
Search on the enumeration tree in the
multiprocessor job-shop problem

Lester Carballo ∗ Alexander A. Lazarev, ∗∗

Nodari Vakhania ∗∗∗ Frank Werner ∗∗∗∗

∗ Facultad de Ciencias, UAEM, Av. Universidad 1001, Cuernavaca
62210, Morelos, Mexico, (e-mail: lestcape@gmail.com)

∗∗ Institute of Control Sciences of the Russian Academy of Sciences,
Profsoyuznaya st. 65, 117997 Moscow, Russia, (e-mail:

jobmath@mail.ru)
∗∗∗ Facultad de Ciencias, UAEM, Av. Universidad 1001, Cuernavaca

62210, Morelos, Mexico, (Tel: +52 777 329 70 20; e-mail:
nodari@uaem.mx).

∗∗∗∗ Fakultät für Mathematik, Otto-von-Guericke-Universität,
Magdeburg, 39106 Germany (Tel: +49 391 6712025; email:

frank.werner@mathematik.uni-magdeburg.de)

Abstract: We present an approach based on a two-stage filtration of the set of feasible
solutions for the multiprocessor job-shop scheduling problem. On the first stage we use extensive
dominance relations, whereas on the second stage we use lower bounds. We show that several
lower bounds can efficiently be obtained and implemented.

Keywords: job shop scheduling, branch-and-bound, algorithm, solution tree, dominance
relations

1. INTRODUCTION

The job-shop scheduling problem (JSP) in its classical
setting deals with m distinct machines or processors and
n distinct jobs. Each job is to be performed by some
machines in the given order. We call an operation the
resultant activity of the performance of a job on a machine.
Thus, in the job-shop problem we have the precedence
relations between the operations of the same job in the
serial-parallel form. In the version of the job-shop prob-
lem studied here we allow a group of parallel unrelated
machines instead of a single machine and we do not
distinguish jobs, we rather consider arbitrary precedence
relations between the operations (instead of serial-parallel
in a job-shop problem). We shall refer to this extension
of JSP as the multiprocessor job-shop scheduling problem
with unrelated machines (MJSP for short)

JSP is a strongly NP-hard problem with one of the
worst practical behavior. No approximation algorithm
with a guaranteed performance for this problem exists.
It is important because it models the actual operation in
several industries, complex computer systems and other
real-life applications. In many practical circumstances,
JSP is still restricted as it allows only one processor for
each task group. MJSP meets better the needs in several
industries and applications. For example, a computer may
have parallel processors each of which might be used
by a program task or in a manufacturing plant, a job
might be allowed to be processed by any of the available
parallel machines. Besides, the precedence relations might
be more complicated than serial-parallel type relations.
For example, the completion of two or more program

tasks (subroutines) might be necessary before some other
program task can be processed (as the latter task uses the
output of the former tasks); this is a typical situation in
parallel and distributed computations.

Although the feasible solution space of MJSP grows essen-
tially compared to JSP, it has turned out that it is possible
to reduce its solution space to a subspace containing an
optimal solution, drastically smaller than even the solution
space of a corresponding instance of JSP. Moreover, as we
show, several lower bounds for MJSP might be efficiently
obtained. In this way, we further reduce the solution space.
To the best of our knowledge, this is the first example
of a scheduling problem in which the presence of parallel
processors can simplify the solution (see Vakhania and
Shchepin (2002)).

We may formulate the MJSP as follows. We have the
set of tasks or operations, O = {1, 2, ..., n} and m dif-
ferent processor groups. Mk is the kth group of paral-
lel processors or machines, Pkl being the lth processor
of this group. (A job in a factory, a program task in
a computer or a lesson at school are some examples of
jobs. A machine in a factory, a processor in a computer,
a teacher in a school are some examples of machines.)
Each task should be performed by any processor of the
given group. diP is the (uninterrupted) processing time
of task i on processor P . Ok is the set of tasks to be
performed on the kth group of processors. Each group of
parallel processors can be unrelated, uniform or identical.
Unlike uniform machines which are characterized by an
operation-independent speed function, unrelated machines
have no uniform speed characteristic, i.e., a machine speed

T-381

is operation-dependent; that is, processing times diP are
independent, arbitrary integer numbers. In the case of
identical machines, the processing time of each task on all
processors is the same, i.e., all processors have the same
speed. Uniform machines are characterized with a speed
function (the same for all tasks). Thus for identical pro-
cessors, task processing times are processor-independent,
whereas for uniform and unrelated machines these times
are processor dependent.

The problem setting imposes the resource constraints: For
each two tasks i, j assigned to the same processor P , either

si + diP ≤ sj or sj + djP ≤ si

should hold, where si is the starting time of i; in other
words, any processor can handle only one task at a time.

The precedence constraints are as follows. For each i ∈ O
we are given the set of immediate predecessors pred(i) of
task i, so that i cannot start before all tasks from pred(i)
are finished. Task i becomes ready when all tasks from
pred(i) are finished.

A schedule (solution) is a function which assigns to each
task a particular processor and a starting time (on that
processor). A feasible schedule is a schedule satisfying the
above constraints. An optimal schedule is a feasible sched-
ule which minimizes the makespan, that is, the maximal
task completion time.

As it is well-known, an optimal schedule of JSP is among
so-called active schedules: in an active schedule no opera-
tion can start earlier than it is scheduled without delaying
some other operation (for example see Lageweg et al.
(1977) for the details).

Applying the commonly used notation for scheduling prob-
lems, we use J ||Cmax, JR|prec|Cmax, JQ|prec|Cmax and
JP |prec|Cmax, respectively to denote JSP and the versions
of MJSP with unrelated, uniform and identical processors,
respectively. If in an instance of MJSP from each group
of processors all processors except an arbitrarily selected
one is eliminated, then a corresponding instance of JSP
is obtained. MJSP can be seen as a so-called resource-
constrained project scheduling problem: we associate kth
machine group with the kth resource the amount of which
is the number of parallel machines in the group. The
requirement of the kth resource of each operation from
Ok is 1 and that of any other operation is 0.

As we have already mentioned, JSP and hence MJSP
are NP-hard. Though the construction of each feasible
schedule takes a polynomial (in the number of operations
and machines) time, for finding an optimal schedule we
might be forced to enumerate an exponential number
of feasible schedules. Since each feasible schedule can
be rapidly generated, different priority dispatching rules,
insertion algorithms (see e.g. Werner and Winkler (1995)
for JSP or Sotskov et al. (1999) for JSP with setup tiomes)
or other heuristics can be used for a rapid generation
of some feasible schedule(s). The simplest considerations
which reflect priority dispatching rules are not enough to
obtain a solution with a good quality. In fact, any such a
rule may generate the worst solution that may exist. If the
quality of the required solution is important, we need to
work with a larger subset of the feasible solution space.

One of the earliest published articles mentioning about
a generalization of JSP is that of Giffler and Thomp-
son (1960). In that model identical processors and serial-
parallel type precedence relations were introduced, instead
of unrelated processors and arbitrary precedence relations
in our generalized problem. In Tanaev et al. (1994) so-
lution methods for JSP and other problems related with
MJSP are described. An extension of JSP with general
multi-purpose machines was studied by Brucker and Schlie
(1966), Brucker et al. (1997), Vakhania (1995), and a
lower bound for the special case of this problem when
an operation processing time is a constant (i.e. machine-
independent) was suggested by Jurisch (1995). Shmoys
et al. (1994) have proposed a polynomial approximation
randomized algorithm for problem R|chain|Cmax which
can be applied to the version of our problem with serial-
parallel precedence relations JR|serial|Cmax. Dauzére-
Pérés and Paulli (1997) have proposed a tabu search
algorithm. Vakhania (2000) has suggested a version of a
beam search algorithm for the generalized problem. Ivens
and Lambrecht (1996), Schutten (1998) study different
extensions of JSP including extensions with setup and
transportation times. Vakhania and Shchepin (2002) have
considered the most general version of MJSP with un-
related machines and have suggested an algorithm that
constructs a reduced solution tree for this problem. Sur-
prisingly, with a probability of almost 1, the number of the
generated feasible solutions, as compared to the number of
all active feasible schedules, decreases with the number of
machines and operations in each group of machines and
operations, as follows. If we let ν and µ to be the number
of operations and machines in each subset of operations
and machines, then with a probability of almost 1, the
algorithm generates approximately (µ)mν and 2m(µ−1)µmν

times less feasible schedules than the number of all active
feasible schedules of any corresponding instance of JSP
and our generalized problem, respectively.

In this paper, we strengthen the above reduction method
with a number of lower bounds, giving the rise to different
exact (branch-and-bound) and approximation algorithms.
To the best of our knowledge, no lower bounds for the
problem have been suggested earlier. It turned out that a
simple O(n log n) time heuristic for the derived auxiliary
multiprocessor scheduling problem serves well our bounds.
We also give some progress in our preliminary computa-
tional experiments.

In the next section, we give some preliminaries and a
general scheme for representing the created solutions. In
Section 3, we define auxiliary scheduling problems used
to obtain our bounds, presented in Section 4. Section 5
contains a brief description of the ongoing computational
experiments.

2. BASIC FRAMEWORK

Our solution tree T enumerates the schedules we generate.
T is a rooted tree, the root representing a fictitious empty
solution. Each internal node of T represents a partial solu-
tion, and each of its leaves represents a complete feasible
solution. We call a node h from T a stage and denote the
(partial and complete) solution of stage h by σh. At stage
h, we branch by the operations from a bunch of concurrent

T-382

ready operations, the candidates to be scheduled at that
stage (called the branching (quick) set), and denote it
by Ch (we refer the reader to Vakhania and Shchepin
(2002) for the further details regarding this and some
following notions in this section). By branching in T on
stage h, we resolve the resource (machine) conflicts in Ch,
each alternative machine in Mk implies its own conflicts.
An alternative solution determined by each operation in
Ch scheduled on a machine from Mk. So one immediate
successor h′ of h is generated for each i ∈ Ch; two labels are
associated with the arc (h, h′): the task i and the processor
fromMk on which i is actually scheduled. Notice that for
a complete enumeration, a branching for each processor
fromMk is to be generated. However, we shall avoid such a
complete enumeration by selecting a single processor from
Mk at stage h, as specified a bit later.

Thus, there will be generated |Ch| extensions of the current
partial schedule σh in our tree T . σh can clearly be seen
as a (partial) permutation of n tasks. For i ∈ σh in that
permutation, we use the upper index for specifying the
particular processor on which task i is scheduled in σh. In
particular, σhi

P is an extension of σh with task i scheduled
on processor P ∈ Mk. Note that σh is identified by the
path from the root to node h in T , and that the relative
order of two tasks i, j ∈ σh is relevant only if they are
scheduled on the same processor.

As we have already mentioned, while branching by the
set Ch, we generate only branchings corresponding to the
feasible assignment of each ready operation in Ch to only
one, a specially selected processor from Mk that we call
a quick processor: a quick processor is a fastest one for a
given operation at a given stage. A selection of a quick
machine takes time, linear to the number of machines in
the corresponding group. The branching (quick) set Ch
is formed by ready operations conflicting on a machine,
which is quick for at least one of these operations. We
are allowed to branch by a quick set, if it is dominant.
Intuitively, if we branch by a dominant set, then we are
guaranteed that we will not delay any not yet ready
operation (not included in the set), competing on the
machines of the same group.

The feasible solution set can be further diminished by re-
ducing quick dominant sets in a special way. This reduction
is based on an “artificial” relaxation of conflicts between
the operations of the conflict sets. On each stage of branch-
ing, the branching by some operations is postponed when-
ever this is possible. Each quick set is partitioned into the
specially determined subsets, corresponding to different
alternative machines. Then instead of branching by the
whole quick set, branchings are performed by the subsets
from the partition, on different machines on different levels
of the solution tree. So the concurrent jobs from different
subsets are processed in parallel.

We represent each feasible solution σh by a directed
weighted graph Gh. We associate the digraph G0 =
(X,E0) with the root of T . To each task i ∈ O, there
corresponds the unique node i ∈ X. There is one fictitious
initial node 0, preceding all nodes, and one fictitious
terminal node n+ 1, succeeding all nodes in G0. E0 is the
arc set consisting of the arcs (i, j), for each task i, directly
preceding task j; (0, i) ∈ E0 if task i has no predecessors

and (j, n+ 1) ∈ E0 if task j has no successors. We denote
by w(i, j) the weight associated with (i, j) ∈ E0; initially,
we assign to w(i, j) the minimal processing time of task
i, later we correct these weights when we assign a task
to the particular processor. Let (h, h′) be an edge in T
with task j scheduled at iteration h′ on processor P . Then
we obtain Gσh′ from Gσh

as follows. We complete the arc
set of the latter graph with the arcs of the form (i, j),
with the associated weights w(i, j) = diP , for each task
i, scheduled earlier on the processor P . We correct the
weights of all arcs incident out from node j (j, o) ∈ E0, as
w(j, o) := djP . It is easily seen that the length of a critical
path in Gh′ is the makespan of the (partial or complete)
solution σh′ = σhj

P which we denote by |σh′)|.
Note that the critical path length from node 0 to a node o
in Gh is a lower bound on the starting time of operation o
in schedule σh and in any its successor schedule. We call it
the early starting time or the head of operation o by stage h
and denote by headh(o). Likewise, the critical path length
from o to the sink node in Gh is a lower bound on the
total remained work once operation o is already finished.
We denote it by tailh(o) and call the tail of operation o at
stage h. Rh(M) is the release time of machine M at stage
h, that is, the completion time of the operation, scheduled
last by that stage on M .

3. AUXILIARY SCHEDULING PROBLEMS

Remind that in a branch-and-bound scheme, if a lower
bound L(σh) of the partial solution σh is more than or
equal to the makespan |σ| of some already generated
complete solution σ (a current upper bound), then all
extensions of σh can be abandoned. Clearly, L(σh) cannot
be more than the makespan of the best potential extension
of σh (otherwise we could loose this extension). At the
same time, we try to make it as close as possible to this
value: then more are the chances that L(σh) ≥ |σ|). Let
σh ∈ T and o ∈ Ch for an instance of MJSP. We would
like to obtain a lower bound for an extension of σh with
operation o scheduled on machine Q ∈ Mk, σho

Q ∈ T . A
trivial lower bound is

LT (σho
Q) = |σh)|+ tailh(o),

where |σh)| is the makespan of σh, i.e., the critical path
length in Gh. Note that the remained work determined by
tailh(o) reflects all the original precedence constraints and
all the resource constraints have been resolved so far by
stage h. So this bound ignores all yet unresolved potential
conflicts, i.e., the processing times of yet unscheduled
tasks.

Though it is easy and fast to obtain LT , it is clear that
we cannot get a good estimation of the desired optimal
makespan by the complete ignorance of the potential con-
tribution of the unscheduled tasks. A stronger lower bound
would take into account a possible contribution of the
latter tasks (this would obviously need additional com-
putational efforts). Clearly, we cannot know in advance
how yet unresolved conflicts will be resolved in an opti-
mal schedule. But we can make some assumptions about
this (“simulating” in advance some “future” resource con-
straints). However, we should be careful since we are not
allowed to violate the condition L(σh) ≤ |σ′|, σ′ being an
arbitrary complete extension of σh. Roughly speaking, we

T-383

would like to have a lower estimation on how the future
resource conflicts will be resolved; this will involve some
optimal scheduling on parallel machines.

Now we derive auxiliary multiprocessor scheduling prob-
lem which we use for our lower bounds. For JSP, most
commonly is used a one-machine relaxation (for example,
see Adams et al. (1988), Blazewicz et al. (1986), Carlier
and Pinson (1976), Lageweg et al. (1977), McMahon and
Florian (1975)): all resource constraints are relaxed (ig-
nored) except the ones of a one particular (not yet com-
pletely scheduled) machine, and the resulted one-machine
problem with heads and tails, 1|ri, qi|Cmax is then solved.
A bottleneck machine is a one which results the maxi-
mal makespan among all yet unscheduled machines (in-
tuitively, a bottleneck machine gives a maximal expected
contribution in the makespan of extensions of σh). This
approach can be generalized as follows. Basically, we relax
the resource constraints on all machines except the ones
from some (bottleneck) set of the machines Mk.

To be specific, let at iteration h, |Okh| ≥ 2, where Okh is
the subset of Ok consisting of the tasks not yet scheduled
by stage h; i.e., we have yet unresolved resource constraints
associated with the machines ofMk. An operation i ∈ Okh
is characterized by its early starting (release) time headh(i)
and tail tailh(i); that is, i cannot be started earlier than
at time headh(i), and once it is completed, it will take
at least tailh(i) time for all successors of i to be finished.
Operation i can be scheduled on any of the machines of
Mk and has a processing time diP on machine P ∈ Mk.
Each machine P ∈Mk has its release time Rh(P).

Observe that the operation tails and release times are
derived from Gh (this ignores all unresolved by stage h
resource constraints). Besides, the tails require no machine
time, i.e., time on any of the machines of Mk. We are
looking for an optimal (i.e., minimizing the makespan with
tails) ordering of the operations of Okh on the machines
fromMk under the above stated conditions. Thus, for each
stage h for the partial solution σh, the auxiliary problem
of scheduling tasks with release times and tails on a group
of parallel machines Mk with the objective to minimize
the makespan has been obtained. We denote this auxiliary
problem by Akh and the respective optimal makespan by
|Akh|.
Let µh be the set of indexes of all machine groups such
that for each k ∈ µh, |Okh| ≥ 2. It is clear that |Akh|, for
any k ∈ µh, is a lower bound for node h. We may find all
|µk| ≤ m lower bounds for node h and take the maximum
thus finding a bottleneck machine group. Thus instead
of dealing with 1|ri, qi|Cmax in case of JSP, now we deal
with problem R|ri, qi|Cmax. Both problems are NP-hard,
though there exist exponential algorithms with a good
practical behavior for the first above problem, have been
commonly used in one-machine relaxation based branch-
and-bound algorithms for JSP (see, for example McMahon
and Florian (1975), Carlier (1982) and Carlier and Pinson
(1976)). Unfortunately, there are no known algorithms
with good practical performance for P |ri, qi|Cmax (the
version with identical machines) and so also for problems
R|ri, qi|Cmax and Q|ri, qi|Cmax. In the following section,
we suggest several ways to obtain lower bounds for these
problems.

4. LOWER BOUNDS

Straightforward bounds. Carlier and Pinson (1998)
have suggested a lower bound for JP |prec|Cmax. They
proposed an O(n log n+ nm logm) algorithm for the non-
sequential version of problem P |ri, qi, prmt|Cmax which
is a tight lower estimation of the optimal makespan for
problem P |ri, qi, prmt|Cmax. At the expense of weakening
the bound, the solution of the above problem can be used
as a lower bound for the version with unrelated machines
as we describe below.

Let dmin
o be the minimal processing time of operation

o ∈ Ok, i.e.,

dmin
o = min{doM ,M ∈Mk}.

We replace the unrelated machine group Mk with the
identical machine groupM′

k, defined as follows: the num-
ber of machines in both groups is the same, and for each
o ∈ Ok and M ∈ M′

k, doM = dmin
o . It is clear that

an optimal solution of the obtained instance of problem
P |ri, qi, prmt|Cmax with M′

k is no more than that of
the corresponding instance of problem R|ri, qi, pmtn|Cmax
with Mk. Hence, the former solution can be used for
the calculation of a lower bound for the original problem.
Obviously, the bound obtained in this way would be weak
if the difference between the above two solutions is signifi-
cant. It might be possible to find a better “approximation”
with an identical machine group of the unrelated machine
group Mk, i.e., to increase doM , o ∈ Ok, M ∈ M′

k (this
could be the subject of a further research).

For uniform machines, we can obtain a stronger lower
bound by using the algorithm of Federgruen and Groen-
evelt (1986) for the problem Qm|ri, qi, pmtn|Cmax with
a time complexity of O(tn3) (here t is the number of
machines with distinct speeds).

As to JR|prmt|Cmax, the technique based on linear
programming of Lawler and Labetoulle (1978) yields a
polynomial-time algorithm for Rm|ri, qi, pmtn|Cmax. This
is clearly a lower estimation of the optimal makespan for
problem Rm|ri, qi|Cmax which, in turn, provides a lower
bound for problem JR|prmt|Cmax.

Alternative lower bounds. Now we describe alternative
methods to obtain lower bounds. For the versions with
identical and uniform machines our lower bounds are
obtained in an almost linear (in |Okh| and |Mk|) time.
For the version with unrelated machines, we apply linear
programming. We obtain a lower estimation, which is not
a strict lower bound for the same version again in almost
linear time. This bound can be used in approximation
algorithms such as a beam search.

For simplifying the notations, let ai = headh(i) and
qi = tailh(i), for i ∈ Okh, where k ∈ µh. Let, further, dSi be
the processing time of i in S (dSi may vary from schedule to
schedule depending on the particular machine, to which i
is assigned), tSi (cSi = tSi +dSi , respectively), be the starting
(finishing, respectively) time of operation i in schedule S.
We call cSi + qi the full completion time of operation i.

First we apply the “Greatest Tail Heuristic” (GTH) to the
operations of Okh: iteratively, among all ready operations,
we determine one with a longest tail and schedule it on

T-384

a machine on which the minimal completion time of this
operation is reached. We refer to to such a machine as a
quick. Because of the space limitation, we omit a formal
description of this heuristic.

The time complexity of this algorithm is O(µn log n),
where µ = |Mk|. In the following, S denotes a greatest
tail schedule obtained by the algorithm GTH for the
operations of Okh. S, in general, consists of a number of
blocks. Intuitively, a block is a maximal independent part
in a schedule. More precisely, B is a maximal consecutive
part in S (that is, a maximal sequence of the successively
scheduled jobs on the adjacent machines), such that for
each two successively scheduled tasks i and j, task j starts
no later than task i finishes. Let r ∈ Okh be the latest
scheduled in S operation such that cSr + qr equal to |S|
(clearly, there exists at least one such operation in S).
If tr = ar, S is optimal (as task r is scheduled on its
quick machine) and |S| = |Akh| is the optimal makespan.
If tr > ar, then r potentially might be completed earlier by
rescheduling some operation(s), scheduled before r, after
r. Next we will see how this works.

Let us call an operation l ∈ S, scheduled before r with
ql < qr, an emerging operation in S, if l belongs to
the same block as r. The set of operations scheduled in
S between the latest scheduled emerging operation and
operation r is called the kernel. Thus any kernel operation
has a tail, no less than qr. We increase “artificially” the
readiness time of some emerging operation l by setting
al := ar and apply again algorithm GREATEST TAIL.
Then we will get a new greatest tail schedule, Sl, in which
l is rescheduled after all operations of kernel. We call the
above rescheduling of task l its application. Once we apply
l, we liberate space for kernel operations (in particular,
for operation r). These operations will be rescheduled
earlier in the new obtained greatest tail schedule Sl. Hence,
the makespan in Sl might be decreased (in comparison
with that in S). Let us call the maximal magnitude, by
which in this way a kernel operation can be rescheduled
earlier, the shifting value of that operation. Note that it
makes no sense to apply any non-emerging operation. For
further details, we refer the reader to Vakhania (2002) and
Vakhania (2003).

It can be proved that the shifting value of any kernel oper-
ation, including r, is strictly less than the maximal opera-
tion processing time dmax. Then the successive application
of no more than |Mk| emerging operations is sufficient to
construct a greatest tail schedule, say S′, in which the
first |Mk| kernel operations (all kernel operations if their
number is less than |Mk|) are antedated by the newly
arisen gaps. Let C be the sequence of kernel operations in
S′ (observe that C starts with the kernel operations in S′,
antedated by the newly arisen gaps). In S′, an operation
i ∈ C either starts at time ai or it starts right at the
moment of completion of another operation of C. Hence,

min{tS
′

i | i ∈ C} = min{ai | i ∈ C}
is the minimal possible starting time for C.

Let CS be the sequence in which the kernel operations
were scheduled in S. Observe that although CS might be
different from C, all the applied in S′ emerging operations
have been initially scheduled before CS in S. In S, the
sequence CS is started with a delay that is determined

by the finishing times of the µ′ emerging operations
directly preceding kernel operations in S. Suppose that,
respecting this delay of CS in S, the sequence C itself is
optimal (i.e. it minimizes the maximal completion time
of kernel operations, subject to the release times of the
Mk machines). Then from the definition of CS and r,
and the earlier made observation, |S| − dmax = cSr + qSr −
dmax is a lower bound on the optimal schedule makespan.
Note that its calculation takes O(µn log n) time. This
bound, in general is not a strict lower bound for problem
JP |prec|Cmax (as the sequence CS is not optimal), though
it can be successfully applied as a thorough estimation
in approximate algorithms such as beam search (see for
example Vakhania (2000)).

The above bound can be easily transferred to a strict
lower bound for the versions with identical and uniform
machines. In principal, we need to find a good lower esti-
mation for an optimal sequence of kernel operations. This
task can be solved in almost linear time for both, identical
and uniform machines, while for unrelated machines we
will apply (also polynomial) linear programming. We ob-
tain a good lower estimations for the problem Q|ri|Cmax
(which itself is NP-hard) by solving its preemptive version
Q|ri, pmtn|Cmax in O(n log n+mn) time (see Sahni and
Cho (1979) and Labetoulle et al. (1984)). If we ignore the
operation release times (this, in general, is possible since
the optimal makespan without the release times is no more
than that with the readiness times), we can apply an O(n+
m logm) algorithm for Q|pmtn|Cmax by Gonzalez and
Sahni (1978). Similarly, we obtain a good lower estimation
for problem R|ri|Cmax by solving its preemptive version by
linear programming (see Lawler and Labetoulle (1978)).

The above estimations provide us with the earliest possible
finishing time, c∗, of the kernel operations. Let q =
min{qi, i ∈ CS} and d be the maximal processing time
among all emerging operations in S. Then L1(CS) = c∗ +
q − d is clearly a lower bound on the makespan of Akh.
This bound can be further strengthened. Earlier we saw
how the sequence C is obtained after the application of
no more than |Mk| emerging operations (which were the
latest scheduled ones in S). Denote this set of emerging
operations by E and the set of all emerging operations in
S by E . In general, emerging operations from E \ E can
be applied instead of some emerging operations of E (note
that emerging operations from the latter set precede those
from E in S). Indeed, if emerging operations l1, ..., lp are all
released by time t, they will be successively scheduled in S
till the moment when the earliest non-emerging operation
gets ready. Thus we may have a choice, which emerging
operations to apply. By choosing emerging operations from
E we guarantee that the sequence C will start without any
delay; at the same time, the rescheduled after C emerging
operations of E having ”long enough” tail may obviously
affect the resulted makespan (i.e. the maximal full job
completion time.

This consideration makes it clear that, by taking into
the account the actual tails and processing times of the
rescheduled emerging operations, the earlier bound might
be further improved. A simple solution might be as follows.
Assume that on each machine from Mk, an operation
of C is scheduled (otherwise, as it is easily seen, there
is no need in this additional estimation). At least one

T-385

emerging operation should be rescheduled after C; hence,
any E′ ⊂ E will be fully completed no earlier than at time
L2(E′) = c′ + d′ + q′, where c′ is the minimal finishing
time of the operations of C scheduled last on one of the
machines of Mk, d′ = min{diP , i ∈ E , P ∈ Mk} and
q′ = min{qi, i ∈ E}. Thus, Lkh = max{L1(C), L2(E)} is
a lower bound for Akh.

5. ON SOME COMPUTATIONAL EXPERIMENTS

We have implemented our basic reduction algorithm in C
+ +, using the IDE Qt Creator v.2.2.1 on a computer
equipped with 8 GB of RAM, AMD Phenom (tm) II X6
1100T x6 Processor, and operating system Ununtu 11.10
to 64-bit.

The generated code was tested for about 100 randomly
generated problem instances with moderate sizes (up to
20 operations on 5 groups of parallel machines). We have
used a topological order of the nodes in the dependency
graph Gh to avoid the creation of cycles during the
computation of the critical path (the makespan of each
created solution). The reduction of the solution space was
between 15% and 25 % compared to the number of active
solutions for these small instances without using lower
bounds. We expect a more essential reduction for larger
instances when lower bounds will also be incorporated into
the generated code.

REFERENCES

J. Adams, E. Balas and D. Zawack. The Shifting Bottle-
neck Procedure for Job Shop Scheduling. Management
Science 34:391-401, 1988.

J. Blazewicz, W. Cellary, R. Slowinski and J. Weglarz
Scheduling under resource constraints - Deterministic
models. Annals of Operations Research, 7, 1986.

P. Brucker, B. Jurisch and A. Krämer. Complexity
of scheduling problems with multi-purpose machines.
Annals of Operations Research, 70:57-73, 1997.

P. Brucker and R. Schlie. Job shop scheduling with multi-
purpose machines. Computing, 45:369-375, 1990.

J. Carlier. The one-machine sequencing problem. Euro-
pean J. of Operational Research, 11:42-47, 1982.

J. Carlier and E. Pinson. An Algorithm for Solving Job
Shop Problem. Management Science, 35:164-176, 1989.

J. Carlier and E. Pinson. Jakson’s pseudo preemptive
schedule for the Pm/ri, qi/Cmax problem. Annals of
Operations Research 83: 41-58, 1998.

S. Dauzére-Pérés and J. Paulli. An integrated approach
for modeling and solving the general multiprocessor job
shop scheduling problem with tabu search. Annals of
Operations Research, 70, 281-306, 1997.

A. Federgruen and H. Groenevelt. Preemptive scheduling
of uniform machines by ordinary network flow tech-
niques. Management Science, 32:341-349, 1986.

T. Gonzalez and S. Sahni. Preemptive scheduling of
uniform processor systems. Journal of the ACM, 25:
92-101, 1978.

W.S. Herroelen and E.L. Demeulemeester. Recent ad-
vances in branch-and-bound procedures for resource-
constrained project scheduling problems. Scheduling
Theory and its Applications P. Chrétienne et al. (eds.),
John Wiley & Sons, 25: 259-276, 1997.

J.E. Hopcroft and R.M. Karp. A n5/2 algorithm for maxi-
mum matching in bipartite graphs. SIAM J. Computing,
2:225-231, 1973.

P. Ivens and M. Lambrecht. Extending the shifting
bottleneck procedure to real-life applications. European
J. of Operational Research, 90:252-268, 1996.

B. Jurisch. Lower bounds for job-shop scheduling problem
on multi-purpose machines. Discrete Applied Mathemat-
ics, 58:145-156, 1995.

B.J. Lageweg, J.K. Lenstra and A.H.G. Rinnooy Kan. Job
Shop Scheduling by Implicit Enumeration. Management
Science, 24:441-450, 1977.

E.L. Lawler and J. Labetoulle On preemptive scheduling
of unrelated parallel processors by linear programming.
J. of the ACM, 25:612-619, 1978.

J. Labetoulle, E.L. Lawler, J.K. Lenstra and A.H.G. Rin-
nooy Kan. Preemptive scheduling of uniform machines
subject to release dates. Pulleyblank, 25:245-261, 1984.

G.B. McMahon G.B. and M. Florian. On scheduling
with ready times and due dates to minimize maximum
lateness. Operations Research, 23:475-482, 1975.

B. Giffer and G.L. Thompson Algorithm for Solving
Production Scheduling Problems. Operations Research,
8:487-503, 1960.

P.S. Ow and T.E. Morton. Filtered beam search in
scheduling. Int. J. Prod. Research, 26:35-62, 1988.

S. Sahni and Y. Cho. Filtered beam search in scheduling.
Nearly on-line scheduling of a uniform processor system
with release times, 8:275-285, 1979.

J.M.J. Schutten. Practical job shop scheduling. Annals of
Operations Research, 83:161-177, 1998.

D.B. Shmoys, C. Stein and J. Wein. Improved approxima-
tion algorithms for shop scheduling problems. SIAM J.
on Computing, 23:617-632, 1994.

Y.N. Sotskov, T. Tautenhahn and F. Werner. On the
application of insertion techniques for job shop problems
with setup times. RAIRO Rech. Oper., 33:209 - 245,
1999.

V.S. Tanaev, Y.N. Sotskov, V.A. Strusevich. Scheduling
Theory: Multi-Stage Systems Springer, 1-420, 1994.

N. Vakhania. Algorithms for solving generalized job
shop scheduling problems with the use of reduced solu-
tion trees. Ph.D. Thesis, Computing Center, Russian
Academy of Sciences, Moscow, Russian, 1991.

N. Vakhania. Assignment of jobs to parallel computers of
different throughput. Automation and Remote Control,
56:280-286, 1995.

N. Vakhania. Global and local search for scheduling
job shop with parallel machines. Lecture Notes in
Artificial Intelligence (IBERAMIA-SBIA 2000), 1952:
63-75, 2000.

N. Vakhania and E. Shchepin. Concurrent operations can
be parallelized in scheduling multiprocessor job shop.
Journal of Scheduling, 5:227-245, 2002.

N. Vakhania. Scheduling equal-length jobs with delivery
times on identical processors. Int. J. Comp. Math., 82:
2002.

N. Vakhania. A better algorithm for sequencing with re-
lease and delivery times on identical processors. Journal
of Algorithms, 48:273-293, 2003.

F. Werner and A. Winkler. Insertion techniques for the
heuristic solution of the job shop problem. Discrete
Applied Mathematics, 58:191 - 211.

T-386

