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Abstract Let G = SLn(C)nCn be the (special) affine group. In this paper we study the representation theory

of G and in particular the question of rationality for V/G, where V is a generically free G-representation. We

show that the answer to this question is positive (Theorem 6.1) if the dimension of V is sufficiently large and

V is indecomposable. We explicitly characterize two-step extensions 0 → S → V → Q → 0, with completely

reducible S and Q, whose rationality cannot be obtained by the methods presented here (Theorem 5.3).

Keywords rationality, linear group quotients, affine groups

MSC(2000): 14E08, 14M20, 14L24
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1 Introduction

The well-known rationality problem in invariant theory asks whether V/G is always rational if V is
a linear representation of a connected linear algebraic group G over C. This seems to be extremely
difficult, in general. However, it becomes a little more accessible if the unipotent radical of G is large
in a certain sense, of which Miyata’s theorem is the first example: if the action of G on V can be made
triangular, then V/G is rational. We will give further evidence for the previous viewpoint in this paper
by studying generically free quotients V/G, where G = SLn(C) n Cn is the special affine group. In
fact, if V is indecomposable and of sufficiently large dimension, these quotients are always rational, cf.
Theorem 6.1 and Theorem 5.3 below. Some indecomposability assumption is really needed as there are
families of decomposable generically free and arbitrarily large G-representations for which a proof of
rationality amounts to proving stable rationality of level 1 for all generically free SLn(C)-representations,
which is expected to be a hard problem, cf. Remark 5.4. One should also note that many rationality
questions for reductive groups reduce to parabolic subgroups by the method of taking sections for the
action. We remark that the methods of this paper apply, in principle, more generally to the affine groups
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GLn(C) n Cn, Spn(C) n Cn, SOn(C) n Cn and other affine extensions of semisimple groups, or even
to other nilpotent extensions of reductive groups where one knows stable rationality of some level for
the reductive part such as jet groups. However, treating all cases uniformly might have rendered the
presentation less transparent, and we decided to focus on a sample case to illustrate the methods.

2 Preliminaries

We begin by recalling some standard facts and conventions. Throughout this paper, we work over the
complex numbers.

(A) Let G be a connected linear algebraic group; it is an extension

1 → U → G → R → 1,

where U is the unipotent radical of G, and R is the reductive part (representations of it are completely
reducible). Thus U is nilpotent as a group (the descending central series terminates in the trivial group),
and all the elements u of U are unipotent, i.e., n = 1 − u is nilpotent. Then G is a semidirect product
G = Rn U (Levi decomposition) and the reductive part may be written as

R = (T × S)/C,

where T is a torus, S is semisimple, and C is a finite central subgroup. A (finite-dimensional) G-
representation V has a Jordan-Hölder filtration

(0) ⊂ V0 ⊂ V1 ⊂ · · · ⊂ Vl−1 ⊂ Vl = V (1)

by G-invariant subspaces such that the quotient Vi+1/Vi is a completely reducible G-representation (so
U acts trivially on Vi+1/Vi) and maximal with that property.

(B) If Γ is any linear algebraic group (G, U, . . .), and W is a Γ-representation, then W/Γ will always
denote the quotient in the sense of Rosenlicht, i.e., a birational model of C(W )Γ.

(C) The groups G = SLn(C) and G = SAffn(C) = SLn(C)nCn are special (every étale locally trivial
principal G-bundle is Zariski locally trivial), so for a generically free G-representation V , V/G is stably
rational of level dimG (= n2 − 1 resp. n2 − 1 + n).

(D) Let U = Cn be the n-dimensional additive group (which occurs as unipotent radical, e.g., in the
affine group SLn(C)nCn).

Lemma 2.1. Let 0 → A → B → C → 0 be an exact sequence of U -representations such that the U

action on A and C is trivial. Then B/U → C/U = C is birationally a vector bundle over C.

Proof. After choosing a section σ0 of the projection B → C, B becomes a trivial vector bundle A⊕C

over C with zero section σ0. The U -orbit of σ0 inside B is then generically a vector subbundle of B: an
element t ∈ Cn acts on the fibre A × {c0} as (a, c0) 7→ (a + t(c0), c0) via translations. Thus U · σ0 is a
family of vector subspaces in each fibre, trivialized by the sections e1 · σ0, . . . , en · σ0, where e1, . . . , en is
a basis of Cn, over some open set in C (where the dimension of the space of translations they span is the
generic one). Then B/U may be identified with the quotient bundle B/U · σ0. 2

3 Representations of affine groups

In this section we review the representation theory of the affine group. See also [9] for more details. Let
SAffn(C) = SLn(C)nCn be the n-dimensional special affine group. Sometimes we will write U = Cn to
avoid confusion, when we consider it as a subgroup of SAffn(C). Elements of SAffn(C) can be written in
matrix form as

(
A v

0 1

)
,
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where A ∈ SLn(C) ⊂ Cn×n, v is a vector in Cn×1, and 0 ∈ C1×n. Thus we can write elements g ∈
SAffn(C) as g = (A, v), and matrix multiplication yields

(A, 0) · (id, v) = (id, Av) · (A, 0). (2)

Let V be an N -dimensional representation of SAffn(C). In a suitable basis, the image of the additive
subgroup Cn (of pairs (id, v)) under % : SAffn(C) → Aut(V ) = GLN (C) is contained in the unipotent
subgroup UN of upper triangular N × N matrices with ones on the diagonal, which is an affine space.
Thus

%(v) =
∑

|α|6d

Fαvα, (3)

where α = (α1, . . . , αn) ∈ Nn is a multi-index, |α| = α1 + · · ·+ αn, vα = vα1
1 · · · vαn

n as usual, and Fα is
in MatN×N (C). The representation V has two natural filtrations:

0 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ Vl−1 ⊂ Vl = V, (4)

and

0 ⊂ V ′
0 ⊂ V ′

1 ⊂ · · · ⊂ V ′
l−1 ⊂ V ′

l = V, (5)

which are defined inductively as follows: Qi := Vi/Vi−1, for i = 0, . . . , l (we put V−1 = 0), is the maximal
completely reducible subrepresentation of V/Vi−1; and Q′l−j := V ′

l−j/V ′
l−j−1, for j = 0, . . . , l, is the

maximal completely reducible quotient representation of V ′
l−j . Thus

V = Q0 ⊕Q1 ⊕ · · · ⊕Ql = Q′0 ⊕ · · · ⊕Q′l

as SLn(C)-representations (this is sometimes called the semisimplification of V ).

Remark 3.1. The two methods of filtering a representation of the affine group are related to duality
as follows: if V has a filtration of type (4) with quotients Qi = Vi/Vi−1, then the dual W := V ∨ has a
filtration

0 ⊂ W ′
0 ⊂ W ′

1 ⊂ · · · ⊂ W ′
l−1 ⊂ W ′

l = W

of type (5) with W ′
l−j/W ′

l−j−1 =: Q′l−j = Q∨j .

First we consider filtrations of type (4), and unless explicitly stated otherwise, the term filtration will
mean filtration of type (4). Since ρ(exp(u)) = exp(d%e(u)) for the linearization d%e : Cn → End(V ), we
see that d in formula (3) can be chosen equal to l. More precisely, %(v) is represented by some N × N

block matrix



Idq0 N01 N02 . . . N0l

0 Idq1 N12 . . . N1l

...
...

...
. . .

...

0 0 . . . Idql−1 Nl−1,l

0 0 0 . . . Idql




, (6)

where qi = dim Qi, Nij is a qi × qj-matrix depending on v, Nij = Nij(v), and Nij(v) is a polynomial
in v of total degree 6 j − i. Clearly SAffn(C) is a subgroup of SLn+1(C) in the natural way, and every
SLn+1(C)-representation yields an SAffn(C)-representation by restriction. In particular, Syml(Cn+1)∨

yields an SAffn(C)-representation with a filtration

0 ⊂ S0 ⊂ · · · ⊂ Sl,

such that Si/Si−1 = Symi(Cn)∨ as SLn(C)-representations (the action of SAffn(C) on affine functions of
degree less than or equal to l).
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Proposition 3.2. Every representation V of the group SAffn(C) with a filtration as in (4) is a
subrepresentation of

V0 ⊗ Syml(Cn+1)∨

with filtration induced from

0 ⊂ V0 ⊂ V0 ⊗ S1 ⊂ · · · ⊂ V0 ⊗ Sl−1 ⊂ V0 ⊗ Sl = V0 ⊗ Syml(Cn+1)∨ .

Proof. Let v, w ∈ U = Cn, A ∈ SLn(C) and x ∈ V . Then

%(v)(%(A)x) = %(A)(%(A−1v)x) =
∑

|α|6l

%(A)Fα(x)(A−1v)α

and
%(v)(%(w)x) =

∑

|α|6l

Fα(x)(v + w)α,

which means that there is an SAffn(C)-equivariant map

V → (V0 ⊕ V1/V0 ⊕ · · · ⊕ Vl/Vl−1)⊗ Syml(Cn+1)∨,

x 7→ fx,

where fx is the (affine) polynomial function on U = Cn (with coefficients in V viewed as Q0 ⊕ · · · ⊕Ql

now as SAffn(C)-module!) given by
fx(v) = %(v)(x).

There is an SAffn(C)-equivariant projection

(V0 ⊕ V1/V0 ⊕ · · · ⊕ Vl/Vl−1)⊗ Syml(Cn+1)∨ → V0 ⊗ Syml(Cn+1)∨.

It gives us an SAffn(C)-equivariant map

ι : V → V0 ⊗ Syml(Cn+1)∨,

and it remains to check injectivity for this map. Injectivity follows from the assumption that the filtration
(4) is such that the Qi+1 are maximal completely reducible subrepresentations of V/Vi in each step (we
will actually only be using that Q0 is the maximal completely reducible submodule of V in the proof
of the proposition and the full assertion in the proof of the following corollary): for assuming to the
contrary that injectivity fails. By SLn(C)-equivariance this is equivalent to saying that there exists an
SLn(C)-irreducible summand S of V = Q0⊕ · · · ⊕Ql which is mapped to 0 under ι. Then the SAffn(C)-
span S̄ of S in V is contained entirely in QI ⊕ · · · ⊕ Ql for some I > 1. But S̄ contains a completely
reducible submodule (a minimal SAffn(C)-submodule) which intersects Q0 trivially. This contradicts the
maximality of Q0. 2

Corollary 3.3. For a representation V of SAffn(C) as above we have for j > i

Qj ⊂ Qi ⊗ Symj−i(Cn)∨

as SLn(C)-representations.

Proof. It suffices to show that Qi ⊂ Q0 ⊗ Symi(Cn)∨ follows from the previous Proposition 3.2. The
general case follows by replacing V by V/Vi−1. We have the SAffn(C)-equivariant map

ι : V → V0 ⊗ Syml(Cn+1)∨,

and, in particular, an induced SLn(C)-equivariant map

Qi → Q0 ⊗ Symi(Cn)∨,
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which is the restriction of the previous map to Qi composed with the SLn(C)-equivariant projection.
We just have to prove it is nonzero on every irreducible summand S of Qi. If it were zero on S then
Q0 ⊕Q1 ⊕ · · · ⊕Qi−1 ⊕ S, and also the SAffn(C)-submodule S̄ generated by it, would be mapped under
ι to the SAffn(C)-submodule V0 ⊗ Symi−1(Cn+1)∨ of V0 ⊗ Syml(Cn+1)∨. This would mean that S̄ has a
filtration

0 ⊂ S̄0 ⊂ · · · ⊂ S̄i−1 = S̄

with completely reducible quotients, which contradicts the fact that the Qi+1 are the maximal completely
reducible subrepresentations of V/Vi in each step (here we are using this fact in its full strength). 2

Let us now consider filtrations of type (5) and dualize the statements in Proposition 3.2 and Corol-
lary 3.3.

Proposition 3.4. Let V be a representation of SAffn(C) with a filtration of type (5) :

0 ⊂ V ′
0 ⊂ V ′

1 ⊂ · · · ⊂ V ′
l−1 ⊂ V ′

l = V

with Q′l−j := V ′
l−j/V ′

l−j−1, for j = 0, . . . , l, the maximal completely reducible quotient representation of
V ′

l−j. Then V is a quotient of Q′l ⊗ Syml(Cn+1) and for i 6 j,

Q′i ⊂ Q′j ⊗ Symj−i(Cn) .

Proof. The maximal completely reducible subrepresentation of V ∨ is (Q′l)
∨, so by Proposition 3.2, V ∨

is a subrepresentation of (Q′l)
∨⊗Syml(Cn+1)∨ from which the first assertion follows. By Remark 3.1 and

Corollary 3.3, one has for t > s,

(Q′l−t)
∨ ⊂ (Q′l−s)

∨ ⊗ Symt−s(Cn)∨,

from which the second assertion follows putting i = l − t, j = l − s and dualizing. 2

4 Minimal subvarieties of Severi-Brauer varieties

References for the theory of Severi-Brauer varieties are [1, 5, 8]. Recall that a Severi-Brauer variety
P over a field K is a K-form of the projective space, i.e., PK̄ ' PK̄ , over an algebraic closure of K.
Thus a fibration X → Y which is generically a projective bundle in the étale topology over Y gives
rise to a Severi-Brauer variety over the function field K = C(Y ). If A is an Azumaya (central simple)
algebra of degree n over K (i.e., A⊗K K̄ ' Matn×n(K̄)), then the set of all minimal (i.e., dimension n)
right ideals I of A is a closed subvariety PA of Grass(n, A) defined by the conditions that I is a right
ideal. This is a Severi-Brauer variety as can be seen from the fact that for A ' Matn×n(K) = End(V )
the right ideals of dimension n are in bijective correspondence with P(V ) by associating with a one-
dimensional subspace l in the n-dimensional K-vector space V those f ∈ End(V ) with image contained
in l. Conversely, any Severi-Brauer variety arises in this way since both isomorphism classes of Severi-
Brauer varieties of dimension n−1 over K and isomorphism classes of degree n Azumaya algebras over K

are classified by the nonabelian Galois cohomology set H1(Gal(K̄/K), PGLn(K̄)) = H1(K, PGLn(K̄))
(noting PGLn(K̄) = Aut(Matn×n(K̄)), so the automorphism groups over K̄ of K-forms of projective
space and K-forms of matrices are the same). The inductive limit H1(K, PGL∞) of the sets H1(K, PGLn)
via the maps H1(K, PGLn) → H1(K, PGLmn) (diagonal embedding) carries a natural group structure
induced by the tensor product PGLn × PGLm → PGLm×n. Then there is the isomorphism

H1(K, PGL∞) ' Br(K)

with the Brauer group Br(K) of K, and each Severi-Brauer variety P has its class [P ] ∈ Br(K). We need
the following two lemmas linking the birational geometry and algebra of Severi-Brauer varieties.

Lemma 4.1. If D is a division algebra over K and A = Matr×r(D) then the associated Severi-Brauer
variety PA over K is birational to the projectivisation of a vector bundle on PD.
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Proof. Let e be an idempotent with eAe = D and let PA → PD be the map that sends a right ideal I

in A to eIe. After base change to κ = K(PD), the generic point of PD, this map can be identified with
the projection

π : P(V ⊕r
κ ) = PA ⊗ κ → P(Vκ) = PD ⊗ κ

onto a summand. Note that κ is a splitting field for both D and A. The generic fibre of PA → PD is the
preimage of the point defined by the generic point in PD ⊗ κ under π. 2

Lemma 4.2. If two Severi-Brauer varieties P1 and P2 over K are stably birationally isomorphic over
K, then [P1] and [P2] generate the same subgroup of Br(K) and conversely. More precisely, if P1 and P2

are both of rank r, then
P1 ×K Pr ' P2 ×K Pr,

where ' denotes birational equivalence.

Proof. This follows from Amitsur’s theorem (Theorem 5.4.1 of [5]) that the kernel of Br(K) →
Br(K(P )) for a Severi-Brauer variety P over the function field K is generated by the class of [P ], and
from the fact that Br(K(P )) → Br(K(P )(t)) is injective for an indeterminate t. See [5, Remark 5.4.3]
for the converse. 2

Lemma 4.3. Suppose S1 is some rank r Severi-Brauer variety over K. Then the class n[S1] ∈ Br(K)
is also representable by a Severi-Brauer variety of rank r.

Proof. By hypothesis, S1 corresponds to an Azumaya algebra A of degree r + 1 over K. The index
of A⊗n divides the index of A (see [5, Proposition 4.5.8]). Recall that the index of an Azumaya algebra
is the degree of the unique division algebra in its Brauer equivalence class. In other words, there is an
Azumaya algebra of the same degree as A which represents the class of n[S1]. 2

Proposition 4.4. Let
0 → V0 → V → Q1 → 0

be a two-step filtration of a generically free G-representation V , where G is the special affine group
SAffn(C) (this means here simply that V0 is some completely reducible subrepresentation, and Q1 is a
completely reducible quotient). Assume that SLn(C)/(Z/mZ) acts generically freely on the quotient Q1

for some m | n. Suppose moreover that dimV0 > n2 + 2n. Then V/G is rational.

Proof. Look at the fibre product diagram

X −−−−→ V ′/SLn(C)
y

y
(Q1 ⊕ Cn)/SLn(C) −−−−→ Q1/SLn(C),

where V ′ = V/U . Here X is a vector bundle over both V ′/SLn(C) and (Q1 ⊕ Cn)/SLn(C). This follows
from the no-name lemma of [4] because the action of SLn(C) on both V ′ and Q1⊕Cn is generically free.
This means that if we divide out homotheties in the fibres and consider the Severi-Brauer varieties

S1 : P(V ′)/SLn(C) → Q1/SLn(C),

S2 : (Q1 ⊕ P(Cn))/SLn(C) → Q1/SLn(C),

then S1 and S2 are stably equivalent Severi-Brauer varieties. By Lemma 4.2, S1 and S2 generate the
same subgroup of Br(K), where K = C(Q1/SLn(C)). By Lemma 4.3, the class of S1 is also represented
by some Pn−1-bundle S′. By Lemma 4.2, S′ and S2 are stably equivalent of level n − 1. Moreover, S2

is stably rational of level n2. Furthermore, by Lemma 4.1, S1 is birational to a vector bundle over S′

provided its rank is bigger than n − 1. If the rank of S1 is bigger than n2 + n − 1, we consequently get
rationality of S1 from the stable rationality of level n2 of S′. The latter follows because S2 is stably
rational of level n2 and S′ and S2 are stably equivalent of level n − 1, and n2 > n − 1. Together with
rationality for S1 we obtain of course also rationality of V/G. Finally the rank of S1 is bigger than or
equal to dimV0 − n− 1 (the subgroup Cn still acts via translations). Hence the assertion holds. 2
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5 Rationality for 2-step extensions

Definition 5.1. We call an SLn(C)-representation W bad if no group isogeneous to SLn(C) (i.e.,
obtained from SLn(C) by quotienting by a finite subgroup of its centre) acts generically freely on W . If
n > 9 the irreducible bad representations are

Λ2(Cn), S2(Cn), Cn, C, Ad0 = Σ(2,1,...,1, 0)(Cn)

or one of the duals (where Ad0 is the trace zero part of the adjoint representation and Σ denotes the
Schur functor). Every bad representation is a direct sum of bad irreducible representations. If W is not
bad we will also say that W is good.

Remark 5.2. For given n there are —up to addition of trivial summands C—only finitely many bad
representations. Indeed, every bad SLn(C)-representation is a direct sum of irreducible bad ones, and for
each of the irreducible bad representations R other than C (they are all listed in an appendix table of
[6]) it is true that there is a t such that Rt = R⊕ · · · ⊕R (t-times) is good.

Theorem 5.3. If V is a generically free G-representation with a filtration of type (5) of length l = 2,
then we can write V as V = V1 ⊕W , where V1 has a length 2 filtration

0 → S → V1 → Q → 0

with S ⊂ Q ⊗ Cn, Q ⊂ S ⊗ (Cn)∨, W is an SLn(C)-representation, and V1 does not split off another
SLn(C)-representation. Then V/G is rational if

(A) there exists an SLn(C)-equivariant decomposition W = W1 ⊕ W2 such that Q ⊕ W2 is good and
dim(S ⊕W1) > n2 + 2n; or

(B) Q contains > n2 − 1 copies of C.

Proof. Assertion (A) of the theorem follows from Proposition 4.4. For Part (B), remark that if Q does
contain more than n2 − 1 copies of C then there is a natural (G, SLn(C))-section for the action of G on
V . Namely, writing Q := Q′ ⊕ C, the action of U on V gives an SLn(C)-equivariant map

U ' Cn → Hom(Q′ ⊕ C, S) → Hom(C, S) ' S,

and the map of Cn to S cannot be zero, hence must be an inclusion, since otherwise the action of U on
the summand C in Q would be trivial and hence S would not be maximal with the property of being
a completely reducible subrepresentation of V1. So S = S′ ⊕ Cn, and as (G, SLn(C))-section we take
S′ ⊕ Q ⊕W . Now Q = Q′′ ⊕mC with m > n2 − 1. By assumption, SLn(C) operates generically freely
on S′ ⊕Q⊕W and therefore also on S′ ⊕Q′′ ⊕W . But then (S′ ⊕Q⊕W )/SLn(C) is generically a rank
m vector bundle over (S′ ⊕Q′′ ⊕W )/SLn(C) which is in turn stably rational of level n2 − 1. It follows
that V is also rational in this case. 2

Remark 5.4. There are cases of generically free G-representations V which do not satisfy the hy-
potheses of Theorem 5.3 and for which a proof of rationality for V/G seems to be a difficult problem:
take V = Cn+1 ⊕ W , where W is an irreducible generically free SLn(C)-representation. Then, as in
the preceding proof, V has a (G, SLn(C))-section C ⊕W . Thus, if we could prove rationality for V/G,
we would obtain stable rationality of level 1 for W/SLn(C), which is expected to be a hard problem in
general.

Definition 5.5. We call a G-representation V with a length two filtration exceptional if it does not
satisfy the hypotheses of Theorem 5.3. Hence we cannot conclude that V/G is rational immediately by
the methods here. More precisely, if we write V = V1 ⊕ W as above, this means that either V is not
generically free or it is so but

(1) for all decompositions W = W1 ⊕W2, Q⊕W2 is bad or dimS ⊕W1 < n2 + 2n; and
(2) Q contains < n2 − 1 copies of C.

For later use, and to characterize exceptional two-step representations, we prove the following technical
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Lemma 5.6. Let
0 → S → V → Q → 0

be an exact sequence of G-representations with S the maximal completely reducible submodule of V .
Assume that

(a) the maximal completely reducible quotient of Q is good as SLn(C)-representation ;
(b) the maximal completely reducible subrepresentation of Q is not one of the following finitely many

(bad) SLn(C)-representations:

R1 = Cn or R2 = Λ2(Cn)∨ or R3 = C⊕ · · · ⊕ C⊕ (Cn)∨ ⊕ · · · ⊕ (Cn)∨

(at most (n− 1)-summands in total in R3).
Then V is generically free as G-representation.

Proof. From (a) one gets that V is generically free for SLn(C). We argue by contradiction and
suppose that V is not generically G-free. This means that for general v ∈ V there exists an element
(A, t) ∈ G = SLn(C)nCn with t 6= 0 such that

(
ϕ1(A) ψ(A, t)

0 ϕ2(A, t)

)(
v1

v2

)
=

(
v1

v2

)
,

where v1 and v2 are the components of v w.r.t. the SLn(C)-equivariant splitting V = S ⊕Q and ϕ1(A),
ϕ2(A, t) and ψ(A, t) denote the components of (A, t) relative to the representation V in End(S), End(Q)
and Hom(Q, S), respectively. Since a group isogeneous to SLn(C) acts generically freely on the maximal
completely reducible quotient of Q, we obtain that A is multiplication by some root of unity ζA. Thus
there exists an element v0

1 ∈ S such that for almost all v2 ∈ Q we get the equation

ψ(A, t)v2 = (1− ϕ1(A))v0
1 .

We consider the variety

M := {(A, t, v2) ∈ Cn×n × (Cn\{0})×Q | ψ(A, t)v2 = (1− ϕ1(A))v0
1}.

By the discussion above, the projection to Q of M is dominant, and since M is the union of components
Mζ corresponding to different ζ’s, one of them will dominate Q, so that we can consider ζ = ζ0 and also
A = A0 as fixed. Now consider the projection

p : Mζ0 → P(Cn) = P(U),

(A0, t, v2) 7→ [t].

For a [t0] in the image of p with maximal fibre dimension, we get

dim p−1(t0) > dimMζ0 − (n− 1) > dimQ− (n− 1).

And since for w ∈ p−1(t0) fixed and general v2 ∈ p−1(t0) we have ψ(A0, t0)(v2 − w) = 0, we get

dimker(ψ(A0, t0)) > dim p−1(t0) > dimQ− (n− 1) .

We may view ψ(A0, ·) as a family of SLn(C)-equivariant homomorphisms

ψi(A0, ·) : Symi(Cn) → Hom(Qi, S)

for i between 1 and the filtration length L of V (thus there is a natural grading). By SLn(C)-equivariance

dimker(ψ(A0, t)) > dimQ− (n− 1)
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for all t. We now work on Pn−1 = P(U), and, since H0(P(U), O(1)) = U∨, we may view ψ as giving rise
to maps of vector bundles

0 −−−−→ ker(ψ)(A0, ·) −−−−→
⊕L

i=1 Qi ⊗O(−i + 1)
ψ(A0,·)−−−−−→ S ⊗O(1),

where ker(ψ)(A0, ·) is a vector bundle by SLn(C)-equivariance. We will suppress A0 from the notation in
the sequel and restate our basic inequality in the form

rk(ker(ψ)) + dimP(U) > dimQ. (7)

Now factor ψ: ⊕L
i=1 Qi ⊗O(−i + 1) α−−−−→ im(ψ)

β−−−−→ S ⊗O(1) .

Since by (7) we have n− 1 > rk(im(ψ)) one can only have

im(ψ) = TPn−1(k) or im(ψ) = Ω1
Pn−1(k) or

⊕l
i=1O(ki), l 6 n− 1.

We will now narrow down the number of possibilities for im(ψ) even further. The map induced by
the bundle map ψ on the H0-level corresponds to the map Cn → Hom(Q1, S), where Q1 is the maximal
completely reducible subrepresentation of Q, thus is nonzero and hence

H0(im(ψ)) 6= 0 and H0((im(ψ))∨(1)) 6= 0 . (8)

Using (8), we find that im(ψ) can only be one of the following:

T (−1), Ω1(2), (X0 ⊗O)⊕ (X1 ⊗O(1))⊕ · · · ⊕ (XL−1 ⊗O(−(L− 1))).

Here X0, . . . , XL−1 are some SLn(C)-representations since we are looking at homogeneous vector bundles.
We have H0(Ω(2)) = Λ2(Cn)∨, H0(T (−1)) = Cn, and all X’s must be direct sums of trivial represen-
tations C since rk(im(ψ)) 6 n− 1. We will argue that none of these cases can actually occur under the
hypotheses of the lemma. For in the induced sequence

Q1 ⊗O α−−−−→ im(ψ)
β−−−−→ S ⊗O(1),

the arrows α and β are equivariant. Hence it follows in each of the three cases above that Q1 contains
R1 = Cn or R2 = Λ2(Cn)∨ or a direct sum

R3 = C⊕ . . .C⊕ (Cn)∨ ⊕ · · · ⊕ (Cn)∨

(at most (n− 1)-copies in total since rk(im(ψ)) 6 n− 1) and the arrow α is induced by the arrows in the
Euler sequence

0 −−−−→ O(−1) −−−−→ Cn ⊗O −−−−→ TPn−1(−1) −−−−→ 0,

and the identity map O → O. Hence there are two possibilities:
• Q1 is equal to R1, R2 or R3 which is impossible by Assumption (b).
• Q1 ⊗O splits as (Rj ⊕Q′1)⊗O, and Q′1 is a nonzero subrepresentation of Q1 which is in the kernel

of ψ. This contradicts the hypothesis that S is maximal with the property of being completely reducible
inside V . 2

Corollary 5.7. Let V = V1 ⊕W , 0 → S → V1 → Q → 0, be an exceptional two step representation
(notation as in Theorem 5.3). If Q contains < n2 − 1 summands of C, then there are only finitely many
possibilities for Q and S for any fixed n.

Proof. Suppose V is exceptional because the action of G on it, hence on V1, is not generically free.
Then by Lemma 5.6, Q must be bad and by Remark 5.2, since it contains < n2−1 summands of C, there
are only finitely many possibilities for Q, hence since S ⊂ Q ⊗ Cn also finitely many possibilities for S.
If V is generically free, but (1) of Definition 5.5 is satisfied, then the dimension of S must be < n2 + 2n
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or Q must be bad, which in view of S ⊂ Q⊗Cn and Q ⊂ S⊗ (Cn)∨ again limits both S and Q to finitely
many possibilities. 2

Corollary 5.8. If V is a G-representation of large enough filtration length l (with respect to filtration
types (4) or (5)), then V is generically free.

Proof. There are two cases.
(1) Ql in the type (4)-filtration for V is good. Then Ql−1 → V/Vl−2 → Ql is a quotient of V which is

generically free by Lemma 5.6, so V is generically free.
(2) Ql is bad, a sum of irreducible bad representations. The G-span of Ql is contained in Ql ⊗

Syml(Cn+1). We use the following immediate consequence of the Littlewood-Richardson rule:
For an irreducible SLn(C)-representation W = Σ(λ1,...,λn)(Cn), λ1 > · · · > λn > 0 a non-increasing

sequence of non-negative integers, put λ(W ) := λ1(W )− λ2(W ). Then, if U is an irreducible summand
of W ⊗ Symk(Cn), we have λ(U) > k − λ1(W ).

Since λ and λ1 are bounded on irreducible bad representations, we see that if l is sufficiently large,
then we can assume the following properties for V :

(a) V is an extension V1 → V → V2 of G-representations with V1 generically free for the action of
SLn(C) (we can also take V1 as a length two G-representation).

(b) the quotient V2 of V has a length two subrepresentation which is generically free for G (use
Lemma 5.6).

By upper-semicontinuity of the dimension of the stabilizers, the generic stabilizer in V2 is finite. Suppose
that the generic stabilizer in V are nontrivial. Then, denoting by v = (v1, v2) the decomposition of a
vector v ∈ V with respect to the SLn(C)-equivariant splitting V = V1 ⊕ V2, we get: there exists a (fixed)
v2 ∈ V2 such that for general v1 ∈ V1 the stabilizer Gv of v = (v1, v2) inside G is finite and nontrivial,
and is contained in the (fixed) finite group Gv2 ⊂ G. Since SLn(C) is a reductive Levi subgroup in G,
hence maximal reductive, and Gv2 is finite, there is an element t ∈ U = Cn (the unipotent radical) such
that tGv2t

−1 ⊂ SLn(C). Hence we get, replacing v by t ·v = (v′1, v′2), that there is a v′2 ∈ V2 such that for
general v′1 ∈ V1 the stabilizer of (v′1, v′2) in G is a nontrivial finite subgroup of SLn(C) which contradicts
the property of V1 in (a) (being generically free for SLn(C)). 2

6 Rationality if the representation dimension is large

The aim of this section is to prove

Theorem 6.1. Let V be a generically free indecomposable representation of the special affine group
G = SLn(C) n Cn. Then there is a constant k = k(n) depending on n such that if dimV > k(n), then
V/G is rational.

We consider exclusively filtrations of type (5) for V in this section: recall that this is a filtration

0 ⊂ V ′
0 ⊂ V ′

1 ⊂ · · · ⊂ V ′
l−1 ⊂ V ′

l = V,

defined inductively as follows: Q′l−j := V ′
l−j/V ′

l−j−1, for j = 0, . . . , l, is the maximal completely reducible
quotient representation of V ′

l−j . The indecomposability assumption on V cannot be dropped due to
Remark 5.4. The proof of Theorem 6.1 will be preceded by some lemmas.

Lemma 6.2. Fix n and the filtration length l of V . Suppose that Ṽ = V/V ′
l−2 is an exceptional

two-step extension Ṽ = V1 ⊕W, 0 → S → V1 → Q → 0 (notations similar to Theorem 5.3, so W is an
SLn(C)-representation and S ⊂ Q ⊗ Cn, Q ⊂ S ⊗ (Cn)∨) and Q ⊕ W contains < n2 − 1 copies of C.
Suppose that V is indecomposable, and write W = W1 ⊕ · · · ⊕Wk where the Wi’s are defined inductively
as follows:
• W1 contains all irreducible summands W ′ of W such that for the G-spans inside V we have 〈G ·

W ′〉 ∩ 〈G ·Q〉 6= 0.
• Wj+1 contains all irreducible summands W ′′ of W which are not already in W1, . . . , Wj and satisfy

〈G ·W ′′〉 ∩ 〈G · (Q + W1 + · · ·+ Wj)〉 6= 0
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(so in fact 〈G ·W ′′〉∩〈G ·Wj〉 6= 0, and then, by the indecomposability of V , we have W = W1⊕· · ·⊕Wk).
Then for s ∈ N there is a constant c(s) such that if dimV > c(s) then k > s, and for dimV sufficiently

large, V has a generically free G-quotient V̂ such that V → V̂ has fibre dimension larger than n2 +n− 1,
so that V/G is rational.

Proof. By Corollary 5.7 we know already that S and Q are limited to finitely many possibilities, so
we have to show the same for the W ’s. By Propositions 3.2 and 3.4 we obtain inclusions of SLn(C)-
representations,

〈G ·Q〉 ⊂ Q⊗ Syml(Cn+1),

W1 ⊂ Q⊗ Syml(Cn+1)⊗ Syml(Cn+1)∨,

W2 ⊂ Q⊗ (Syml(Cn+1)⊗ Syml(Cn+1)∨)⊗2,

and so forth, so that together with the possibilities for Q, also those for the W ’s are limited. Thus for
dimV to become arbitrarily large, we need k to become very large, i.e., W is highly decomposable. Here
one should note that this does not necessarily imply that eventually Ṽ is no longer exceptional: the action
of G on Ṽ cannot be generically free and remain so after adding arbitrary nontrivial SLn(C)-summands
to Ṽ , e.g., if Ṽ = (Cn+1)∨ or, more generally, there are some nontrivial translations in the stabilizer in
general position. So we have to resort to some other type of argument here, namely we show directly
that if k becomes very large, then V has a generically free quotient V̂ with large fibre dimension as
claimed in the statement of the lemma. Note that there can only be finitely many trivial summands C
by hypothesis among the W ’s, so that if k becomes large, W = W1 ⊕ · · · ⊕Wk, will eventually be a good
SLn(C)-representation. Together with W , the maximal completely reducible subrepresentation V0 of V

becomes large and highly reducible by the construction of the Wi’s. An SLn(C)-subrepresentation R0

of V0 gives rise to a quotient V̂R0 of V as follows: take the G-span of R∨0 ⊂ V ∨ (inclusion as SLn(C)-
representation) and take the dual of this span. For k large, we may choose R0 in such a way that
W1 ⊕ · · · ⊕Wκ is contained (as SLn(C)-representation) in V̂R0 modulo its maximal completely reducible
subrepresentation, and W1⊕ · · ·⊕Wκ is good, so that V̂R0 is G-generically free by Lemma 5.6 (note that
Condition (b) of this lemma will be automatically satisfied if the dimension of W1⊕· · ·⊕Wκ is sufficiently
large, using Proposition 3.2, since the filtration length of V̂R0 modulo its maximal completely reducible
subrepresentation is bounded with l). For large k, we can then also arrange that the fibre dimension of
V → V̂R0 becomes large, since dim V0 grows with k, and V0 becomes highly reducible. 2

Remark 6.3. The complicated procedure used in the proof of the previous Lemma 6.2 is justified by
the complexity of G-representations for which we want to give some examples:
• The examples of (Cn)∨ ⊗ (Cn+1)∨ and its dual show that V can have reducible V0 or Ql without

being decomposable.
• Consider the subrepresentation V ⊂ (Cn)∨ ⊗ Sym2(Cn+1)∨ with

Q0 = (Cn)∨, Q1 = Sym2(Cn)∨ ⊕ Λ2(Cn)∨, Q2 = Sym3(Cn)∨.

Here Λ2(Cn)∨ is not in the G-span of Sym3(Cn)∨ and

Q′0 = (Cn)∨, Q′
1 = Sym2(Cn)∨, Q′

2 = Sym3(Cn)∨ ⊕ Λ2(Cn)∨.

• Consider the subrepresentation V of

(Sym3(Cn)∨ ⊕ Σ2,1(Cn)∨ ⊕ Λ3(Cn)∨)⊗ Sym2(Cn+1)∨

with type (4) filtration such that

Q0 = Sym3(Cn)∨ ⊕ Σ2,1(Cn)∨ ⊕ Λ3(Cn)∨,

Q1 = Sym4(Cn)∨ ⊕ Σ3,1(Cn)∨ ⊕ Σ2,1,1(Cn)∨,

Q2 = Sym5(Cn)∨.

Diagrammatically, we can picture which of these summands map to which ones under the translations in
Cn as follows:
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(5, 0, 0)

(4, 0, 0)

(3, 1, 0)

(2, 1, 1)

(3, 0, 0)

(2, 1, 0)

(1, 1, 1)

©©©©©©¼¾

¾

¾

©©©©©©¼

©©©©©©¼

Thus the G-span S1 of Sym5(Cn)∨ intersects the span S2 of Σ3,1(Cn)∨ nontrivially, and S2 intersects
the G-span S3 of Σ2,1,1(Cn)∨ nontrivially, but S1 ∩ S3 = 0. Moreover, the filtration of V of type (5) has

Q′0 = Sym3(Cn)∨,

Q′1 = Sym4(Cn)∨ ⊕ Σ2,1(Cn)∨ ⊕ Λ3(Cn)∨,

Q′2 = Sym5(Cn)∨ ⊕ Σ3,1(Cn)∨ ⊕ Σ2,1,1(Cn)∨.

We now turn to the proof of Theorem 6.1.

Proof. Recall that we use filtrations of type (5) throughout this proof. The theorem is true for two-
step filtrations by Theorem 5.3, so we can suppose that the filtration length l of V satisfies l > 3. V is
supposed to be generically free and indecomposable, and we will distinguish cases according to the type
of two-step extension Ṽ = V/V ′

l−2, Ṽ = V1 ⊕W (as in Lemma 6.2) which V has as quotient.
1) For 0 → S → V1 → Q → 0, we have that Q ⊕W contains > n2 − 1 copies of C. Then we obtain

rationality for V/G by taking a (G, SLn(C))-section as in the proof of Theorem 5.3. So we suppose Q⊕W

contains < n2 − 1 copies of C in the following.
2) Ṽ is not exceptional. Then Ṽ /G is rational by Theorem 5.3, and V/G is generically a vector bundle

over it (as G acts generically freely on Ṽ ), so V/G is rational.
3) Ṽ is exceptional (and Q ⊕ W is assumed to contain < n2 − 1 copies of C by Step 1). Then by

Lemma 6.2, it only remains to consider the case where the filtration length l becomes large. In this
case we get rationality of V/G from the stable rationality of generically free G-representations and by
Corollary 5.8. 2
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