, f2(α))‖ ≤
≤ µ‖f1 − f2‖F (β − α)Ψ−1(1/(β − α)). (4.4)

2. Let us prove (4.1). First we prove it for a < t ≤ b. Let x1, x2 ∈ X.
Consider two Lipschitzian mappings fj : I → X defined by

fj(t) = ηα,β(t)xj , t ∈ I, j = 1, 2, (4.5)

so that fj(β)=xj , fj(α)=0, j =1, 2. Let us compute ‖f1 − f2‖F .
If F(I;X) = GVΦ(I;X), then choosing r > 0 such that

VΦ((f1 − f2)/r) = Φ
(‖x1 − x2‖

(β − α) r

)
(β − α) = 1,

by Lemma 3.4(d) we get:

‖f1 − f2‖Φ = pΦ(f1 − f2) = r =
‖x1 − x2‖

(β − α)Φ−1(1/(β − α))
. (4.6)

Substituting mappings (4.5) into (4.4), for all a ≤ α < β ≤ b and all
x1, x2 ∈ X we have:

‖h(β, x1) − h(β, x2)‖ ≤ µ
Ψ−1(1/(β − α))
Φ−1(1/(β − α))

‖x1 − x2‖. (4.7)

In particular, if a < t ≤ b, then setting α = a and β = t in (4.7) we
obtain (4.1). If F(I;X) = C0,1(I;X), it is easy to see that

‖f1 − f2‖0,1 = Lip(f1 − f2) = ‖x1 − x2‖/(β − α), (4.8)

and hence, if a < t ≤ b, α = a and β = t, (4.4) yields

‖h(t, x1) − h(t, x2)‖ ≤ µΨ−1(1/(t − a))‖x1 − x2‖,

which proves (4.1) in the case when a < t ≤ b.
To show that (4.1) is valid at t = a, consider mappings

fj(t) = (1 − ηα,β(t))xj , t ∈ I, j = 1, 2. (4.9)

Note that fj(β) = 0 and fj(α) = xj , j = 1, 2. As above, we have:

‖f1 − f2‖F = (1 + 1/ωF (β − α))‖x1 − x2‖, (4.10)

where ωF (r)=rΦ−1(1/r) if F =GVΦ, and ωF (r)=r if F =C0,1, r>0.
Substituting mappings (4.9) into (4.4) and setting α = a, β = b, we
obtain (4.1) at t = a.
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3. Now we show that (4.2) holds. Define mappings fj : I → X by

fj(t) = ηα,β(t)x1 + (2 − j)x2, t ∈ I, j = 1, 2. (4.11)

and observe that f1(β) = x1 + x2, f2(β) = x1, f1(α) = x2, f2(α) = 0,
and that f1 − f2 ≡ x2, and so ‖f1 − f2‖Φ = ‖f1 − f2‖0,1 = ‖x2‖. Hence,
inequality (4.4) provides the estimate:

‖h(β, x1 + x2) − h(β, x1) − h(α, x2) + h(α, 0)‖ ≤
≤ µ‖x2‖(β − α)Ψ−1(1/(β − α)). (4.12)

Since H maps F(I;X) into GVΨ(I;Y ) and constant mappings belong
to F(I;X), for all x ∈ X the mapping h( · , x) = H x is in GVΨ(I;Y ),
and so it is (absolutely) continuous by (3.4). Noting that (cf. (2.7))

lim
β−α→0

(β − α)Ψ−1(1/(β − α)) = 0, (4.13)

and letting β − α tend to zero in (4.12) in such a way that α, β ∈ I,
α < β, and [α, β] � t, for all t ∈ I and x1, x2 ∈ X we get:

h(t, x1 + x2) − h(t, x1) − h(t, x2) + h(t, 0) = 0. (4.14)

Now, for a fixed t ∈ I define the operator St : X → Y by

St(x) = h(t, x) − h(t, 0), x ∈ X.

Inequality (4.1) shows that St is continuous (even Lipschitzian), and
since (4.14) can be rewritten in the form

St(x1 + x2) = St(x1) + St(x2), x1, x2 ∈ X,

St is an additive operator. Consequently, St ∈ L(X;Y ). Defining map-
pings h0 : I → Y and h1 : I → L(X;Y ) by h0(t) = h(t, 0) and
h1(t)x = St(x), respectively, where t ∈ I and x ∈ X, we obtain (4.2).
Taking into account that h0 = H(0) and h1(·)x = H(x) − H(0) we
conclude that h0 and h1(·)x belong to GVΨ(I;Y ) for all x ∈ X.

4. Let us prove the reciprocal assertion. Let F(I;X) = GVΦ(I;X)
and Ψ � Φ. In view of (4.2) and (1.4), the composition operator H is
given by

(Hf)(t) = h0(t) + h1(t)f(t), t ∈ I, f ∈ F(I;X). (4.15)

Theorem 3.3 implies GVΦ(I;X) ⊂ GVΨ(I;X), and since the triple
(L(X;Y ),X, Y ) is multiplicative, by Theorem 3.6 the mapping h1f
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is in GVΨ(I;Y ), so that Hf ∈ GVΨ(I;Y ) for all f ∈ GVΦ(I;X), i.e. H
maps GVΦ(I;X) into GVΨ(I;Y ). From (3.11) and (3.16) we have:

‖Hf1 −Hf2‖Ψ = ‖h1(f1 − f2)‖Ψ ≤ γ(Ψ, |I|)‖h1‖Ψ‖f1 − f2‖Ψ ≤
≤ µ‖f1 − f2‖Φ, f1, f2 ∈ GVΦ(I;X), (4.16)

where µ = γ(Ψ, |I|)κ‖h1‖Ψ. Hence, H is a Lipschitzian operator.
Since F(I;X) = C0,1(I;X) ⊂ GVΨ(I;X), (4.15) implies that H

maps C0,1(I;X) into GVΨ(I;Y ). Estimates (3.7) and (4.16) prove that
H is Lipschitzian. �

Theorem 4.1 shows that Lipschitzian composition operators between
certain spaces of mappings of bounded generalized variation are gener-
ated by mappings of the form (4.2). Now we treat the case when these
operators are automatically constant. This happens when the domain
of H is “significantly larger” than the range of H (cf. Theorem 4.3).

We say that Φ ∈ N grows (at infinity) significantly slower than
Ψ ∈ N (in symbols, Φ < Ψ) if limρ→∞ Φ(Cρ)/Ψ(ρ) = 0 for all C > 0,
or, equivalently, if

∀ ε > 0 ∃ ρ0(ε) > 0 such that Φ(ρ) ≤ Ψ(ερ) ∀ ρ ≥ ρ0(ε). (4.17)

For instance, if Φ(ρ) = ρp, Ψ(ρ) = ρq, p, q ≥ 1, then Φ < Ψ if and
only if p < q. Note that if Φ < Ψ, then Φ � Ψ. We have the following
characterization of relation < between arbitrary functions Φ, Ψ ∈ N :

LEMMA 4.2. Φ < Ψ if and only if limr→∞ Ψ−1(r)/Φ−1(r) = 0.

Proof. Necessity. By (4.17), for any ε > 0 there exists ρ0 = ρ0(ε) > 0
such that Φ(ρ) ≤ Ψ(ερ) =: Ψε(ρ) for all ρ ≥ ρ0. It follows that

Ψ−1
ε (r) ≤ Φ−1(r) for all r ≥ Ψε(ρ0); (4.18)

indeed, for any r ≥ Ψε(ρ0) there exist unique ρ1 ≥ ρ0 and ρ2 ≥
ρ0 satisfying Ψε(ρ1) = r, Φ(ρ2) = r and ρ1 ≤ ρ2. Since Ψ−1

ε (r) =
Ψ−1(r)/ε, (4.18) implies Ψ−1(r)/Φ−1(r)≤ε for all r ≥ Ψ(ερ0(ε)), and
so Ψ−1(r)/Φ−1(r) → 0 as r → ∞.

Sufficiency. Given ε > 0, there exists r0 = r0(ε) > 0 such that
Ψ−1(r)/Φ−1(r) ≤ ε or Ψ−1(r)/ε ≤ Φ−1(r) for all r ≥ r0. Hence, as
in (4.18), we have: Φ(ρ) ≤ Ψ(ερ) for all ρ ≥ ρ0(ε) := Φ−1(r0(ε)). �

THEOREM 4.3. Let X, Y , Φ, Ψ, H and h be as in Theorem 4.1. If
(a) H maps GVΦ(I;X) with Φ < Ψ, AC(I;X) or BV1(I;X) into

GVΨ(I;Y ); or
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(b) H maps GVΦ(I;X), AC(I;X) or BV1(I;X) into C0,1(I;Y );
and H is Lipschitzian, then there exists a mapping h0 in (a) GVΨ(I;Y ),
or (b) C0,1(I;Y ), respectively, such that h(t, x) = h0(t), (t, x) ∈ I × X
(i.e. any Lipschitzian composition operator of this kind is constant).

Proof. (a) Suppose that Φ < Ψ and H : GVΦ(I;X) → GVΨ(I;Y ) is
Lipschitzian. As we have already seen in step 3 of the proof of The-
orem 4.1, the mapping h( · , x) is continuous on I for all x ∈ X. If
a < t ≤ b, then setting β = t, x1 = x and x2 = 0 in (4.7) and letting
α go to t − 0 in (4.7), by Lemma 4.2 we obtain: h(t, x) = h(t, 0) for
all a < t ≤ b and x ∈ X. From the continuity of h( · , x) we infer that
h( · , x) = h( · , 0) =: h0 on I for all x ∈ X.

Assume that H maps AC(I;X) or BV1(I;X) into GVΨ(I;Y ). For
functions (4.5) we have ‖f1−f2‖1 = ‖x1−x2‖ and hence the counterpart
of (4.7) is the inequality:

‖h(β, x1) − h(β, x2)‖ ≤ µ(β − α)Ψ−1(1/(β − α))‖x1 − x2‖,

which holds for all a ≤ α < β ≤ b and x1, x2 ∈ X. From (4.13) it
follows that h( · , x) = h( · , 0) ∈ GVΨ(I;Y ) for all x ∈ X.

(b) If H : GVΦ(I;X) → C0,1(I;Y ) is Lipschitzian, then the inequal-
ity ‖Hf1 −Hf2‖0,1 ≤ µ‖f1 − f2‖Φ implies, in particular,

‖h(β, f1(β)) − h(β, f2(β)) − h(α, f1(α)) + h(α, f2(α))‖
β − α

≤ µ‖f1 − f2‖Φ,

(4.19)
for all α, β ∈ I, α < β. Substituting mappings (4.5) into this inequality
we get

‖h(β, x1) − h(β, x2)‖ ≤ µ‖x1 − x2‖/Φ−1(1/(β − α)), x1, x2 ∈ X.

Setting x2 =0, it remains to note that Φ−1(1/(β−α))→∞ as β−α→0.
In the case when H maps AC(I;X) or BV1(I;X) into C0,1(I;Y )

it suffices to replace the norm ‖f1 − f2‖Φ in (4.19) with the norm
‖f1 − f2‖1 = ‖x1 − x2‖. �

In the following corollary we set GVΦ(I) = GVΦ(I; R), Φ ∈ N .

COROLLARY 4.4. Let H : R
I → R

I be the composition operator gen-
erated by a function h : I × R → R and Φ, Ψ ∈ N . If Ψ � Φ, then H
maps GVΦ(I) into GVΨ(I) and is Lipschitzian if and only if H is of the
form Hf = h0 + h1f , f ∈ GVΦ(I), where h0, h1 ∈ GVΨ(I). Moreover,
if Φ< Ψ, then H maps GVΦ(I) into GVΨ(I) and is Lipschitzian if and
only if H is a constant operator.
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Remark 4.1. Lipschitzian composition operators from C0,1(I;X) in-
to C0,1(I;Y ) were characterized in [27, 29] (with I a convex subset of
a normed linear space). Corollary 4.4 is in coherence with the results
from [33] (Φ(ρ) = Ψ(ρ) = ρq, q > 1) and [35] (Φ(ρ) = ρp, Ψ(ρ) = ρq,
p > 1, q ≥ 1).

Now we consider composition operators H with values in the space
BV1(I;Y ) where Y is a Banach space. If h : I × X → Y is a mapping
such that h( · , x) ∈ BV1(I;Y ) for all x ∈ X, we define the left regu-
larization h∗ : I × X → Y of h (with respect to the first variable) as
follows: for any x ∈ X we set

h∗(t, x) := lim
s→t−0

h(s, x) if a < t ≤ b, and

h∗(a, x) := lim
t→a+0

h∗(t, x). (4.20)

Then for all x ∈ X the function h∗( · , x) is in BV1(I;Y ) and is contin-
uous from the left on (a, b].

THEOREM 4.5. Let X be a normed linear space, Y a Banach space
and Φ ∈ N . Suppose that a mapping h : I ×X → Y generates the com-
position operator H via formula (1.4). Let F(I;X) be either GVΦ(I;X)
or C0,1(I;X).

If H maps F(I;X) into BV1(I;Y ) and is Lipschitzian, then there
exists a function µ0 : I → R

+ such that

‖h∗(t, x1) − h∗(t, x2)‖ ≤ µ0(t)‖x1 − x2‖, t ∈ I, x1, x2∈X, (4.21)

and there exist a mapping h0 ∈ BV1(I;Y ), left continuous on (a, b],
and a mapping h1 ∈ L(X;Y )I such that h1(·)x ∈ BV1(I;Y ) and h1(·)x
is left continuous on (a, b] for all x ∈ X and

h∗(t, x) = h0(t) + h1(t)x, t ∈ I, x ∈ X. (4.22)

Conversely, if h0 ∈ BV1(I;Y ), h1 ∈ BV1(I;L(X;Y )) (where Y is
not necessarily complete) and the mapping h is of the form (4.2), then
H maps F(I;X) into BV1(I;Y ) and is Lipschitzian.

Proof. 1. We begin by proving (4.21). Since H : F(I;X)→BV1(I;Y )
is Lipschitzian, there exists a positive constant µ such that

‖Hf1 −Hf2‖1 ≤ µ‖f1 − f2‖F for all f1, f2 ∈ F(I;X), (4.23)

where ‖ · ‖F denotes the norm in F(I;X). Definitions of ‖ · ‖1, V1(·)
and H imply, in particular, that if α, β ∈ I, α < β, then

‖h(β, f1(β))−h(β, f2(β))−h(α, f1(α))+h(α, f2(α))‖≤µ‖f1−f2‖F .
(4.24)
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Let a < t ≤ b. If a ≤ α < β ≤ b and x1, x2 ∈ X, substituting
mappings fj from (4.5) into (4.24), taking into account (4.6) and (4.8)
and setting α = a and β = t we find that

‖h(t, x1) − h(t, x2)‖ ≤ µ‖x1 − x2‖/ωF (t − a),

where ωF (r) is defined for r > 0 as in (4.10). Since h( · , x) ∈ BV1(I;Y )
for all x ∈ X and ωF is continuous, it follows, by taking the left limits
(in t), that

‖h∗(t, x1) − h∗(t, x2)‖ ≤ µ‖x1 − x2‖/ωF (t − a), a < t ≤ b.

To prove that (4.21) holds at t = a, we substitute mappings (4.9)
into (4.24), which, after setting β = b, yields by virtue of (4.10):

‖h(α, x1) − h(α, x2)‖ ≤ µ(1 + 1/ωF (b − α))‖x1 − x2‖, a ≤ α < b,

so that letting α → t − 0 for t > a and then t → a + 0 we obtain:

‖h∗(a, x1) − h∗(a, x2)‖ ≤ µ(1 + 1/ωF (b − a))‖x1 − x2‖.

2. In order to prove (4.22), let a < t ≤ b, n ∈ N and let a < α1 <
β1 < α2 < β2 < . . . < αn < βn < t. Using (4.23) we have, in particular,

n∑
i=1

‖h(βi, f1(βi)) − h(βi, f2(βi)) − h(αi, f1(αi)) + h(αi, f2(αi))‖ ≤

≤ µ‖f1 − f2‖F . (4.25)

Setting

ηn(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if a ≤ t ≤ α1,

ηαi,βi
(t) if αi ≤ t ≤ βi, i = 1, . . . , n,

1 − ηβi,αi+1
(t) if βi ≤ t ≤ αi+1, i = 1, . . . , n − 1,

1 if βn ≤ t ≤ b,

where ηα,β is defined in (4.3), consider mappings fj: I→X defined by:

fj(t) = ηn(t)x1 + (2 − j)x2, t ∈ I, x1, x2 ∈ X, j = 1, 2. (4.26)

Observe that f1(βi) = x1 + x2, f2(βi) = x1, f1(αi) = x2, f2(αi) = 0,
i = 1, . . . , n, and f1 − f2 ≡ x2, and so ‖f1 − f2‖F = ‖x2‖. Hence, from
(4.25) and (4.26) we get:

n∑
i=1

‖h(βi, x1 + x2) − h(βi, x1) − h(αi, x2) + h(αi, 0)‖ ≤ µ‖x2‖. (4.27)
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Since H : F(I;X) → BV1(I;Y ), h( · , x) ∈ BV1(I;Y ) for all x ∈ X,
and therefore h∗( · , x) ∈ BV1(I;Y ) and is left continuous on (a, b] for
all x ∈ X. Letting α1 go to t − 0 in (4.27) we have:

‖h∗(t, x1 + x2) − h∗(t, x1) − h∗(t, x2) + h∗(t, 0)‖ ≤ µ‖x2‖/n.

Passing to the limit as n → ∞, for any a < t ≤ b, x1, x2 ∈ X we find:

h∗(t, x1 + x2) − h∗(t, x1) − h∗(t, x2) + h∗(t, 0) = 0.

Taking into account (4.21) and arguments following (4.14) we infer that
for any t ∈ (a, b] there exist h0(t) ∈ Y and h1(t) ∈ L(X;Y ) such that

h∗(t, x) = h0(t) + h1(t)x, a < t ≤ b, x ∈ X.

Setting h0(a) := h∗(a, 0) and h1(a)x := h∗(a, x) − h∗(a, 0), x ∈ X,
we obtain equality (4.22). Finally, since h0(·) = h∗( · , 0) and h1(·)x =
h∗( · , x) − h∗( · , 0) on I, mappings h0 and h1(·)x are in BV1(I;Y ) and
are left continuous on (a, b].

3. To prove the last part of the theorem, it suffices to note that
F(I;X) is contained in BV1(I;X), that (L(X;Y ),X, Y ) is a mul-
tiplicative triple and that (cf. (3.13)) if h1 ∈ BV1(I;L(X;Y )) and
f ∈ BV1(I;X), then ‖h1f‖1 ≤ 2‖h1‖1‖f‖1. �

COROLLARY 4.6. Suppose that the composition operator H : R
I → R

I

is generated by a function h : I × R → R such that h∗(t, x) = h(t, x),
(t, x) ∈ I × R. Let Φ ∈ N and F(I) be either GVΦ(I) or C0,1(I).
Then H : F(I) → BV1(I) is Lipschitzian if and only if there exist two
functions h0, h1 ∈ BV1(I), left continuous on (a, b], such that h is of
the form h(t, x) = h0(t) + h1(t)x for all t ∈ I and x ∈ R.

Remark 4.2. Lipschitzian composition operators from BV1(I) into
itself were described in [31]. If F(I) = BVp(I), p > 1, in Corollary 4.6,
we get a result from [35]. The mapping h∗(t, x) in (4.22) cannot in
general be replaced by h(t, x), because h(t, x) need not be linear in the
variable x: the corresponding example is given in [31, p. 157]. Clearly,
a theorem similar to Theorem 4.5 holds for the right regularization
of h( · , x).

5. Applications to Multifunctions

5.1. Existence of Regular Selections

Let P(X) be the family of all nonempty subsets of the metric space
(X, d) and Pcb(X) be the family of all nonempty closed and bounded
subsets there.
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The Hausdorff metric on Pcb(X) is defined by

D(A,B) = max {e(A,B), e(B,A)}, A, B ∈ Pcb(X), (5.1)

where

e(A,B) = sup
x∈A

dist(x,B) and dist(x,B) = inf
y∈B

d(x, y). (5.2)

A multifunction (or a set-valued mapping) from I into X is a map-
ping F : I → P(X), so that F (t) ⊂ X for every t ∈ I. The set
Gr(F ) = {(t, x) ∈ I × X | x ∈ F (t)} is called the graph of F and
the set Ra(F ) =

⋃
t∈I F (t) is called the range of F . For the detailed

exposition of the theory of set-valued mappings and properties of the
Hausdorff metric see [1, Ch. 1, Secs. 1–5] and [3, Ch. 2, Sec. 1].

A mapping f ∈ XI is said to be a selection of the multifunction
F ∈ P(X)I if f(t) ∈ F (t) for all t ∈ I; the selection f of F is called
regular if f is of the same functional class as F (this is to be made
precise below, cf. Theorem 5.1).

Using the metric space (Pcb(X),D) in place of (X, d) we introduce
the notions of Lipschitzian multifunctions F ∈ C0,1(I;Pcb(X)), abso-
lutely continuous multifunctions F ∈ AC(I;Pcb(X)) and multifunctions
of bounded generalized Φ-variation F ∈ BVΦ(I;Pcb(X)), Φ ∈ N . For
instance, F ∈ BVΦ(I;Pcb(X)) if

VΦ(F ) ≡ VΦ,D(F, I) := sup {VΦ,D[F, T ] | T ∈ T (I)} < ∞,

where for a partition T = {ti}m
i=0 ∈ T (I) we set

VΦ,D[F, T ] =
m∑

i=1

Φ
(

D(F (ti), F (ti−1))
ti − ti−1

)
(ti − ti−1).

The main result of this section is the following

THEOREM 5.1. Let F ∈ BVΦ(I;Pcb(X)) be a multifunction with com-
pact graph where X is a Banach space and Φ ∈ N . Then F admits
a regular selection f , i.e. f ∈ BVΦ(I;X), f(t) ∈ F (t) for all t ∈ I,
VΦ(f) ≤ VΦ(F ) and V1(f) ≤ V1(F ). Moreover, for any finite number of
points ti ∈ I and xi ∈ F (ti), i = 0, 1, . . . ,m, a regular selection f of F
can be chosen such that f(ti) = xi for all i = 0, 1, . . . ,m.

Proof. We shall prove the theorem for m = 0, the general case will
follow immediately. For each n ∈ N let Tn = {tni }n

i=0 be a partition of
the interval I = [a, b] with the properties:

1) t0 ∈ Tn, i.e., t0 = tnk(n) for some k(n) ∈ {0, 1, . . . , n}, and
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2) max1≤i≤n(tni − tni−1) → 0 as n → ∞.

We define the elements xn
i ∈ F (tni ) inductively as follows. To start with,

let n ∈ N and let a < t0 < b. (Below ‖ · ‖ denotes the norm in X.)

(a) Set xn
k(n) = x0.

(b) If i ∈ { 1, . . . , k(n) } and if xn
i ∈ F (tni ) is already chosen, pick

xn
i−1 ∈ F (tni−1) such that ‖xn

i − xn
i−1‖ = dist(xn

i , F (tni−1)).

c) If i ∈ { k(n) + 1, . . . , n } and if xn
i−1 ∈ F (tni−1) is already chosen,

pick xn
i ∈ F (tni ) such that ‖xn

i−1 − xn
i ‖ = dist(xn

i−1, F (tni )).

Now, if t0 = a, so that k(n) = 0, then we use only (a) and (c) to
define xn

i , and if t0 = b, so that k(n) = n, we define xn
i by (a) and (b).

We define a sequence of mappings fn : I → X, n ∈ N, as follows:

fn(t) = xn
i−1+

t − tni−1

tni − tni−1

(xn
i −xn

i−1), t ∈ [tni−1, t
n
i ], i = 1, . . . , n. (5.3)

Note at once that fn(tni−1) = xn
i−1, fn(tni ) = xn

i and fn(t0) = x0 for all
n ∈ N, and that, by virtue of (b), (c), (5.1) and (5.2),

‖xn
i − xn

i−1‖ ≤ D(F (tni ), F (tni−1)), n ∈ N, i = 1, . . . , n. (5.4)

Using Lemma 2.1(b) and inequality (5.4), for all n ∈ N we find that

VΦ(fn) =
n∑

i=1

VΦ(fn, [tni−1, t
n
i ]) =

n∑
i=1

Φ
(‖xn

i − xn
i−1‖

tni − tni−1

)
(tni − tni−1) ≤

≤
n∑

i=1

Φ
(

D(F (tni ), F (tni−1))
tni − tni−1

)
(tni − tni−1) ≤ VΦ(F ). (5.5)

Since F is of bounded Jordan variation by Lemma 2.1(d), the calcula-
tions in (5.5) with Φ(ρ) = ρ also give V1(fn) ≤ V1(F ) for all n ∈ N.

It is seen from (5.3) that all the images fn(I) are contained in the
closed convex hull coRa(F ) of the range Ra(F ), and since the graph
Gr(F ) is compact in I × X, Ra(F ) is compact in X and, hence, by
Mazur’s theorem [13, Ch. 5, Sec. 2], coRa(F ) is also compact in X.
By Theorem 2.2 there exists a subsequence in {fn}∞n=1 (which will be
denoted by the same symbol) which converges uniformly on I to a
mapping f ∈ BVΦ(I;X) as n → ∞. Clearly, f(t0) = x0. Lemma 2.1(c)
and inequality (5.5) imply VΦ(f) ≤ VΦ(F ) and V1(f) ≤ V1(F ).

It remains to show that f is a selection of F . Fixing t ∈ I, for every
n∈N there is a number i(n)∈{1, . . . , n} such that tni(n)−1 ≤ t ≤ tni(n), and
hence, by condition 2) above, the sequences tni(n)−1 and tni(n) converge
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to t as n → ∞. As the graph of F is compact and xn
i(n) ∈ F (tni(n)) by the

construction, i.e., (tni(n), x
n
i(n)) ∈ Gr(F ), then there exists a subsequence

in {(tni(n), x
n
i(n))}∞n=1 (denoted by the same symbol) which converges in

I × X to a point (τ, x) ∈ Gr(F ) as n → ∞. But tni(n) → t as n → ∞,
so that τ = t, and hence, (t, x) ∈ Gr(F ) or x ∈ F (t). From the con-
vergence of the subsequence it follows also that fn(tni(n)) = xn

i(n) → x,
and the continuity of the mapping f yields that f(tni(n)) → f(t) in X

as n → ∞. Since the sequence fn converges uniformly to f , we have
fn(tni(n)) − f(tni(n)) → 0 as n → ∞. We conclude that x = f(t), and so
f(t) ∈ F (t). Since t ∈ I is arbitrary, the proof is complete. �

5.2. The Metric Space BVΦ(I;Pcc(X))

The material of this section is preparatory. It will be used in Section 5.3.
Let (X, ‖ · ‖) be a normed linear space and Pcc(X) be the family of

all nonempty compact convex subsets of X. The Hausdorff metric D is
translation invariant on Pcc(X) in the sense that (see [41, Lemma 3]):

D(A,B) = D(A + Q,B + Q) (5.6)

for all A, B ∈ Pcc(X) and bounded Q ∈ P(X).
We are going to endow the set BVΦ(I;Pcc(X)) with a metric. To do

this, let F1, F2 ∈ BVΦ(I;Pcc(X)). For t, s ∈ I, s < t, and r > 0 we set

UF1,F2
r (t, s) = Φ

(
D(F1(t) + F2(s), F2(t) + F1(s))

(t − s) r

)
(t − s), (5.7)

and

Wr(F1, F2) = sup
{ m∑

i=1

UF1,F2
r (ti, ti−1)

∣∣∣∣ T = {ti}m
i=0 ∈ T (I)

}
(5.8)

(m ∈ N is arbitrary). We define a semimetric on BVΦ(I;Pcc(X)) by

∆(F1, F2) ≡ ∆Φ(F1, F2) = inf {r > 0 | Wr(F1, F2) ≤ 1}, (5.9)

and we define the metric DΦ on BVΦ(I;Pcc(X)) by

DΦ(F1, F2) = D(F1(a), F2(a)) + ∆(F1, F2). (5.10)

Below we verify that the above definitions are correct. First, let us
show that the value (5.9) is finite. Observe that

D(A,B) ≤ D(A+P,B+Q)+D(P,Q), A, B, P , Q ∈ Pcc(X), (5.11)
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since equality (5.6) and the triangle inequality for D imply

D(A,B) = D(A+P,B+P ) ≤ D(A+P,B+Q)+D(B+P,B+Q) =

= D(A+P,B+Q) + D(P,Q).

Now, if t, s ∈ I, then (5.11) and (5.6) yield

D(F1(t) + F2(s), F2(t) + F1(s)) ≤ D(F1(t), F1(s)) + D(F2(t), F2(s)),

and it follows from (5.7), (5.8), the monotonicity and convexity of Φ
that

Wr(F1, F2) ≤
1
r
(VΦ(F1) + VΦ(F2)), r ≥ 2.

Hence, limr→∞ Wr(F1, F2) = 0, and the value ∆(F1, F2) is finite.
To prove that DΦ is a metric, we need the counterpart of Lemma 3.4,

which will be useful in Section 5.3 as well.

LEMMA 5.2. Let Φ ∈ N and F1, F2 ∈ BVΦ(I;Pcc(X)). We have:
(a) if t, s ∈ I and t 
= s, then

|D(F1(t), F2(t))−D(F1(s), F2(s))|≤D(F1(t)+F2(s), F2(t)+F1(s)) ≤
≤ |t − s|Φ−1(1/|t − s|)∆(F1, F2);

(b) if ∆(F1, F2) > 0, then W∆(F1,F2)(F1, F2) ≤ 1;
(c) if r > 0, then Wr(F1, F2) ≤ 1 if and only if ∆(F1, F2) ≤ r;
(d) if r > 0 and Wr(F1, F2) = 1, then ∆(F1, F2) = r;
(e) if Fn

j ∈ BVΦ(I;Pcc(X)) (n ∈ N) and D(Fn
j (t), Fj(t))→0 as n→∞

(t ∈ I), j = 1, 2, then ∆(F1, F2) ≤ lim supn→∞ ∆(Fn
1 , Fn

2 ).

Proof. (a) If t, s ∈ I, t 
= s, then using (5.7)–(5.9) we have:

Φ
(

D(F1(t) + F2(s), F2(t) + F1(s))
|t − s| r

)
|t − s| ≤ Wr(F1, F2) ≤ 1

for all r > ∆(F1, F2), whence

D(F1(t) + F2(s), F2(t) + F1(s)) ≤ |t − s|Φ−1(1/|t − s|)∆(F1, F2).

Since, by virtue of (5.11),

D(F1(t), F2(t)) ≤ D(F1(t) + F2(s), F2(t) + F1(s)) + D(F1(s), F2(s)),

it suffices to interchange the variables t and s.
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(b) First, let us show that if conditions of Lemma 5.2(e) hold and
limn→∞ rn = r where rn > 0 and r > 0, then

Wr(F1, F2) ≤ lim inf
n→∞ Wrn(Fn

1 , Fn
2 ). (5.12)

Observe that if t, s ∈ I, then

lim
n→∞D(Fn

1 (t)+Fn
2 (s), Fn

2 (t)+Fn
1 (s)) = D(F1(t)+F2(s), F2(t)+F1(s)),

(5.13)
since the triangle inequality for D and (5.11) imply that the absolute
value of the difference between the left and right hand sides of (5.13)
is not greater than

D(Fn
1 (t)+Fn

2 (s), F1(t)+F2(s)) + D(Fn
2 (t)+Fn

1 (s), F2(t)+F1(s)) ≤

≤D(Fn
1 (t),F1(t))+D(Fn

2 (s),F2(s))+D(Fn
2 (t),F2(t))+D(Fn

1 (s),F1(s)),

and the latter expression tends to zero as n → ∞. Now, if T = {ti}m
i=0

is a partition of I, by (5.8) we have:

m∑
i=1

U
F n

1 ,F n
2

rn (ti, ti−1) ≤ Wrn(Fn
1 , Fn

2 ), n ∈ N.

Taking into account (5.7), (5.8), the continuity of Φ and (5.13) we get:

m∑
i=1

UF1,F2
r (ti, ti−1) ≤ lim inf

n→∞ Wrn(Fn
1 , Fn

2 ), T = {ti}m
i=0 ∈ T (I),

from which (5.12) follows.
To prove (b), let rn > ∆(F1, F2) =: r (n ∈ N) be such that rn → r

as n → ∞. Since, by (5.9), Wrn(F1, F2) ≤ 1, inequality (5.12) yields:
Wr(F1, F2) ≤ 1.

(c) It suffices to show only that if ∆(F1, F2)< r, then Wr(F1, F2)<1.
In fact, if ∆(F1, F2) = 0, then Wr(F1, F2) = 0 by Lemma 5.2(a), (5.7)
and (5.8). If ∆(F1, F2) > 0, then by the convexity of Φ and (b) we have:

Wr(F1, F2) ≤ (∆(F1, F2)/r)W∆(F1,F2)(F1, F2) ≤ ∆(F1, F2)/r < 1.

(d) is an easy consequence of (c).
(e) We may assume that the values α = lim supn→∞ ∆(Fn

1 , Fn
2 ) and

αn = supk≥n ∆(F k
1 , F k

2 ), n ∈ N, are finite. Since for any ε > 0 we have
αn + ε > ∆(Fn

1 , Fn
2 ), (5.9) implies Wαn+ε(Fn

1 , Fn
2 ) ≤ 1, and so (5.12)

gives: Wα+ε(F1, F2) ≤ 1. Hence, ∆(F1, F2) ≤ α + ε for all ε > 0. �

LEMMA 5.3. Let X be a normed linear space and Φ ∈ N . Then the
mapping DΦ defined by (5.7)–(5.10) is a metric on BVΦ(I;Pcc(X)).
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Proof. Let Fj ∈ BVΦ(I;Pcc(X)), j = 1, 2, 3. If DΦ(F1, F2) = 0, it
follows from (5.10) and Lemma 5.2(a) that

D(F1(t), F2(t)) = D(F1(a), F2(a)) = 0, t ∈ I, t > a,

and hence, F1(t) = F2(t) for all t ∈ I.
It is clear that DΦ is symmetric: DΦ(F1, F2) = DΦ(F2, F1).
To prove the triangle inequality for DΦ, it suffices to show that

∆(F1, F2) ≤ ∆(F1, F3) + ∆(F2, F3).

Note that, thanks to (5.11) and (5.6), the following inequality holds:

D(F1(t) + F2(s), F2(t) + F1(s)) ≤ D(F1(t) + F3(s), F3(t) + F1(s))+

+D(F2(t) + F3(s), F3(t) + F2(s)), t, s ∈ I. (5.14)

Assume that ∆(F1, F3) = 0. By Lemma 5.2(a), for all t, s ∈ I we have:

D(F1(t) + F3(s), F3(t) + F1(s)) = 0,

and hence, (5.14), (5.7) and (5.8) imply Wr(F1, F2) ≤ Wr(F2, F3) for all
r > 0, so that ∆(F1, F2) ≤ ∆(F2, F3). An analogous argument applies
in the case when ∆(F2, F3) = 0, so that ∆(F1, F2) ≤ ∆(F1, F3).

Now, let r1 =∆(F1, F3)>0 and r2 =∆(F2, F3)>0. By Lemma 5.2(b)
we have: Wr1(F1, F3) ≤ 1 and Wr2(F2, F3) ≤ 1. Taking into account
(5.14), (5.7), (5.8), the monotonicity and convexity of Φ, we get:

Wr1+r2(F1, F2) ≤
r1

r1 + r2
Wr1(F1, F3) +

r2

r1 + r2
Wr2(F2, F3) ≤ 1,

which proves that ∆(F1, F2) ≤ r1 + r2 = ∆(F1, F3) + ∆(F2, F3). �

5.3. Multivalued Composition Operators

The aim of this section is to obtain multivalued versions of Theorems
4.1, 4.3 and 4.5 for mappings of bounded generalized variation.

We assume that (X, ‖ · ‖) and (Y, ‖ · ‖) are normed linear spaces and
that K ⊂ X is a convex cone, i.e. K + K ⊂ K and rK ⊂ K, r ∈ R

+.
A multivalued operator S : K → Pcc(Y ) is said to be linear if

S(x + x′) = S(x) + S(x′), S(rx) = rS(x), ∀x, x′ ∈ K, ∀ r ∈ R
+.

Denote by L(K;Pcc(Y )) the set of all linear continuous multivalued
operators from K into Pcc(Y ). In what follows D designates the Haus-
dorff metric on Pcc(Y ).
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THEOREM 5.4. Suppose that H : KI → Pcc(Y )I is the composition
operator generated by a multivalued mapping H : I × K → Pcc(Y ) via:

(Hf)(t) ≡ H(f)(t) := H(t, f(t)), t ∈ I, f ∈ KI . (5.15)

Let Φ, Ψ ∈ N . If H maps GVΦ(I;K) or C0,1(I;K) into BVΨ(I;Pcc(Y ))
and is Lipschitzian, then there exists a function µ0 : I → R

+ such that

D(H(t, x1),H(t, x2)) ≤ µ0(t)‖x1 − x2‖, t ∈ I, x1, x2 ∈ K, (5.16)

and there exist two multivalued mappings H0 ∈ BVΨ(I;Pcc(Y )) and
H1 ∈ L(K;Pcc(Y ))I such that H(t, x) = H0(t)+H1(t)(x), t ∈ I, x ∈ K.

Moreover, if H : GVΦ(I;K) → BVΨ(I;Pcc(Y )) is Lipschitzian and
Φ < Ψ, then H(t, x) = H(t, 0), (t, x) ∈ I × K (and so H is constant).

Proof. Denote by F(I;K) either GVΦ(I;K) or C0,1(I;K) and the
generic norm there—by ‖ · ‖F . Since H : F(I;K) → BVΨ(I;Pcc(Y )) is
Lipschitzian, there exists a constant µ > 0 such that

DΨ(Hf1,Hf2) ≤ µ‖f1 − f2‖F , f1, f2 ∈ F(I;K),

so that the definition of DΨ (see (5.9) and (5.10)) implies, in particular,

∆Ψ(Hf1,Hf2) ≤ µ‖f1 − f2‖F .

If ‖f1 − f2‖F > 0, by Lemma 5.2(c) this inequality is equivalent to

Wµ‖f1−f2‖F (Hf1,Hf2) ≤ 1,

and so definitions (5.7) and (5.8) yield: if α, β ∈ I and α < β, then

Ψ
(

D((Hf1)(β) + (Hf2)(α), (Hf2)(β) + (Hf1)(α))
(β − α)µ ‖f1 − f2‖F

)
(β − α) ≤ 1.

Applying Ψ−1 and taking into account (5.15) we arrive at the inequality
which is the counterpart of (4.4):

D
(
H(β, f1(β)) + H(α, f2(α)),H(β, f2(β)) + H(α, f1(α))

)
≤

≤ µ‖f1 − f2‖F (β − α)Ψ−1(1/(β − α)). (5.17)

To prove (5.16), we follow the arguments in step 2 of the proof of
Theorem 4.1 with xj ∈ K in (4.5) and (4.9), use (5.17) instead of (4.4)
and take into account the translation property (5.6) of D. Consequently,
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setting ωΦ(r) = rΦ−1(1/r) and ω0,1(r) = r, Φ ∈ N , r > 0, we obtain
inequality (5.16) with

µ0(t) =

{
µ ωΨ(b − a)(1 + 1/ωF (b − a)) if t = a,

µ ωΨ(t − a)/ωF (t − a) if a < t ≤ b,

where ωF = ωΦ if F = GVΦ and ωF = ω0,1 if F = C0,1.
For a ≤ α < β ≤ b and x1, x2 ∈ K define Lipschitzian mappings

fj : I → K by

fj(t) =
1
2

(
ηα,β(t)(x1 − x2) + xj + x2

)
, t ∈ I, j = 1, 2,

where ηα,β is defined in (4.3). Substituting them into (5.17) we have:

D

(
H(β, x1) + H(α, x2),H

(
β,

x1 + x2

2

)
+ H

(
α,

x1 + x2

2

))
≤

≤ µ ‖(x1 − x2)/2‖ωΨ(β − α). (5.18)

Since H maps F(I;K) into BVΨ(I;Pcc(Y )) and constant mappings
belong to F(I;K), H( · , x) = H(x) ∈ BVΨ(I;Pcc(Y )) for all x ∈ K,
so that, by Lemma 2.1(d), H( · , x) is absolutely continuous. Letting
β − α → 0 in (5.18) in such a way that [α, β] � t, where t ∈ I, we get,
by virtue of (4.13),

D

(
H(t, x1) + H(t, x2),H

(
t,

x1 + x2

2

)
+ H

(
t,

x1 + x2

2

))
= 0,

and so, since D is a metric and H takes convex values,

H(t, x1) + H(t, x2) = H
(
t,

x1+x2

2

)
+ H

(
t,

x1+x2

2

)
= 2H

(
t,

x1+x2

2

)
.

Hence, for every t ∈ I the multivalued operator H(t, · ) : K → Pcc(Y )
satisfies the Jensen equation:

1
2

(
H(t, x1) + H(t, x2)

)
= H

(
t,

x1 + x2

2

)
, x1, x2 ∈ K.

It follows (cf. [40, Thm. 5.6]) that for every t ∈ I there exists a set
H0(t) ∈ Pcc(Y ) and an additive multivalued operator H1(t)(·) : K →
Pcc(Y ), i.e. H1(t)(x1 + x2) = H1(t)(x1) + H1(t)(x2) for all x1, x2 ∈ K,
such that

H(t, x) = H0(t) + H1(t)(x), x ∈ K. (5.19)

In view of (5.16), the operator H1(t)(·) is continuous, and since it
is additive, it is also linear (cf. [40, Thm. 5.3]), i.e. H1 maps I into

POST94.tex; 15/04/2006; 11:27; no v.; p.34



Generalized Variation of Mappings, Composition Operators and Multifunctions 35

the space L(K;Pcc(Y )). Hence, H1(t)(0) = {0} for all t ∈ I and,
therefore, (5.19) implies H(t, 0) = H0(t) for all t ∈ I. Consequently,
H0 ∈ BVΨ(I;Pcc(Y )).

If Φ < Ψ, note that the counterpart of (4.7) is the inequality:

D(H(β, x1),H(β, x2)) ≤ µ‖x1 − x2‖ωΨ(β − α)/ωΦ(β − α), (5.20)

which holds for all a ≤ α < β ≤ b and x1, x2 ∈ K. Setting β = t for
a < t ≤ b, x1 = x ∈ K and x2 = 0 and passing to the limit as α → t−0
in (5.20) and applying Lemma 4.2 we get: D(H(t, x),H(t, 0)) = 0.
Hence, H(t, x) = H(t, 0) for all a < t ≤ b and x ∈ K, and it suffices to
take into account the continuity of H( · , x). �

Remark 5.1. Observe that a theorem similar to Theorem 4.3 is valid
for multivalued composition operators. We omit the details.

Remark 5.2. If K is a linear subspace of X, then, due to its additiv-
ity, the operator H1(t)(·) in (5.19) is single-valued for all t ∈ I: in fact,
if x ∈ K, then (−x) ∈ K, and so H1(t)(x) + H1(t)(−x) = {0}.

Finally, we extend Theorem 4.5 onto multivalued composition oper-
ators. Let Y be a Banach space. The set BV1(I;Pcc(Y )) is a met-
ric space with the metric D1 defined by (5.7)–(5.10) with Φ(ρ) = ρ.
Suppose that a multivalued mapping H : I × K → Pcc(Y ) is such
that H( · , x) ∈ BV1(I;Pcc(Y )) for all x ∈ K. Since Y is complete,
(Pcc(Y ),D) is a complete metric space (cf. [3, Thm. II-14]), so that any
mapping from BV1(I;Pcc(Y )) has one-sided limits at each point of I.
The left regularization H∗ : I × K → Pcc(Y ) of H is defined by

H∗(t, x) = lim
s→t−0

H(s, x), a < t ≤ b, H∗(a, x) = lim
t→a+0

H∗(t, x),

for all x ∈ K, where the limits are taken with respect to the Hausdorff
metric D on Pcc(Y ). Then H∗( · , x) ∈ BV1(I;Pcc(Y )) is left continuous
on (a, b] for all x ∈ K.

THEOREM 5.5. Let X be a normed linear space, K ⊂ X a convex
cone, Y a Banach space and Φ∈N . Suppose that H : KI → Pcc(Y )I

is the composition operator generated by a multivalued mapping H :
I×K→Pcc(Y ) according to (5.15). If H maps GVΦ(I;K) or C0,1(I;K)
into (BV1(I;Pcc(Y )),D1) and is Lipschitzian, then there exists a func-
tion µ0 : I → R

+ such that

D(H∗(t, x1),H∗(t, x2)) ≤ µ0(t)‖x1 − x2‖, t ∈ I, x1, x2 ∈ K,

and there exist a multivalued mapping H0 ∈ BV1(I;Pcc(Y )), left con-
tinuous on (a, b], and a mapping H1 : I → L(K;Pcc(Y )) such that

H∗(t, x) = H0(t) + H1(t)(x), t ∈ (a, b], x ∈ K.
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The proof of this theorem can be easily compiled from the proofs of
Theorems 4.5 and 5.4 with Ψ(ρ) = ρ, and so we omit it. The only new
ingredient consists of replacing mappings fj from (4.26) by Lipschitzian
mappings fj : I → K defined by

fj(t) =
1
2

(
ηn(t)(x1 − x2) + xj + x2

)
, t ∈ I, xj ∈ K, j = 1, 2,

and taking into account the (continuity) equality similar to (5.13) while
passing to the limit as α1 → t−0 (cf. step 2 in the proof of Theorem 4.5).
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11. Čoban, M. M.: 1968, Multivalued mappings and Borel sets. (in Russian) Dokl.
Akad. Nauk SSSR 182, 514–517. English transl.: Soviet Math. Dokl. 9 (1968),
1175–1178.

12. Day, M. M.: 1958, Normed Linear Spaces. Springer-Verlag, Berlin.
13. Dunford, N. and Schwartz, J. T.: 1958, Linear Operators. Part I: General

Theory. Wiley-Interscience, New York.
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