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INSTANTON MODULI SPACES AND W -ALGEBRAS

by Alexander BRAVERMAN, Michael FINKELBERG & Hiraku NAKAJIMA

Abstract. —We describe the (equivariant) intersection cohomology of certain moduli
spaces (“framed Uhlenbeck spaces”) together with some structures on them (such as
e.g., the Poincaré pairing) in terms of representation theory of some vertex operator
algebras (“ W -algebras”).

Résumé (Sur la catégorie dérivée des 1-motifs.) — Nous décrivons la cohomologie
d’intersection (équivariante) de certains espaces de modules (“espaces d’Uhlenbeck
encadrés”) ainsi que quelques structures sur eux (comme par exemple l’accouplement
de dualité de Poincaré) en termes de théorie des représentation de certaines algèbres
vertex (“ W -algèbres”).
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CHAPTER 1

INTRODUCTION

The main purpose of this paper is to describe the (equivariant) intersection co-
homology of certain moduli spaces (“framed Uhlenbeck spaces”) together with some
structures on them (such as e.g., the Poincaré pairing) in terms of representation
theory of some vertex operator algebras (“ W -algebras”). In this introduction we first
briefly introduce the relevant geometric and algebraic objects (cf. Subsections 1.1 and
1.3) and then state our main result (in a somewhat weak form) in Subsection 1.4 (a
more precise version is discussed in 1.9). In Subsection 1.5 we discuss the motivation
for our results and relate them to some previous works. In §1.8 we mention earlier
works from which we obtain strategy and techniques of the proof.

1.1. Uhlenbeck spaces

Let G be an almost simple simply-connected algebraic group over C with Lie alge-
bra g. Let also h be a Cartan subalgebra of g.

Let BundG be the moduli space of algebraic G-bundles over the projective plane P2

(over C) with the instanton number d and with trivialization at the line at infinity `∞.
It is a non-empty smooth quasi-affine algebraic variety of dimension 2dh∨ for d ∈ Z≥0,
where h∨ is the dual Coxeter number of G.

By results of Donaldson [24] (when G is classical) and Bando [5] (when G is ar-
bitrary) BundG is homeomorphic to the moduli space of anti-self-dual connections
(instantons) on S4 modulo gauge transformations γ with γ(∞) = 1 where the struc-
ture group is the maximal compact subgroup of G. We will use an algebro-geometric
framework, as we can use various tools.

It is well-known that BundG has a natural partial compactification UdG, called the
Uhlenbeck space. Set-theoretically, UdG can be described as follows:

UdG =
⊔

0≤d′≤d

Bund
′

G ×Sd−d
′
(A2),

where Sd−d
′
(A2) denotes the corresponding symmetric power of the affine plane A2.
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2 CHAPTER 1. INTRODUCTION

The variety UdG is affine and it is always singular unless d = 0. It has a natural
action of the group G×GL(2), where G acts by changing the trivialization at `∞ and
GL(2) just acts on P2 (preserving `∞). In what follows, it will be convenient for us
to restrict ourselves to the action of G = G×C∗ ×C∗ where C∗ ×C∗ is the diagonal
subgroup of GL(2).

Remark 1.1.1. — The compactification of the moduli space of instantons on a com-
pact C∞ 4-manifolds, as a topological space, was introduced by Donaldson, based
on the earlier fundamental work by Uhlenbeck. See [25, Notes to Section 4.4.1] for
further historical comments. This construction works for any compact Lie group, i.e.,
any reductive group G, and also the case when we take the quotient only by gauge
transformations γ with γ(∞) = 1 as above.

A construction as an affine variety was given in [21], which is one of our main
references. See Remark 1.5.2 for comments in type A.

1.2. Main geometric object

The main object of our study on the geometric side is the G-equivariant intersection
cohomology IH∗G( UdG). By the definition, it is endowed with the following structures:

1) It is a module over H∗G(pt). The latter algebra can be canonically identified
with the algebra of polynomial functions on h × C2 which are invariant under W ,
where W is the Weyl group of G. In what follows we shall denote this ring by AG; let
also FG denote its field of fractions. We shall typically denote an element of h × C2

by (a, ε1, ε2).
2) There exists a natural symmetric (Poincaré) pairing IH∗G( UdG) ⊗

AG

IH∗G( UdG)→ FG

(this follows from the fact that ( UdG)T×C
2

consists of one point).
3) For every d ≥ 0 we have a canonical unit cohomology class |1d〉 ∈ IH∗G( UdG).

The main purpose of this paper is to describe the above structures in terms of repre-
sentation theory. To formulate our results, we need to introduce the main algebraic
player – the W -algebra.

1.3. Main algebraic object: W -algebras

In this subsection we recall some basic facts and constructions from the theory
of W -algebras (cf. [30] and references therein). First, we need to recall the notion of
Kostant-Whittaker reduction for finite-dimensional Lie algebras.

Let g be as before a simple Lie algebra over C with the universal enveloping algebra
U(g). Let us choose a triangular decomposition g = n+⊕h⊕n− for g. Let χ : n+ → C
be a non-degenerate character of n+, i.e., a Lie algebra homomorphism such that
χ|n+,i

6= 0 for every vertex i of the Dynkin diagram of g (here n+,i denotes the
corresponding simple root subspace). Then we can define the finite W -algebra of g (to
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1.3. MAIN ALGEBRAIC OBJECT: W -ALGEBRAS 3

be denoted by W fin(g)) as the quantum Hamiltonian reduction of U(g) with respect
to (n+, χ). In other words, we have

W fin(g) = HomU(g)(U(g) ⊗
U(n+)

Cχ, U(g) ⊗
U(n+)

Cχ).

A well-known result of Kostant [41, Theorem 2.4.2] asserts that
(1f) W fin(g) is naturally isomorphic to the center Z(g) of U(g).
In particular, we have
(2f) The algebra W fin(g) has a natural embedding into S(h), whose image coincides

with the algebra S(h)W .
(3f) The algebra W fin(g) is a polynomial algebra in some variables F (1), ..., F (`),

where ` = rank(g). Each F (κ) is homogeneous as an element of S(h)W of some degree
dκ + 1 ≥ 2.

(4f) The algebra W fin(g) is isomorphic to the algebra W fin(g∨).
Feigin and Frenkel (cf. [30] and references therein) have generalized the above results
to the case of affine Lie algebras. Namely, let g((t)) denote the Lie algebra of g-valued
formal loops. It has a natural central extension

0→ C→ ĝ→ g((t))→ 0

(this extension depends on a choice of an invariant form on g which we choose so that
the squared length of every short coroot is equal to 2). The group C∗ acts naturally
on ĝ by “loop rotation” and the same is true for its Lie algebra C. We let gaff be the
semi-direct product of ĝ and C (for the above action).

For every k ∈ C one can consider the algebra Uk(ĝ) — this is the quotient of U(ĝ) by
the ideal generated by 1−k where 1 denotes the generator of the central C ⊂ gaff . Let
us also extend χ to n+((t)) by taking the composition of the residue map n+((t))→ n+
with χ : n+ → C. Abusing slightly the notation, we shall denote this map again by χ.

The W -algebra W k(g) is roughly speaking the Hamiltonian reduction of Uk(ĝ)

with respect to (n+((t)), χ). However, the reader must be warned that rigorously this
reduction must be performed in the language of vertex operator algebras; in particular,
W k(g) is a vertex operator algebra (cf. again [30] for the relevant definitions).

Unlike in the finite case, the algebra W k(g) is usually non-commutative (unless
k = −h∨). The main results of Feigin and Frenkel about W k(g) can be summarized
as follows (notice the similarities between (1f)-(4f) and (1w)-(4w)):

(1w) The algebra W−h∨(g) can be naturally identified with the center of the (vertex
operator algebra version of) U−h∨(ĝ).

(2w) Let Heis(h) denote the central extension of h((t)) corresponding to the bilinear
form on h chosen above. Abusing the notation we shall use the same symbol for
the corresponding vertex operator algebra. Also for any k ∈ C we can consider the
corresponding algebra Heisk(h) (“Heisenberg algebra of level k”). (1) Then for generic
k there exists a canonical embedding W k(g) ↪→ Heisk+h∨(h).

1. Note that for all k 6= 0 these algebras are isomorphic.
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4 CHAPTER 1. INTRODUCTION

(3w) The algebra W k(g) is generated (in the sense of [30, 15.1.9]) by certain ele-
ments W (κ), κ = 1, . . . , ` of conformal dimension dκ + 1. This (among other things)
means that for every module M over W k(g) and every κ = 1, . . . , ` there is a well
defined field Y (W (κ), z) =

∑
n∈Z

W
(κ)
n z−n−dκ−1 where W (κ)

n can be regarded as a linear

endomorphism of M .
(4w) Suppose k is generic. There is a natural isomorphism W k(g) ' W k∨(g∨)

where (k+ h∨g )(k∨ + h∨g∨) = r∨ where r∨ is the lacing number of g (i.e., the maximal
number of edges between two vertices of the Dynkin diagram of g). We shall call this
isomorphism the Feigin-Frenkel duality.

The representation theory of W k(g) has been extensively studied (cf. for example
[2]). In particular, to any λ ∈ h∗ one can attach a Verma module M(λ) over W k(g)
and M(λ1) is isomorphic to M(λ2) if λ1 + ρ and λ2 + ρ are on the same orbit of
the Weyl group. This module carries a natural (Kac-Shapovalov) bilinear form, with
respect to which the operator W (κ)

n is conjugate to W (κ)
−n (up to sign). This module

can be obtained as the Hamiltonian reduction of the corresponding Verma module
for g.

1.4. The main result: localized form

Let us set

Md
FG(a) = IH∗G( UdG) ⊗

AG

FG; MFG(a) =
∞⊕
d=0

Md
FG(a).

It is easy to see that Md
FG

(a) is also naturally isomorphic to IH∗G,c( UdG) ⊗
AG

FG where

the subscript c stands for cohomology with compact support.
Let us also set

k = −h∨ − ε2

ε1
.

Then (a somewhat weakened) form of our main result is the following:

Theorem 1.4.1. — Assume that G is simply laced and let us identify h with h∗ by
means of the invariant form such that (α, α) = 2 for every root of g. Then there
exists an action of the algebra W k(g) on MFG(a) such that

1. The resulting module is isomorphic to the Verma module M(λ) over W k(g)
where

λ =
a

ε1
− ρ

(here we take FT = Frac(H∗T (pt)) as our field of scalars).
2. Under the above identification a twisted Poincaré pairing on MFG(a) goes over

to the Kac-Shapovalov form on M(λ). (The twisting will be explained in §6.8.)
3. Under the above identification the grading by d corresponds to the grading by

eigenvalues of L0.
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1.5. RELATION TO PREVIOUS WORKS 5

4. Let d ≥ 1, n > 0. We have

(1.4.2) W (κ)
n |1d〉 =

{
±ε−1

1 ε−h
∨+1

2 |1d−1〉 if κ = ` and n = 1,

0 otherwise.

Remarks 1.4.3. — 1) We believe that the sign in (1.4.2) is actually always “+,” how-
ever, currently we don’t know how to eliminate the sign issue. Note, however, that
(1.4.2) still defines the scalar product 〈1d|1d〉 unambiguously. Also (assuming that
the above sign issue can be settled) it follows from (1.4.2) that if we formally set
w =

∑
d |1d〉 then we have

W (κ)
n (w) =

{
ε−1

1 ε−h
∨+1

2 w if κ = ` and n = 1,

0 otherwise.

Sometimes we shall write wa,ε1,ε2 to emphasize the dependence on the correspond-
ing parameters.

2) The assumption that G is simply laced is essential for Theorem 1.4.1 to hold as
stated. However, we believe that a certain modified version of Theorem 1.4.1 holds in
the non-simply laced case as well, although at the moment we don’t have a proof of
this modified statement (cf. Subsection 1.10 for a brief discussion of the non-simply
laced case).

3) Since UdG is acted on by the full GL(2) and not just by C∗ ×C∗, it follows that
the vector space MFG(a) has a natural automorphism which induces the involution
ε1 ↔ ε2 on F (and leaves a untouched). Note that changing ε1 to ε2 amounts to
changing k = −h∨ − ε2

ε1
to k∨ = −h∨ − ε1

ε2
and we have (k + h∨)(k∨ + h∨) = 1. Note

also that we are assuming that g is simply laced, so g is isomorphic to g∨ and the
above geometrically defined automorphism is in fact a corollary of the Feigin-Frenkel
duality (cf. (1w)–(4w)).

1.5. Relation to previous works

We discuss previous works related to the above result here and later in §1.8. This
subsection is devoted for those works related to statements themselves, and §1.8 is
for those which give us a strategy and techniques of the proof.

First we discuss the statements (1),(2),(3). There are many previous works in
almost the same pattern: We consider moduli spaces of instantons or variants on
complex surfaces, and their homology groups or similar theory. Then some algebras
similar to affine Lie algebras act on direct sums of homology groups, where we sum
over various Chern classes.

The first example of such a result was given by the third-named author [51, 53]. The
4-manifold is C2/Γ for a nontrivial finite subgroup Γ ⊂ SU(2), and the gauge group
is U(r). The direct sum of homology groups of symplectic resolutions of Uhlenbeck
spaces, called quiver varieties in more general context, is an integrable representation
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6 CHAPTER 1. INTRODUCTION

of the affine Lie algebra gΓ,aff of level r. Here gΓ is a simple Lie algebra of type ADE
corresponding to Γ via the McKay correspondence, and gΓ,aff is its affine Lie algebra.

This result nicely fitted with the S-duality conjecture on the modular invariance
of the partition function of 4d N = 4 supersymmetric gauge theory by Vafa-Witten
[70], as characters of integrable representations are modular forms. It was understood
that the correspondence [51, 53] should be understood in the framework of a duality
in string theories [68]. There are lots of subsequent developments in physics literature
since then.

In mathematics, the case Γ = {e} was subsequently treated by [52] and Grojnowski
[35] for r = 1, and by Baranovsky [6] for general r. The corresponding gΓ,aff is the
Heisenberg algebra, i.e., the affine Lie algebra associated with the trivial Lie algebra
gl1, in this case.

For Γ = {e}, the symplectic resolution Ũ
d

r → UdG of the Uhlenbeck space UdG is
given by the moduli space of torsion-free sheaves on P2 together with a trivialization
at `∞ of generic rank r and of second Chern class d. We call it the Gieseker space in
this paper. For general Γ, we have its variant. All have description in terms of repre-
sentations of quivers by variants of the ADHM description, and hence are examples
of quiver varieties. (See Remark 1.5.2 for historical comments.)

This result was extended to an action of the quantum toroidal algebra Uq(LgΓ,aff)
on the equivariant K-theory of the moduli spaces when Γ 6= {e} [55, 57]. A variant for
equivariant homology groups was given by Varagnolo [71].

In all these works, the action was given by introducing correspondences in products
of moduli spaces, which give generators of the algebra. In particular, the constructions
depend on good presentations of algebras. The case Γ = {e} was studied much later,
as we explain below, as the corresponding algebra, which would be Uq(L(gl1)aff), was
considerably more difficult.

Let us also mention that the second-named author with Kuznetsov [28] constructed
an action of the affine Lie algebra ĝlr on the homology group of moduli spaces of
parabolic sheaves on a surface, called flag Gieseker spaces or affine Laumon spaces
when the surface is P2, the parabolic structure is put on a line and the framing is
added. (Strictly speaking, the action was constructed on the homology group of the
fibers of morphisms from flag Gieseker spaces to flag Uhlenbeck spaces. The action for
the whole variety is constructed much later by Negut [63] in the equivariant K-theory
framework.)

Let us turn to works on the inner product 〈1d|1d〉, which motivate the statement
(4). It is given by the equivariant integration of 1 over UdG, and their generating
function

(1.5.1) Z(Q,a, ε1, ε2) =
∞∑
d=0

Qd〈1d|1d〉

is called “the instanton part of the Nekrasov partition function for pure N = 2 su-
persymmetric gauge theory” [64]. This partition function has been studied intensively
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1.5. RELATION TO PREVIOUS WORKS 7

in both mathematical and physical literature. In particular, a result, which is very
similar to Theorem 1.4.1(1)∼(4) (but technically much simpler) was proved by the
first-named author [14]. Namely, in the situation of [14] on the representation theory
side one deals with the affine Lie algebra gaff instead of the corresponding W -algebra,
and on the geometric side one needs to replace the Uhlenbeck spaces UdG by flag Uh-
lenbeck spaces ZαG. In fact, it is important to note that when the original group G is
not simply laced, the main result of [14] relates the equivariant intersection cohomol-
ogy of the flag Uhlenbeck spaces for the group G with the representation theory of the
affine Lie algebra g∨aff , whose root system is dual to that of gaff . A somewhat simpler
construction exists also for the finite-dimensional Lie algebra g∨ – in that case on the
geometric side one has to work with the so called space of based quasi-maps into the
flag variety of g, also known as Zastava spaces (cf. [15] for a survey on these spaces).

The Nekrasov partition functions are equal for UdG and for flag Uhlenbeck spaces
at ε2 = 0, and it is enough for some purposes, say to determine Seiberg-Witten curves,
but they are different in general. Therefore it was clear that we must replace g∨aff by
something else, but we did not know what it is.

A breakthrough was given in a physics context by Alday-Gaiotto-Tachikawa [1]
(AGT for short). They conjectured that the partition functions for G = SL(2) with
four fundamental matters and adjoint matters are conformal blocks of the Virasoro al-
gebra. They provided enough mathematically rigorous evidence, say numerical checks
for small instanton numbers. They also give physical intuition that this correspon-
dence is coming from an observation that 4d N = 2 supersymmetric gauge theories
are obtained by compactifying the 6d theory on a Riemann surface: the Virasoro al-
gebra naturally lives on the Riemann surface, which cannot be directly seen from the
4d side. They also guessed that the Virasoro algebra is replaced by the W -algebra for
a group G of type ADE.

There is a large literature in physics after AGT, especially for type A. We do not
give the list, though those works are implicitly related to ours. We mention only one
which was most relevant for us, it is [40] by Keller et al, where the statement (4) was
written down for the first time for general G. (There is an earlier work by Gaiotto
for G = SL(2) [32], and various others for classical groups.)

Around the same time when [1] appeared in a physics context, there was an in-
dependent advance on the understanding of the algebra Uq(L(gl1)aff) acting on the
K-theory of resolutions of Uhlenbeck spaces of type A by Feigin-Tsymbaliuk [27] and
Schiffmann-Vasserot [67]. They noticed that Uq(L(gl1)aff) is isomorphic to various
algebras, which had been studied in different contexts: a Ding-Iohara algebra, a shuf-
fle algebra with the wheel conditions, the Hall algebra for elliptic curves, and an
algebra studied by Miki [47]. Combined with the AGT picture, we understand that
Uq(L(gl1)aff) is the limit of the deformed W (slr), or W (glr) by the reason explained
below, when r →∞.

In [17] a similar result is conjectured (and proved in type A) for finite W -algebras
associated with a nilpotent element e ∈ g∨, which is principal in some Levi subalgebra
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8 CHAPTER 1. INTRODUCTION

(in that case on the geometric side one works with the so called parabolic Zastava
spaces - cf. [15] for the relevant definitions).

Finally Maulik-Okounkov [46] and Schiffmann-Vasserot [66] proved Theorem 1.4.1
in the case when G = SL(r). More precisely, they work with the equivariant coho-

mology of Ũ
d

r rather than with equivariant intersection cohomology of UdG, which is
slightly bigger. As a result on the representation theory side they get a Verma module
over W (glr) (this algebra is isomorphic to the tensor product of W (slr) with a (rank
1) Heisenberg algebra). We should also mention that we use the construction of [46]
for r = 2 in a crucial way for the proof of Theorem 1.4.1.

Remark 1.5.2. — Gieseker constructed a moduli space of semistable sheaves on a
projective surface [33]. A morphism from Gieseker’s moduli space to Uhlenbeck com-
pactification was constructed by Li and Morgan [44, 50]. See [38, Ch. 8] as a modern
reference.

There is an alternative approach for the case of bundles with trivialization over P2:
The ADHM description [3] of instantons on S4 describes the moduli space as a space
of certain linear maps modulo the action of the unitary group. The Uhlenbeck space
naturally arises by dropping an open condition, and considering a larger space (see
[25, Ch. 3]). Furthermore this description is an affine algebro-geometric quotient [24],
and one can introduce a GIT quotient by perturbing the stability condition [54, Ch. 3].
It gives the moduli space of torsion free sheaves with trivialization. The morphism
from Gieseker space to Uhlenbeck space is also naturally defined.

1.6. Hyperbolic restriction

One of the main technical tools used in the proof of Theorem 1.4.1 is the notion of
hyperbolic restriction. Let us recall the general definition of this notion.

Let X be an algebraic variety endowed with an action of C∗. Then XC∗ is a closed
subvariety of X. Let AX denote the corresponding attracting set. Let i : XC∗ → AX
and j : AX → X be the natural embeddings. Then we have the functor Φ = i∗j!

from the derived category of constructible sheaves on X to the derived category of
constructible sheaves on XC∗ . This functor has been extensively studied by Braden in
[13]. In particular, the main result of [13] says that Φ preserves the semi-simplicities
of complexes.

Assume that we have a symplectic resolution π : Y → X in the sense of [46] and
assume in addition that the above C∗-action lifts to Y preserving the symplectic
structure. Let F = π∗CY [dimX] (where CY denotes the constant sheaf on Y ). Then
we have

Theorem 1.6.1. — 1. [72] Φ( F ) is isomorphic to π∗CY C∗ [dimXC∗ ].
2. Maulik-Okounkov’s stable envelope [46] gives us a choice of an isomorphism in

(1).
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1.7. SKETCH OF THE PROOF 9

See [60] for the proof. Though both Φ( F ) and π∗CY C∗ [dimXC∗ ] are isomorphic
semi-simple perverse sheaves, the proof of [72] only gives us a canonical filtration on
the former whose associated graded is canonically isomorphic to the latter. Then the
stable envelope [46] gives us a choice of a splitting.

Now we specialize the above discussion to the following situation. Let P ⊂ G be a
parabolic subgroup of G with Levi subgroup L. Let us choose a subgroup C∗ ⊂ Z(L)
(here Z(L) stands for the center of L) such that the fixed point set of its adjoint
action on P is L and the attracting set is equal to all of P . Let now X = UdG. We
denote by UdL the fixed point set of the above C∗ on UdG and by UdP the corresponding
attracting set. It is easy to see that if L is not a torus, then UdL is just homeomorphic
to Ud[L,L] (and if L is a torus, then UdL is just Sd(C2)). See §4.2. Often we are going
to drop the instanton number d from the notation, when there is no fear of confusion.
We let i and p denote the corresponding maps from UL to UP and from UP to UL.
Also we denote by j the embedding of UP to UG. We have the diagram

(1.6.2) UL
p

�
i

UP
j→ UG,

Thus we can consider the corresponding hyperbolic restriction functor ΦL,G = i∗j!

(note that the functor actually depends on P and not just on L, but it depend on the
choice of C∗ ⊂ Z(L) made above, as we will explain in §4.4).

The following is one of the main technical results used in the proof of Theorem 1.4.1:

Theorem 1.6.3. — 1. Let P1 ⊂ P2 be two parabolic subgroups and let L1 ⊂ L2 be the
corresponding Levi subgroups. Then we have a natural isomorphism of functors
ΦL1,G ' ΦL1,L2

◦ ΦL2,G.
2. For P and L as above the complex ΦL,G(IC( UdG)) is perverse and semi-simple.

Moreover, the same is true for any semi-simple perverse sheaf on UdG which is
constructible with respect to the natural stratification.

Note that when G = SL(r), it is easy to deduce Theorem 1.6.3 from Theo-

rem 1.6.1(1), since in this case the scheme UdG has a symplectic resolution Ũ
d

r .

1.7. Sketch of the proof

The proof of Theorem 1.4.1 will follow the following plan:
1) Replace G = G×C∗×C∗-equivariant cohomology with T = T ×C∗×C∗-equiv-

ariant cohomology. Note that the former is just equal to the space of W -invari-
ants in the latter, so if we define an action of W k(g) on ⊕ IH∗T( UdG) ⊗

AT

FT (where

AT = H∗T×C∗×C∗(pt) and FT is its field of fractions) and check that if commutes with
the action of W , we get an action of W k(g) on

⊕
d IH∗G( UdG) ⊗

AG

FG.

2) We are going to construct an action of Heisk+h∨(h) on
⊕

d IH∗T( UdG) ⊗
AT

FT

and then get the action of W k(g) by using the embedding W k(g) ↪→ Heisk+h∨(h). It
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10 CHAPTER 1. INTRODUCTION

should be noted that the above Heisk+h∨(h)-action will have several “disadvantages”
that will disappear when we restrict ourselves to W k(g). For example, this action will
depend on a certain auxiliary choice (a choice of a Weyl chamber).

3) The action of the Heisenberg algebra on
⊕

d IH∗T( UdG) ⊗
AT

FT will be constructed

in the following way. Let us choose a Borel subgroup B containing the chosen maximal
torus T . We can identify

⊕
d IH∗T( UdG) ⊗

AT

FT with
⊕

dH
∗
TΦT,G(IC( UdG)) ⊗

AT

FT , so

it is enough to define an action of the Heisenberg algebra on the latter. For this
it is enough to define the action of Heis(Cα∨i ) for every simple coroot α∨i of G
(and then check the corresponding relations). Let Pi denote the corresponding sub-
minimal parabolic subgroup containing B. Let also Li be its Levi subgroup (it is
canonical after the choice of T ). Note that [Li, Li] ' SL(2). Using the isomorphism
ΦT,G(IC( UdG)) ' ΦT,Li ◦ ΦLi,G(IC( UdG)) and Theorem 1.6.1, we define the action
of Heis(Cα∨i ) on

⊕
dH
∗
TΦT,G(IC( UdG)) ⊗

AT

FT using the results of [46] for G = SL(2).

Here it is important for us to write down ΦLi,G(IC( UdG)) in terms of IC( Ud
′

Li)
(d′ ≤ d) and local systems on symmetric products in a ‘canonical’ way. In particular,
we need to construct a base in the multiplicity space of IC( Ud

′

Li) in ΦLi,G(IC( UdG)).
For G = SL(r), this follows from the stable envelope, thanks to Theorem 1.6.1(2).
For general G, this argument does not work, and we use the factorization property
of Uhlenbeck spaces together with the special case G = SL(2). A further detail is
too complicated to be explained in Introduction, so we ask an interested reader to
proceed to the main text.

4) We now need to check the relations between various Heis(Cα∨i ). For this we have
two proofs. One reduces it again to the results of [46] for G = SL(3) (note that since
we assume that G is simply laced, any connected rank 2 subdiagram of the Dynkin
diagram of G is of type A2). The other goes through the theory of certain “geometric”
R-matrices (cf. Section 7). The proof of assertions (2) and (3) of Theorem 1.4.1 is
more or less straightforward. The proof of assertion (4) is more technical and we are
not going to discuss it in the Introduction. Let us just mention that for that proof
we need a stronger form of the first 3 statements of Theorem 1.4.1 which is briefly
discussed below.

1.8. Relation to previous works – technical parts

Let us mention previous works which give us a strategy and techniques of the proof.
First of all, we should mention that the overall framework of the proof is the same as

those in [46, 66]. We realize the Feigin-Frenkel embedding of W k(g) into Heisk+h∨(h)

in a geometric way via the fixed point ( UdG)C
∗

= UdL, as is explained the geometric
realization in 3),4) in §1.7. This was first used in [46, 66] for type A.
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1.8. RELATION TO PREVIOUS WORKS – TECHNICAL PARTS 11

What we do here is to replace the equivariant homology of Gieseker spaces Ũ
d

r by
intersection cohomology of UdG as the former exists only in type A. Various founda-
tional issues were discussed in the joint work of the first and second-named authors
with Gaitsgory [21]. In particular, the fact that the character of MFG(a) is equal to
the character of a Verma module over W k(g) follows from the main result of [21]. (For
type A, it was done earlier in the joint work of the third-named author with Yoshioka.
See [54, Exercise 5.15] and its solution in [61].)

A search of a replacement of Maulik-Okounkov’s stable envelope [46] was initi-
ated by the third-named author [60]. In particular, the relevance of the hyperbolic
restriction functor Φ and the statement Theorem 1.6.1(2) were found. Therefore our
technical aim is to find a ‘canonical’ isomorphism between ΦL,G(IC( UdG)) and a cer-
tain perverse sheaf on UdL.

Let us also mention that Theorem 1.6.1(1) was proved much earlier by Varagnolo-
Vasserot [72] in their study of quiver varieties. The functor Φ realized tensor products
of representations of gΓ,aff . (Strictly speaking, only quiver varieties of finite types
were considered in [72]. A slight complication occurs for quiver varieties of affine
types which give gΓ,aff . See [60, Remark 1] for detail.)

When we do not have a symplectic resolution like Ũ
r

d, we need another tool to
analyze Φ. Fortunately the hyperbolic restriction functor was studied by Mirković-
Vilonen [48, 49] in the context of the geometric Satake isomorphism, which asserts the
category of G(C[[t]])-equivariant perverse sheaves on the affine Grassmannian GrG =
G(C((t)))/G(C[[t]]) is equivalent to the category of finite dimensional representations
of the Langlands dual G∨ of G as tensor categories. The hyperbolic restriction functor
realizes the restriction from G∨ to its Levi subgroup.

In particular, it was proved that Φ sends perverse sheaves to perverse sheaves.
This was proved by estimating dimension of certain subvarieties of GrG, now called
Mirković-Vilonen cycles. The proof of Theorem 1.6.3 is given in the same manner,
replacing Mirković-Vilonen cycles by attracting sets of the C∗-action.

It is clear that we should mimic the geometric Satake isomorphism from the con-
jecture of the first and second-named authors [18] which roughly says the following: it
is difficult to make sense of perverse sheaves on the double affine Grassmannian, i.e.,
the affine Grassmannian GrGaff

for the affine Kac-Moody group Gaff . But perverse
sheaves on UdG (and more generally instanton moduli spaces on C2/Γ with Γ = Z/kZ)
serve as their substitute. Then they control the representation theory of G∨aff at level k.

This conjecture nicely fits with the third-named author’s works [51, 53] on quiver
varieties via I. Frenkel’s level-rank duality for the affine Lie algebra of type A [31].
Namely in the correspondence between moduli spaces and representation theory, the
gauge group determines the rank, and Γ the level respectively in the double affine
Grassmannian. And the role is reversed in quiver varieties.

In [20], the first and second-named authors proposed a functor, acting on perverse
sheaves, which conjecturally gives tensor products of G∨aff . This proposal was checked
in [58] for type A, by observing that the same functor gives the branching from gΓ,aff
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12 CHAPTER 1. INTRODUCTION

to the affine Lie algebra of a Levi subalgebra. The interchange of tensor products and
branching is again compatible with the level-rank duality.

Here in this paper, tensor products and branching appear in the opposite side: The
hyperbolic restriction functor Φ realizes the tensor product in the quiver variety side,
as we mentioned above. Therefore it should correspond to branching in the dual affine
Grassmannian side. This is a philosophical explanation why the study of analog of
Mirković-Vilonen cycles is relevant here.

1.9. The main result: integral form

The formulation of Theorem 1.4.1 has an obvious drawback: it is only formulated
in terms of localized equivariant cohomology. First of all, it is clear that as stated
Theorem 1.4.1 only has a chance to work over the localized field F = C(ε1, ε2) rather
than over A = C[ε1, ε2]. The reason is that our formula for the level k = −h∨ − ε2

ε1
and the highest weight λ = a

ε1
− ρ are not elements of A. For many purposes, it

is convenient to have an A-version of Theorem 1.4.1. In fact, technically in order
to prove the last assertion of Theorem 1.4.1 we need such a refinement of the first
3 assertions (the reason is that we need to use the cohomological grading which is
lost after localization). In earlier works [46, 66] for type A, the A-version appears
only implicitly, as operators W (κ)

n are given by cup products on Gieseker spaces. But
in our case, Uhlenbeck spaces are singular, and we need to work with intersection
cohomology groups. Hence W (κ)

n do not have such descriptions.
So, in order to formulate a non-localized version of Theorem 1.4.1 one needs to

define an A-version WA(g) of the W -algebra (such that after tensoring with F we
get the algebra W k(g) with k = −h∨ − ε2

ε1
). We also want this algebra to be graded

(such that the degrees of ε1 and ε2 are equal to 2); in addition we need analogs of
statements (2w) and (3w). This is performed in the Appendix B. Let us note, that
although this A-form is motivated by geometry, it can be defined purely in an algebraic
way, following the work of Feigin and Frenkel. As far as we know, this A-form does
not appear in the literature before. As a purely algebraic application, we can remove
the genericity assumption in (4w). The third named author learns from Arakawa that
this was known to him before, but the proof is not written. After this we prove an
A-version of Theorem 1.4.1 in Section 8.

The non-localized equivariant cohomology groups also give us a refined structure
in our construction. We construct WA(g)-module structures on four modules

⊕
d

IH∗G,c( UdG),
⊕
d

H∗T,c(ΦT,G(IC( UdG)))⊕
d

H∗T(ΦT,G(IC( UdG))),
⊕
d

IH∗G( UdG),
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1.10. REMARKS ABOUT NON-SIMPLY LACED CASE 13

where the subscript c stands for cohomology with compact support. They become
isomorphic if we take tensor products with FT , i.e., in the localized equivariant co-
homology. But they are different over AG and AT . We show that they are universal
Verma, Wakimoto modules MA(a), NA(a), and their duals respectively. Here by a
Wakimoto module, we mean the pull-back of a Fock space via the embedding of W (g)
in Heis(h). They are universal in the sense that we can specialize to Verma/Wakimoto
and their duals at any evaluation AG → C, AT → C. This will be important for us
to derive character formulas for simple modules, which will be discussed in a separate
publication.

The importance of the integral form and the application to character formulas were
first noticed in the context of the equivariant K-theory of the Steinberg variety and
the affine Hecke algebra (see [23]), and then in quiver varieties [55] and parabolic
Laumon spaces (= handsaw quiver varieties) [59].

1.10. Remarks about non-simply laced case

We have already mentioned above that verbatim Theorem 1.4.1 doesn’t hold for
non-simply laced G. However, we expect that the following modification of Theo-
rem 1.4.1 should hold.

First, let G be any affine Lie algebra in the sense of [39] with connected Dynkin
diagram. For example, G can be untwisted, and in this case it is isomorphic to a Lie
algebra of the form gaff for some simple finite-dimensional Lie algebra. But in addition
there exist twisted affine Lie algebras. We refer the reader to [39] for the relevant
definitions; let us just mention that every twisted G comes from a pair ( G ′, σ) where
G ′ = gaff for some simply laced simple finite-dimensional Lie algebra g and σ is a
certain automorphism of g of finite order.

The Dynkin diagram of G comes equipped with a special “affine” vertex. We let G G
denote the semi-simple and simply connected group whose Dynkin diagram is obtained
from that of G by removing that vertex.

To such an algebra one can attach another affine Lie algebra G∨ — “the Langlands
dual Lie algebra”. By definition, this is just the Lie algebra whose generalized Cartan
matrix is transposed to that of G. It is worthwhile to note that:

1) If g is a simply laced finite-dimensional simple Lie algebra, then g∨aff is isomorphic
to gaff (which is also the same as (g∨)aff in this case).

2) In general, if g is not simply laced, then g∨aff is not isomorphic to (g∨)aff . In fact,
if g is not simply laced, then g∨aff is always a twisted Lie algebra.

It turns our that one can define the Uhlenbeck spaces UdG for any affine Lie algebra
G in such a way that that UdG = UdG when G = gaff and g = Lie(G) (the definition
uses the corresponding simply laced algebra g and its automorphism σ mentioned
above). We are not going to explain the definition here (we shall postpone it for a
later publication). This scheme is endowed with an action of the group G G ×C∗×C∗.
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14 CHAPTER 1. INTRODUCTION

In addition to G as above one can also attach a W -algebra W ( G). Then we expect
the following to be true:

Conjecture 1.10.1. — There exists an action of W ( G) on ⊕ IH∗G( G∨)×C∗×C∗( UdG∨) sat-
isfying properties similar to those of Theorem 1.4.1.

Let us discuss one curious corollary of the above conjecture. Let g be a finite-
dimensional simple Lie algebra. Set G1 = g∨aff , G2 = (g∨)∨aff . Then Conjecture 1.10.1
together with Feigin-Frenkel duality imply that there should be an isomorphism be-
tween IH∗G( G1)×C∗×C∗( UdG1

) and IH∗G( G2)×C∗×C∗( UdG2
) which sends ε2

ε1
and to r∨ ε1ε2 .

It would be interesting to see whether this isomorphism can be constructed geomet-
rically (let us note that the naive guess that there exists an isomorphism between
UdG1

and UdG2
giving rise to the above isomorphism between IH∗G( G1)×C∗×C∗( UdG1

)

and IH∗G( G2)×C∗×C∗( UdG2
) is probably wrong). This question might be related to the

work [69] where the author explains how to derive the 4-dimensional Montonen-Olive
duality for non-simply laced groups from 6-dimensional (2,0) theory.

1.11. Further questions and open problems

In this subsection we indicate some possible directions for future research on the
subject (apart from generalizing everything to the non-simply laced case, which was
discussed before).

1.11(roman@̧subsection). VOA structure and CFT. — Our results imply that the
space MFG(a) has a natural vertex operator algebra structure. It would be extremely
interesting to construct this structure geometrically.

The AGT conjecture predicts a duality between N = 2 4d gauge theories and
2d conformal field theories (CFT). The equivariant intersection cohomology group
MFG(a) is just the quantum Hilbert space associated with S1, appeared as a boundary
of a Riemann surface. We should further explore the 4d gauge theory from CFT
perspective, as almost nothing is known so far.

1.11(roman@̧subsection). Gauge theories with matter. — Our results give a representation-
theoretic interpretation of the Nekrasov partition function of the pure N = 2 super-
symmetric gauge theory on R4. For physical reasons it is also interesting to study
gauge theories with matter. Mathematically it usually means that in the definition of
the partition function (1.5.1) one should replace the equivariant integral of 1 by the
equivariant integral of some other (intersection) cohomology class. However, when
G is not of type A even the definition of the partition function is not clear to us.
Namely, for G = SL(r) one usually works with the Gieseker space Ũ

d

r instead of UdG.
In this case the cohomology classes in question are usually defined as Chern classes
of certain natural sheaves Ũ

d

r (such as, for example, the tangent sheaf). Since UdG is
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1.12. ORGANIZATION OF THE PAPER 15

singular and we work with intersection cohomology such constructions don’t literally
make sense for UdG.

1.11(roman@̧subsection). The case of C2/Γ. — It would be interesting to try and
generalize our results to Uhlenbeck space of C2/Γ. Here we expect the case when Γ
is a cyclic group to be more accessible than the general case; in fact, in this case one
should be able to see connections with [18],[20] and on the other hand with [10, 9].
On the other hand the theory of quiver varieties deals with general Γ, but the group
G is of type A, as we mentioned in §1.5. The case when both Γ and G are not of
type A seems more difficult. Note that we must impose ε1 = ε2, therefore the level
k = −h∨ − ε2/ε1 cannot be deformed. In particular, the would-be W -algebra does
not have a classical limit.

1.11(roman@̧subsection). Surface operators. — As we have already mentioned in §1.5,
there are flag Uhlenbeck spaces parametrizing (generalized) G-bundles on P2 with
parabolic structure on the line P1. A type of parabolic structure corresponds to a
parabolic subgroup P of G. Generalizing results in two extreme cases, P = B in [14]
and P = G in this paper, it is expected that the equivariant intersection cohomology
group admits a representation of the W -algebra associated with the principal nilpotent
element in the Lie algebra l of the Levi part of P . (We assume G is of type ADE,
and the issue of Langlands duality does not occur, for brevity.) This is an affine
version of the conjecture in [17] mentioned before. Moduli of G-bundles with parabolic
structure of type P is called a surface operator of Levi type l in the context of N = 4

supersymmetric gauge theory [36].
However there is a surface operator corresponding to arbitrary nilpotent element

e in LieG proposed in [22], which is supposed to have the symmetry of W (g, e), the
W -algebra associated with e. We do not understand what kind of parabolic structures
nor equivariant intersection cohomology groups we should consider if e is not regular
in Levi.

1.12. Organization of the paper

In Section 2 we discuss some generalities about Uhlenbeck spaces. Section 3 is de-
voted to the general discussion of hyperbolic restriction and Section 4 — to hyperbolic
restriction on Uhlenbeck spaces. In Section 5 we relate the constructions and results
of Section 4 to certain constructions of [46] in the case when G is of type A. Sec-
tion 6 is devoted to the construction of the action of the algebra W k(g) on MFG(a)
along the lines presented above. Section 7 is devoted to the discussion of “geometric
R-matrices”.
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16 CHAPTER 1. INTRODUCTION

1.13. Some notational conventions

(i) A partition λ is a nonincreasing sequence λ1 ≥ λ2 ≥ · · · of nonnegative integers
with λN = 0 for sufficiently large N . We set |λ| =

∑
λi, l(λ) = #{i | λi 6= 0}.

We also write λ = (1n12n2 · · · ) with nk = #{i | λi = k}.
(ii) The equivariant cohomology group H∗G(pt) of a point is canonically identified

with the ring of invariant polynomials on the Lie algebra LieG of G. The coor-
dinate functions for the two factors C∗ are denoted by ε1, ε2 respectively. We
identify the ring of invariant polynomials on g = LieG with the ring of the Weyl
group invariant polynomials on the Cartan subalgebra h of g. When we consider
the simple root αi as a polynomial on h, we denote it by ai.

(iii) For a variety X, let Db(X) denote the bounded derived category of complexes of
constructible C-sheaves onX. Let IC(X0, L) denote the intersection cohomology
complex associated with a local system L over a Zariski open subvariety X0 in
the smooth locus of X. We denote it also by IC(X) if L is trivial. When X is
smooth and irreducible, CX denotes the constant sheaf on X shifted by dimX.
If X is a disjoint union of irreducible smooth varieties Xα, we understand CX
as the direct sum of CXα .

(iv) We make a preferred degree shift for the Borel-Moore homology group (with
complex coefficients), and denote it by H[∗](X). The shift is coming from a re-
lated perverse sheaf, which is clear from the context. For example, ifX is smooth,
CX is a perverse sheaf. Hence H[∗](X) = H∗+dimX(X) is a natural degree shift,
as it is isomorphic to H−∗(X, CX). More generally, if L is a closed subvariety
in a smooth variety X, we consider H[∗](L) = H∗+dimX(L) = H−∗(L, j! CX),
where j : L→ X is the inclusion.

(v) We use the ADHM description of framed torsion free sheaves on P2 at several
places. We change the notation (B1, B2, i, j) in [54, Ch. 2] to (B1, B2, I, J) as i,
j are used for different things.
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CHAPTER 2

PRELIMINARIES

A basic reference to results in this section is [21], where [4, 54] are quoted occa-
sionally.

2.1. Instanton number

We define an instanton number of a G-bundle F over P2. It is explained in, for
example, [4]. Since it is related to our assumption that G is simply-laced, we briefly
recall the definition.

The instanton number is the characteristic class associated with an invariant bi-
linear form ( , ) on the Lie algebra g of G. Since we assume G is simple, the bilinear
form is unique up to scalar. We normalize it so that the square length of the highest
root θ is 2.

When G = SL(r), it is nothing but the second Chern class of the associated
complex vector bundle.

For an embedding SL(2)→ G corresponding to a root α, we can induce a G-bundle
F from an SL(2)-bundle F SL(2). Then the corresponding instanton numbers are
related by

(2.1.1) d( F ) = d( F SL(2))×
2

(α, α)
.

Since we assume G is simply-laced, we have (α, α) = 2 for any root α. Thus the
instanton number is preserved under the induction.

2.2. Moduli of framed G-bundles

Let BundG be the moduli space of G-bundles with trivialization at `∞ of instanton
number d as before. We often call them framed G-bundles.

The tangent space of BundG at F is equal to the cohomology groupH1(P2, g F (−`∞)),
where g F is the vector bundle associated with F by the adjoint representation
G → GL(g) ([21, 3.5]). Other degree cohomology groups vanish, and hence the
dimension of H1 is given by the Riemann-Roch formula. It is equal to 2dh∨ ([4]).
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20 CHAPTER 2. PRELIMINARIES

Here h∨ is the dual Coxeter number of G, appearing as the ratio of the Killing form
and our normalized inner product ( , ).

It is known that BundG is connected, and hence irreducible ([21, Prop. 2.25]).
It is also known that BundG is a holomorphic symplectic manifold. Here the sym-

plectic form is given by the isomorphism

(2.2.1) H1(P2, g F (−2`∞))
∼=−→ H1(P2, g∗F (−`∞)),

where g ∼= g∗ is induced by the invariant bilinear form, and OP2(−`∞)→ OP2(−2`∞)
is given by the multiplication by the coordinate z0 corresponding to `∞. The tangent
space T F BundG

∼= H1(P2, g F (−`∞)) is isomorphic also to H1(P2, g F (−2`∞)) and the
above isomorphism can be regarded as T F BundG → T ∗F BundG. It is nondegenerate
and closed. (See [54, Ch. 2, 3] for G = SL(r). General cases can be deduced from the
SL(r)-case by a faithful embedding G→ SL(r).)

2.3. Stratification

Let UdG be the Uhlenbeck space for G. It has a stratification

(2.3.1) UdG =
⊔

Bund1

G,λ, Bund1

G,λ = Bund1

G ×SλA
2,

where the sum runs over pairs of integers d1 and partitions λ with d1 + |λ| = d. Here
SλA2 is a stratum of the symmetric product S|λ|A2, consisting of configurations of
points whose multiplicities are given by λ, that is

(2.3.2) SλA2 =
{∑

λixi ∈ S|λ|A2
∣∣∣xi 6= xj for i 6= j

}
for λ = (λ1 ≥ λ2 ≥ · · · ). We have

(2.3.3) dim Bund1

G,λ = 2(d1h
∨ + l(λ)).

Let Ud1

G,λ be the closure of Bund1

G,λ. We have a finite morphism

(2.3.4) Ud1

G × SλA2 → Ud1

G,λ,

extending the identification Bund1

G ×SλA2 = Bund1

G,λ, where SλA2 is the closure
of SλA2 in S|λ|A2.

2.4. Factorization

For any projection a : A2 → A1 we have a natural map πda,G : UdG → SdA1. See [21,
§6.4]. It is equivariant under G = G × C∗ × C∗: it is purely invariant under G. We
also change the projection a according to the C∗ × C∗-action.

Let us explain a few properties. Let F ∈ BundG. It is a principal G-bundle over P2

trivialized at `∞, but can be also considered as a G-bundle over P1 × P1 trivialized
at the union of two lines {∞} × P1 and P1 × {∞}. We extend a to P1 × P1 → P1.
Then πda,G( F ) measures how the restriction of F to a projective line a−1(x) differs
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2.4. FACTORIZATION 21

from the trivial G-bundle for x ∈ P1. If x is disjoint from πda,G( F ), then F |a−1(x) is a
trivial G-bundle. If not, the coefficient of x in πda,G( F ) counts non-triviality with an
appropriate multiplicity. (See [21, §4].)

On the stratum Bund1

G ×SλA2, πda,G is given as the sum of πd1

a,G and the natural
morphism SλA2 → S|λ|A1 induced from a. This property comes from the definition
of the Uhlenbeck as a space of quasi-maps. (See [21, §§1,2].)

For type A, it is given as follows in terms of the ADHM description (B1, B2, I, J)
(see [54, Ch. 2]): let Ba be the linear combination of B1, B2 corresponding to the
projection a : A2 → A1. Then πda,G is the characteristic polynomial of Ba. (See [21,
Lem. 5.9].)

Moreover, most importantly, this map enjoys the factorization property, which says
the following. Let us write d = d1 + d2 with d1, d2 > 0. Let (Sd1A1 × Sd2A1)0 be the
open subset of Sd1A1×Sd2A1 where the first divisor is disjoint from the second divisor.
Then we have a natural isomorphism

(2.4.1) UdG ×SdA1 (Sd1A1 × Sd2A1)0
∼= (πd1

a,G × π
d2

a,G)−1((Sd1A1 × Sd2A1)0).

See [21, Prop. 6.5]. We call πda,G the factorization morphism. Often we are going to
make statements about UdG and we are going to prove them by induction on d; (2.4.1)
will usually allow us to say that the inductive step is trivial away from the preimage
under πda,G of the main diagonal in SdA1. In this case we are going to say that (the
generic part of) the induction step “follows by the factorization argument”.
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CHAPTER 3

LOCALIZATION

3.1. General Statement

Let T be a torus acting on X and Y be a closed invariant subset containing XT .
Let ϕ : Y → X be the inclusion. Let U def.

= X \ Y and ψ : U → X be the inclusion.
Let F ∈ Db

T (X). We consider distinguished triangles

(3.1.1)
ϕ!ϕ

! F → F → ψ∗ψ
∗ F +1−−→,

ψ!ψ
! F → F → ϕ∗ϕ

∗ F +1−−→ .

Denote the Lie algebra of T by t. Natural homomorphisms

H∗T (X, F )→ H∗T (X,ϕ∗ϕ
∗ F ) ∼= H∗T (Y, ϕ∗ F ),(3.1.2)

H∗T (Y, ϕ! F ) ∼= H∗T (X,ϕ∗ϕ
! F ) ∼= H∗T (X,ϕ!ϕ

! F )→ H∗T (X, F )(3.1.3)

become isomorphisms after inverting an element f ∈ C[t] such that

(3.1.4) {x ∈ t | f(x) = 0} ⊃
⋃

x∈X\Y

Lie(Stabx).

See [34, (6.2)]. These assertions follow by observing H∗T (X;ψ!ψ
! F ) = H∗T (X,Y ; F )

and H∗T (X;ψ∗ψ
∗ F ) = H∗T (U ; F ) are torsion in C[t]. The same is true also for co-

homology groups with compact supports. We call these statements the localization
theorem.

We now suppose that we have an action of C∗ ×C∗ commuting with the T -action
such that

(3.1.5) — XC∗×C∗ is a single point, denoted by 0.
— If n1, n2 > 0, (tn1 , tn2) · x goes to 0 when t→ 0.

In fact, it is enough to have a C∗-action for the result below, but we consider a
C∗ × C∗-action, as the Uhlenbeck space has natural C∗ × C∗-action.

Let T = T × C∗ × C∗.

Lemma 3.1.6. — The natural homomorphisms H∗T(X, F )→ H∗T(Y, ϕ∗ F ), H∗T,c(Y, ϕ
! F )→

H∗T,c(X, F ) are isomorphisms for F ∈ Db
T(X).
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24 CHAPTER 3. LOCALIZATION

Proof. — Let bX0 : {0} → X, bY0 : {0} → Y be inclusions, and aX : X → {0}, aY : Y →
{0} be the obvious morphisms. Since 0 is the unique fixed point of an attracting action
of C∗ × C∗ by our assumption, adjunction gives us isomorphisms (aX)∗

∼=−→ (bX0 )∗,
(aY )∗

∼=−→ (bY0 )∗ on equivariant objects by [13, Lemma 6]. Therefore we have a diagram

(3.1.7)

H∗T(X, F ) −−−−→ H∗T(Y, ϕ∗ F )

∼=
y y∼=

H∗T((bX0 )∗ F ) H∗T((bY0 )∗ϕ∗ F ),

where the lower horizontal equality follows from ϕbY0 = bX0 . If F is a sheaf, other
three homomorphisms are given by restrictions, therefore the diagram is commutative.
Hence it is also so for F ∈ Db

T(X) by a standard argument. Taking the dual spaces,
we obtain the second assertion.

3.2. The case of Ext algebras

Let F , G ∈ Db
T (X). We claim that

ExtDbT (X)( F , G)→ ExtDbT (Y )(ϕ
! F , ϕ! G),(3.2.1)

ExtDbT (X)( F , G)→ ExtDbT (Y )(ϕ
∗ F , ϕ∗ G)(3.2.2)

are isomorphisms after inverting an appropriate element f . Taking adjoint and con-
sidering (3.1.1), we see that it is enough to show that

(3.2.3) ExtDbT (X)(ψ∗ψ
∗ F , G), ExtDbT (X)( F , ψ!ψ

! G)

are torsion. Let us observe that

(3.2.4) ExtDbT (X)(ψ∗ψ
∗ F , ψ∗ψ∗ F ) ∼= ExtDbT (U)(ψ

∗ψ∗ψ
∗ F , ψ∗ F )

is torsion, as it is an equivariant cohomology group over U . Then multiply-
ing the identity endomorphism of ψ∗ψ

∗ F to ExtDbT (X)(ψ∗ψ
∗ F , G), we con-

clude that ExtDbT (X)(ψ∗ψ
∗ F , G) is torsion. The same argument applies also

to ExtDbT (X)( F , ψ!ψ
! G).

3.3. Attractors and repellents

Let X be a T -invariant closed subvariety in an affine space with a linear T -action.
Let A ⊂ T be a subtorus and XA denote the fixed point set.

Let X∗(A) be the space of cocharacters of A. It is a free Z-module. Let

(3.3.1) aR = X∗(A)⊗Z R.

Let Stabx be the stabilizer subgroup of a point x ∈ X. A chamber C is a connected
component of

(3.3.2) aR \
⋃

x∈X\XA
X∗(Stabx)⊗Z R.

ASTÉRISQUE 385

SMF 6/10/16



Ép
re

uv
e S

M
F

Se
pt

em
be

r 2
2,

20
16

3.4. HYPERBOLIC RESTRICTION 25

We fix a chamber C. Choose a cocharacter λ in C. Let x ∈ XA. We introduce
attracting and repelling sets:

(3.3.3) Ax =

{
y ∈ X

∣∣∣∣ the map t 7→ λ(t)(y) extends to a map A1 → X
sending 0 to x

}
,

Rx =

{
y ∈ X

∣∣∣∣ the map t 7→ λ(t−1)(y) extends to a map A1 → X
sending 0 to x

}
.

These are closed subvarieties of X, and independent of the choice of λ ∈ C. Similarly
we can define AX , RX if we do not fix the point x as above. Note that XA is a
closed subvariety of both AX and RX ; in addition we have the natural morphisms
AX → XA and RX → XA.

3.4. Hyperbolic restriction

We continue the setting in the previous subsection. We choose a chamber in aR,
and consider the diagram

(3.4.1) XA
p

�
i

AX
j−→ X,

where i, j are embeddings, and p is defined by p(y) = limt→0 λ(t)y.
We consider Braden’s hyperbolic restriction functor [13] defined by Φ = i∗j!. (See

also a recent paper [26].) Braden’s theorem says that we have a canonical isomorphism

(3.4.2) i∗j! ∼= i!−j
∗
−

on weakly A-equivariant objects, where i−, j− are defined as in (3.4.1) for RX instead
of AX .

Braden proved his theorem for a normal algebraic variety. It is not known that UdG
is normal or not. Therefore we use a more general result [26, Theorem 3.1.6].

Note also that i∗ and p∗ are isomorphic on weakly equivariant objects, we have
Φ = p∗j

!. (See [13, (1)].)
Let F ∈ Db

T (X). A homomorphism

(3.4.3) H∗T (XA, i∗j! F ) ∼= H∗T (XA, p∗j
! F ) = H∗T ( AX , j! F )→ H∗T (X, F )

becomes an isomorphism after inverting a certain element by the localization theorem
in the previous subsection, applied to the pair AX ⊂ X.

We also have two naive restrictions

(3.4.4) H∗T (XA, (j ◦ i)! F ), H∗T (XA, (j ◦ i)∗ F ).

For the first one, we have a homomorphism to the hyperbolic restriction

(3.4.5) H∗T (XA, (j ◦ i)! F )→ H∗T (XA, i∗j! F ),

which factors through H∗( AX , j! F ). Then it also becomes an isomorphism after in-
verting an element.
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26 CHAPTER 3. LOCALIZATION

The second one in (3.4.4) fits into a commutative diagram

(3.4.6)

H∗T (XA, i∗j! F ) −−−−→ H∗T (XA, (j ◦ i)∗ F )x x
H∗T ( AX , j! F ) −−−−→ H∗T ( AX , j∗ F ).

Two vertical arrows are isomorphisms after inverting an element f . The lower horizon-
tal homomorphism factors through H∗T (X, F ) and the resulting two homomorphisms
are isomorphisms after inverting an element, which we may assume equal to f . There-
fore the upper arrow is also an isomorphism after inverting an element.

3.5. Hyperbolic semi-smallness

Braden’s isomorphism p∗j
! ∼= (p−)!j

∗
− implies that p∗j! preserves the purity of

weakly equivariant mixed sheaves. ([13, Theorem 8]). In particular, p∗j! IC(X) is
isomorphic to a direct sum of shifts of intersection cohomology complexes ([13, The-
orem 2]).

Braden’s result could be viewed as a formal analog of the decomposition theorem
(see [23, Theorem 8.4.8] for example). We give a sufficient condition so that p∗j! IC(X)
remains perverse (and semi-simple by the above discussion) in this subsection. This
result is a formal analog of the decomposition theorem for semi-small morphisms
(see [23, Proposition 8.9.3]). Therefore we call the condition the hyperbolic semi-
smallness. This condition, without its naming, appeared in [48, 49] mentioned in the
introduction. We give the statement in a general setting, as it might be useful also in
other situations.

Let X, XA as before. Let X =
⊔
Xα be a stratification of X such that i!α IC(X),

i∗α IC(X) are locally constant sheaves up to shifts. Here iα denotes the inclusion Xα →
X. We suppose that X0 is the smooth locus of X as a convention.

We also suppose that the fixed point set XA has a stratification XA =
⊔
Yβ such

that the restriction of p to p−1(Yβ) ∩ Xα is a topologically locally trivial fibration
over Yβ for any α, β (if it is nonempty). We assume the same is true for p−. We take
a point yβ ∈ Yβ .

Definition 3.5.1. — We say Φ is hyperbolic semi-small if the following two estimates
hold

dim p−1(yβ) ∩Xα ≤
1

2
(dimXα − dimYβ),

dim p−1
− (yβ) ∩Xα ≤

1

2
(dimXα − dimYβ).

(3.5.2)

In order to state the result, we need a little more notation. We have two local
systems over Yβ , whose fibers at a point yβ are HdimX−dimYβ (p−1(yβ) ∩ X0) and
H

dimX−dimYβ
c (p−1

− (yβ)∩X0) respectively. Note that p−1(yβ)∩X0 and p−1
− (yβ)∩X0 are
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3.6. RECOVERING THE INTEGRAL FORM 27

at most (dimX−dimYβ)/2-dimensional if Φ is hyperbolic semi-small. In this case, co-
homology groups have bases given by (dimX−dimYβ)/2-dimensional irreducible com-
ponents of p−1(yβ)∩X0 and p−1

− (yβ)∩X0 respectively. Let HdimX−dimYβ (p−1(yβ)∩
X0)χ and HdimX−dimYβ

c (p−1
− (yβ) ∩X0)χ denote the components corresponding to a

simple local system χ on Yβ .

Theorem 3.5.3. — Suppose Φ is hyperbolic semi-small. Then Φ(IC(X)) is perverse
and it is isomorphic to⊕

β,χ

IC(Yβ , χ)⊗HdimX−dimYβ (p−1(yβ) ∩X0)χ.

Moreover, we have an isomorphism

HdimX−dimYβ (p−1(yβ) ∩X0)χ ∼= H
dimX−dimYβ
c (p−1

− (yβ) ∩X0)χ.

The proof is similar to one in [49, Theorem 3.5], hence the detail is left as an
exercise for the reader. In fact, we only use the case when XT is a point, and we
explain the argument in detail for that case in Theorem A.7.1.

The same assertion holds for IC(X0, L) the intersection cohomology complex with
coefficients in a simple local system L over X0, if we put L also to cohomology groups
of fibers.

Note that Φ(IC(Xβ , Lβ)) is also perverse for a local system Lβ on Xβ , and iso-
morphic to ⊕

β,χ

IC(Yβ , χ)⊗HdimXβ−dimYβ (p−1(yβ) ∩Xβ)χ.

Conversely, if Φ(IC(Xβ , Lβ)) is perverse, we have the dimension estimates (3.5.2).
It is because the top degree cohomology groups are nonvanishing, and contribute to
nonzero perverse degrees. See the argument in Corollary A.9.2 for detail.

3.6. Recovering the integral form

We assume (3.1.5) and also that X is affine. We consider the hyperbolic restriction
with respect to T .

Let AT = C[Lie(T)] = C[ε1, ε2,a] and FT be its quotient field.
We further assume that H∗T,c(X, F ) is torsion free over H∗T(pt) = AT , i.e,

H∗T,c(X, F )→ H∗T,c(X, F )⊗AT
FT is injective. This property for the Uhlenbeck space

will be proved in Lemma 6.1.1.
We consider a homomorphism

(3.6.1) H∗T,c(X, F ) ∼= H∗T,c(X
T , i!j! F )→ H∗T,c(X

T , i∗j! F )

for F ∈ Db
T(X). The first isomorphism is given in Lemma 3.1.6. By the localization

theorem, the second homomorphism becomes an isomorphism after inverting an ele-
ment f ∈ C[LieT] which vanishes on the union of the Lie algebras of the stabilizers
of the points x ∈ AX \XT .
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28 CHAPTER 3. LOCALIZATION

Theorem 3.6.2. — Consider the intersection H∗T,c(X
T , i∗j! F ) ∩ H∗T,c(X

T , i∗−j
!
− F )

in H∗T,c(X, F )⊗AT
FT . It coincides with H∗T,c(X, F ).

The proof occupies the rest of this subsection. We first give a key lemma studying
stabilizers of points in AX \XT .

Lemma 3.6.3. — Suppose that (λ∨, n1, n2) is a cocharacter of T such that either of
the followings holds

1. λ∨ is dominant and n1, n2 > 0.
2. λ∨ is regular dominant and n1, n2 ≥ 0.

Then there is no point in AX \XT whose stabilizer contains (λ∨, n1, n2)(C∗).

Proof. — Assume λ is dominant and n1, n2 ≥ 0.
Suppose that x ∈ AX is fixed by (λ∨, n1, n2)(C∗). Then we have

(3.6.4) λ∨(t−1) · x = (tn1 , tn2) · x.
Since λ∨ is dominant, its attracting set contains AX . Therefore the left hand side has
a limit when t→∞. On the other hand, the right hand side has a limit when t→ 0.
Therefore C∗ 3 t 7→ λ∨(t−1) · x ∈ X extends to a morphism P1 → X. As X is affine,
such a morphism must be constant, i.e., (3.6.4) must be equal to x.

If n1, n2 > 0, x must be the unique C∗ × C∗ fixed point. It is contained in XT .
If λ∨ is regular, x is fixed by T , that is x ∈ XT .

Proof of Theorem 3.6.2. — Let α be an element in H∗T,c(X, F ) which is not divis-
ible by any non-constant element of AT . Let J±α be two fractional ideals of AT

consisting of those rational functions f such that fα ∈ H∗T,c(X
T , i∗j! F ) and fα ∈

H∗T,c(X
T , i∗−j

!
− F ) respectively. We need to show that J+

α ∩ J−α = AT . Note that a
priori the right hand side is embedded in the left hand side.

Let f ∈ J+
α . Then f = g/h where g, h ∈ AT and h is a product of linear factors of

the form (µ,m1,m2) such that
— 〈λ∨, µ〉 > 0 for a regular dominant coweight λ∨, and
— m1, m2 ≥ 0 with at least one of them nonzero.

In fact, we have 〈(λ∨, n1, n2), (µ,m1,m2)〉 6= 0 for any (λ∨, n1, n2) as in Lemma 3.6.3.
Taking a regular dominant coweight λ∨ and n1, n2 = 0, we get the first condition.
Next we take λ = 0 and n1, n2 > 0 and get the second condition.

Similarly for f = g/h ∈ J−α , h is a product of (µ,m1,m2) with 〈λ∨, µ〉 < 0 for
a regular dominant coweight λ∨, and the same conditions for (m1,m2) as above.
Then there are no linear factors satisfying both conditions, hence we have J+

α ∩J−α =
AT .
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CHAPTER 4

HYPERBOLIC RESTRICTION ON UHLENBECK SPACES

This section is of technical nature, but will play a quite important role later. Feigin-
Frenkel realized the W -algebra W k(g) in the Heisenberg algebra Heis(h) associated
with the Cartan subalgebra h of g. (See [30, Ch. 15].)

We will realize this picture in a geometric way. In [46] Maulik-Okounkov achieved
it by stable envelopes which relate the cohomology group of Gieseker space to that
of the fixed point set with respect to a torus. The former is a module over W k(g)
and the latter is a Heisenberg module. In [66] Schiffmann-Vasserot also related two
cohomology groups by a different method.

We will take a similar approach, but we need to use a sheaf theoretic language,
as Uhlenbeck space is singular. We use the hyperbolic restriction functor in §3.4, and
combine it with the theory of stable envelopes. This study was initiated by the third
author [60]. A new and main result here is Theorem 4.6.1, which says that perversity
is preserved under the hyperbolic restriction in our situation.

We fix a pair T ⊂ B of a maximal torus T and a Borel subgroup B, and con-
sider only parabolic subgroups P containing B, except we occasionally use opposite
parabolic subgroups P− until §4.13. In §4.13, we consider other parabolic subgroups
also.

4.1. A category of semisimple perverse sheaves

Let IC(BundG,λ, ρ) denote the intersection cohomology (IC) complexes, where ρ
is a simple local system on BundG,λ = BundG×SλA2 corresponding to an irreducible
representation of Sn1

× Sn2
× · · · via the covering

(4.1.1) (A2)n1 × (A2)n2 × · · · \ diagonal→ SλA2,

where λ = (1n12n2 · · · ). (Recall SλA2 is a stratum of S|λ|A2, see (2.3.2).)

Definition 4.1.2. — Let Perv( UdG) be the additive subcategory of the abelian category
of semisimple perverse sheaves on UdG, consisting of finite direct sums of IC(BundG,λ, ρ).
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30 CHAPTER 4. HYPERBOLIC RESTRICTION ON UHLENBECK SPACES

By abuse of notation, we use the same notation IC(BundG,λ, ρ) even if ρ is a reducible
representation of Sn1

×Sn2
× · · · . It is the direct sum of the corresponding simple IC

sheaves.
If ρ is the trivial rank 1 local system, we omit ρ from the notation and denote the

corresponding IC complex by IC(BundG,λ), or IC( UdG,λ).
Furthermore, we omit λ from the notation when it is the empty partition ∅. There-

fore IC( UdG) means IC(BundG,∅).
Objects in Perv( UdG) naturally have structures of equivariant perverse sheaves in

the sense of [11] with respect to the group action G = G×C∗ ×C∗ on UdG. We often
view Perv( UdG) as the subcategory of equivariant perverse sheaves.

4.2. Fixed points

Let P be a parabolic subgroup of G with a Levi subgroup L. Let A = Z(L)0 denote
the connected center of L. Let BundL denote the moduli space of L-bundles on P2 with
trivialization at `∞ of ‘instanton number d’. The latter expression makes sense, since
the notion of instanton number, defined as in §2.1, corresponds to a choice of a bilinear
form on the coweight lattice, which is the same for G and for L.

Suppose that F ∈ BundG is fixed by the A-action. It means that bundle automor-
phisms at `∞ parametrized by A extend to the whole space P2. The extensions are
unique. Therefore the structure group G of F reduces to the centralizer of A, which
is L. Hence (BundG)A = BundL.

Let us consider the fixed point subvariety

(4.2.1) UdL = ( UdG)A

in the Uhlenbeck space. Then we have an induced stratification

(4.2.2) UdL =
⊔

d1+d2=d,λ`d2

Bund1

L,λ, Bund1

L,λ = Bund1

L ×SλA
2.

Strictly speaking, our UdL depends on the choice of the embedding L→ G, therefore
should be denoted, say by UdL,G. We think that there is no fear of confusion.

Note that [L,L] is again semi-simple and simply-connected. (See [12, Cor. 4.4].)
Suppose that we have only one simple factor. Since we assume G is simply-laced,
[L,L] is also. The instanton number is the same for G and [L,L]. Otherwise we define
the instanton number for [L,L] by the invariant form on Lie([L,L]) induced from one
on g.

We only have trivial framed L/[L,L]-bundles as H2(P2) is 1-dimensional hence the
first Chern class of a framed bundle vanishes. Thus we have

(4.2.3) Bund1

L = Bund1

[L,L] .
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4.3. POLARIZATION 31

Since [L,L] is a subgroup of G, we have the induced closed embedding Ud[L,L] → UdG
(see [21, Lem. 6.2]), which clearly factors as

(4.2.4) Ud[L,L] → UdL.

By (4.2.3), this map is bijective. Since both spaces are closed subschemes of UdG, we
have

Proposition 4.2.5. — The morphism Ud[L,L] → UdL = ( UdG)A is a homeomorphism
between the underlying topological spaces.

We are interested in perverse sheaves on UdL, hence we only need underlying topo-
logical spaces. Hence we may identify UdL and Ud[L,L]. We define the category Perv( UdL)

in the same way as Perv( UdG).

Example 4.2.6. — The case when L is a maximal torus T is most important. We have

(4.2.7) UdT = SdA2 =
⊔
λ`d

SλA2,

as we do not have nontrivial framed T -bundles.

4.3. Polarization

Following [46, §3.3.2], we introduce the notion of a polarization of a normal bundle
of the smooth part of a fixed point component.

Let us give a definition in a general situation. Suppose a torus A acts on a holomor-
phic symplectic manifoldX, preserving the symplectic structure. Let Z be a connected
component of XA and NZ be its normal bundle in X. Consider A-weights of a fiber
of NZ . Let e(NZ)|H∗A(pt) be the H∗A(pt)-part of the Euler class of the normal bundle,
namely the product of all A-weights of a fiber of NZ . Since A preserves the symplectic
form, Z is a symplectic submanifold, and weights of NZ appear in the pairs (αi,−αi).
Hence

(4.3.1) (−1)(codimZ)/2e(NZ)|H∗A(pt) =
∏

α2
i

is a perfect square. A choice of a square root δ of (4.3.1) is called a polarization of Z
in X.

In the next subsection we consider attractors and repellents. We have a polarization
δrep given by product of weights in repellent directions. However this will not be a right
choice to save signs. Our choice of the polarization δ, which follows [46, Ex. 3.3.3], will
be explained in §5.3 for Gieseker spaces, and in §6.2 for Uhlenbeck spaces. Then we
understand δ = ±1, depending on whether it is the same as or the opposite to δrep,
in other words we identify δ with δ/δrep, as δrep is clear from the context.

Note that a polarization does not make sense unless the variety X is smooth.
Therefore we restrict the normal bundle to Z ∩ BundG = Z ∩ BundL and consider a
polarization there for Uhlenbeck spaces.
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32 CHAPTER 4. HYPERBOLIC RESTRICTION ON UHLENBECK SPACES

However a fixed point component Z, in general, does not intersect with BundG. Say
Z ∩ BundG = ∅ if L = T . We do not consider a polarization of Z in this case, and
smooth cases are enough for our purpose.

4.4. Definition of hyperbolic restriction functor

We now return to the situation when X = UdG. We choose a parabolic subgroup P
with a Levi subgroup L as before.

We consider the setting in §§3.3,3.4 with A = Z(L)0. Then (3.3.2) is the hyperplane
arrangement induced by roots:

(4.4.1) aR \
⋃
α

{α|aR = 0},

where the union runs over all positive roots α which do not vanish on aR. The chambers
are in one to one correspondence to the parabolic subgroups containing L as their
Levi (associated parabolics). Therefore the fixed P determines a ‘positive’ chamber.

We denote the corresponding attracting and repelling sets AX , RX by UdP and
UdP− . Often we are going to drop the instanton number d from the notation, when
there is no fear of confusion. We let i and p denote the corresponding maps from UL
to UP and from UP to UL. Also we denote by j the embedding of UP to UG. We
shall sometimes also use similar maps i−, j− and p− where UP is replaced with UP− .
We have diagrams

(4.4.2) UL
p

�
i

UP
j→ UG, UL

p−
�
i−

UP−
j−→ UG.

Definition 4.4.3. — We define the functor ΦL,G by i∗j! = p∗j
!.

We apply it to weakly A-equivariant objects, in particular on Perv( UdG).
Warning. Of course, the functor ΦL,G depends on P and not just on L. When we
want to emphasize P , we write ΦPL,G. Otherwise P is always chosen so that P ⊃ B
for the fixed Borel subgroup B.

Let us justify our notation UP for the attracting set. We have a one parameter
subgroup λ : Gm → G such that

P =
{
g ∈ G

∣∣∣ lim
t→0

λ(t)gλ(t)−1 exists
}
,

L = Gλ(Gm) = {g ∈ G |λ(t)g = gλ(t) for any t ∈ Gm} .
(4.4.4)

Then we have

UP
def.
=
{
x ∈ UG

∣∣∣ lim
t→0

λ(t) · x exists
}
,

UL
def.
= ( UG)λ(Gm) = {x ∈ UG |λ(t) · x = x for any t ∈ Gm} .

(4.4.5)

We embed G into SL(N) and consider the corresponding space for G = SL(N). We
use the ADHM description for USL(N) to identify it with the affine GIT quotient as in
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4.5. ASSOCIATIVITY 33

[54, Ch. 3]. Then SL(N) = SL(W ), and UP coincides with the variety π(Z) studied
in [56, §3]. Here π is Gieseker-Uhlenbeck morphism, and Z is the attracting set in the
Gieseker space, which will be denoted by ŨP later.

In [56, Rem. 3.16] it was remarked that Z parametrizes framed torsion free sheaves
having a filtration E = E0 ⊃ E1 ⊃ · · · ⊃ Ek ⊃ Ek+1 = 0. If all F i = Ei/Ei+1

are locally free, E is a P -bundle. Thus UP contains a possibly empty open subset
p−1(BunL) consisting of P -bundles.

Let us, however, note that UP ∩BunG is not entirely consisting of P -bundles, hence
larger than p−1(BunL): Consider a short exact sequence

0→ F 2 → E → F 1 = I x → 0,

arising from the Koszul resolution of the skyscraper sheaf at a point x ∈ A2. Here I x
is the ideal sheaf for x. Then E ∈ UP ∩ BunG, but E is not a P -bundle as F 1 is not
locally free. More detailed analysis will be given in the proof of Proposition 5.8.9.

4.5. Associativity

Proposition 4.5.1. — Let Q be another parabolic subgroup of G, contained in P and
let M denote its Levi subgroup. Let QL be the image of Q in L and we identify M
with the corresponding Levi group. Then we have a natural isomorphism of functors

(4.5.2) ΦM,L ◦ ΦL,G ∼= ΦM,G.

Proof. — It is enough to show that

(4.5.3) UP × UL UQL = UQ,

as
p′∗j
′!p∗j

! = p′∗p
′′
∗j
′′!j! = (p′ ◦ p′′)∗(j ◦ j′′)!

in the diagram

(4.5.4)

UQ
j′′−−−−→ UP

j−−−−→ UG

p′′
y yp

UQL
j′−−−−→ UL

p′
y
UM

The left hand side of (4.5.3) is just equal to p−1( UQL). By embedding G into
SL(N) we may assume that G = SL(N). In this case, we use the ADHM description
to describe UP , UQ, UQL . By [56, Proof of Lemma 3.6], they are consisting of data
(B1, B2, I, J) such that JF (B1, B2)I are in P , Q, QL respectively, i.e., upper trian-
gular in appropriate sense, for any products F (B1, B2) of B1, B2 of arbitrary order.
Now the assertion is clear.
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4.6. Preservation of perversity

The following is our first main result:

Theorem 4.6.1. — ΦL,G(IC( UdG)) is perverse (and semi-simple, according to [13, The-
orem 2]). Moreover, the same is true for any perverse sheaf in Perv( UdG).

The proof will be given in §A.
Let us remark that the result is easy to prove for type A, see [60, §4.4, Lemma 3].

The argument goes back to an earlier work by Varagnolo-Vasserot [72].

4.7. Hyperbolic restriction on BundL

Let us consider the restriction of ΦL,G(IC( UdG)) to the open subset BundL in this
subsection.

For simplicity, suppose that [L,L] has one simple factor so that the instanton
numbers of L-bundles are the same as those of [L,L]-bundles. In particular, BundL is
irreducible. Then IC( UdL) is a simple perverse sheaf, and we study

(4.7.1) HomPerv( UdL)(IC( UdL),ΦL,G(IC( UdG))).

We restrict (4.4.2) to the open subsets consisting of genuine bundles:

(4.7.2) BundL
p

�
i
p−1(BundL)

j→ BundG .

Let us take F ∈ BundL. Then the tangent space of BundL at F is H1(P2, l F (−`∞)),
where l is the Lie algebra of L. This is the subspace of H1(P2, g F (−`∞)) = T F BundG,
consisting of Z(L)0-fixed elements. The normal bundle of BundL in BundG splits into
the sum of H1(P2, n F (−`∞)) and H1(P2, n−F (−`∞)), where n is the nil radical of p =

LieP , and n− is its opposite. They correspond to attracting and repellent directions
respectively. Then p−1(BundL) is a vector bundle over BundL, whose fiber at F is
H1(P2, n F (−`∞)). It parametrizes framed P -bundles. The morphism p is the projec-
tion and i is the inclusion of the zero section. Therefore we have the Thom isomorphism
between i∗j!( CBundG

) and CBundL
up to shift.

Note further that dim p−1(BundL) is the half of the sum of dimensions of BundL and
BundG, as H1(P2, n F (−`∞)) and H1(P2, n−F (−`∞)) are dual to each other with respect
to the symplectic form. Hence a shift is unnecessary, and the Thom isomorphism
gives the canonical identification i∗j!( CBundG

) ∼= CBundL
. Therefore we normalize the

canonical homomorphism

(4.7.3) 1dL,G ∈ HomPerv( UdL)(IC( UdL),ΦL,G(IC( UdG)))

so that it is equal to the Thom isomorphism on the open subset.
Note also that a homomorphism in (4.7.1) is determined by its restriction to BundL,

hence (4.7.1) is 1-dimensional from the above observation. And 1dL,G is its base.
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4.8. SPACE Ud AND ITS BASE 35

If [L,L] has more than one simple factors G1, G2,. . . , BundL is not irreducible as it is
isomorphic to

⊔
d1+d2+···=d Bund1

G1
×Bund2

G2
× · · · . Then IC( UdL) must be understood

as the direct sum

(4.7.4)
⊕

d1+d2+···=d

IC(Bund1

G1
×Bund2

G2
× · · · ).

In particular, (4.7.1) is not 1-dimensional. But it does not cause us any trouble. We
have the canonical isomorphism for each summand, and 1dL,G is understood as their
sum.

4.8. Space Ud and its base

We shall introduce the space Ud of homomorphisms from CS(d)A2 to ΦL,G(IC( UdG))
and study its properties in this subsection. A part of computation is a byproduct of
the proof of Theorem 4.6.1 (see Lemma 4.8.15). The study of Ud will be continued in
the remainder of this section, and also in the next section.

Definition 4.8.1. — For d > 0, we define a vector space

UdL,G ≡ Ud
def.
= HomPerv( UdL)( CS(d)A2 ,ΦL,G(IC( UdG)))

= H−2(S(d)A2, ξ!ΦL,G(IC( UdG))),
(4.8.2)

where (d) is the partition of d consisting of a single entry d, and ξ : S(d)A2 → UdL is
the inclusion.

We use the notation Ud, when L, G are clear from the context.
Since the hyperbolic restriction ΦL,G depends on P , the space UdL,G depends also

on P . When we want to emphasize P , we denote it by Ud,PL,G or simply by Ud,P .
We have a natural evaluation homomorphism

(4.8.3) Ud ⊗ CS(d)A2 → ΦL,G(IC( UdG)),

which gives the isotypical component of ΦL,G(IC( UdG)) corresponding to the simple
perverse sheaf CS(d)A2 .

By the factorization §2.4 together with the Thom isomorphism i∗j!( C
Bun

d1
G

) ∼=
C

Bun
d1
L

, we get

Proposition 4.8.4. — We have the canonical isomorphism in Perv( UdL):

(4.8.5) ΦL,G(IC( UdG)) ∼=
⊕

IC(Bund1

L,λ, ρ).

Here ρ is the (semisimple) local system on Bund1

L,λ = Bund1

L ×SλA2 with λ =

(1n12n2 · · · ) corresponding to the representation of Sn1
× Sn2

× · · · on (U1)⊗n1 ⊗
(U2)⊗n2 ⊗ · · · given by permutation of factors.

Moreover the isomorphism is also in the equivariant category with respect to L ×
C∗ × C∗.
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36 CHAPTER 4. HYPERBOLIC RESTRICTION ON UHLENBECK SPACES

For example, the isotypical component for the intersection cohomology complex
IC(Bund1

L,λ) for the trivial simple local system is

(4.8.6) Symn1 U1 ⊗ Symn2 U2 ⊗ · · · ,

where Sym denotes the symmetric power.
The second statement is the consequence of the first as the spaces of homomor-

phisms between objects in Perv( UdL) are canonically isomorphic for equivariant cate-
gory with respect to L×C∗×C∗ and non-equivariant one. (See [45, 1.16(a)].) Therefore
(4.8.5) is an isomorphism in the equivariant derived category, though we use the fac-
torization, which is not equivariant with respect to C∗ × C∗.

Lemma 4.8.7. — Suppose L = T . We have

(4.8.8) H∗(SdA2,ΦT,G(IC( UdG))) ∼=
⊕
|λ|=d

Symn1 U1 ⊗ Symn2 U2 ⊗ · · ·

where λ = (1n12n2 . . . ).

Proof. — Since L = T , we have UdT = SdA2. See Example 4.2.6. Then the assertion
means that only trivial representation of Sn1

× Sn2
× · · · contribute to the global

cohomology group.
Let U be an open subset of (A2)n1 × (A2)n2 × · · · consisting of pairwise disjoint

n1 ordered points, n2 ordered points, and so on in A2. Forgetting orderings, we get
an (Sn1

× Sn2
× · · · )-covering p : U → SλA2. The pushforward of the trivial rank 1

system with respect to p is the regular representation ρreg of (Sn1
× Sn2

× · · · ).
Since p extends to a finite morphism (A2)n1 × (A2)n2 × · · · → SλA2, we have

IC(SλA2, ρreg) = p∗( C (A2)n1×(A2)n2×···). By the Künneth theorem, the global coho-
mology group H∗(•) of the right hand side is H∗((A2)n1)⊗H∗((A2)n2)⊗ · · · . This is
1-dimensional, and corresponds to the trivial isotypical component of ρreg. Now the
assertion follows.

Let us continue the study of Ud. Let us note that all of our spaces UdG, UdL,
UdP have trivial factors A2 given by the center of instantons, or the translation on
the base space A2 except d = 0 where U0

G = U0
L = U0

P = pt. We assume d 6= 0

hereafter. Let c UdG denote the centered Uhlenbeck space at the origin, thus we have
UdG = c UdG×A2. Let us compose factorization morphisms πdh,G, π

d
v,G for the horizontal

and vertical projections h : A2 → A1, v : A2 → A1 with the sum map σ : SdA1 → A1.
Then c UdG = (σπdh,G × σπdv,G)−1(0, 0). We use the notation c UdL, c U

d
P for UdL, UdP

cases. The diagrams (4.4.2) factor and induce the diagrams for the centered spaces,
and the factorization is compatible with the hyperbolic restriction. Let us use the
same notation for i, j, p for the centered spaces. Then we have

(4.8.9) Ud = H0(ξ!
0p∗j

! IC(c UdG)),

where ξ0 is the inclusion of the single point d·0 in c UdL. Here d·0 is the point in S(d)A2,
the origin with multiplicity d.
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4.8. SPACE Ud AND ITS BASE 37

By base change we get

(4.8.10) Ud ∼= H0(p−1(d · 0), j̃! IC(c UdG)),

where j̃ : p−1(d · 0)→ c UdG is the inclusion.
We have

Lemma 4.8.11. —

(4.8.12) dimUd = rankG− rank[L,L].

Proof. — According to a theorem of Laumon [42], given a constructible complex F
on a complex algebraic variety X, and a morphism f : X → Y , the classes [Rf∗F ]
and [Rf!F ] in the Grothendieck group of constructible complexes on Y coincide.
In particular, χ(X,F ) = χc(X,F ). It follows that the Euler characteristic of the
stalk of IC( UdG) at a point of S(d)A2 is equal to the Euler characteristic of the stalk
of ΦL,G(IC( UdG)) at the same point; the former was computed in Theorem 7.10 in
[21].

Now let us give a proof in the case L = T . Then it is easy to see that Proposi-
tion 4.8.4 implies that the stalk of ΦT,G(IC( UdG)) at a point of S(d)A2 is isomorphic
to Symd(

⊕
i U

i
T,G), where we regard

⊕
i U

i
T,G as a graded vector space (with the nat-

ural grading coming from i) and the super-script d means degree d with respect to
that grading. On the other hand, [21, Theorem 7.10] implies that a similar description
fits the stalk of IC( UdG) at a point of S(d)A2 if we disregard the cohomological grading
(the “first” grading in the language of [21]) and take a rank(G)-dimensional space V i

in place of U iT,G above. We get dimUdT,G = rank(G) for every d by induction in d.
Let us now consider the case of arbitrary L. Again, it is easy to deduce from

Proposition 4.8.4 that the stalk of ΦT,L(ΦL,G(IC( UdG))) ' ΦT,G(IC( UdG)) at a point
of S(d)A2 is isomorphic to⊕

d1+d2=d

Symd1(
⊕
i

U iT,L)⊗ Symd2(
⊕
j

U jL,G),

where the meaning of the super-scripts d1 and d2 is as above. In view of the preceding
paragraph, we get dimUdL,G = rank(G)− rank([L,L]).

The dimension estimate Corollary A.9.2 and the argument in [49, Prop. 3.10] im-
plies that

H0(p−1(d · 0), j̃! IC(c UdG))

∼= H0(p−1(d · 0) ∩ BundG, j̃
! IC(c UdG))

= H[0](p
−1(d · 0) ∩ BundG,C).

(4.8.13)

Here we use the degree shift convention of the Borel-Moore homology group (see
Convention (iv)), which is shift by dim c UdG = 2dh∨ − 2 in this case.

Let us set

(4.8.14) UdP,0
def.
= p−1(d · 0).
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38 CHAPTER 4. HYPERBOLIC RESTRICTION ON UHLENBECK SPACES

The subscript 0 stands for d · 0, and this convention will be also used later. More
generally, we denote p−1(x) by UdP,x for x ∈ UdL.

Then H[0]( UdP,0 ∩ BundG,C) has a base given by (dh∨ − 1)-dimensional irreducible
components of UdP,0 ∩ BundG. The dimension estimate Corollary A.9.2 implies that
UdP,0 ∩ Bund

′

G (d′ < d) is lower-dimensional. Therefore

Lemma 4.8.15. — We have

(4.8.16) Ud ∼= H[0]( UdP,0).

This space has a base given by (dh∨− 1)-dimensional irreducible components of UdP,0.

4.9. Irreducible components

Let us describe (dh∨ − 1)-dimensional irreducible components of UdP,0 for P = B

explicitly. We believe that there is no irreducible component of smaller dimension (see
Remark A.7.3), but we do not have a proof.

First consider the case G = SL(2). By Lemma 4.8.11 we have dimUd = 1, and
hence UdB,0 has only one (2d − 1)-dimensional irreducible component. As we have
observed in the previous subsection, it is the closure of UdB,0 ∩ BundG. In §5.8, it will
be shown that UdB,0 ∩ BundG consists of rank 2 vector bundles E arising from a short
exact sequence

(4.9.1) 0→ O→ E → I → 0

compatible with framing, where I is an ideal sheaf of colength d.
For a general G, consider the diagram (4.5.4) with M = T , L = Li the Levi

subgroup corresponding to a simple root αi. Note that [Li, Li] ∼= SL(2), and hence
UdLi is homeomorphic to UdSL(2). Therefore UdBLi ,0∩BundLi is irreducible of dimension
2d− 1 by the above consideration.

Proposition 4.9.2. — The irreducible components of UdB,0 of dimension dh∨ − 1 are
the closures of p−1( UdBLi ,0 ∩ BundLi) for i ∈ I.

Definition 4.9.3. — Let us denote the closure of p−1( UdBLi ,0 ∩ BundLi) by Yi.

Proof. — Consider the upper right part of (4.5.4), which is (4.4.2). Its restriction to
the open subset BundLi has been described in §4.7. As p is a vector bundle whose rank
is equal to the half of the codimension of BundLi in BundG, it follows that the inverse
image p−1( UdBLi ,0 ∩ BundLi) is irreducible and has dimension dh∨ − 1. Therefore the

closure of p−1( UdBLi ,0 ∩ BundLi) is an irreducible component of UdB,0.

Since dimUd = rankG by Lemma 4.8.11, it is enough to check that p−1( UdBLi ,0 ∩
BundLi) 6= p−1( UdBLj ,0 ∩ BundLj ) if i 6= j. When G = SL(r), UdB,0 ∩ BundG consists of
vector bundles E having a filtration 0 = E0 ⊂ E1 ⊂ · · · ⊂ Er = E compatible with
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4.11. ANOTHER BASE OF Ud 39

framing. Moreover p−1( UdBLi ,0 ∩ BundLi) consists of those with c2(Ei/Ei−1) = d and

c2(Ej/Ej−1) = 0 for j 6= i. Therefore p−1( UdBLi ,0 ∩ BundLi) 6= p−1( UdBLj ,0 ∩ BundLj )

for i 6= j. (See §5.8 for detail.) For a general G, we embed G into SL(N). Then we
need to replace B by a parabolic P , but p−1( UdBLi ,0 ∩ BundLi) is embedded into a
corresponding space, and the same argument still works.

4.10. A pairing on Ud

Let us introduce a pairing between Ud,P and Ud,P− in this subsection.
We combine Braden’s isomorphism (3.4.2) with the natural homomorphism ξ!

0 → ξ∗0
to get

(4.10.1) H0(ξ!
0i
∗j! IC(c UdG))→ H0(ξ∗0 i

!
−j
∗
− IC(c UdG)).

The right hand side is dual to

(4.10.2) Ud,P− = H0(ξ!
0i
∗
−j

!
− IC(c UdG)).

Thus we have a pairing between Ud,P and Ud,P− . Following the convention in [46,
3.1.3], we multiply the pairing by the sign (−1)dim c UdG/2 = (−1)dh

∨−1. Let us denote
it by 〈 , 〉. When we want to emphasize that it depends on the choice of the parabolic
subgroup P , we denote it by 〈 , 〉P .

Since ξ!
0Cd·0 → ξ∗0Cd·0 is obviously an isomorphism, this pairing is nondegenerate.

The transpose of the homomorphism Ud,P → (Ud,P−)∨ is a linear map Ud,P− →
(Ud,P )∨. It is

(4.10.3) H0(ξ!
0i
∗
−j

!
− IC(c UdG))→ H0(ξ∗0 i

!j∗ IC(c UdG)),

given by the transpose of the composite of ξ!
0 → ξ∗0 and Braden’s isomorphism i∗j! →

i!−j
∗
−. They are the same as original homomorphisms ξ!

0 → ξ∗0 and i∗−j
!
− → i!j∗

respectively. It means that

(4.10.4) 〈u, v〉P = 〈v, u〉P− for u ∈ Ud,P , v ∈ Ud,P− ,

where 〈 , 〉P− is the pairing defined with respect to the opposite parabolic, i.e., one
given after exchanging i, j and i−, j− respectively.

4.11. Another base of Ud

We next construct another base of Ud = UdT,G for L = T , which is (rankG)-
dimensional by Lemma 4.8.11. This new base is better behaved under hyperbolic
restrictions than the previous one given by irreducible components.

This subsection is preliminary, and the construction will be completed in §6.2.
We study UdT,G, using the associativity of the hyperbolic localization (Proposi-

tion 4.5.1) for M = T , L = Li the Levi subgroup corresponding to a simple root αi.
Since various Levi subgroups appear, we use the notation UdT,G indicating groups we
are considering.
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40 CHAPTER 4. HYPERBOLIC RESTRICTION ON UHLENBECK SPACES

Note that [Li, Li] ∼= SL(2), and hence UdLi is homeomorphic to UdSL(2). We under-
stand IC( UdLi) as IC( UdSL(2)) and apply Lemma 4.8.11 to see that

(4.11.1) UdT,Li = HomPerv( UdT )( CS(d)A2 ,ΦT,Li(IC( UdLi)))

is 1-dimensional. In the next section, we shall introduce an element 1dLi in U
d
T,Li

using
the theory of the stable envelope in [46].

Taking L = Li in the construction in §4.7, we apply the functor ΦT,Li . By Propo-
sition 4.5.1 we get an element

(4.11.2) ΦT,Li(1
d
Li,G) ∈ HomPerv( UdT )(ΦT,Li(IC( UdLi)),ΦT,G(IC( UdG))).

Composing with the element 1dLi in U
d
T,Li

mentioned just above, we get

(4.11.3) ΦT,Li(1
d
Li,G) ◦ 1dLi ∈ U

d
T,G.

We have (rankG)-choices of i. Then we will show that

(4.11.4) {α̃di
def.
= ΦT,Li(δ1

d
Li,G) ◦ 1dLi}i

gives a basis of UdT,G in the next subsection. Here we will introduce an appropriate
polarization δ = ±1, using a consideration of rank 2 case. See (6.2.1). Moreover, this
will give us an identification UdT,G with the Cartan subalgebra h of g such that α̃di is
sent to the ith simple coroot α∨i . See a remark after Proposition 6.3.8.

We normalize the inclusion IC( UdLi) → ΦLi,G(IC( UdG)) by δ1dLi,G as above. Then
the projection ΦLi,G(IC( UdG)) → IC( UdLi) is also determined, as IC( UdLi) has multi-
plicity 1 in ΦLi,G(IC( UdG)) (see §4.7). Therefore we have the canonical isomorphism

(4.11.5) ΦLi,G(IC( UdG)) ∼= IC( UdLi)⊕ IC( UdLi)
⊥,

where IC( UdLi)
⊥ is the sum of isotypical components for simple factors not isomor-

phic to IC( UdLi). Applying ΦT,Li and using ΦT,LiΦLi,G = ΦT,G, we get an induced
decomposition

(4.11.6) UdT,G = UdT,Li ⊕ (UdT,Li)
⊥.

This decomposition is orthogonal with respect to the pairing in §4.10 in the fol-
lowing sense. We have the decomposition Ud,B−T,G = U

d,B−∩Li
T,Li

⊕ (U
d,B−∩Li
T,Li

)⊥ for the
opposite Borel B−, and

(4.11.7) 〈UdT,Li , (U
d,B−∩Li
T,Li

)⊥〉 = 0 = 〈(UdT,Li)
⊥, U

d,B−∩Li
T,Li

〉.

Moreover the restriction of the pairing to Ud,B∩LiT,Li
, Ud,B−∩LiT,Li

coincides with one de-
fined via UdLi .
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4.12. DUAL BASE 41

4.12. Dual base

Let α̃d,−i denote the element defined as α̃di for the opposite Borel. We shall prove

(4.12.1) 〈[Yj ], α̃d,−i 〉 = ±δij(−1)d−1d

modulo the computation for G = SL(2), corresponding to the case i = j in this
subsection. The computation for G = SL(2) will be given in Remark 5.13.9. This
formula means that α̃d,−i is the dual base to the base given by irreducible components
Yj with respect to the pairing (−1)d−1

d 〈 , 〉 up to sign.
Consider the diagram (4.5.4) for the centered version, where we take M = T ,

L = Li as in §4.11. Let us consider the open embedding of c BundLi to
c UdLi . We have

the corresponding restriction homomorphism

UdT,G = H0(ξ!
0(p′ ◦ p′′)∗(j ◦ j′′)! IC(c UdG))

∼= H0(ξ!
0p
′
∗j
′!ΦLi,G(IC(c UdG)))

∼= H0(p′−1(d · 0), j̃′!ΦLi,G(IC(c UdG)))

→ H0(p′−1(d · 0) ∩ c BundLi , j̃
′!ΦLi,G(IC(c UdG))),

(4.12.2)

where j̃′ is the restriction of j′ to p′−1(d · 0). When we restrict ΦLi,G(IC(c UdG)) to
the open set c BundLi , the first summand IC( UdLi) in the decomposition (4.11.5) is
replaced by the constant sheaf C c BundLi

, and the second summand is killed. Therefore
we have an isomorphism

H0(p′−1(d · 0) ∩ c BundLi , j̃
′!ΦLi,G(IC(c UdG)))

∼= H[0](p
′−1(d · 0) ∩ c BundLi ,C) ∼= UdT,Li ,

where the second isomorphism is nothing but (4.8.13) for G replaced by Li.
Thus the projection UdT,G → UdT,Li to the first summand in (4.11.6) is nothing but

the restriction homomorphism we have just constructed.
Let us further consider the restriction of the upper right corner of the diagram

(4.5.4) to the open subset c BundLi . Then

p−1(p′−1(d · 0) ∩ c BundLi) = p−1( UdBLi ,0 ∩
c BundLi)

has been studied in §4.9: Its closure is an irreducible component of UdB,0. By the
base change the restriction to c BundLi is replaced by one to p−1( UdBLi ,0 ∩

c BundLi),
and we can replace relevant IC sheaves by constant sheaves. The Thom isomorphism
gives us p∗j! CBundG

∼= CBundLi
as in §4.7. Note that the intersection of an irreducible

component Yj of Proposition 4.9.2 with the open subset p−1( UdBLi ,0∩
c BundLi) is lower-

dimensional if i 6= j, as p−1( UdBLi ,0∩
c BundLi) is irreducible. Therefore the fundamental

class of Yj goes to 0 under the restriction. Hence we have (4.12.1) for i 6= j by (4.11.7).
In fact, we will see that Yj ∩ p−1( UdBLi ,0 ∩

c BundLi) = ∅ for type A in §5.8, and the
same is true for any G thanks to an embedding G→ SL(N).
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42 CHAPTER 4. HYPERBOLIC RESTRICTION ON UHLENBECK SPACES

The Thom isomorphism sends [Yi] to [ UdBLi ,0] from the definition of Yi. The sign
in (4.12.1) appears as we multiply the Thom isomorphism by a polarization δ (see
(6.2.1) below). Therefore the computation of (4.12.1) for i = j is reduced to the case
G = SL(2). The relevant computation will be given in Remark 5.13.9 as we mentioned
above.

4.13. Aut(G) invariance

Let Aut(G) be the group of automorphisms of G. Its natural action on BundG
extends to UdG ([21, §6.1]).

Let us fix a cocharacter λ : Gm → G, and consider our construction with respect
to σ ◦ λ for σ ∈ Aut(G). Here L = Gλ(Gm) is considered as a fixed Levi subgroup.
Substituting σ◦λ into λ in the Formula (4.4.4), we define a pair (Pσ, Lσ) of a parabolic
subgroup and its Levi part. The action ϕσ : UdG → UdG induces ϕσ : UdP → UdPσ ,
ϕσ : UdL → UdLσ , and we have a commutative diagram

(4.13.1)

UdL
i−−−−→ UdP

j−−−−→ UdG

ϕσ

y ϕσ

y ϕσ

y
UdLσ −−−−→

iσ
UdPσ −−−−→

jσ
UdG,

where the subscript σ indicates morphisms between spaces for σ ∈ Aut(G).
Since IC( UdG) is an Aut(G)-equivariant perverse sheaf, we have an isomorphism

ϕ∗σ IC( UdG) ∼= IC( UdG). Therefore we have an isomorphism

(4.13.2) i∗j! IC( UdG) ∼= ϕ∗σi
∗
σj

!
σ IC( UdG).

The isomorphism (4.13.2) is equivariant in the following sense: The right hand
side is a Tσ = Tσ × C∗ × C∗-equivariant perverse sheaf, while the left hand side
is T-equivariant. The isomorphism (4.13.2) respects equivariant structures under the
group isomorphism σ : T

∼=−→ Tσ. In particular, we have an isomorphism

(4.13.3) ϕσ : H∗T( UdL, i
∗j! IC( UdG))

∼=−→ H∗Tσ ( UdLσ , i
∗
σj

!
σ IC( UdG)),

which respects the H∗T(pt) and H∗Tσ (pt) structures via T ∼= Tσ.
In the same way, we obtain a canonical isomorphism

(4.13.4) Ud,PL,G
∼=−→ Ud,P

σ

Lσ,G,

which is denoted also by ϕσ for brevity.
The pairing 〈 , 〉 in §4.10 is compatible with ϕσ: Let us denote by 〈 , 〉Pσ the

pairing between Ud,P
σ

Lσ,G and Ud,P
σ
−

Lσ,G. We have ϕσ : U
d,P−
L,G

∼=−→ U
d,Pσ−
Lσ,G as above, and the

following holds

(4.13.5) 〈ϕσ(u), ϕσ(v)〉Pσ = 〈u, v〉P , u ∈ Ud,PL,G, v ∈ U
d,P−
L,G .
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4.13. Aut(G) INVARIANCE 43

The decomposition (4.11.5) is transferred under ϕσ to

(4.13.6) i∗σj
!
σ IC( UdG) ∼= ± IC( UdLσi )⊕ IC( UdLσi )⊥.

Here the sign ± means that we multiply the projection to IC( UdLσi ) by ±, according to
whether σ respects the polarization δ for UdLi and UdLσi or not. Our polarization will be
invariant under inner automorphisms, so the sign depends on diagram automorphisms
Aut(G)/ Inn(G). The decomposition (4.11.6) is mapped to

(4.13.7) Ud,B
σ

Tσ,G = U
d,Bσ∩Lσi
Tσ,Lσi

⊕ (U
d,Bσ∩Lσi
Tσ,Lσi

)⊥.

Suppose σ ∈ L. We have Lσ = L, Pσ = P , iσ = i, jσ = j. Then i∗j! IC( UdG)
is an L-equivariant perverse sheaf, and (4.13.2) is the isomorphism induced by the
equivariant structure.

Let us further assume L = T . Then T acts trivially on UdT = SdA2, and ϕσ| UdT = id.
The equivariant structure of the T -equivariant perverse sheaf i∗j! IC( UdG) is trivial. In
particular, the isomorphism (4.13.2) is the identity. Therefore (4.13.2) is well-defined
for σ ∈ Aut(G)/(T/Z(G)), where Z(G) is the center of G.

Note that chambers of hyperbolic restrictions for L = T are Weyl chambers. They
appear as a subfamily for W = NG(T )/T in Aut(G)/(T/Z(G)).

Let us take σ = w0, the longest element of the Weyl group. Then Bw0 = B−. We
come back to B via (4.10.4), and hence we get

(4.13.8) 〈u, v〉B = 〈ϕw0
(u), ϕw0

(v)〉B− = 〈ϕw0
(v), ϕw0

(u)〉B

for u ∈ Ud,BT,G,v ∈ U
d,B−
T,G .

We can take σ ∈ Aut(G), which preserves T and the set of positive roots, and
induces a Dynkin diagram automorphism. Then Bσ = B. Hence Ud,BT,G is a representa-
tion of the group of Dynkin diagram automorphisms. The inner product is preserved.

We have Lσi = Lσ(i), where σ(i) is the vertex of the Dynkin diagram, the image
of i under the corresponding Dynkin diagram automorphism. From (4.13.6) ϕσ(α̃di )
is equal to α̃dσ(i) up to scalar. We will prove the following in §5.14.

Lemma 4.13.9. — We have

(4.13.10) ϕσ(α̃di ) = ±α̃dσ(i),

where ± is the ratio of the polarizations for BundLi and BundLσ(i)
, compared under ϕσ.
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CHAPTER 5

HYPERBOLIC RESTRICTION IN TYPE A

We shall study the case G = SL(r) in detail in this section.

We have the moduli space Ũ
d

r of framed torsion free sheaves (E,ϕ) of rank r, second
Chern class d over P2. It is called the Gieseker space. We have a projective morphism
π (the Gieseker-Uhlenbeck morphism) from Ũ

d

r to the corresponding Uhlenbeck space

UdG. It is known that Ũ
d

r is smooth and π is a semi-small resolution of singularities.

Therefore we can study IC( UdG) via the constant sheaf C
Ũ
d

r

over Ũ
d

r .

If r = 1, we understand Ũ
d

1 as the Hilbert scheme Hilbd(A2) of d points on A2,
while UdSL(1) is the symmetric power SdA2.

5.1. Gieseker-Uhlenbeck

Let us first explain the relation between IC( UdG) and C
Ũ
d

r

in more detail.

Theorem 5.1.1 ([6, §3]). — The Gieseker-Uhlenbeck morphism π : Ũ
d

r → UdG is semi-
small with respect to the standard stratification (2.3.1). All strata are relevant and
fibers are irreducible. Therefore

(5.1.2) π! C Ũ
d

r

∼=
⊕

d1+|λ|=d

Htop(π−1(xd1

λ ))⊗ IC(Bund1

G,λ),

where xd1

λ is a point in the stratum Bund1

G,λ.

(See also [54, Ch. 3,5,6], where Ũ
d

r , UdG are denoted by M(n, r), M0(n, r) respec-
tively. See also [61, Ch.3] for the detail on the irreducibility of fibers.)

Since IC( Ud1

G,λ) is isomorphic to the pushforward of IC( Ud1

G ) � CSλA2 under the
finite morphism (2.3.4), we have

(5.1.3) H
[∗]
T ( Ũ

d

r)
∼=
⊕

IH
[∗]
T ( Ud1

G )⊗Htop(π−1(xd1

λ ))⊗H [∗]
T (SλA2).

We also have the corresponding isomorphism for the cohomology with compact sup-
port.
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46 CHAPTER 5. HYPERBOLIC RESTRICTION IN TYPE A

5.2. Heisenberg operators

For r = 1, the third author and Grojnowski independently constructed operators
acting on the direct sum of homology groups of Ũ

d

1 satisfying the Heisenberg relation
(see [54, Ch. 8]). It was extended by Baranovsky to higher rank case [6]. Let us review
his construction in this subsection.

We consider here bothH [∗]
T ( Ũ

d

r) andH
[∗]
T,c( Ũ

d

r), the equivariant cohomology with ar-
bitrary and compact support, which is Poincaré dual to Borel-Moore and the ordinary
equivariant homology groups. To save the notation, we use the notation H

[∗]
T(,c)( Ũ

d

r)

meaning either of cohomology groups.
For n > 0 we consider subvariety

(5.2.1) Pn ⊂
⊔
d

Ũ
d

r × Ũ
d+n

r × A2,

consisting of triples (E1, E2, x) such that E1 ⊃ E2 and E1/E2 is supported at x. We
have

Proposition 5.2.2. — Pn is half-dimensional in Ũ
d

r × Ũ
d+n

r × A2 for each d.

Let us denote the projection to the third factor by Π. For a cohomology class
α ∈ H [∗]

T(,c)(A
2), we consider P∆

−n(α) = [Pn]∩Π∗(α) as a correspondence in Ũ
d

r× Ũ
d+k

r .
Then we have the convolution product

(5.2.3) P∆
−n(α) : H

[∗]
T(,c)( Ũ

d

r)→ H
[∗+degα]
T(,c) ( Ũ

d+n

r ).

Thanks to the previous proposition, the shift of the degree is simple in our perverse
degree convention. The reason why we put ∆ in the notation will be clear later.

We define P∆
n (α) as the adjoint operator

(5.2.4) P∆
n (α) : H

[∗]
T(,c)( Ũ

d+n

r )→ H
[∗+degα]
T(,c) ( Ũ

d

r).

Here we have two remarks. First we follow the sign convention in [46, 3.1.3] for the
intersection pairing

(5.2.5) 〈•, •〉 = (−1)dimX/2

∫
X

• ∪ •.

Second, we take α ∈ H [∗]
T,c(A2) for H [∗]

T ( Ũ
d

r) and α ∈ H [∗]
T (A2) for H [∗]

T,c( Ũ
d

r). Then the
operators are well-defined, though various projections are not proper. (See [54, §8.3].)

We have the commutator relation

(5.2.6) [P∆
m (α), P∆

n (β)] = 〈α, β〉mδm+n,0 r.

If m+ n = 0, one of α or β is in H [∗]
T (A2) and another is in H [∗]

T,c(A2). Hence 〈α, β〉 is
well-defined.

Since the construction is linear overH∗T(pt), andH [∗]
T,c(A2),H [∗]

T (A2) are free of rank

1, we can choose α to be their generators, i.e., the Poincaré dual of [0] for H [∗]
T,c(A2),
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5.3. FIXED POINTS AND POLARIZATION 47

and 1 (dual of [A2]) for H [∗]
T (A2). We assume these choices hereafter until §6. Note

also that 〈[0], 1〉 = −1 in our sign convention.
We take the direct sum over d in (5.1.3):

(5.2.7)
⊕
d

H
[∗]
T ( Ũ

d

r)
∼=
⊕
d

IH
[∗]
T ( UdG)⊗

⊕
λ

Htop(π−1(xdλ))⊗H [∗]
T (SλA2).

Note that H [∗]
T (SλA2) ∼= H∗T(pt) · 1, as SλA2 is equivariantly contractible. Here 1 ∈

H0
T(SλA2) = H

[−2l(λ)]
T (SλA2).

From the definition of the Heisenberg operators, it acts only on the second factor
of (5.2.7): λ = ∅ are killed by P∆

k ([0]) (k > 0) and the summand for λ = (1n12n2 · · · )
is spanned by the monomial in P−1(1)n1/n1! · P−2(1)n2/n2! · · · . The second factor is
isomorphic to the Fock space.

Let us give another representation of the Heisenberg algebra. Let 0 denote the point
d · 0 ∈ S(d)A2, and consider the inverse image π−1(0) ⊂ Ũ

d

r , and denote it by Ũ
d

r,0. It
is the Quot scheme parametrizing quotients of O⊕rP2 of length d whose support is 0.

Let us restate Theorem 5.1.1 in a different form:

Proposition 5.2.8. — Ũ
d

r,0 is an irreducible (dr − 1)-dimensional subvariety in Ũ
d

r ,
unless d = 0.

It is needless to say that we have Ũ
0

r,0 = Ũ
0

r = pt.

The convolution product by P∆
±k(α) sends HT

[∗]( Ũ
d

r,0) to HT
[∗−degα]( Ũ

d±k
r,0 ), where

α ∈ H∗T,c(A2) for k < 0, α ∈ H∗T(A2) for k > 0. Therefore

(5.2.9)
⊕
d

HT
[∗]( Ũ

d

r,0)

is a representation of the Heisenberg algebra. It is known that Ũ
d

r,0 is homotopy

equivalent to Ũ
d

r , hence HT
[∗]( Ũ

d

r,0) is isomorphic to the ordinary homology group

of Ũ
d

r , and hence to H [−∗]
T,c ( Ũ

d

r) by the Poincaré duality.

5.3. Fixed points and polarization

Let us take a decomposition r = r1 + r2 + · · · + rN . We have the corresponding
(N − 1)-dimensional torus, which is the connected center A = Z(L)0 of the Levi sub-
group L = S(GL(r1)× · · · ×GL(rN )) ⊂ SL(r). We have the corresponding parabolic
subgroup P consisting of block upper triangular elements.

Let us consider the fixed point set Ũ
d

L = ( Ũ
d

r)
A. It consists of framed sheaves,

which is a direct sum of sheaves of rank r1, r2,. . . , rN . Thus we have

(5.3.1) Ũ
d

L =
⊔

d=d1+···+dN

Ũ
d1

r1 × · · · × Ũ
dN

rN .
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48 CHAPTER 5. HYPERBOLIC RESTRICTION IN TYPE A

We omit the superscript d, when there is no fear of confusion.
Following [46, Ex.3.3.3], we choose a polarization δ for each component of ŨL, as

a quiver variety associated with the Jordan quiver. Let us review the construction
quickly. See the original paper for more detail: We represent ŨL as the space of
quadruples (B1, B2, I, J) satisfying certain conditions. We decide to choose pairs, say
(B1, I), from quadruples. The choice gives us a decomposition of the tangent bundle
of Ũr as

(5.3.2) T Ũr = T 1/2 + (T 1/2)∨

in the equivariant K-theory with respect to the A-action on Ũ
d

r . We also have the
decomposition of T ŨL, and hence also of the normal bundle. Then we choose a po-
larization δ of ŨL in Ũr as product of weights in the normal bundle part of (T 1/2)∨.

Let us also explain another description of the polarization δ given in [46, §12.1.5].
We consider the following Quot scheme

(5.3.3) Qr = {(E,ϕ) | x2 O⊕r ⊂ E ⊂ O⊕r} ⊂ Ũr,

where x2 is one of coordinates of A2. This is a fixed point component of a certain
C∗-action, and is a smooth lagrangian subvariety in Ũr. In the ADHM description, it
is given by the equation B2 = 0 = J . Now (T 1/2)∨ is the normal direction to Qr at
a point in Qr. Since any component of ŨL intersects with Qr, and the intersection is
again a smooth lagrangian subvariety, Qr gives us the polarization.

Note that the polarization is invariant under the action of G = SL(r) on ŨG, as
we promised in §4.13.

We calculate the sign ± of the ratio of this polarization δ and the repellent one
δrep, of Ũ

d

2 × Ũ
0

1 and Ũ
0

1× Ũ
d

2 in Ũ
d

3 for a later purpose. Here L = S(GL(2)×GL(1))
in the first case and L = S(GL(1)×GL(2)) for the latter case.

Lemma 5.3.4. — We have δrep/δ = 1 for Ũ
d

2 × Ũ
0

1, δrep/δ = (−1)d for Ũ
0

1 × Ũ
d

2.

Proof. — Both components Ũ
d

2 × Ũ
0

1, Ũ
0

1 × Ũ
d

2 intersect with the open set
π−1
a,G(S(1d)A1), the inverse image of the open stratum under the factorization

morphism. Since the normal bundle decomposes according to the factorization, the
polarization is of the form (±1)d. Hence it is enough to determine the case d = 1.

We factor out A2 in Ũ
1

r and consider the centered Gieseker spaces. We have

c Ũ
1

3
∼= T ∗P2,(5.3.5)

c Ũ
1

2 × c Ũ
0

1
∼= T ∗(z2 = 0), c Ũ

0

1 × c Ũ
2

1
∼= T ∗(z0 = 0),(5.3.6)

where [z0 : z1 : z2] is the homogeneous coordinate system of P2. The polarization δ
above is given by the base direction of the cotangent bundle.
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5.4. STABLE ENVELOPE 49

On the other hand, the repellent directions are base in the first case and fibers in
the second case. Therefore we have δrep/δ = 1 in the first case and −1 in the second
case.

5.4. Stable envelope

Recall we considered the attracting set UP in the Uhlenbeck space UG. Let us
denote its inverse image π−1( UP ) in Ũr by ŨP . This is the tensor product variety,
denoted by T in [60], where UP is denoted by T0. (In [56] T was denoted by Z.)

We have the following moduli theoretic description:

(5.4.1) ŨP =

{
(E,ϕ) ∈ Ũr

∣∣∣∣E admits a filtration 0 = E0 ⊂ E1 ⊂ · · · ⊂ EN = E
with rankEi/Ei−1 = ri, compatible with ϕ.

}
.

See §4.4.
We consider the fiber product ZP of ŨP and ŨL over UL:

(5.4.2) ZP = ŨP × UL ŨL,

where the map from ŨL to UL is the restriction of π, and the map from ŨP to UL is
the composition of the restriction ŨP → UP of π and the map p in §4.4. In the above
description of ŨP , it is just given as the direct sum

⊕
(Ei/Ei−1)∨∨ plus the sum of

singularities of Ei/Ei−1. One can show that ZP is a lagrangian subvariety in Ũr× ŨL.
See [60, Prop. 1]. (There are no lower dimensional irreducible components, as all strata
are relevant for the semismall morphism π : Ũr → UG.)

Maulik-Okounkov stable envelope is a ‘canonical’ lagrangian cycle class L in ZP :

(5.4.3) L ∈ H[0](ZP ).

See [46, §3.5]. Note that L depends on the choice of the parabolic subgroup P as
well as the polarization δ. Since they are canonically chosen, we suppress them in the
notation L.

The convolution by L defines a homomorphism

(5.4.4) L ∗ − = p1∗(p
∗
2(−) ∩ L) : H[∗]( ŨL)→ H[∗]( ŨP ).

It is known that L ∗− is an isomorphism (see [60, §4.2]), and it does also make sense
for equivariant homology groups, as H[0](ZP ) ∼= HT

[0](ZP )

We have H[∗]( ŨL) ∼= H [∗]( ŨL) by the Poincaré duality. Then we have

(5.4.5) H
[∗]
T ( ŨL)→ H

[∗]
T ( Ũr)

as the composite of L ∗− and the pushforward with respect to the inclusion ŨP ⊂ Ũr.
This is the original formulation of stable envelope in [46, Ch. 3], and properties of L
are often stated in terms of this homomorphism there.
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50 CHAPTER 5. HYPERBOLIC RESTRICTION IN TYPE A

Let x ∈ UL. Let ŨL,x denote the inverse image of x under the Gieseker-Uhlenbeck
morphism ŨL → UL. Similarly let ŨP,x denote the inverse image of x under the
composition ŨP → UP → UL. Then the convolution L ∗ − also defines

(5.4.6) L ∗ − : HTx
[∗] ( ŨL,x)→ HTx

[∗] ( ŨP,x),

where Tx is the stabilizer of x.

5.5. Tensor product module

Let 0 = d · 0 as before and consider the inverse image Ũ
d

P,0 of 0 under Ũ
d

P → UdL
as in the previous subsection.

We consider the direct sum

(5.5.1)
⊕
d

HT
[∗]( Ũ

d

P,0).

The Heisenberg algebra acts on the sum: This follows from a general theory of the
convolution algebra: it is enough to check that Ũ

d

P,0 ◦ (Pn ∩ Π−1(0)) ⊂ Ũ
d+n

P,0 (for
k > 0). If (E1, E2, x) ∈ Pn ∩ Π−1(0), then π(E2) = π(E1) + n · 0. Therefore the
assertion follows.

The stable envelope L ∗ − gives an isomorphism
⊕

dH
T
[∗]( Ũ

d

L,0) ∼=
⊕

dH
T
[∗]( Ũ

d

P,0),
where the left hand side is the tensor product

(5.5.2)
⊕

d1,...,dN

HT
[∗]( Ũ

d1

r1,0)⊗ · · · ⊗HT
[∗]( Ũ

dN

rN ,0)

by (5.3.1). This is a representation of N copies of Heisenberg algebras. Under the
stable envelope, P∆

−k([0]) on (5.5.1) is mapped to

(5.5.3)
N∑
i=1

1⊗ · · · ⊗ P∆
−k([0])︸ ︷︷ ︸
ith factor

⊗ · · · ⊗ 1.

This is [46, Th. 12.2.1]. Our Heisenberg generators are diagonal in this sense, and
hence we put ∆ in the notation. This result is compatible with the decomposition
W (glr) = W (slr) ⊗ Heis, where W (slr) is contained in the tensor product of the
remaining (N − 1) copies of Heisenberg algebras, orthogonal to the diagonal one.

5.6. Sheaf theoretic analysis

By [60, §4, Lem. 4] we have a natural isomorphism

(5.6.1) H[0](ZP ) ∼= HomPerv( UL)

(
p!j
∗π! C Ũr

, π! C ŨL

)
where j, p are as in §4.4 and we use the same symbol π for Gieseker-Uhlenbeck
morphisms for Ũr and ŨL.
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5.7. THE ASSOCIATIVITY OF STABLE ENVELOPES 51

The Verdier duality gives us an isomorphism

(5.6.2) Hom(p!j
∗π! C Ũr

, π! C ŨL
) ∼= Hom(π∗ C ŨL

, p∗j
!π∗ C Ũr

).

Therefore the stable envelope gives us the canonical isomorphism

(5.6.3) π! C ŨL
L−→∼= ΦL,G(π! C Ũr

) = p∗j
!π! C Ũr

,

as π! = π∗. This is nothing but Theorem 1.6.1(2) in Introduction.
Let x ∈ UL and ix denote the inclusion of x in UL. Then L ∈ Hom(π! C ŨL

, p∗j
!π! C Ũr

)

defines an operator

(5.6.4)

H∗(i!xπ! C ŨL
) −−−−→ H∗(i!xp∗j

!π! C Ũr
)∥∥∥ ∥∥∥

H[−∗]( ŨL,x) H[−∗]( ŨP,x).

This is equal to L ∗ − in (5.4.6) under the isomorphism (5.6.1). See [60, §4.4].

5.7. The associativity of stable envelopes

Let us take parabolic subgroups Q ⊂ P ⊂ G and the corresponding Levi subgroup
M ⊂ L as in §4.5. (G is still SL(r).) Let QL be the image of Q in L.

Let us denote by LL,G the isomorphism given by the stable envelope in (5.6.3):

(5.7.1) π! C ŨL

LL,G−−−→∼= ΦL,G(π! C Ũr
).

We similarly have isomorphisms

(5.7.2) π! C ŨM

LM,G−−−−→∼= ΦM,G(π! C Ũr
), π! C ŨM

LM,L−−−→∼= ΦM,L(π! C ŨL
).

Then stable envelopes are compatible with the associativity (4.5.2) of the hyper-
bolic restriction:

Proposition 5.7.3. — We have a commutative diagram

(5.7.4)

π! C ŨM

∼=−−−−→
LM,G

ΦM,G(π! C Ũr
)

∼=
y LM,L (4.5.2)

∥∥∥
ΦM,L(π! C ŨL

)
ΦM,L( LL,G)−−−−−−−−→∼=

ΦM,LΦL,G(π! C Ũr
).

Let us check that this follows from the proof of [46, Lemma 3.6.1]. (To compare
the following with the original paper, the reader should note that the tori A ⊃ A′

were used in [46], which correspond to Z(M)0 ⊃ Z(L)0 respectively in our situation.)
We consider

(5.7.5) ZP = ŨP × UL ŨL, ZQ = ŨQ × UM ŨM , ZQL = ŨQL × UM ŨM .

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016

SMF 6/10/16



Ép
re

uv
e S

M
F

Se
pt

em
be

r 2
2,

20
16

52 CHAPTER 5. HYPERBOLIC RESTRICTION IN TYPE A

The stable envelopes LL,G, LM,G, LM,L are classes in H[0](ZP ), H[0](ZQ), H[0](ZQL)
respectively. We consider the convolution product

(5.7.6) LL,G ∗ LM,L ∈ H[0](ZP ◦ ZQL).

Note that ZP ◦ ZQL consists of (x1, x3) ∈ ŨP × ŨM such that there exists x2 ∈
ŨQL ⊂ ŨL with (x1, x2) ∈ ZP , (x2, x3) ∈ ZQL by definition. This is nothing but ZQ.
Therefore LP ∗ LQL is a class in H[0](ZQ). The proof in [46, Lemma 3.6.1] actually
gives LL,G ∗ LM,L = LM,G.

Therefore the commutativity of (5.7.4) follows, once we check that the convolution
product corresponds to the composition of homomorphisms (Yoneda product) under
the isomorphism (5.6.1). This is not covered by [23, Prop. 8.6.35], as the base spaces
of fiber products are different: UL and UM . But we can easily modify its proof to our
situation.

5.8. Space V d and its base given by irreducible components

Let us write d for the instanton number again. Similarly to (4.8.2) we define

V dL,G ≡ V d
def.
= Hom( CS(d)A2 ,ΦL,G(π! C Ũ

d

r

))

= H−2(S(d)A2, ξ!ΦL,G(π! C Ũ
d

r

)),
(5.8.1)

where ξ : S(d)A2 → UdL is as before. We denote by V d,PL,G or V d,P when we want to
emphasize P .

As in Lemma 4.8.15 we have

(5.8.2) V d ∼= H[0]( Ũ
d

P,0),

and V d has a base given by (dh∨ − 1)-dimensional irreducible components of Ũ
d

P,0.

On the other hand, H[0]( Ũ
d

P,0) is isomorphic to H[0]( Ũ
d

L,0) by the stable envelope.

In the description (5.3.1), note that the fiber Ũ
di

ri,0 has dim = dim Ũ
di

ri/2 − 1 by

Proposition 5.2.8 unless di = 0. Therefore we can achieve the degree [0] = dim Ũ
d

L −
2 =

∑
dim Ũ

di

ri − 2 only when all di = 0 except one. There are N choices i = 1,. . . ,
N . Therefore dimV d = N .

Let us study V d = H[0]( Ũ
d

P,0) in more detail. This will give the detail left over
from §4.9. By [56, §3] we have a decomposition

(5.8.3) Ũ
d

P,0 =
⊔

d1+···+dN=n

T(d1, . . . , dN )0,
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5.8. SPACE V d AND ITS BASE GIVEN BY IRREDUCIBLE COMPONENTS 53

where
(5.8.4)

T(d1, . . . , dN )0 =

(E,ϕ)

∣∣∣∣∣∣
E admits a filtration 0 = E0 ⊂ E1 ⊂ · · · ⊂
EN = E with Ei/Ei−1 ∈ Ũ

di

ri,0 compatible with
ϕ.

 .

We have a projection

(5.8.5) T(d1, . . . , dN )0 → Ũ
d1

r1,0 × · · · × Ũ
dN

rN ,0,

which is a vector bundle of rank dr −
∑
diri. Note that

(5.8.6) dim Ũ
di

ri,0 =

{
0 if di = 0,

diri − 1 if di 6= 0.

(See Proposition 5.2.8.) Therefore

(5.8.7) dimT(d1, . . . , dN )0 = dr −#{i | di 6= 0} ≤ dr − 1.

The equality holds if and only if there is only one i with di 6= 0. Therefore H[0]( Ũ
d

P−,0)
is spanned by fundamental cycles

(5.8.8) [T(d, 0, . . . , 0)0], · · · , [T(0, . . . , 0, d)0].

Thus it is N -dimensional, as expected.
In the remainder of this subsection, we study the corresponding space Ud =

H[0]( UdP,0) for the Uhlenbeck space. Note that we have projective morphism

π : Ũ
d

P,0 → UdP,0, and the Quot scheme π−1(d · 0) = Ũ
d

r,0 is contained in Ũ
d

P,0.

The class of fiber Ũ
d

r,0 is given by P−d([0])[ U0
G], and H[0]( UdP,0) is killed by Bara-

novsky’s Heisenberg operators by the construction.

Proposition 5.8.9. — Among N cycles in (5.8.8), the first one [T(d, 0, . . . , 0)0] is

[ Ũ
d

r,0]. The remaining cycles give a base of Ud = H[0]( UdP,0) under π∗.

From the definition, this description of irreducible components of UdP,0 is the same
as one in Proposition 4.9.2 when G = SL(r), P = B.

Proof. — Suppose that E ∈ T(d, 0, . . . , 0)0. Then we have a short exact sequence

(5.8.10) 0→ E1 → E → O⊕r2+···+rN → 0

with E1 ∈ Ũ
d

r1,0. Consider

(5.8.11) 0→ O⊕r2+···+rN → E∨ → E∨1 → Ext1( O⊕r2+···+rN , O)

Since Ext1( O⊕r2+···+rN , O) = 0, the last homomorphism E∨ → E∨1 is surjective.
Therefore this is a short exact sequence. Dualizing again, we get

(5.8.12) 0→ E∨∨1 → E∨∨ → O⊕r2+···+rN → 0.
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54 CHAPTER 5. HYPERBOLIC RESTRICTION IN TYPE A

The last homomorphism E∨∨ → O⊕r2+···+rN is surjective as E → O⊕r2+···+rN is so.
(Or, we observe E∨∨1

∼= O⊕r1 as E1 ∈ Ũ
d

r1,0, and Ext1( O⊕r1 , O) = 0.) Therefore this

is also exact. We have E∨∨1 = O⊕r1 as E1 ∈ Ũ
d1

r1,0. Since the extension between the

trivial sheaves is zero on P2, we have E∨∨ = O⊕r. Therefore E ∈ Ũ
d

r,0.

Thus we have T(d, 0, . . . , 0)0 ⊂ Ũ
d

r,0. Since both are (dr− 1)-dimensional, and Ũ
d

r,0

is irreducible, they must coincide. This shows the first claim.
The second claim follows as we have already shown dimUd = N − 1 in

Lemma 4.8.11, hence other classes cannot be killed by π∗.
Let us directly check that any of T(0, d, 0, . . . , 0)0,. . . , T(0, . . . , 0, d)0 contains a

locally free sheaf for definiteness. (It gives us another proof of Lemma 4.8.11, which
does not dependent on [21, Theorem 7.10].) Then it is enough to consider the case
N = 2 and check that T(0, d)0 contains a locally free sheaf, as an extension of a locally
free sheaf by a locally free sheaf is again locally free. Furthermore we may assume
r = 2 and r1 = r2 = 1.

We use the ADHM description. Let

B1 =



0 1 0 . . . 0

0 1 . . . 0

. . . . . .
...

0 1

0 0


, B2 = 0,

I =


0 0
...

...
0 0

1 0

 , J =

(
0 0 . . . 0

1 0 . . . 0

)
.

We have [B1, B2] + IJ = 0. We see (B1, B2, I, J) is stable, i.e., a subspace S ⊂ Cd
containing the image of I and invariant under B1, B2 must be S = Cd. We also see
that (B1, B2, I, J) is costable, i.e., a subspace S ⊂ Cd contained in the kernel of J and
invariant under B1, B2 must be S = 0. Therefore (B1, B2, I, J) defines a framed locally

free sheaf (E,ϕ), i.e., an element in BundSL(2). We consider a subspace {

(
0

∗

)
} ⊂ C2,

which is the kernel of a. Taking 0 as a subspace in Cd, we have a subrepresentation
of a quiver. Therefore E contains the trivial rank 1 sheaf OP2 correspondingly. The
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5.9. A PAIRING ON V d 55

quotient E/ OP2 is given by the data

I =


0
...
0

1


and J = 0, B1, B2 the same as above. This is the ideal sheaf (xd, y), and hence in Ũ

d

1,0.
Thus E is a point in T(0, d)0.

5.9. A pairing on V d

In the same way as §4.10, we can define a nondegenerate pairing between V d,P

and V d,P− .
We have an isomorphism

(5.9.1) H0(ξ!
0i
∗j!π∗ C c Ũ

d

r

)
∼=−→ H0(ξ∗0 i

!
−j
∗
−π! C c Ũ

d

r

),

where we also used π∗ = π! as π is proper. By the base change and the replacement
i∗, i!− to p∗, (p−)!, we can identify this with

(5.9.2) H[0]( Ũ
d

P,0)→ H [0]
c ( Ũ

d

P−,0),

and we have a pairing

(5.9.3) 〈 , 〉 : H[0]( Ũ
d

P,0)⊗H[0]( Ũ
d

P−,0)→ C.

Note that we also have the intersection pairing in the centered Gieseker space c Ũ
d

r .

As the intersection Ũ
d

P,0 ∩ Ũ
d

P−,0 consists of a compact space Ũ
d

L,0, the pairing is

well-defined, and takes values in C. We multiply the sign (−1)dim c Ũ
d

r/2 = (−1)dr−1

as before.

Lemma 5.9.4. — The pairing is equal to the intersection pairing.

Proof. — The pairing is the restriction of that on equivariant cohomology groups:

(5.9.5) 〈 , 〉 : H∗T(ξ!
0i
∗j!π∗ C c Ũ

d

r

)⊗H∗T(ξ!
0i
∗
−j

!
−π∗ C c Ũ

d

r

)→ H∗T(pt).

By the localization theorem, natural homomorphisms

H∗T(ξ!
0i

!j!π∗ C c Ũ
d

r

)→ H∗T(ξ!
0i
∗j!π∗ C c Ũ

d

r

),(5.9.6)

H∗T(ξ!
0i
∗
−j

!
−π∗ C c Ũ

d

r

)→ H∗T(ξ∗0 i
∗
−j
∗
−π∗ C c Ũ

d

r

)(5.9.7)
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56 CHAPTER 5. HYPERBOLIC RESTRICTION IN TYPE A

become isomorphisms over the fractional field of H∗T(pt). Then the pairing between
H∗T(ξ!

0i
!j!π∗ C c Ũ

d

r

) and H∗T(ξ∗0 i
∗
−j
∗
−π∗ C c Ũ

d

r

) is equal to the intersection pairing by [23,
§8.5]. Therefore we only need to show that the composition

(5.9.8) i!j! → i∗j! → i!−j
∗
−

is equal to i!j! = i!−j
!
− → i!−j

∗
−. This is a consequence of the following general state-

ment : Let T be a torus action on X and Y = XT (more generally, it can be a
closed invariant subset containing XT ). Let a : Y → X be the embedding. Let F be a
functor from DT (X) to DT (Y ). Assume that we have two morphisms of functors α,
β : a! → F . Then α = β if and only if it is so on the image of a! : DT (Y ) → DT (X).
We apply this claim to a = ji, F = i!−j

∗
−. In our case, α = β on a!DT (Y ) is evident,

as all the involved morphisms are identities on the fixed point set Y .
Let us give the proof of the claim. We consider a natural map a!a

! F → F for F ∈
DT (X). It becomes an isomorphism if we apply a! by the base change. We set G =
a!a

! F . We have α G = β G , as homomorphisms a! G → F ( G), from the assumption.
Then we have α F = β F as the composition of α G = β G and F ( F )→ F ( G).

5.10. Another base of V d

Recall we have the canonical isomorphism π! C Ũ
d

L

L−→∼= ΦL,G(π! C Ũ
d

r

) in (5.6.3).

Thanks to the decomposition (5.3.1), the morphism π : Ũ
d

L → UdL is the compos-
ite of

(5.10.1) π × · · · × π : Ũ
d1

r1 × · · · × Ũ
dN

rN → Ud1

SL(r1) × · · · × UdNSL(rN )

with the sum map

(5.10.2) κ : Ud1

SL(r1) × · · · × UdNSL(rN ) → UdL.

The latter is a finite birational morphism. Then C
Ũ
d

L

decomposes under (5.10.1) as
in (5.1.2):

(5.10.3) π! C Ũ
d

L

∼=
⊕

Htop(π−1(xd1

λ1
)× · · · × π−1(xdNλN ))

⊗ κ! IC(Bund1

SL(r1),λ1
× · · · × BundNSL(rN ),λN

),

where λ1,. . . , λN are partitions with d = d1 + |λ1|+ · · ·+ dN + |λN |. (These d1,. . . ,
dN are different from above.) The image of the closure of Bund1

SL(r1),λ1
× · · · ×

BundNSL(rN ),λN
under κ is the closure of

(5.10.4) Bund1

SL(r1)× · · · × BundNSL(rN )×SµA
2,

where µ = λ1 t · · · t λN . Let us denote this stratum by Bund1,...,dN
L,µ . Then as κ is a

finite morphism, we have

(5.10.5) κ! IC(Bund1

SL(r1),λ1
× · · · × BundNSL(rN ),λN

) ∼= IC(Bund1,...,dN
L,µ , ρ),
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5.10. ANOTHER BASE OF V d 57

where ρ is the local system corresponding to the covering

(5.10.6) Sλ1
A2 × · · · × SλNA2 \ diagonal→ SµA2

and µ = λ1 t · · · t λN . Taking sum over λ1, λ2, . . . which give the same µ, we get

(5.10.7)
⊕

λ1t···tλN=µ

κ! IC(Bund1

SL(r1),λ1
× · · · × BundNSL(rN ),λN

)

∼= IC(Bund1,...,dN
L,µ , ρ),

where ρ is now given by the permutation representation

(5.10.8) (′V 1)⊗n1 ⊗ (′V 2)⊗n2 ⊗ · · ·

of Sn1
× Sn2

× · · · if µ = (1n12n2 · · · ) with dim ′V d = N . Here we define ′V d as the
cohomology of the union of the fibers of (5.10.6) for the special case when µ is the
partition (d) with the single entry d, where the union runs over λ1,. . . , λN :

(5.10.9) σ :
⊔

λ1t···tλN=(d)

Sλ1A2 × · · · × SλNA2 \ diagonal→ S(d)A2,

and

(5.10.10) ′V d = H0(σ−1(d · 0)).

Since µ = (d), one of λ1,. . . , λN is (d) and others are the empty partition ∅. Therefore
the fiber σ−1(d · 0) consists of N distinct points, hence we have dim ′V d = N .

Moreover HomPerv( UdL)( CS(d)A2 , π! C Ũ
d

L

) is given by the component IC(Bun0,...,0
L,(d) , ρ),

where ρ is the trivial representation of S1 on ′V d. Therefore we have a canonical
isomorphism

′V d ∼= HomPerv( UdL)( CS(d)A2 , π! C Ũ
d

L

)

∼= HomPerv( UdL)( CS(d)A2 ,ΦL,G(π! C Ũ
d

r

)),
(5.10.11)

where the first isomorphism is via Htop(π−1(xd1

λ1
)× · · · × π−1(xdNλN )) ∼= C (d1 = · · · =

dN = 0, one of λ1,. . . , λN is (d) and others are the empty partition) given by the
fundamental class, and the second isomorphism is given by the stable envelope L.
Thus our ′V d is isomorphic to V d in (5.8.1). We will identify ′V d with V d hereafter.

We have just shown

(5.10.12) π! C Ũ
d

L

∼=
⊕

IC(Bund1,...,dN
L,λ , ρ).

This is similar to Proposition 4.8.4, where we used the factorization argument to
construct an isomorphism. Our argument looks slightly different, as we have not used
the projection a : A2 → A1. But the isomorphism is the same as one given by the
factorization argument from the above construction, together with the observation
that a, i, j commute with the projection πda,? (? = G,P, L).
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58 CHAPTER 5. HYPERBOLIC RESTRICTION IN TYPE A

Note that we have ei ∈ V d = H0(σ−1(d · 0)) corresponding to the component
of σ−1(d · 0) in

(5.10.13) S∅A2 × · · · × S(d)A2︸ ︷︷ ︸
ith factor

× · · · × S∅A2.

Then e1, . . . , eN gives a base of V d.
If we view V d as HomPerv( UdL)( CS(d)A2 , π! C Ũ

d

L

), ei is the composite of homomor-
phisms

(5.10.14) CS(d)A2 → π! C Ũ
d

ri

→ π! C Ũ
d

L

,

where the left homomorphism is given by the fundamental class [π−1(d · 0)], and the
right one is given by the inclusion of the component di = d, dj = 0 (j 6= i) in the
decomposition (5.3.1).

Example 5.10.15. — For d = 1, Ũ
1

r (resp. U1
G) is isomorphic to the product of A2 and

the cotangent bundle of Pr−1 (resp. the closure of the minimal nilpotent orbit of slr).
Further suppose N = r and r1 = · · · = rN = 1. Then [46, Remark 3.5.3] gives us the
relation:

(5.10.16) [T(0, . . . , 0, 1︸︷︷︸
kth factor

, 0, . . . , 0)] = (−1)k−1(ek + ek+1 + · · ·+ er).

Here the sign (−1)k−1 comes from the polarization, mentioned in §5.3.

Example 5.10.17. — We know that [T(d, 0, . . . , 0)0] = [ Ũ
d

r,0] (Proposition 5.8.9), and
hence

(5.10.18) [T(d, 0, . . . , 0)0] = e1 + · · ·+ eN

by (5.5.3).
On the other hand, the opposite extreme [T(0, 0, . . . , d)0] is equal to eN up to sign

by the support property of the stable envelope [46, Th. 3.3.4 (i)]. The polarization is
opposite, therefore the sign is the half of the codimension of the corresponding fixed
point component. We get

(5.10.19) [T(0, 0, . . . , d)0] = (−1)d(r−rN )eN .

If N = 2, two elements exhaust the base.

The transition matrix between two bases for d > 1, N > 2 can be calcu-
lated from (4.12.1) together with (5.11.5) below. Though (4.12.1) determines
[T(0, . . . , 0, d, 0, . . . , 0)] (d is in the kth entry) up to C[T(d, 0, . . . , 0)0], it is a linear
span of ek, . . . , eN thanks to the support property of the stable envelope. Therefore
we can fix the ambiguity.
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5.11. Computation of the pairing

Let us relate the pairing in §5.9 to the pairing defined on Ũ
d

L using the stable
envelope

(5.11.1) L : H[0]( Ũ
d

L,0)
∼=−→ H[0]( Ũ

d

P,0).

Let us temporarily denote the stable envelope with respect to the opposite parabolic
by L−. Then we want to compute

(5.11.2) 〈 L(α), L−(β)〉,

which is equal to the intersection pairing times (−1)dim c Ũ
d

r by Lemma 5.9.4.

Suppose that α, β are classes on a component Z of Ũ
d

L,0. Let us take equivari-
ant lifts of α, β to Z(L)0-equivariant cohomology. Since the supports of L(α) and
L−(β) intersect along Z by one of characterizing properties of the stable envelope
[46, Th. 3.3.4(i)], we need to compute the restriction of the (Poincaré dual of) L(α),
L−(β) to the fixed point component Z. Again by a property of the stable envelop [46,
Th. 3.3.4(ii)], we have L(α)|Z = (δrep/δ)e(N

−)∪α and L−(β)|Z = (δatt/δ)e(N
+)∪β,

where δrep, δatt are the polarizations given by attracting and repellent directions. Then
we have

(5.11.3)
∫
c Ũ

d

r

L(α) ∪ L−(β) =
δrepδatt
δ2

∫
c Ũ

d

r

e(N) ∪ α ∪ β = (−1)codimZ/2

∫
Z

α ∪ β

by the fixed point formula. Therefore if we multiply (−1)dim c Ũ
d

r/2, we get
(−1)dimZ/2

∫
X
α ∪ β = 〈α, β〉.

If α, β are supported on different components Z, Z ′ of Ũ
d

L,0 respectively, we use
a property [46, Th. 3.7.5], which says the restrictions of L(α), L(β) to components
other than Z, Z ′ are zero. Then it is clear that 〈 L(α), L−(β)〉 = 0.

As an application of this formula, we compute 〈ei, e−j 〉, where ei ∈ V d as in the
previous subsection, and e−j ∈ V d,P− is defined in the same way using the opposite
hyperbolic restriction L−. This is reduced to the computation of the self-intersection
number of the punctual Quot scheme Ũ

d

ri,0 in the centered Gieseker space c Ũ
d

ri . This

is given by (−1)rid−1dri = (−1)dim c Ũ
d

ri
/2dri ([6, §4]). Therefore we get

Proposition 5.11.4. — We have

(5.11.5) 〈ei, e−j 〉 = driδij .
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60 CHAPTER 5. HYPERBOLIC RESTRICTION IN TYPE A

5.12. Relation between V d and Ud

Let us apply the decomposition (5.1.2) to (5.10.11). We have

V d = Hom( CS(d)A2 ,ΦL,G(π! C Ũ
d

r

))

=
⊕

d1+|λ|=d

Htop(π−1(xd1

λ ))⊗Hom( CS(d)A2 ,ΦL,G(IC(Bund1

G,λ))).
(5.12.1)

Then Hom( CS(d)A2 ,ΦL,G(IC(Bund1

G,λ))) is nonzero only in either of the following cases:
1. d1 = d and λ = ∅,
2. d1 = 0 and λ = (d).

In the first case, it is Ud by definition. And in the second case, it is

(5.12.2) Hom( CS(d)A2 ,ΦL,G( CS(d)A2)) = Hom( CS(d)A2 , CS(d)A2) ∼= C id .

Thus

(5.12.3) V d ∼=
(
Htop(π−1(xd∅))⊗ Ud

)
⊕Htop(π−1(x0

(d))).

Note that π−1(xd∅) is a single point. Therefore we have the canonical isomorphism

Htop(π−1(xd∅)) ∼= C. Now the homomorphism π∗ : V d ∼= H[0]( Ũ
d

P,0) → Ud ∼=
H[0]( UdP,0) is identified with the projection to the first component in (5.12.3). In
particular, bases of Ud and V d given by irreducible components (see Lemma 4.8.15
and Proposition 5.8.9) are related by the projection.

The subspace Htop(π−1(x0
(d))) is 1-dimensional space spanned by the fundamental

class [π−1(x0
(d))], or equivalently P−d([0]) · [ U0

G] where P−d([0]) is the Heisenberg
operator, and [ U0

G] = 1 ∈ H0
T( U0

G). Recall that the Baranovsky’s Heisenberg operator
is mapped to the diagonal operator under the stable envelope, see §5.5. It means that
[π−1(x0

(d))] is equal to

(5.12.4) e1 + · · ·+ eN ,

where {ei} is the base of V d in the previous subsection.
And Ud is the subspace killed by the Heisenberg operator Pd(1). Therefore

(5.12.5) Ud ∼= {λ1e1 + · · ·+ λNeN |λ1 + · · ·+ λN = 0} .

We have a base {ei − ei+1}i=1,...,N−1 of Ud.
It is also clear that the decomposition (5.12.3) is orthogonal with respect to the

pairing in §5.9. And the restriction of the pairing to Ud is equal to one in §4.10.
Therefore we can calculate the pairing between Ud,P and Ud,P− . Let us consider the
case P = B for brevity. We have

(5.12.6) 〈ei − ei+1, e
−
j − e

−
j+1〉 =


2d if i = j,

−d if |i− j| = 1,

0 otherwise
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5.13. COMPATIBILITY 61

by Proposition 5.11.4. Thus the pairing between Ud,B and Ud,B− is identified with
the natural pairing on the Cartan subalgebra h of slr multiplied by d, under the
identification ei − ei+1 and e−i − e

−
i+1 with the simple coroot α∨i .

5.13. Compatibility

Let us take L = T . We shall show that the base {ei − ei+1}i of Ud is compatible
with the construction in §4.11 in this subsection.

We fix the Borel subgroup B consisting of upper triangular matrices, and let Pi be
the parabolic subgroup corresponding to a simple root αi and Li be the Levi subgroup
(i = 1, . . . r − 1). Recall that we have taken

(5.13.1) 1dLi,G ∈ HomPerv( UdLi )
(IC( UdLi),ΦLi,G(IC( UdG))).

(See (4.7.3).)

Let us consider the corresponding fixed point set Ũ
d

Li = ( Ũ
d

r)
Z(Li) in the Gieseker

space. The decomposition (5.3.1) in our case is

(5.13.2)
⊔

d1+···+d̂i+1+···+dr=d

Ũ
d1

1 × · · · × Ũ
di−1

1 × Ũ
di

2 × Ũ
di+2

1 × · · · × Ũ
dr

1 .

There is a distinguished connected component, isomorphic to Ũ
d

2 with di = d, dj = 0
for j 6= i. Let us denote it by Z.

Recall that UdLi is equal to UdSL(2) as a topological space and the open subvariety
BundLi is equal to BundSL(2). The connected component Z is characterized among all

components of Ũ
d

Li , as it contains BundLi .

We denote by δ the polarization of Z in Ũ
d

r in §5.3. We understand it is ±1,
according to whether it is equal to the polarization given by attracting directions or
not, as in §4.3. We correct 1dLi,G by δ1dLi,G so that it will be compatible with the
stable envelope.

Let us consider the diagram

(5.13.3)

IC( UdLi)
δ1dLi,G−−−−→ ΦLi,G(IC( UdG))x x

π! C Ũ
d

Li

∼=−−−−→
LLi,G

ΦLi,G(π! C Ũ
d

r

).

The upper arrow is given just above, and the bottom arrow is the stable envelope.
The right vertical arrow comes from the natural projection to the direct summand
π!( C

Ũ
d

r

)→ IC( UdG) in (5.1.2), which is the identity homomorphism on the open subset

BundG of UdG. The left vertical arrow is defined as follows. We have the distinguished

component Z of Ũ
d

Li isomorphic to Ũ
d

2. We have IC( UdLi) = IC( UdSL(2)), and hence
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62 CHAPTER 5. HYPERBOLIC RESTRICTION IN TYPE A

have a natural projection π! C Ũ
d

2

→ IC( UdLi), as for the right vertical arrow. Compos-
ing with the restriction to the distinguished component π! C Ũ

d

Li

→ π! CZ , we define

the left vertical arrow.

Proposition 5.13.4. — The diagram (5.13.3) is commutative.

Proof. — From the construction of the diagram, it is clear that we need to check the
commutativity on the open subset BundLi . Then the commutativity is clear, as two
constructions δ1dLi,G and LLi,G are the same: Both are given by the Thom isomor-
phism corrected by polarization. See [46, Th. 3.3.4(ii)] for the stable envelope.

Recall also that we have proposed that there exists a canonical element

1dLi ∈Hom( CS(d)A2 ,ΦT,Li(IC( UdLi)))

∼= Hom( CS(d)A2 ,ΦC∗,SL2
(IC( UdSL2

)))
(5.13.5)

in §4.11. We define it so that the following diagram is commutative:

(5.13.6)

CS(d)A2

1dLi−−−−→ ΦC∗,SL(2)(IC( UdSL(2)))y x
π! C Ũ

d

C∗

∼=−−−−−−→
LC∗,SL(2)

ΦC∗,SL(2)(π! C Ũ
d

2

),

where we choose the parabolic subgroup in SL(2) ∼= [Li, Li] corresponding to the
chosen Borel subgroup B to define the hyperbolic restriction LC∗,SL(2). The right
vertical arrow is the projection to the direct summand as before. The left vertical
arrow is ei − ei+1, where {ei, ei+1} is the base of V dC∗,SL(2)

∼= Hom( CS(d)A2 , π! C Ũ
d

C∗
),

i.e., ei corresponds to Ũ
d

1× Ũ
0

1 ⊂ Ũ
d

C∗ =
⊔

Ũ
d1

1 × Ũ
d2

1 , and ei+1 corresponds to Ũ
0

1× Ũ
d

1.
We enlarge the bottom row as

(5.13.7)

CS(d)A2

1dLi−−−−→ ΦT,Li(IC( UdLi))yei−ei+1

x
π! C Ũ

d

T

∼=−−−−→
LT,Li

ΦT,Li(π! C Ũ
d

Li

).

Here we identify Ũ
d

2 with the distinguished component Z. We similarly consider Ũ
d

C∗

as a union of components of Ũ
d

T , putting it in i and (i + 1)th components. The left
vertical arrow is ei − ei+1, where {e1, . . . , er} is the base of V dT,G. Two bases are
obviously compatible, so it is safe to use the same notation.
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5.14. Aut(G) INVARIANCE 63

We apply ΦT,Li to the commutative diagram (5.13.3) and combine it with (5.13.7):

(5.13.8)

CS(d)A2

1dLi−−−−→ ΦT,Li(IC( UdLi))
ΦT,Li (δ1Li,G)
−−−−−−−−−→ ΦT,G(IC( UdG))yei−ei+1

x x
π! C Ũ

n

T

∼=−−−−→
LT,Li

ΦT,Li(π! C Ũ
d

Li

)
∼=−−−−−−−−−→

ΦT,Li ( LLi,G)
ΦT,G(π! C Ũ

d

r

).

The composite of lower horizontal arrows is LT,G by the commutativity (5.7.4). Recall
we made an identification of V d by LT,G (see (5.10.11)). Therefore ei − ei+1 ∈ V d
considered as a homomorphism in Hom( CS(d)A2 ,ΦT,G(π! C Ũ

d

r

)) is the composition of
arrows from the upper left corner to the lower right corner.

It is also clear that the homomorphism V d → Ud given by the composition of the
rightmost upper arrow coincides with the projection in (5.12.3).

We thus see that {α̃di = ΦT,Li(δ1
d
Li,G

) ◦ 1dLi}i coincides with the base {ei − ei+1}
of Ud. This gives the construction promised in §4.11 when G is of type A.

Remark 5.13.9. — Suppose G = SL(2). Thanks to Example 5.10.17, we have
[T(0, d)0] = (−1)ded2. (Here r1 = r2 = 1.) Therefore we have

〈[T(0, d)0], α̃d,−1 〉 = (−1)d〈ed2, e
d,−
1 − ed,−2 〉 = (−1)d+1d

by Proposition 5.11.4. This completes the proof of (4.12.1).

5.14. Aut(G) invariance

Recall that we have studied Aut(G) invariance of various constructions for UdG
in §4.13. The same applies also to the Gieseker space Ũ

d

r , if we restrict to the inner

automorphism Inn(G). This is because Inn(G) acts on Ũ
d

r , and hence the same applies.
Let us consider Aut(G)/ Inn(G). It is {±1} for type A, and is the Dynkin diagram

automorphism given by the reflection at the center. It is represented modulo inner
automorphisms by a group automorphism g 7→ tg−1. In terms of BundG, it corresponds
to taking the dual vector bundle. In particular, it does not extend to an action on the
Gieseker space Ũ

d

r , as the second Chern class may drop when we take the dual of a
sheaf.

In the ADHM description, the diagram automorphism is given by

(5.14.1) [(B1, B2, I, J)] 7→ [(Bt1, B
t
2,−J t, It)].

This does not preserve the stability condition. Therefore we must be careful when we
study what happens under this automorphism.

Nevertheless we give

Proof of Lemma 4.13.9. — Recall σ ∈ Aut(G) preserves T , B, and corresponds to a
Dynkin diagram automorphism. Recall also α̃di = ΦT,Li(δ1

d
Li,G

) ◦ 1dLi .
It is clear that ΦT,Li(1

d
Li,G

) is sent to ΦT,Lσ(i)
(1dLσ(i),G

) under ϕσ from its definition.
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64 CHAPTER 5. HYPERBOLIC RESTRICTION IN TYPE A

Next consider 1dLi ∈ U
d
T,Li

. In view of Lemma 4.8.15, UdT,Li is H[0]( UdB∩Li,0), which
is 1-dimensional space spanned by the irreducible component [ UdB∩Li,0]. The class
[ UdB∩Li,0] is sent to [ UdB∩Lσ(i),0

] under ϕσ, as it is induced from the isomorphism

UdB∩Li,0 → UdB∩Lσ(i),0
.

On the other hand, [ UdB∩Li,0] is the image of [T(0, d)0] under π∗ : H[0]( Ũ
d

B∩Li,0)→
H[0]( UdB∩Li,0). We have [T(0, d)0] = (−1)de2 by Example 5.10.17. Hence [ UdB∩Li,0] =

(−1)d+11dLi/2. Combining with the above observation, we deduce the assertion.
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CHAPTER 6

W -ALGEBRA REPRESENTATION ON LOCALIZED
EQUIVARIANT COHOMOLOGY

The goal of this section is to define a representation of the W -algebra W k(g) on the
direct sum of equivariant intersection cohomology groups IH∗T( UdG) over d, isomorphic
to the Verma module with the level and highest weight, given by the equivariant
variables by

(6.0.1) k + h∨ = −ε2

ε1
, λ =

a

ε1
− ρ, where a = (a1, . . . , a`)

respectively. Here a is a collection of variables, but will be regarded also as a variable
in the Cartan subalgebra h so that ai = αi(a) for a simple root αi.

Since the level is a rational function in ε1, ε2, we must be careful over which ring
the representation is defined. In geometric terms, it corresponds to that we need to
consider localized equivariant cohomology groups. The equivariant cohomology group
H∗T( ) is a module over H∗T(pt) = C[LieT] = C[ε1, ε2,a]. Let us denote this polynomial
ring by AT and its quotient field by FT . In algebraic terms, it means that our
W -algebra is defined over C(ε1, ε2). Then the level k is a generic point in A1. Moreover
we consider a Verma module whose highest weight is in h∗ ⊗ FT . This means that
the highest weight is also generic. More precisely, we regard a as a canonical element
in h∗ ⊗ FT = h∗ ⊗ Frac(S(h∗)[ε1, ε2]) given by the inner product on h. Here we have
used the Langlands duality implicitly : we first consider a as the identity element
in h⊗ h∗ ⊂ h⊗ FT . Then we regard the first h as the dual of the Cartan subalgebra
of the Langlands dual of g. But the Langlands dual is g itself as we are considering
ADE cases.

We will construct a representation on

(6.0.2)
⊕
d

IH∗T( UdG)⊗AT
FT =

⊕
d

H∗T( UdG, IC( UdG))⊗AT
FT .
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66CHAPTER 6. W -ALGEBRA REPRESENTATION ON LOCALIZED EQUIVARIANT COHOMOLOGY

By the localization theorem and Lemma 3.1.6, natural homomorphisms

IH∗T,c( UdG) ∼= H∗T,c( UdT , i
!j!(IC( UdG)))

→ H∗T,c( UdT ,ΦT,G(IC( UdG)))

→ H∗T( UdT ,ΦT,G(IC( UdG)))

→ H∗T( UdT , i
∗j∗(IC( UdG))) ∼= IH∗T( UdG)

(6.0.3)

all become isomorphisms over FT . Thus over FT , we could use any of these four
spaces. Let us denote its direct sum by MF(a):

(6.0.4) MF(a) =
⊕
d

IH∗T,c( UdG)⊗AT
FT .

In fact, we will construct representations of integral forms (i.e., AT -forms) of
Heisenberg and Virasoro algebras on non-localized equivariant cohomology groups⊕

dH
∗
T,c( UdT ,ΦT,G(IC( UdG))) of hyperbolic restrictions in this section. This construc-

tion will be the first step towards a construction of the W -algebra representation on
non-localized equivariant cohomology groups. To follow the remaining argument, the
reader needs to read our definition of an integral form of the W -algebra given in §B.
Therefore the whole construction will be postponed to §8.1.

Let us denote the fundamental class 1 ∈ IH0
T( U0

G) = IH0
T,c( U0

G) = H0
T(pt) by |a〉. It

will be identified with the highest weight vector (or the vacuum vector) of the Verma
module. See Proposition 6.7.9 below.

We also use the following notation:

A = C[ε1, ε2], F = C(ε1, ε2).

6.1. Freeness

Lemma 6.1.1. — Four modules appearing in (6.0.3) are free over AT .

Proof. — By Lemma 3.1.6 all four modules are pure, as ( UdG)T is a single point, and
they are stalks at the point. Now freeness follows as in [34, Th. 14.1(8)].

Or we have odd cohomology vanishing by [21, Th. 7.10]. So it also follows from [34,
Th. 14.1(1)].

In particular, homomorphisms in (6.0.3) are all injective.

6.2. Another base of Ud, continued

Let Ud = UdT,G be as in §4.8. Let Li be the Levi subgroup corresponding to a simple
root αi and consider UdT,Li as in §4.11. We identify IC( UdLi) with IC( UdSL(2)) by the
bijective morphism UdSL(2) → UdLi (see Proposition 4.2.5). We have a maximal torus
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6.3. HEISENBERG ALGEBRA ASSOCIATED WITH THE CARTAN SUBALGEBRA 67

and a Borel subgroup induced from those of G. Then UdT,Li has the base in (5.12.5),
where it consists of a single element as N = 2. Let us denote the element by 1dLi , as
we promised in §4.11.

Next consider 1dLi,G given by the Thom isomorphism as in §4.7. We have the repel-
lent polarization δrep of BundLi in BundG. We modify it to δ according to Lemma 5.3.4.
We choose and fix a bipartite coloring of the vertices of the Dynkin diagram, i.e.,
o : I → {±1} such that o(i) = −o(j) if i and j are connected in the diagram. Then
we set

(6.2.1) δ = o(i)dδrep.

This is our polarization, which was promised in (4.11.4). Let us write

(6.2.2) α̃di
def.
= ΦT,Li(δ1

d
Li,G) ◦ 1dLi .

This gives us a collection {α̃di }i of elements in Ud labeled by I. Thanks to (4.12.1), it
is a base of Ud. This will follow also from Proposition 6.3.8.

6.3. Heisenberg algebra associated with the Cartan subalgebra

We construct a representation of the Heisenberg algebra associated with the Cartan
subalgebra h of g on the direct sum of (6.0.2) in this subsection. It will be the first
step towards the W -algebra representation.

Let us first review the construction of the Heisenberg algebra representation in
§5.5 for the case r = 2 and L = S(GL(1) × GL(1)) = C∗. We consider Heisenberg
operators P∆

n ≡ P∆
n (1) associated with the cohomology class 1 ∈ H [∗]

T (A2). We omit

(1) hereafter. They are not well-defined on
⊕

dH
T
[∗]( Ũ

d

P ) if d > 0, but are well-defined

on the localized equivariant homology group
⊕

dH
T
[∗]( Ũ

d

P ) ⊗AT
FT , and satisfy the

commutation relations

(6.3.1) [P∆
m , P

∆
n ] = −2mδm,−n

1

ε1ε2
.

Via the stable envelope, we have the isomorphism

(6.3.2)
⊕
d

HT
[∗]( Ũ

d

P ) ∼=
⊕
d

HT
[∗]( Ũ

d

L) =
⊕
d1,d2

HT
[∗]( Ũ

d1

1 )⊗HT
[∗]( Ũ

d1

1 ),

and we have the representation of the tensor product of two copies of Heisenberg
algebras, given by P (1)

n = Pn ⊗ 1 and P (2)
n = 1⊗ Pn on the localized equivariant ho-

mology group, where Pn is the Heisenberg generator for r = 1. The above Heisenberg
generator P∆

n is the diagonal P (1)
n + P

(2)
n . See §5.5.

We have

(6.3.3) HT
[−∗]( Ũ

d

P ) ∼= H∗T( UdC∗ , p∗j
!π! C Ũ

d

2

) = H∗T( UdC∗ ,ΦC∗,SL(2)(π! C Ũ
d

2

))
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68CHAPTER 6. W -ALGEBRA REPRESENTATION ON LOCALIZED EQUIVARIANT COHOMOLOGY

by §5.6 and π! = π∗. This homology group contains

(6.3.4) H∗T( UdC∗ ,ΦC∗,SL(2)(IC( UdSL(2))))

as a direct summand, and the anti-diagonal Heisenberg algebra generated by P (1)
n −

P
(2)
n acts on its direct sum over d. (See §5.12.)
Let us return back to general G. Let Li be the Levi subgroup as in the previous

subsection. We identify IC( UdSL(2)) with IC( UdLi) as before, and we have a(n anti-
diagonal) Heisenberg algebra representation on

(6.3.5)
⊕
d

H∗T( UdT ,ΦT,Li(IC( UdLi)))⊗AT
FT .

Using the decomposition (4.11.5) and ΦT,LiΦLi,G = ΦT,G, we have an induced
Heisenberg algebra representation on MF(a) in (6.0.4). Let us denote the Heisenberg
generator by P in.

By Lemma 4.8.7, the space MF(a) is isomorphic to

(6.3.6) Sym((U1 ⊕ U2 ⊕ · · · )⊗C FT ),

where Sym denotes the symmetric power. (Ud = UdT,G as before.)
Let us describe P in in this space. Recall that we have the orthogonal decomposition

Ud = UdT,Li ⊕ (UdT,Li)
⊥ in (4.11.6). Then we have the factorization

(6.3.7) Sym((U1 ⊕ U2 ⊕ · · · )⊗C FT )

∼= Sym((U1
T,Li ⊕ U

2
T,Li ⊕ · · · )⊗C FT )⊗FT

Sym(((U1
T,Li)

⊥ ⊕ (U2
T,Li)

⊥ ⊕ · · · )⊗C FT )

The first factor of the right hand side is the usual Fock space associated with the
Cartan subalgebra hsl2 of sl2. In fact, using UdT,Li

∼= C1dLi , we identify UdT,Li with
hsl2 . The pairing is multiplied by −1/ε1ε2 from the natural one. Then the factor
is Sym(z−1hsl2 [z−1]) and the Heisenberg algebra acts in the standard way. From its
definition, our Heisenberg operator P in is given by the tensor product of the Heisenberg
operator for Sym(z−1hsl2 [z−1]), and the identity.

The following means that the operators P in define the Heisenberg algebra Heis(h)
associated with the Cartan subalgebra h of g.

Proposition 6.3.8. — Heisenberg generators satisfy commutation relations

(6.3.9) [P im, P
j
n] = −mδm,−n(αi, αj)

1

ε1ε2
.

If we normalize the generator by ĥin = ε2P
i
n, the relations match with a standard

convention with level −ε2/ε1 = k + h∨. See (B.1.5).
From the construction, P i−d applied to the vacuum vector |a〉 ∈ H0

T( U0
T ,ΦT,G(IC( U0

G)))

is equal to ΦT,Li(δ1
d
Li,G

) ◦ 1dLi ∈ Ud divided by ε1ε2, considered as an element in
(6.3.6).
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6.4. VIRASORO ALGEBRA 69

From the construction, (6.3.6) is the Fock space of the Heisenberg algebra associ-
ated with the Cartan subalgebra h. It is Sym(z−1h[z−1]), where the base field is FT .
The element α̃di is a linear function, living on z−dh.

Proof of Proposition 6.3.8. — The case (αi, αj) = 2, i.e., i = j is obvious from the
construction.

Next consider the case (αi, αj) = −1. Then i and j are connected by an edge
in the Dynkin diagram. Let us take the parabolic subgroup P corresponding to the
subset consisting of two vertices i and j, and the corresponding Levi subgroup L. We
have [L,L] ∼= SL(3). Then from our construction and the compatibility of the stable
envelope with the hyperbolic restriction functor in §5.13, the assertion follows from
the SL(3)-case, which is clear as Heisenberg algebra generators are given by

(6.3.10) P in = Pn ⊗ 1⊗ 1− 1⊗ Pn ⊗ 1, P jn = 1⊗ Pn ⊗ 1− 1⊗ 1⊗ Pn.

Note also that our polarization δ in (6.2.1) was chosen so that it is the same as the

polarization for Ũ
d

SL(3) via Lemma 5.3.4 up to overall sign independent of d.
Finally consider the case (αi, αj) = 0. We argue as above by taking the correspond-

ing Levi subgroup L with [L,L] ∼= SL(2) × SL(2). Then it is clear that Heisenberg
generators commute.

If a reader would wonder that SL(2) × SL(2) is not considered in §5, we instead
take a type Ak subdiagram containing i, j and take the corresponding Levi subgroup
L with [L,L] ∼= SL(k + 1). Then it is clear that the Heisenberg generators P im, P jn
commute for SL(k + 1). Therefore they commute also for G.

Let us consider Heisenberg operators P in([0]) = ε1ε2P
i
n, coupled with the Poincaré

dual of [0] ∈ HT
0 (A2), and denote them by P̃ in. Then they are well-defined on non-

localized equivariant cohomology groups

(6.3.11)
⊕
d

H∗T( UdT ,ΦT,G(IC( UdG))),

and satisfy the commutation relations

(6.3.12) [P̃ im, P̃
j
n] = −mδm,−n(αi, αj)ε1ε2.

The same is true for the non-localized equivariant cohomology with compact supports.
We define the A-form HeisA(h) of the Heisenberg vertex algebra as the vertex

A-subalgebra of Heis(h) generated by P̃ im.

6.4. Virasoro algebra

Let us introduce 0-mode operators P i0. In §5.2 we did not introduce them. Since
they commute with all other operators, we can set them any scalars. We follow the
convention in [46, §13.1.5, §14.3.1], that is

(6.4.1) P i0 =
ai

ε1ε2
.
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70CHAPTER 6. W -ALGEBRA REPRESENTATION ON LOCALIZED EQUIVARIANT COHOMOLOGY

Here ai is the ith simple root, and should be identified with ai−ai+1 in [46] in the Fock
space F(a1) ⊗ · · · ⊗ F(ar) corresponding to the equivariant cohomology of Gieseker
spaces for rank r sheaves. We also set P̃ i0 = ε1ε2P

i
0 = ai.

We then introduce Virasoro generators by

(6.4.2) Lin = −1

4
ε1ε2

∑
m

:P imP
i
n−m:− n

2
(ε1 + ε2)P in +

(ε1 + ε2)2

4ε1ε2
δn,0.

See [46, (13.10),(14.10)]. Let us briefly explain how to derive the above expression
from [46]: The Virasoro field T (γ, κ) =

∑
Ln(γ, κ)z−n in [46, (13.10)] is given by

(6.4.3) T (γ, κ) =
1

2
:α2:(γ) + ∂α(γκ)− 1

2
τ(γκ2),

where α(γ) =
∑
αn(γ)z−n is the free field. Note that T and α are different from the

usual convention, as the exponents are not −n−1, −n−2 respectively. Also ∂ = z∂z.
We take γ = 1, the fundamental class of H0

T(A2). Next note that α = α−/
√

2

[46, (14.8)], and our P i is identified with α−. This is the reason we have 1/4 instead
of 1/2. The remaining factor −ε1ε2 comes from 1∆ = −1⊗ pt in [46, §13.3.2].

For the second term, note κ = ~/
√

2 (see [46, (14.8)]), ~ = −t1 − t2 (see [46,
§17.1.1,(18.10)] for example). We denote their t1, t2 by ε1, ε2 instead.

For the last constant term, we have −γκ2 = −(ε1 + ε2)2/2 and τ(1) = −
∫
A2 1 =

−1/ε1ε2.
The Virasoro algebra commutation relations are

(6.4.4) [Lim, L
i
n] = (m− n)Lim+n +

(
1 +

6(ε1 + ε2)2

ε1ε2

)
δm,−n

m3 −m
12

.

See [46, §13.3.2]. And the highest weight is given by

(6.4.5) Li0|a〉 = −1

4

(
(ai)2

ε1ε2
− (ε1 + ε2)2

ε1ε2

)
|a〉.

See [46, §13.3.5].
In order to apply the result of Feigin-Frenkel to our situation later, we shift P in in

(6.4.2) as P in − (ε1 + ε2)/ε1ε2δn,0 (see [46, §19.2.5]) so that

(6.4.6) Lin = −1

4
ε1ε2

∑
m

:P imP
i
n−m:− n+ 1

2
(ε1 + ε2)P in.

This is a standard embedding of the Virasoro algebra in the Heisenberg algebra, given
as the kernel of the screening operator (see [30, §15.4.14]). We have

(6.4.7) P i0 =
1

ε1ε2

(
ai − (ε1 + ε2)

)
in this convention.
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6.5. THE FIRST CHERN CLASS OF THE TAUTOLOGICAL BUNDLE 71

We modify (6.4.2) as

Lin = − 1

4
ε1ε2

∑
m

:(P im −
ε1 + ε2

ε1ε2
δm,0)(P in−m −

ε1 + ε2

ε1ε2
δm,n):

− 1

2
(ε1 + ε2)P in +

(ε1 + ε2)2

4ε1ε2
δn,0

− n

2
(ε1 + ε2)P in +

(ε1 + ε2)2

4ε1ε2
δn,0

= − 1

4
ε1ε2

∑
m

:(P im −
ε1 + ε2

ε1ε2
δm,0)(P in−m −

ε1 + ε2

ε1ε2
δm,n):

− n+ 1

2
(ε1 + ε2)(P in −

ε1 + ε2

ε1ε2
δn,0).

(6.4.8)

Therefore if we replace P in by P in − (ε1 + ε2)/ε1ε2δn,0, we get the above expression.
We denote by Viri the Virasoro vertex subalgebra of Heis(h) generated by Lin.
Let us introduce a modified Virasoro generator L̃in = ε1ε2L

i
n. We have

(6.4.9) L̃in = −1

4

∑
m

:P̃ imP̃
i
n−m:− n+ 1

2
(ε1 + ε2)P̃ in.

Hence L̃in is an element in HeisA(h). We denote the corresponding vertex A-subalgebra
by Viri,A.

Note that the central charge 1 + 6(ε1 + ε2)2/ε1ε2 is equal to that of Virasoro alge-
bras, appearing in the construction of the W -algebra W k(g) as the BRST reduction
of the affine vertex algebra at level k, if we have the relation

(6.4.10) − (ε1 + ε2)2

ε1ε2
= k + h∨ − 2 +

1

k + h∨
,

see [30, §15.4.14] and Corollary B.6.11 below. In other words, k + h∨ = −ε2/ε1

or −ε1/ε2. It is known that the W -algebra for type ADE has a symmetry under
k + h∨ ↔ (k + h∨)−1 [30, Prop. 15.4.16]. Therefore either choice gives the same
result. We here take k+h∨ = −ε2/ε1, see (6.0.1). It is remarkable that the symmetry
k + h∨ ↔ (k + h∨)−1 corresponds to a trivial symmetry ε1 ↔ ε2 in geometry.

6.5. The first Chern class of the tautological bundle

Let us explain a geometric meaning of the Virasoro generators in the previous
subsection. It was obtained in [46, Th. 14.2.3], based on an earlier work by Lehn [43]
for the rank 1 case. Let us first consider the rank 2 case.

Consider the Gieseker space Ũ
d

2 of rank 2 framed sheaves on P2 with c2 = d.

For (E,ϕ) ∈ Ũ
d

2, consider H1(P2, E(−`∞)). Other cohomology groups vanish, and
hence it has dimension equal to d by the Riemann-Roch formula. In the ADHM
description, it is identified with the vector space V . When we vary E, it forms a vector
bundle over Ũ

d

2, which we denote by V . Its first Chern class c1( V ) can be considered
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72CHAPTER 6. W -ALGEBRA REPRESENTATION ON LOCALIZED EQUIVARIANT COHOMOLOGY

as an operator on H∗T( Ũ
d

2) acting by the cup product. Then its commutator with the
diagonal Heisenberg generator, restricted to IH∗T( UdSL2

), is the Virasoro generator up
to constant:

(6.5.1) [c1( V ), P∆
n ]
∣∣
IH∗T( UdSL2

)
= nLn,

where we denote Lin in the previous subsection by Ln since G = SL2. (See [46,
Th. 14.2.3].)

Let us remark that c1( V ) is defined on non-localized equivariant cohomology groups

IH∗T,c( Ũ
d

2). Therefore L̃n = ε1ε2Ln is also well-defined on non-localized equivariant
cohomology groups for n 6= 0. The operator L̃0 = ε1ε2L0 is also well-defined as it is
the grading operator ([46, Lem. 13.1.1]).

Returning back to general G, we see that L̃in is well-defined on

(6.5.2)
⊕
d

H∗T,c( UdLi ,ΦLi,G(IC( UdG)))

thanks to the decomposition (4.11.5). Namely this space is a module over Viri,A. It
lies in between the first two spaces in (6.0.3):

(6.5.3) IH∗T,c( UdG)→ H∗T,c( UdLi ,ΦLi,G(IC( UdG)))→ H∗T,c( UdT ,ΦT,G(IC( UdG))).

The Formula (6.4.9) relates operators L̃in and P̃ in acting on the middle and right spaces
respectively via the second homomorphism.

6.6. W -algebra representation

Let us consider the vertex algebra associated with the Heisenberg algebra, and
denote it by the same notation Heis(h) for brevity. It is regarded as a vertex algebra
over F.

We have the Virasoro vertex subalgebra Viri corresponding to each simple root αi
as in §6.4. Consider the orthogonal complement α⊥i of Cαi in h, and the corresponding
Heisenberg vertex algebra Heis(α⊥i ). It commutes with Viri, and the tensor product
Viri ⊗ Heis(α⊥i ) is a vertex subalgebra of Heis(h).

By a result of Feigin-Frenkel (see [30, Th. 15.4.12]), the W -algebra W k(g) is iden-
tified with the intersection

(6.6.1)
⋂
i

Viri ⊗ Heis(α⊥i )

in Heis(h) when the level k is generic. More precisely, Viri⊗Heis(α⊥i ) is given by the
kernel of a screening operator on Heis(h), and W k(g) is the intersection of the kernel
of screening operators.

Now W k(g) has a representation on the direct sum of localized equivariant coho-
mology groups MF(a) (see (6.0.4)), as a vertex subalgebra of Heis(h).
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6.7. HIGHEST WEIGHT 73

6.7. Highest weight

In this subsection we explain that we can identify a with the highest weight of the
W k(g)-module MF(a), where the highest weight vector is |a〉.

Let us first briefly review the definition of Verma modules of the W -algebra to set
up the notation. See [2, §5] for detail.

Let U( W k(g)) be the current algebra of the W -algebra as in [2, §4]. (The finite di-
mensional Lie algebra is denoted by ḡ, while g is the corresponding untwisted affine Lie
algebra in [2].) We denote the current algebra of the Heisenberg algebra by U(Heis(h)).
It is a completion of the universal enveloping algebra of the Heisenberg Lie algebra.
The embedding W k(g) ⊂ Heis(h) induces an embedding U( W k(g))→ U(Heis(h)).

We have decompositions U( W k(g)) =
⊕

d U( W k(g))d, U(Heis(h)) =
⊕

d U(Heis(h))d
by degree. Two decompositions are compatible under the embedding. Let

(6.7.1) U( W k(g))≥0
def.
=
⊕
d≥0

U( W k(g))d, U( W k(g))>0
def.
=
⊕
d>0

U( W k(g))d.

The Zhu algebra of U( W k(g)) is given by

(6.7.2) Zh( W k(g))
def.
= U( W k(g))0/

∑
r>0

U( W k(g))−rU( W k(g))r.

Then it is isomorphic to the center Z(g) of the universal enveloping algebra U(g) of g
([2, Th. 4.16.3]). We further identify it with the Weyl group invariant part of the
symmetric algebra of h ([2, (55)]):

(6.7.3) Zh( W k(g)) ∼= Z(g) ∼= S(h)W .

We have an induced embedding Zh( W k(g)) → Zh(U(Heis(h))), where the latter is
the subalgebra generated by zero modes. We have

(6.7.4) Zh(U(Heis(h))) ∼= S(h).

Lemma 6.7.5. — Under the identifications (6.7.3), 6.7.4, the embedding Zh( W k(g))→
Zh(U(Heis(h))) is induced by

(6.7.6) hi 7→ hi + (k + h∨),

where hi is a simple coroot of h.

Proof. — The assertion follows from [2, Th. 4.16.4], together with an isomorphism
t̂−ρ̄∨ which sends the old Zhu algebra, denoted by H0(Zh(Ck(ḡ)′′old)) there, to a new
one H0(Zh(Ck(ḡ)′′new)). The zero mode is written as Ĵi(0) there. We can calculate
t̂−ρ̄∨(Ĵi(0)) = Ĵi(0) + k + h∨ by formulas in [2, bottom of p.276].

We regard λ ∈ h∗ as a homomorphism S(h)W → C by the evaluation at λ + ρ,
where ρ is the half sum of positive roots of g. (It is denoted by γλ̄ in [2, §5].) We
further regard C as a Zh( W k(g))-module by the above isomorphism, and denote it

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016

SMF 6/10/16



Ép
re

uv
e S

M
F

Se
pt

em
be

r 2
2,

20
16

74CHAPTER 6. W -ALGEBRA REPRESENTATION ON LOCALIZED EQUIVARIANT COHOMOLOGY

by Cλ. We extend it to a U( W k(g))≥0-module on which U( W k(g))>0 acts trivially.
Then we define

(6.7.7) M(λ)
def.
= U( W k(g))⊗U( Wk(g))≥0

Cλ.

This is called the Verma module with highest weight λ.
Now we turn to our W k(g)-module MF(a). We identify h = LieT with h∗ by the

invariant bilinear form ( , ). Then we have an identification

(6.7.8) S(h)W ∼= C[LieT ]W = H∗T (pt)W .

We regard the collection a = (a1, . . . , a`) as a variable in LieT by considering ai its
coordinate. Hence a has value in h∗ by the above identification.

Recall that |a〉 is the fundamental class 1 ∈ IH0
T( U0

G). Since the degree d
corresponds to an instanton number, U( W k(g))≥0 acts via a homomorphism
U( W k(g))≥0 → FT induced from Zh( W k(g)) → FT on FT |a〉 = IH∗T( U0

G) ⊗AT
FT .

Hence we have a W k(g)-homomorphism M(λ) → MF(a), sending 1 ∈ Cλ ⊂ M(λ)

to |a〉 ∈MF(a). Here we generalize the above definition to λ : Zh( W k(g))→ FT .

Proposition 6.7.9. — (1) The highest weight λ is given by

(6.7.10) λ =
a

ε1
− ρ.

(2) MF(a) is irreducible as a W k(g)-module, and isomorphic to M(λ).

Note that the Weyl group action on a corresponds to the dot action on λ, w ◦ λ =

w(λ+ ρ)− ρ.

Proof. — (1) Recall that our Heisenberg generators and standard generators are re-
lated by ĥin = ε2P

i
n. Then the zero mode acts by

(6.7.11)
ai

ε1
− 1− ε2

ε1
= (αi,

a

ε1
− ρ) + k + h∨

thanks to (6.4.7).
We compare this formula with a realization of M(λ) in [2, §5.2]. Our ĥin is

t̂−ρ̄∨(Ĵi(n)) ∈ U(Ck(ḡ)′′old), and t̂−ρ̄∨(Ĵi(0)) = Ĵi(0)+k+h∨ as in Lemma 6.7.5. Since
Ĵi(0) acts by λ(Ji) on M(λ), we obtain λ = a/ε1 − ρ.

(2) It is well-known that M(λ) is irreducible when λ is generic. It follows, for
example, from the fact that the determinant of the Kac-Shapovalov form is a nonzero
rational function, hence the form is nondegenerate if λ is neither a zero nor a pole. (See
below for the Kac-Shapovalov form.) It also means that the form is nondegenerate
when one views λ as a rational function like us. ThereforeM(λ)→MF(a) is injective.

Now we compare the graded characters. The character of M(λ) is the same as
the character of S(th[t]) where deg(t) = 1. We have MF(a) =

⊕
d∈N IH∗( UdG) ⊗

FT . According to [21, Theorem 7.10], the character of MF(a) (with grading by the
instanton number) is the same as the character of S(tgf [t]) where f is a principal
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6.8. KAC-SHAPOVALOV FORM 75

nilpotent. Since dim gf = dim h, the graded characters of M(λ) and MF(a) coincide.

6.8. Kac-Shapovalov form

We shall identify the Kac-Shapovalov form on M(λ) with a natural pairing
on MF(a) given by the Verdier duality in this subsection.

Let σ be the Dynkin diagram automorphism given by −ασ(i) = w0(αi). We denote
the corresponding element in Aut(G) also by σ. We have an induced isomorphism

ϕσϕw0
: IH∗T,c( UdG)→ IH∗T,c( UdG),

which is AT = H∗T(pt)-linear if we twist the AT -structure on the second IH∗T,c( UdG)
by composing the automorphism a 7→ −a of AT . This is explained in the paragraph
after (4.13.2).

Let us denote the natural perfect pairing by

(6.8.1) 〈 , 〉 : IH∗T,c( UdG)⊗AT
IH∗T( UdG)→ AT ,

where we compose the above ϕσϕw0 for the first factor. We also multiply it by (−1)dh
∨

as in (5.2.5). The notation conflicts with the pairing between Ud,P and Ud,P− in §4.10.
But the two pairings are closely related, so the same notation does not give us any
confusion. (See §8.1 for a more precise relation.)

By the localization theorem and Lemma 3.1.6 we extend it to a perfect pairing

(6.8.2) 〈 , 〉 : MF(−a)⊗MF(a)→ FT .

(cf. [14, §2.6].) Here the highest weight of the first factor is −a since we compose the
automorphism a 7→ −a.

When we localize the equivariant cohomology groups, there is no distinction be-
tween compact support and arbitrary support. We then see that (6.8.2) is symmetric
in the sense as in (4.10.4).

We also have the pairing

(6.8.3) 〈 , 〉 : H∗T,c( UdT ,ΦT,G(IC( UdG)))⊗AT
H∗T( UdT ,ΦT,G(IC( UdG)))→ AT ,

where we compose ϕσϕw0
on the first factor as above. Since σw0 sends B to the oppo-

site Borel B−, the above is coming from the pairing between H∗T,c( UdT ,Φ
B−
T,G(IC( UdG)))

and H∗T( UdT ,ΦT,G(IC( UdG))). Therefore it is a perfect pairing thanks to Braden’s iso-
morphism (3.4.2). This pairing also extends to a pairing (6.8.2), which is the same
as defined above thanks to the compatibility between Braden’s isomorphism and
i!j! → i∗j! as in the proof of Lemma 5.9.4.

The Heisenberg generator P in satisfies

(6.8.4) 〈u, P inv〉 = 〈θ(P in)u, v〉,
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where θ is an anti-involution on the Heisenberg algebra given by

(6.8.5) θ(P in) = −P i−n −
2(ε1 + ε2)

ε1ε2
δn0.

Let us explain the reason for this formula of θ. Thanks to a standard property of
convolution algebras, the diagonal Heisenberg generator P∆

n in §5.2 was defined so
that P∆

n is adjoint to P∆
−n. Since the intersection pairing (5.2.5) is compatible with the

above one, we change n to −n. Moreover, since P in is defined via the stable envelope
and we must use the opposite Borel as in §4.10, we need to swap P (1)

n and P (2)
n in §6.3.

Therefore we need to change the sign of P i−n. The zero mode P i0 was defined by hand
as (6.4.7). We must also change the sign of ai, as the AT -module structure is twisted
by a 7→ −a on the first factor. Then we must correct −P i0 by −2(ε1 + ε2)/ε1ε2.

The Virasoro generator Lin is mapped to Li−n by θ. This is clear from (6.5.1): c1( V )

is self adjoint and θ(P∆
n ) = P∆

−n as we have just explained. It can be also checked by
the Formula (6.4.6).

Therefore θ preserves W k(g), more precisely the associated Lie algebra L( W k(g))
and the current algebra U( W k(g)), thanks to (6.6.1). We have

(6.8.6) 〈u, xv〉 = 〈θ(x)u, v〉

for x ∈ L( W k(g)), u, v ∈MF(a). On the other hand, L( W k(g)) has an anti-involution
as in [2, §5.5], denoted also by θ.

Proposition 6.8.7. — Our θ coincides with one in [2, §5.5].

Proof. — We use the formula [2, Prop. 3.9.1] for the Heisenberg vertex algebra. We
follow various notation in [2].

Since Ĵi(n) is a Fourier mode of the vertex operator Y (v, z) =
∑
Ĵi(n)z−n−1 with

v = Ĵi(−1)|0〉, we have

(6.8.8) θ(Ĵi(n)) = −(eT
∗
v)−n.

Here T ∗ must be substituted by T ∗new in [2, (173)]. Using

(6.8.9) v = Ĵi(−1)|0〉 = Ji(−1)|0〉 −
∑
α∈∆

α(hi)ψ−α(0)ψα(−1)|0〉

(see [2, the beginning of §4.8]), we can check

(6.8.10) eT
∗
v = Ĵi(−1)|0〉+ 2(1− (k + h∨))|0〉.

Therefore we get the same formula as (6.8.5) under the identification Ĵi(−1) = ε2P
i
n.

(This Ĵi(−1) is in U(Ck(ḡ)′′new) and we do not need to apply t̂−ρ̄∨ in the proof of
Proposition 6.7.9, as it is in T ∗new.)

Remark 6.8.11. — We can identify the graded dual D(MF(a)) of MF(a) with
MF(−a) via 〈 , 〉. The graded dual has a W k(g)-module structure via θ and
the Formula (6.8.6). This is the duality functor D in [2, §5.5]. The isomorphism
D(MF(a)) ∼= MF(−a) respects W k(g)-module structures.
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6.8. KAC-SHAPOVALOV FORM 77

When λ is generic andM(λ) is irreducible, the dual module D(M(λ)) is isomorphic
to M(−w0(λ)), where w0 is the longest element in the Weyl group by [2, Th. 5.5.4].
Under the correspondence in Proposition 6.7.9(1), we have

(6.8.12) − w0(λ) = −w0(
a

ε1
)− ρ,

as w0(ρ) = −ρ. This means that the equivariant variable a is replaced by −w0(a).
Since the highest weight module is invariant under the Weyl group action, we can omit
w0. So the equivariant variable is −a for D(MF(a)). Therefore we have D(MF(a)) ∼=
MF(−a). This is what we already observed in a geometric way above.

The pairing 〈·, ·〉 is uniquely determined from (6.8.6) and the normalization
〈−a|a〉 = 1 for generic a. It is called the Kac-Shapovalov form. We thus see that
the Poincaré pairing twisted by ϕσϕw0

on MF(a) coincides with the Kac-Shapovalov
form.
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CHAPTER 7

R-MATRIX

Recall that our hyperbolic restriction ΦL,G depends on the choice of a parabolic
subgroup P . Following [46, Ch. 4] (see also [19, §1.3]), we introduce R-matrices giv-
ing isomorphisms between various hyperbolic restrictions, and study their properties.
They are defined as rational functions in equivariant variables, and their existence is
an immediate corollary to localization theorem in the previous section.

As for the usual R-matrices for Yangians, they satisfy the Yang-Baxter equation
and are ultimately related to the W -algebra.

As an application, we give a different proof of the Heisenberg commutation relation
(Proposition 6.3.8) up to sign, which does not depend on Gieseker spaces for SL(3).
We hope that this proof could be generalized to other rank 2 cases B2, G2.

Since the dependence on a parabolic subgroup is important, we denote the hyper-
bolic restriction by ΦPL,G in this section.

7.1. Definition

Let us consider the diagram (4.4.2) with respect to a parabolic subgroup P . Let us
consider the homomorphism in (3.4.3)

(7.1.1) I P : H∗T( UdL,Φ
P
L,G( F ))→ H∗T( UdL, i

∗j∗ F ) ∼= H∗T( UdG, F )

for F ∈ Db
T( UdG). This is an isomorphism over the quotient field FT of AT =

C[Lie(T)]. When we want to emphasize F , we write I F
P .

Definition 7.1.2. — Let P1, P2 be two parabolic subgroups compatible with (G,L).
Let us introduce the R-matrix

(7.1.3) RP1,P2
= ( I P1

)−1 I P2
: H∗T( UdL,Φ

P2

L,G( F ))⊗AT
FT

→ H∗T( UdL,Φ
P1

L,G( F ))⊗AT
FT

When we want to view RP1,P2
as a rational function in equivariant variables, we

denote it by RP1P2
(a). Dependence on ε1, ε2 are not important, so they are omitted.

When we want to emphasize F , we write R F
P1,P2

.
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80 CHAPTER 7. R-MATRIX

From the definition, we have

(7.1.4) RP1,P2RP2,P3 = RP1,P3 .

7.2. Factorization

Suppose that Q1 ⊂ P be a pair of parabolic subgroups as in §4.5. LetM ⊂ L be the
corresponding Levi subgroups. We have Φ

Q1,L

M,L ◦ ΦPL,G = ΦQ1

M,G by Proposition 4.5.1.
We further suppose that there is another parabolic subgroup Q2 contained in P

such that the corresponding Levi subgroup is also M :

(7.2.1) M ⊂ Q1, Q2 ⊂ P.

Then we also have the factorization Φ
Q2,L

M,L ◦ΦPL,G = ΦQ2

M,G. It is clear from the definition
that we have

(7.2.2) R F
Q1,Q2

= R
ΦPL,G( F )

Q1,L,Q2,L
.

Consider the case L = T . Note that Borel subgroups containing a fixed torus T
are parametrized by the Weyl group W . Let us denote by Bw the Borel subgroup
corresponding to w ∈W , where Be = B is one which we have fixed at the beginning.
From (7.1.4) R F

Bw,By factors to a composition of R-matrices for two Borel subgroups
related by a simple reflection, i.e., y = wsi. Then we choose P = Pwi ⊃ Bw, Bwsi for
the parabolic subgroup to use (7.2.2). We have

(7.2.3) R F
Bw,Bwsi = R

ΦPL,G( F )

B1,L,B2,L
,

where L is the Levi subgroup of P and B1,L, B2,L are images of Bw, Bwsi in L

respectively. As [L,L] ∼= SL(2), we are reduced to study the SL(2) case. The R-matrix
for SL(2) was computed in [46, Th. 14.3.1] and will be explained in §7.5.

7.3. Intertwiner property

Let F ∈ Db
T( UdG). We have representations of the Ext algebra ExtDbT( UdG)( F , F ) on

two cohomology groups in (7.1.1). This is thanks to (3.2.1), 3.2.2. Since I F
P is defined

by a natural transformation of functors, it is a homomorphism of the Ext algebra.
Therefore

Proposition 7.3.1. — The R-matrix R F
P1,P2

is a homomorphism of modules over the
Ext algebra ExtDbT( UdG)( F , F ).
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7.5. SL(2)-CASE 81

7.4. Yang-Baxter equation

Take L = T and F = IC( UdG) in this subsection.
By (4.13.3) we can map all cohomology groups in (7.1.3) to the fixed one

H∗T( UdT ,ΦBT,G(IC( UdG)))⊗AT
FT ∼= MF(a) by ϕw. We conjugate the R-matrix as

(7.4.1) ϕ−1
w1
RBw1 ,Bw2ϕw2

∈ End(H∗T( UdT ,Φ
B
T,G(IC( UdG)))⊗AT

FT ).

Remark that H∗T(pt)-structures are twisted by isomorphisms w1, w2 : T→ T, as men-
tioned after (4.13.2). In practice, we change the equivariant variable a according to w1

,w2.
Since I P is ϕw-equivariant, (7.4.1) depends only on w1w

−1
2 . Moreover by (7.1.4)

it is enough to consider the case w1w
−1
2 is a simple reflection si. Therefore we define

(7.4.2) Ři
def.
= ϕ−1

si RBsi ,Bϕe.

By the factorization (§7.2), this is the R-matrix for SL(2). Since we only have two
chambers, (7.1.4) implies

(7.4.3) Ři(sia)Ři(a) = 1.

We change the equivariant variable to sia, as it is the R-matrix from the opposite
Borel to the original Borel. In the conventional notation for the R-matrix, we write
u = 〈αi,a〉 for the variable. Then 〈αi, sia〉 = −u, so this equation means the unitarity
of the R-matrix.

Consider R-matrices Ři, Řj . By the factorization (§7.2), we consider them as the
R-matrices for the rank 2 Levi subgroup L containing SL(2) for i and j. We compute
the R-matrix from a Borel subgroup of L to the opposite Borel by (7.1.4) in two ways
to get

Theorem 7.4.4. —

Ři(sja)Řj(a) = Řj(sia)Ři(a) if (αi, αj) = 0,(7.4.5)

Řj(sisja)Ři(sja)Řj(a) = Ři(sjsia)Řj(sia)Ři(a) if (αi, αj) = −1.(7.4.6)

7.5. SL(2)-case

As we mentioned earlier, it is enough to compute the R-matrix for SL(2), which was
given in [46, Th. 14.3.1]. We briefly recall the result, and point out a slight difference
for the formulation.

By Proposition 7.3.1 and the observation that the left hand side of the For-
mula (6.5.1) is contained in the Ext algebra, we deduce that the R-matrix is an
intertwiner of the Virasoro algebra. This is a fundamental observation due to Maulik-
Okounkov [46].

The highest weight is generic, since we work over FT . Therefore the intertwiner is
unique up to scalar, and we normalize it so that it preserves the highest weight vector
|a〉.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016

SMF 6/10/16



Ép
re

uv
e S

M
F

Se
pt

em
be

r 2
2,

20
16

82 CHAPTER 7. R-MATRIX

In [46] the R-matrix is given as an endomorphism of the localized equivariant
cohomology group of the fixed point set via the stable envelop. On the other hand,
our R is an endomorphism of H∗T( UdT ,ΦBT,G(IC( UdG))). Concretely

(7.5.1) Ř = P12R
MO∣∣

anti-diagonal part ,

where P12 is the exchange of factors of the Fock space F ⊗ F , as si = P12.
By [46, Prop. 4.1.3] we have

(7.5.2) Ř = −1 +O(a−1), a→∞.

7.6. G-equivariant cohomology

Recall that a larger group G = G×C∗×C∗ acts on UdG so that IC( UdG) is a G-equiv-
ariant perverse sheaf. Therefore we can consider IH∗G( UdG) = H∗G( UdG, IC( UdG)). It is
related to the T-equivariant cohomology IH∗T( UdG) as follows.

Let N(T) (resp. N(T )) be the normalizer of T (resp. T ) in G (resp. G). Then we
have forgetful homomorphisms IH∗G( UdG)→ IH∗N(T)( UdG)→ IH∗T( UdG). It is well-known
that the first homomorphism is an isomorphism, as the cohomology of G/N(T) =
G/N(T ) is 1-dimensional (see e.g., [37]). The Weyl groupW = N(T )/T acts naturally
on IH∗T( UdG), induced from the N(T )-action on UdG. Moreover we have

(7.6.1) IH∗G( UdG)
∼=−→ IH∗N(T)( UdG)

∼=−→ IH∗T( UdG)W .

Let us consider the following diagram

(7.6.2)

H∗T( UdT ,ΦBT,G(IC( UdG)))⊗AT
FT

IB−−−−→∼= IH∗T( UdG)⊗AT
FT

Ři

y ysi
H∗T( UdT ,ΦBT,G(IC( UdG)))⊗AT

FT
IB−−−−→∼= IH∗T( UdG)⊗AT

FT ,

where si is a simple reflection of the above W -action.

Lemma 7.6.3. — The diagram (7.6.2) is commutative.

Proof. — We have Ři = ϕ−1
si I−1

Bi IBϕe. As an endomorphism of IH∗T( UdG)⊗AT
FT , it

is replaced by IBϕ−1
si I−1

Bi , as ϕe = id.
From the definition of IBi and the commutativity of the diagram (4.13.1), we have

IBiϕsi = ϕsi IB , where ϕsi in the right hand side is the action on UdG, the rightmost
arrow in (4.13.1). Since the W -action is induced from ϕσ, the assertion follows.

Proposition 7.6.4. — The Weyl group action on MF(a) =
⊕

d IH∗T( UdG)⊗AT
FT com-

mutes with the W k(g) action. Hence W k(g) acts on the W -invariant part MF(a)W =⊕
d IH∗G( UdG)⊗AG

FG.
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7.7. A DIFFERENT PROOF OF THE HEISENBERG COMMUTATION RELATION 83

Proof. — Since W k(g) is the intersection of Viri⊗Heis(α⊥i ) (see (6.6.1)), it is enough
to show that Viri ⊗ Heis(α⊥i ) commutes with si. By the previous lemma, si is given
by the R-matrix.

Let us first factorize the hyperbolic restriction functors ΦBT,G, ΦB
si

T,G as

ΦBT,G = Φ
BLi
T,Li

ΦPiLi,G, ΦB
si

T,G = Φ
B
si
Li

T,Li
ΦPiLi,G

by Proposition 4.5.1. Then the same argument as in Proposition 7.3.1 shows that Ři
commutes with the action of the Ext algebra of ΦPiLi,G(IC( UdG)). Since the Virasoro
generators L̃in are in this Ext algebra, the first assertion follows.

For the second assertion, we only need to check

(IH∗T( UdG)⊗AT
FT )W ∼= IH∗G( UdG)⊗AG

FG.

By (7.6.1) we have a natural injective homomorphism form the right hand side to the
left. On the other hand, if m/f (f ∈ AT , m ∈ IH∗T( UdG)) is fixed by W , we have

m

f
=

1

|W |
∑
σ∈W

σm

σf
=

1

|W |

(∏
σ∈W

σf

)−1 ∑
σ∈W

σm
∏
τ 6=σ

τf.

This is contained in the right hand side. Therefore the above follows.

7.7. A different proof of the Heisenberg commutation relation

We give a different proof of Proposition 6.3.8.
Let α̃d,−i be the element defined as in α̃di for the opposite Borel. Since the pairing

can be computed from the SL(2) ∼= [Li, Li] case, we already know that

(7.7.1) 〈α̃di , α̃
d,−
i 〉 = 2d.

We generalize this to

Proposition 7.7.2. —

(7.7.3) 〈α̃di , α̃
d,−
j 〉 = ±d(αi, αj).

The following proof does not determine ±, though we know that it is + by the
reduction to the SL(3) case and the Formula (5.12.6), which has been proved via
Gieseker spaces.

Proof. — We consider the case (αi, αj) = −1. The proof for the case (αi, αj) = 0 is
similar (and simpler).

Let us study the leading part of Yang-Baxter Equation (7.4.6). We consider R-ma-
trices as endomorphisms of the space (6.3.6). By the factorization (7.2.2), we can use
the expansion (7.5.2) for SL(2). Then ‘−1’ in (7.5.2) is replaced by the direct sum
of (−1) on UdT,Li

∼= hsl2 and the identity on (UdT,Li)
⊥ in (6.3.7). Let us denote it by s̃i.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016

SMF 6/10/16



Ép
re

uv
e S

M
F

Se
pt

em
be

r 2
2,

20
16

84 CHAPTER 7. R-MATRIX

Since (UdT,Li)
⊥ is the orthogonal complement of Cα̃d,−i , we have

(7.7.4) s̃i(x) = x− 〈x, α̃d,−i 〉
α̃di
d
, for x ∈ Ud.

From the Yang-Baxter equation, we have the braid relation

(7.7.5) s̃is̃j s̃i = s̃j s̃is̃j .

Since we are considering the SL(3)-case, there is the diagram automorphism σ
exchanging i and j. By Lemma 4.13.9, we have ϕσ(α̃di ) = (−1)dα̃dj . Since ϕσ preserves
the inner product, we get

(7.7.6) 〈α̃di , α̃
d,−
j 〉 = 〈α̃dj , α̃

d,−
i 〉.

Now s̃i is the usual reflection with respect to the hyperplane α̃d,−i = 0. Hence we
conclude 〈α̃di , α̃

d,−
j 〉 = ±d.

Note that α̃di = ±α̃dj are excluded thanks to (4.12.1), which has been proved without
using Gieseker spaces for SL(3).

Once we compute the inner product, the Heisenberg relation is a consequence of
the factorization (6.3.7). The generator P in is the tensor product of the Heisenberg
generator for the first factor and the identity in (6.3.7).
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CHAPTER 8

WHITTAKER STATE

8.1. Universal Verma/Wakimoto modules

Let us denote the direct sum of four AT -modules over d ∈ Z≥0 in (6.0.3) byMA(a),
NA(a), D(NA(−a)), D(MA(−a)) respectively. Thus we have

(8.1.1) MA(a) ⊂ NA(a) ⊂ D(NA(−a)) ⊂ D(MA(−a)).

The reason for notation will be clear shortly.
The pairing (6.8.2) restricts to a perfect pairing

(8.1.2) 〈 , 〉 : MA(−a)⊗D(MA(−a))→ AT ,

given by the Verdier duality, where the AT -structure is twisted by the automorphism
a 7→ −a as in §6.8, and hence the notation is changed toMA(−a). Then D(MA(−a))
is identified with the graded dual of MA(−a) by (8.1.2), hence our notation is com-
patible with the convention in Remark 6.8.11. Similarly if we twist NA(a), we have
an isomorphism

(8.1.3) ϕσϕw0
: NA(−a)

∼=−→
⊕
d

H∗T,c( UdT ,Φ
B−
T,G(IC( UdG))),

where Φ
B−
T,G is the hyperbolic restriction with respect to the opposite Borel B−. Then

we have a perfect pairing

(8.1.4) 〈 , 〉 : NA(−a)⊗D(NA(−a))→ AT .

Recall that NA(a), D(NA(−a)) are modules over the integral form of the Heisenberg
algebra HeisA(h), as we remarked at the end of §6.3.

Using Lemma 4.8.7, we make an identification

(8.1.5) NA(a) ∼=
⊕
λ

Symn1 U1 ⊗ Symn2 U2 ⊗ · · · ⊗H∗T,c(SλA2),

where Ud = Ud,BT,G and λ = (1n12n2 · · · ). We also have an identification for the opposite
Borel B−:

(8.1.6) D(NA(a)) ∼=
⊕
λ

Symn1 U1,− ⊗ Symn2 U2,− ⊗ · · · ⊗H∗T(SλA2),
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86 CHAPTER 8. WHITTAKER STATE

where Ud,− = U
d,B−
T,G . Then the pairing (8.1.4) is the product of the pairing between

Ud and Ud,− in §4.10 and one between H∗c,T(SλA2) and H∗T(SλA2).
Moreover, two pairings (8.1.2) and (8.1.4) are compatible with the embeddings

(8.1.1).
Let WA(g) be the A-form of the W -algebra in §B.

Proposition 8.1.7. — MA(a), D(MA(a)) are WA(g)-modules.

Proof. — Note that D(MA(a)) is characterized as

(8.1.8) {m ∈MF(a) | 〈m,MA(a)〉 ∈ AT }.

Therefore it is enough to show the assertion for MA(a).
We consider MA(a) as a subspace of NA(a). The latter is a module over HeisA(h),

and hence over Viri,A. By Theorem B.6.1, it is enough to check that MA(a) is in-
variant under the intersection of Viri,A for all i. Recall that we know that (6.5.2) is
a Viri,A-module, as L̃in is well-defined. Therefore it is enough to show that

(8.1.9) IH∗T,c( UdG) =
⋂
i

H∗T,c( UdLi ,ΦLi,G(IC( UdG))).

By Theorem 3.6.2 we have

(8.1.10) H∗T,c( UdLi ,ΦLi,G(IC( UdG)))

= H∗T,c( UdT ,Φ
B
T,G(IC( UdG))) ∩H∗T,c( UdT ,Φ

Bsi
T,G(IC( UdG))),

where Bsi is the Borel subgroup corresponding to a simple reflection si. Therefore it
is enough to show that the intersection of the right hand side of (8.1.10) for all i is
IH∗T,c( UdG). This is proved in a similar manner as Theorem 3.6.2. The only thing we
need to use is the fact for any non-zero dominant λ there exists i ∈ I such that si(λ)
is not dominant.

Proposition 8.1.11. — The WA(g)-submodule of MF(a) generated by |a〉 is MA(a),
i.e.,

(8.1.12) MA(a) = WA(g)|a〉.

Proof. — Comparison of bigraded dimensions: WA(g)|a〉 is bigraded by the usual
degree and cdeg, so that the bidegree of W̃ (κ)

n is (n, dκ + 1), see §B.2. According to
loc. cit., WA(g)|a〉 is a free A-module (the bidegree of ε1, ε2, h equals (0, 1)) with the
space of generators S(tw[t]) where w =

⊕`
κ=1w

(κ) with the bidegree of w(κ) equal
to (0, dκ + 1), and the bidegree of t equal to (1, 0).

On the other hand, MA(a) is bigraded by the instanton number and half the
cohomological degree. It is a free A-module with the space of generators equal
to
⊕

d∈N IH∗c( UdG). According to [21, Theorem 7.10],
⊕

d∈N IH∗c( UdG) ' S(tgf [t])

where gf =
⊕`

κ=1 g
f
(κ) with the bidegree of gf(κ) equal to (0, dκ + 1), and the bidegree

of t equal to (1, 0).

ASTÉRISQUE 385

SMF 6/10/16



Ép
re

uv
e S

M
F

Se
pt

em
be

r 2
2,

20
16

8.3. WHITTAKER CONDITION 87

On the other hand, it is clear from (8.1.5) that

(8.1.13) NA(a) = HeisA(h)|a〉

For a homomorphism χ : AT → C ≡ Cχ, the specialization

(8.1.14) MA(a)⊗A Cχ
is a module over W k(g) with level k = χ(−ε2/ε1) − h∨. It is a Verma module with
highest weight χ(a/ε1)−ρ, see §6.7. Here χ is regarded as the assignment of variables
a, ε1, ε2, or more concretely χ(a) =

∑
χ(ai)$i for fundamental weights $i.

Definition 8.1.15. — We call MA(a) the universal Verma module.

Similarly NA(a) is specialized to the Fock representation of the Heisenberg algebra
by χ. We call NA(a) the universal Wakimoto module. Similarly D(MA(a)) is the
universal dual Verma module, and D(NA(a)) the universal dual Wakimoto module.

8.2. G-equivariant cohomology

Let us consider the G-equivariant intersection cohomology groups as in §7.6. We
have

(8.2.1)
⊕
d

IH∗G,c( UdG) = MA(a)W ,
⊕
d

IH∗G( UdG) = D(MA(−a))W

by (7.6.1). Since theW -action commutes with the W k(g)-action by Proposition 7.6.4,
we see that both of (8.2.1) are modules over WA(g).

8.3. Whittaker condition

Let W̃ (κ) be as in §B.2, which generates WA(g) in the sense of the reconstruction
theorem. Let |1d〉 def.

= [ UdG] ∈ IH0
T( UdG) be the fundamental class. It conjecturally

satisfies the following Whittaker conditions

Conjecture 8.3.1. — Let d ≥ 1, n > 0. We have

(8.3.2) W̃ (κ)
n |1d〉 =

{
|1d−1〉 if κ = ` and n = 1,

0 otherwise.

Since W̃ (κ)
n is contained in WA(g), it is a well-defined operator on D(MA(−a)) =⊕

IH∗T( UdG). Since W̃ (κ)
n has cdeg = dκ+1 (dκ is an exponent as in §B), it sends |1d〉 ∈

IH0
T( UdG) into IH

2(dκ+1−nh∨)
T ( Ud−nG ). Since dκ ≤ d` = h∨ − 1, we have W̃ (κ)

n |1d〉 = 0

unless n = 1, κ = `. Also we see that W̃ (`)
1 |1d〉 is a multiple of |1d−1〉 with the multiple

constant of degree 0, i.e., a complex number. Moreover, if the multiple constant would
be 0, it is a highest weight vector and generates a nontrivial submodule. Since MF is
irreducible, it is a contradiction. Therefore the constant cannot be zero. In particular,
if we divide |1d〉 by the constant, it satisfies the Whittaker condition (8.3.2).
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88 CHAPTER 8. WHITTAKER STATE

Let |wd〉 be the vector determined by with the normalization |w0〉 = |10〉 = |a〉 ∈
IH0

T( U0
G) = IH0

T(pt). Its existence and uniqueness will follow from the discussion in
§8.4 below. (However it is not a priori clear that |wd〉 ∈ D(MA(−a)), as for |1d〉.)
Therefore we already know that |1d〉 = cd|wd〉 for some cd ∈ C by the above observa-
tion. The goal of this section is to prove a slightly weaker version of (8.3.2).

Theorem 8.3.3. — Conjecture 8.3.1 holds up to sign.

Our strategy of the proof is as follows. To determine cd up to sign, it is enough to
compare pairings 〈1d|1d〉 with 〈wd|wd〉. Moreover, as cd is a complex number, we may
do it after specifying equivariant variables ε1, ε2. We will show that

(ε1ε2)d〈1d|1d〉
∣∣
ε1,ε2=0

=
1

d!

(
ε1ε2〈11|11〉

∣∣
ε1,ε2=0

)d
,

(ε1ε2)d〈wd|wd〉
∣∣
ε1,ε2=0

=
1

d!

(
ε1ε2〈w1|w1〉

∣∣
ε1,ε2=0

)d
.

(8.3.4)

It implies that
c2d = c2d1 .

Recall that the top degree field W̃ (`) in §B.2 is well-defined only up to nonzero
multiple even ignoring lower degree terms, as we just take it as a highest weight
vector of a certain sl2 representation. Therefore if we divide W̃ (`) by c1, (8.3.2) holds
up to sign.

Since |1d〉 is canonically determined from geometry, it means that the top degree
generator W̃ (`) is fixed without constant multiple ambiguity (up to sign). In particular,
when we applied W̃ (`)

0 to the highest weight vector |a〉, we get an invariant polynomial
in a of degree h∨. (See 6.7.) We do not study what this natural choice of the highest
degree generator of the invariant polynomial S(h)W is in general. But we will check
that it is indeed a natural one for g = sl`+1 in §8.9.

8.4. Whittaker vector and Kac-Shapovalov form

In this subsection, we shall prove that the Whittaker vector exists and is unique in
the localized equivariant cohomology MF(a), which we think of Verma module with
generic highest weight by Proposition 6.7.9. The argument is more or less standard
(see e.g., [40]), but we give the detail, as we will use similar one later in §8.8.

We have a nondegenerate Kac-Shapovalov form 〈 , 〉 on MF(a). Let θ denote the
anti-involution on U( WF(g)) as in §6.8. We have

(8.4.1) θ(W̃ (κ)
n ) = (−1)dκ+1W̃

(κ)
−n .

See [2, §5.5]. In particular, U( WA(g)) is invariant under θ.
Let us denote the highest weight vector of D(MF(a)) by 〈−a|. See Remark 6.8.11

to see that its highest weight is −a.
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8.5. LATTICES 89

Let λ = (λ1, . . . , λ`) be an `-partition, i.e., it is an `-tuple of partitions λi =
(λi1, λ

i
2, . . . ). We consider the corresponding operator

(8.4.2) W̃ [λ]
def.
= W̃

(1)

−λ1
1
W̃

(1)

−λ1
2
· · · W̃ (`)

−λ`1
W̃

(`)

−λ`2
· · ·

in the current algebra of the W -algebra. Then

(8.4.3) W̃ [λ]|a〉

form a PBW base of MF(a). We define the Kac-Shapovalov form

(8.4.4) K ≡ Kd def.
= (〈−a|θ(W̃ [λ])W̃ [µ]|a〉)λµ,

where λ, µ runs over `-partitions whose total sizes are d. We consider it as a matrix,
and an entry is denoted by Kλµ.

Let (1d) = (1, . . . , 1) be the partition of n whose all entries are 1. Let λ0 =

(∅, . . . ,∅, (1d)) be the `-partition where the first (`− 1) partitions are all ∅ and the
last one is (1d). The corresponding operator W̃ [λ0] is (W̃

(`)
−1 )d.

We have

(8.4.5) 〈−a|θ(W̃ [λ])|wd〉 =

{
1 if λ = λ0,

0 otherwise

from (8.3.2) by the induction on d. Note that |w0〉 = |a〉, and hence 〈−a|a〉 = 1.
Let us write the Whittaker vector |wd〉 in the PBW base as

(8.4.6) |wd〉 =
∑
µ

aµW̃ [µ]|a〉.

By (8.4.5) we have

(8.4.7)
∑
µ

Kλµaµ = δλλ0 .

In other words,

(8.4.8) aµ = Kµλ0 ,

where K−1 = (Kµλ) is the inverse of K. In particular, the existence and the unique-
ness of |wd〉 follow.

We also get

(8.4.9) 〈wd|wd〉 = Kλ0λ0 .

8.5. Lattices

Let

(8.5.1) Ŵ (κ)
n = (ε1ε2)−1W̃ (κ)

n

for κ = 1, . . . , `, n ∈ Z.
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90 CHAPTER 8. WHITTAKER STATE

Lemma 8.5.2. — MA(a) is invariant under Ŵ
(κ)
m with m > 0. Equivalently

D(MA(a)) is invariant under Ŵ (κ)
−m with m > 0.

Proof. — Recall that MA(a) is graded by the instanton number d: MA(a) =⊕
dMd,A. In algebraic terms, it is the grading by L0. Let us take Ŵ

(κ)
m with m > 0.

We show

(8.5.3) Ŵ (κ)
m x ∈Md−m,A

for any x ∈ Md,A by an induction on d. If d = 0, we have Ŵ (κ)
m x = 0. Therefore the

assertion is true.
Suppose that the statement is true for d′ < d. We may assume x = W̃

(κ′)
−n x

′ with
n > 0, x′ ∈ Md−n,A by Proposition 8.1.11. Since Ŵ (κ)

m x′ ∈ MA(a) by the induction
hypothesis, it is enough to show that [Ŵ

(κ)
m , W̃

(κ′)
−n ]x′ ∈ MA(a). In the Heisenberg

algebra, we have [a, b] ∈ ε1ε2H̃
0
A(g) for a, b ∈ H̃0

A(g) from the relation (6.3.12). Since
WA(g)→ H̃0

A(g) is an embedding, we have the same assertion for WA(g). Therefore
the assertion follows.

Let R ⊂ F = Q(ε1, ε2) be the local ring of regular functions at ε1 = ε2 = 0.
Let RT = R(a). We set

MR(a) = MA(a)⊗AT
RT , D(MR(−a)) = D(MA(−a))⊗AT

RT ,

NR(a) = NA(a)⊗AT
RT , D(NR(−a)) = D(NA(−a))⊗AT

RT .
(8.5.4)

These modules are the localization with respect to the ideal

(8.5.5) Ker (AT = C[ε1, ε2,a] = C[LieT]→ C[a] = C[LieT ])

consisting of polynomials vanishing on LieT .
From the definition, operators W̃ (κ)

n are well-defined on four modules in (8.5.4).
Moreover operators Ŵ (κ)

n and Ŵ
(κ)
−n are well-defined on MR(a) and D(MR(a)) re-

spectively if n > 0 by Lemma 8.5.2.
By the localization theorem, the first and the third homomorphisms in (6.0.3)

become isomorphisms over RT . Therefore

(8.5.6) MR(a)
∼=−→ NR(a), D(NR(−a))

∼=−→ D(MR(−a)).

Recall that we have Heisenberg operators P in = (ε1ε2)−1P̃ in, coupled with the
fundamental class 1 ∈ H0

T(A2). Let

(8.5.7) P [λ] = P 1
−λ1

1
P 1
−λ1

2
· · ·P `−λ`1P

`
−λ`2
· · ·

for i = 1, . . . , `, n ∈ Z, and an `-partition λ = (λ1, . . . , λ`). It is a well-defined operator
on D(MR(−a)) by the proof of Lemma 8.5.2.

Replacing P im by P̃ im, we introduce similar operators P̃ [λ].

Proposition 8.5.8. — We have

(8.5.9) D(MR(−a)) = SpanRT
{P [λ]|a〉},
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8.6. PAIRING AT ε1, ε2 = 0 91

where λ runs all `-partitions.

Proof. — Thanks to (8.5.6), it is enough to show the assertion for D(NR(−a)). We
shall prove that D(NA(−a)) is spanned by P [λ] over A.

Recall that NA(a) = SpanAT
{P̃ [λ]|a〉}, see (8.1.13). From the commutation rela-

tion

(8.5.10) [P im, P̃
j
n] = −mδm,−n(αi, αj),

we clearly have a perfect pairing between NA(−a) and SpanAT
{P [λ]|a〉}. The asser-

tion follows.

8.6. Pairing at ε1, ε2 = 0

We consider the pairing 〈 , 〉 on MF(−a) ⊗FT MF(a) in §6.8, and restrict it
to D(MR(a))⊗RT

D(MR(−a)).

Lemma 8.6.1. — We decompose D(MR(±a)) as
⊕
D(M±d,R) by the instanton number

d as before.
(1) (ε1ε2)d〈 , 〉 takes values in RT on D(M−d,R)⊗D(M+

d,R).
(2) Let 〈 , 〉0 be its specialization at ε1 = ε2 = 0. For m > 0, we have

(8.6.2) 〈x, Ŵ (κ)
−my〉0 =

{
(−1)dκ+1〈W̃ (κ)

m x, y〉0 if m = 1,

0 otherwise.

Since 〈 , 〉 is symmetric, (2) remains true when we exchange the first and second
entries.

Proof. — (1) Thanks to (8.5.6), it is enough to show the assertion for D(NR(a)) ⊗
D(NR(−a)). By (8.1.3) and UdT = SdA2, it is enough to show that the intersection
pairing 〈 , 〉 on H∗T(SdA2) satisfies the same property. Note that SdA2 is a smooth
orbifold. Since we only have a single fixed point d · 0 in SdA2 and the weight of the
tangent space there is ε1, ε2, ε1, ε2, . . . (d times), the fixed point formula implies the
assertion.

(2) Suppose x ∈ D(M+
d,R), y ∈ D(M−d−m,R) with m > 0. Then

(8.6.3) (ε1ε2)d〈x, Ŵ (κ)
−my〉 = (−1)di+1(ε1ε2)m−1(ε1ε2)d−m〈W̃ (κ)

m x, y〉

by (8.4.1). Now we specialize ε1, ε2 = 0 to get the assertion.

Let us consider M0(±a)
def.
= D(MR(±a))⊗RT

C/Rad〈 , 〉0, where RT → C is the
evaluation at ε1 = ε2 = 0, and Rad〈 , 〉0 is the radical of 〈 , 〉0. Then (8.6.2) implies
that Ŵ (κ)

−m = 0 if m > 1, and Ŵ (κ)
−1 , W̃

(κ)
1 are well-defined on M0(±a).

Proposition 8.6.4. — (1) P
(i)
−m = 0 if m > 1, and P

(i)
−1, P̃

(i)
1 are well-defined

on M0(±a). And we have

(8.6.5) 〈x, P (i)
−1y〉0 = −〈P̃ (i)

1 x, y〉0.
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92 CHAPTER 8. WHITTAKER STATE

(2) We have commutation relations

(8.6.6) [P
(i)
−1, P

(j)
−1 ] = 0, [P̃

(i)
1 , P̃

(j)
1 ] = 0, [P̃

(i)
1 , P

(j)
−1 ] = −(αi, αj).

(3) M0(±a) is isomorphic to the polynomial ring in P (i)
−1 (i = 1, . . . , `). The pairing

〈 , 〉0 is the induced pairing on the symmetric power from the pairing

(8.6.7) 〈−a|P (i)
1 P

(j)
−1 |a〉0 = (αi, αj).

Proof. — The same argument as above shows (1).
By Proposition 8.5.8 and (1), M0(a) is spanned by monomials in P

(i)
−1 applied

to |a〉.
(2) follows from Proposition 6.3.8.
(3) Let us replace P (i)

−1, P̃
(i)
1 by Q(i)

−1, Q̃
(i)
1 corresponding to an orthonormal basis

of h so that the commutation relation is [Q̃
(i)
1 , Q

(j)
−1] = −δij . Then (8.6.5) implies that

monomials in Q
(i)
−1 are orthogonal. More precisely, the pairing is the standard one

on C[Q
(i)
−1]

(8.6.8) 〈−a|(Q(i)
1 )n(Q

(i)
−1)m|a〉0 = n!δmn,

and the pairing factors on M0(a) = C[Q
(1)
−1]⊗· · ·⊗C[Q

(`)
−1]. This proves the assertion.

8.7. Proof, a geometric part

Lemma 8.7.1. — The first equality of (8.3.4) is true.

Proof. — We have a natural homomorphism IH∗T( UdG)→ HT
∗ ( UdG) and the image of 1d

is the fundamental class [ UdG]. Then 〈1d|1d〉 is equal to ι−1
∗ [ UdG], where ι : {d·0} → UdG

is the embedding of the T-fixed point d · 0, and we use the localization theorem to
invert ι∗ : HT

∗ ({d · 0})→ HT
∗ ( UdG) over FT .

Let us consider the embedding ξ : ( UdG)T = SdA2 → UdG of the T -fixed point set.
Then

(8.7.2) ξ∗ : HT
∗ (SdA2)→ HT

∗ ( UdG)

is an isomorphism over RT . Since HT
∗ (SdA2) ∼= AT [SdA2], we have

(8.7.3) ξ−1
∗ [ UdG] = fd(a, ε1, ε2)[SdA2]

for fd(a, ε1, ε2) ∈ RT .
We have ι∗ = ξ∗ζ∗ for ζ : {d · 0} → SdA2, and ζ−1

∗ [SdA2] = (ε1ε2)−d/d!. Therefore

(8.7.4) d! (ε1ε2)d〈1d|1d〉
∣∣
ε1,ε2=0

= fd(a, 0, 0).

We replace the group T by T in (8.7.2) and denote the homomorphism by ξT∗ , i.e.,
ξT∗ : HT

∗ (SdA2)→ HT
∗ ( UdG). It is an isomorphism over C(a). Then we have

(8.7.5) (ξT∗ )−1[ UdG] = fd(a, 0, 0)[SdA2],
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8.8. PROOF, A REPRESENTATION THEORETIC PART 93

where [ UdG], [SdA2] are considered in T -equivariant homology groups.
Let us take the projection a : A2 → A1 and the factorization morphism πda,G : UdG →

SdA1. Let Sda : SdA2 → SdA1 denote the induced projection. Let (SdA1)0 be the open
subset of SdA1 consisting of distinct d points. Then ξ induces a morphism between
inverse images (Sda)−1(SdA1)0 and (πda,G)−1(SdA1)0. We get

(8.7.6) (ξT∗ )−1[(πda,G)−1(SdA1)0] = fd(a, 0, 0)[(Sda)−1(SdA1)0]

by restricting (8.7.5) to open subsets. Now by the factorization we deduce fd(a, 0, 0) =
f1(a, 0, 0)d.

Remark 8.7.7. — This result is also a simple consequence of a property of Nekrasov’s
partition function

(8.7.8) Z inst(ε1, ε2,a,Λ)
def.
=

∞∑
d=0

〈1d|1d〉Λ2h∨d

stating that

(8.7.9) ε1ε2 logZ inst(ε1, ε2,a,Λ) = F inst
0 (a,Λ) + o(ε1, ε2)

at ε1 = ε2 = 0. This property was proved by [62, 65] for type A and by [16] for general
G.

8.8. Proof, a representation theoretic part

We shall complete the proof of the second equation in (8.3.4) in this subsection.
Let F (κ) ∈ S(h)W be one of generators as in §B.5. It has degree dκ + 1.

Lemma 8.8.1. — Following relations hold as operators on D(MR(−a))⊗RT
C:

W̃
(κ)
1 =

∑
i

F (κ)(a1, . . . , P̃
(i)
1︸︷︷︸

ith factor

, . . . , a`),(8.8.2)

Ŵ
(κ)
−1 =

∑
i

F (κ)(a1, . . . , P
(i)
−1︸︷︷︸

ith factor

, . . . , a`).(8.8.3)

Proof. — At first sight, the Formula (B.5.24) seems to imply W̃ (κ)
−1 = 0, and hence

also W̃
(κ)
1 = 0 thanks to the anti-involution θ. But (B.5.24) is the formula in the

W -algebra at ε1 = ε2 = 0, and we want to consider W̃ (κ)
1 on D(MR(−a)). Since the

highest weight λ = a/ε1 − ρ cannot be specialized at ε1 = 0, it could be nontrivial.
Let W̃ (κ) be the state corresponding to the field Y (W̃ (κ), z) =

∑
W̃

(κ)
n z−n−dκ−1

as in (B.2.1). By (B.5.24) we have

(8.8.4) W̃ (κ) = W̃
(κ)
−dκ−1|0〉 = F (κ)(P̃

(i)
−1)|0〉

at ε1 = ε2 = 0. It implies that

(8.8.5) Y (W̃ (κ), z) = :F (κ)(P̃ (i)(z)): + o(ε1, ε2),
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94 CHAPTER 8. WHITTAKER STATE

where o(ε1, ε2) is a field in WA(g) which vanishes at ε1 = ε2 = 0.
Let the field act on MR(a) and specialize at ε1 = ε2 = 0. The point is that P̃ (i)

0

acts on MR(a) by ai at ε1 = ε2 = 0. Therefore the field P̃ (i)(z) =
∑
n P̃

(i)
n z−n−1 is

specialized to

(8.8.6) aiz−1 +
∑
n<0

P̃ (i)
n z−n−1

on MR(a).
Let us specialize (8.8.5) at ε1 = ε2 = 0. Then P̃ (i)(z) is replaced by (8.8.6), and

the normal ordering by the usual multiplication. Therefore we obtain

(8.8.7) Y (W̃ (κ), z) = F (κ)(aiz−1 +
∑
n<0

P̃ (i)
n z−n−1).

Taking coefficients of z−dκ and then applying θ, we obtain (8.8.2).
Next we study the action of Y (W̃ (κ), z) on D(MR(−a)). Let us consider W̃ (κ)

−1 in
(8.8.5). So we take coefficients of z−dκ . The term o(ε1, ε2) can be represented as a
linear combination of monomials in P̃ (i)

m with coefficients in the maximal ideal of R.
We have at least one P̃ (i)

m with m < 0 in each monomial. It can be divided, as an
operator on D(MR(−a)), by ε1ε2 thanks to Lemma 8.5.2. Therefore o(ε1, ε2)/ε1ε2

still specialized to 0 at ε1 = ε2 = 0. Therefore (8.8.5) implies (8.8.3).

Lemma 8.8.8. — The determinant of the matrix(
∂F (κ)(ai)

∂ai

)
i,κ=1,...,`

is a nonzero constant multiple of the discriminant ∆(a).

Proof. — Consider F = (F (1), . . . , F (`)) as the morphism from h to h/W , written in
a coordinate system on h/W . Then the matrix in question is the differential of F .
Since h→ h/W is a covering branched along root hyperplanes, we deduce that a) its
determinant is nonzero, and b) it is divisible by ∆(a). The degree of the determinant
is the sum

∑
dκ, which is equal to the number of positive roots. Therefore we get the

assertion.

Since ∆(a) is invertible in C(a), we deduce

Lemma 8.8.9. — M0(a) is isomorphic to the polynomial ring in Ŵ (κ)
−1 (κ = 1, . . . , `).

Now the specialization of the Whittaker vector |wd〉 in M0(a) is characterized by
the conditions

(8.8.10) W̃
(κ)
1 |wd〉 =

{
|wd−1〉 if κ = `,
0 if κ 6= l.
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8.9. TYPE A 95

The existence and the uniqueness in M0(a) are proved exactly as in §8.4. Moreover
the pairing 〈wd|wd〉0 is an entry of the inverse of the matrix

(8.8.11) Kd
0

def.
= (〈−a|W̃ [m]Ŵ [n]|a〉0)m,n,

where m = (m1, . . . ,m`), n = (n1, . . . , n`) ∈ Z`≥0 and

W̃ [m] := (Ŵ
(1)
−1 )m1 · · · (Ŵ (`)

−1 )m` ,

Ŵ [n] := (W̃
(1)
1 )n1 · · · (W̃ (`)

1 )n` .
(8.8.12)

Here multi-indices m, n runs over
∑
mκ =

∑
nκ = d for each d.

Now the matrix Kd
0 is the dth symmetric power of Kd=1

0 , and hence we complete
the proof of (8.3.4).

8.9. Type A

Let us consider the special case g = slr in this section. Let us switch to the notation
for glr. We have standard generators of the invariant polynomial ring:

(8.9.1) F (κ) =
∑

i1<i2<···<iκ

hi1hi2 · · ·hip ,

where (h1, . . . , hr) is the standard coordinate system of the Cartan subalgebra of glr
such that (hi, hj) = δij .

Let us denote by Q̃(i)
n ,Q(i)

n the Heisenberg algebra generators corresponding to P̃ (i)
n ,

P
(i)
n . Then

Ŵ
(κ)
−1 |a〉 =

∑
i1<i2<···<iκ

p∑
l=1

Q̃
(i1)
0 Q̃

(i2)
0 · · ·Q(il)

−1 · · · Q̃
iκ
0 |a〉

=
∑

i1<i2<···<iκ

p∑
l=1

ai1ai2 · · · âil · · · aiκQ
il
−1|a〉.

(8.9.2)

We use the Heisenberg algebra commutation relation

(8.9.3) [Q̃i1, Q
j
−1] = δij

to get

Q̃i1W
(p)
−1 |a〉 =

∑
i1<i2<···<ip

il=i

ai1ai2 · · · âil · · · aip |a〉

=
∂

∂ai
ep(a)|a〉,

(8.9.4)

where ep(a) is the pth elementary symmetric polynomial in a.
The determinant of the r×r-matrix (∂ep(a)/∂ai)i,p=1,...,r is equal to

∏
i<j(ai−aj).

Therefore the matrix is invertible. This, in particular, implies that {W (p)
−1 |a〉}p=1,...,r

form a basis of (M(a)0)1.
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96 CHAPTER 8. WHITTAKER STATE

Proposition 8.9.5. — The Whittaker vector |w1〉 at the instanton number 1 is given by

(8.9.6)
∑
i

Qi−1|a〉∏
j:j 6=i aj − ai

.

Proof. — We have

(8.9.7) W
(p)
1 Qi−1|a〉 =

∂

∂ai
ep(a)|a〉

as above. Now it is elementary to check that

(8.9.8)
∑
i

∂
∂ai

ep(a)∏
j:j 6=i aj − ai

= 0

if p < r. If p = r, we have

(8.9.9)
∑
i

∂
∂ai

ep(a)∏
j:j 6=i aj − ai

=
∑
i

∏
j:j 6=i

aj
aj − ai

= 1.

Now we have

(8.9.10) (w1|w1)0 =
∑
i

∏
j:j 6=i

1

(aj − ai)2
.

This coincides with what is known from geometry.
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APPENDIX A

APPENDIX: EXACTNESS OF HYPERBOLIC RESTRICTION

A.1. Zastava spaces

Let us denote by BunG,B the moduli space of G-bundles endowed with the following
structures:

a) A trivialization at the infinite line P1
∞ = `∞.

b) A B-structure on the horizontal line P1
h = {y = 0}.

These two structures are required to be compatible at the intersection of P1
∞ and P1

h

in the obvious way.
The connected components of BunG,B are numbered by positive elements of the

coroot lattice of Gaff (cf. [21, §9]); for such element α we denote by BunαG,B the
corresponding connected component.

We will also denote by ZαG the corresponding “Zastava” space (a.k.a. “flag Uhlenbeck
space”) defined in [21]. We are going to need the following properties of ZαG. (Some of
them are proved for the space QMap(P1

h, Gg,p) of based quasi-maps to a flag scheme
Gg,p of a Kac-Moody Lie algebra g associated with its parabolic p. Since ZαG is the
fiber product QMap(P1

h, Gg,b)×QMap(P1
h, Gg,p) UdG for a Borel subalgebra b of an affine

Lie algebra g and a maximal parabolic p, we can deduce assertions for ZαG from those
for QMap(P1

h, Gg,p).)
(Z1) ZαG is an irreducible affine scheme of dimension 2|α| endowed with an action

of T × C∗ × C∗ which contains BunαG,B as an open subset (here we set |α| =
∑
ai if

α =
∑
aiαi where αi are the simple coroots of Gaff).

(Z2) There is a (factorization) map παZ : ZαG → Sα(A1
h). This map is T × C∗ ×

C∗-equivariant if we let T × C∗ × C∗ act on Sα(A1
h) just through the horizontal C∗

(denoted by C∗h) and it admits a T ×C∗×C∗-equivariant section ια. In particular, the
fibers of παZ are stable under T×C∗v where the C∗v = C∗-action comes from the vertical
action on A2. All of these fibers have dimension |α|. (See Conjecture 2.27, which is
reduced to Conjecture 15.3 and proved for affine Lie algebras in §15.6 in [21].)

(Z3) Let set F α = (παZ)−1(α · 0). Let ρ : C∗ → T̃ = T × C∗v be any one-parameter
subgroup which is a regular dominant coweight ofGaff (i.e., such that 〈ρ, β〉 > 0 for any
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98 APPENDIX A. APPENDIX: EXACTNESS OF HYPERBOLIC RESTRICTION

affine positive root β). Then the corresponding C∗-action contracts ZαG to ια(Sα(A1
h)),

and hence F α to ια(α · 0). (cf. Proposition 2.6 and Corollary 10.4 in [21]).
(Z4) Let α0 denote the affine simple coroot and let d be the coefficient of α0 in α

(in other words, d = 〈α, ω0〉 where ω0 denotes the corresponding fundamental weight
of Gaff). Then there is a (“forgetting the B-structure”) T ×C∗ ×C∗-equivariant map
fα : ZαG → UdG which fits into a commutative diagram

ZαG
fα−−−−→ UdG

παZ

y yπdG
SαA1

h −−−−→ SdA1
h

where the bottom horizontal map sends a divisor
∑
βixi to

∑
〈βi, ω0〉xi.

A.2. Plan of the proof

Let us discuss our strategy for proving Theorem 4.6.1. As we have explained in
§3.5, it follows from dimension estimates of attracting and repelling sets by using
arguments similar to those of [49]. However, at the moment we do not know how to
prove estimates directly. So, our actual strategy will be slightly different. First, recall
that we have

( UdG)T = Sd(A2),

and that we denote by UdB , UdB− the corresponding attracting and repelling sets. Also
we denote by p : UdB → Sd(A2) the corresponding map (sometimes we shall denote
it by pd when dependence on d is important). Then we are going to proceed in the
following way:

1) Prove that the preimage of Sd(A1) ⊂ Sd(A2) under the map p : UdB → Sd(A2) =

UdT,G has dimension dim UdG
2 (here A1 ⊂ A2 is any line). The proof will involve some

facts about the Zastava spaces from [21].
2) Deduce Theorem 4.6.1 for L = T from 1).
3) Using Proposition 4.5.1 deduce Theorem 4.6.1 for arbitrary L from the case

L = T .

A.3. Attractors and repellents on the Uhlenbeck space: maximal torus case

Let us first look more closely at the case when P = B: a Borel subgroup of G. In
this case L = T : a maximal torus of G.

Let us also define the set Sd ⊂ UdG to be the attracting set in UdG with respect to the
torus T to Sd(A1

v\0) where A1
v is the vertical line. In other words, Sd = p−1(Sd(A1

v\0)).

Proposition A.3.1. — We have

dim Sd ≤ dh∨ =
dim UdG

2
.
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A.6. GOOD COWEIGHTS 99

Corollary A.3.2. — Let A1 ↪→ A2 be any linear embedding. Then

dim p−1(Sd(A1)) ≤ dim UdG
2

.

Corollary A.3.2 clearly follows from A.3.1. Indeed, first of all, it is clear that
it is enough to prove Corollary A.3.2 when A1 = A1

v. In this case, Sd is open
in p−1(Sd(A1

v)), hence we have dim Sd ≤ dim p−1(Sd(A1
v)). On the other hand, (the

vertical) A1 acts naturally on p−1(Sd(A1
v)) by shifts and any point of p−1(Sd(A1

v)) lies
in an open subset of the form x( Sd) for some x ∈ A1, hence the opposite inequality
follows.

Let us now pass to the proof of Proposition A.3.1.

A.4. The map fd

We have the natural (forgetting the flag) birational map fdδ : ZdδG → UdG, which we
shall simply denote by fd. This map gives an isomorphism between the open subset
of UdG consisting of (generalized) bundles which are trivial on the horizontal P1

h and
the open subset of ZdδG consisting of (generalized) bundles which are trivial on the
horizontal P1

h (and then the B-structure on the horizontal P1
h is automatically trivial).

A.5. The central fiber

Recall that F dδ denotes the preimage of dδ ·0 under the map πdδZ : ZdδG → Sdδ(A1
h).

Again, to simplify the notation, we shall just write F d instead of F dδ. According to
(Z2), dim F d = dh∨.

We claim that
1) Sd lies in the open subset of UdG over which fd is an isomorphism.
2) f−1

d ( Sd) ⊂ F d.
The first statement is clear, since the image of Sd in Sd(A1

v) under the factorization
morphism πdv (to the symmetric product of the vertical line) must lie in Sd(A1

v\0). To
prove the second statement, let us note that f−1

d ( Sd) must lie in the attracting set
in ZdδG with respect to the torus T to f−1

d (Sd(A1
v\0)). It is clear that f−1

d (Sd(A1
v\0)) ⊂

F d and thus the statement follows, since every fiber of the map πdδZ : ZdδG → Sdδ(A1
h)

is stable under the action of T .
Hence we get dim Sd ≤ dh∨ = dim F d.

A.6. Good coweights

Let X be an affine variety endowed with an action of T × C∗ (here T can be any
torus). Let x be any T ×C∗-fixed point (in practice this point will always be unique,
but this is not needed formally for what follows) and let Y ⊂ XT be the C∗-attractor
to x inside XT . Let now λ : C∗ → T be any coweight. Let us denote by Aλ the
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100 APPENDIX A. APPENDIX: EXACTNESS OF HYPERBOLIC RESTRICTION

attractor to Y with respect to the C∗-action given by λ. Let us also denote by Ãλ the
attractor to x with respect to the C∗-action given by the cocharacter (λ, 1) of T ×C∗.

We say that λ is good if Aλ = Ãλ.

Lemma A.6.1. — For any λ as above, the coweight nλ is good for n ∈ N large enough.

Proof. — Obviously, there exists a closed T -equivariant embedding of X into a vector
space V such that the action of T × C∗ on V is linear and such that x corresponds
to 0 ∈ V . Then it is clear that if λ is good for V , then it is also good for X. Hence
we may assume that X = V .

In this case, we see that nλ is good if and only if for every weight of T ×C∗ on V
of the form (θ, k) the following condition is satisfied:

n〈λ, θ〉+ k > 0 if and only if either 〈λ, θ〉 > 0, or 〈λ, θ〉 = 0 and k > 0.

Now, every n ∈ N such that n|〈λ, θ〉| > |k| for any (θ, k) as above such that
〈λ, θ〉 6= 0 will satisfy the conditions of the lemma.

Let λ be as before and assume in addition that
(i) x is the only fixed point of C∗ acting by means of the coweight (λ, 1);
(ii) Xλ(C∗) = XT

(in this case we automatically have (XT )C
∗

= {x}). Let us denote by Φ̃ the hyperbolic
restriction for (λ, 1) (acting from sheaves onX to sheaves on {x}), by Φ the hyperbolic
restriction for λ : C∗ → T (acting from sheaves on X to sheaves on XT ) and by Φ0

the hyperbolic restriction for the action of C∗ on XT (from sheaves on XT to sheaves
on {x}). Then the definition of “goodness” implies

Lemma A.6.2. — Assume that λ is good and satisfies the conditions (i) and (ii). Then
we have Φ̃ = Φ0 ◦ Φ.

A.7. Exactness of twisted hyperbolic restriction

Let T̃ = T ×C∗ and let us make it act on UdG so that the action of C∗ comes from
the hyperbolic action of C∗ on A2 of the form z(x, y) = (z−1x, zy). Note that ( UdG)T̃

consists of one point.
Let us fix d and let us choose a dominant regular coweight λ : C∗ → T which is

good in the sense of Subsection A.6 (such λ exists because of Lemma A.6.1). Then
the fact that λ is regular implies that it satisfies the conditions (i) and (ii). Consider
the corresponding functors Φ̃,Φ and Φ0. Obviously we have Φ = ΦdT,G, so we shall
write Φ̃dT,G instead of Φ̃. Also, to emphasize the dependence on d we set Φd0 instead
of Φ0. According to Lemma A.6.2 we have Φ̃dT,G = Φd0 ◦ ΦdT,G.

Theorem A.7.1. — The complex of vector spaces Φ̃dT,G(IC( UdG)) is concentrated in de-
gree 0.
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A.8. EXACTNESS OF ΦT,G 101

Proof. — We will use the same notations as before for L = T replaced with T̃ ,
such as iT̃ ,G, jT̃ ,G, pT̃ ,G, i

−
T̃ ,G

, j−
T̃ ,G

, p−
T̃ ,G

. The attracting set is denoted by Adλ,T̃ ,G.

According to [13, Theorem 1], the natural morphism (p−
T̃ ,G

)∗(j
−
T̃ ,G

)! IC( UdG) →

(pT̃ ,G)!(jT̃ ,G)∗ IC( UdG) = Φ̃dT,G(IC( UdG)) is an isomorphism. We will prove that
(pT̃ ,G)!(jT̃ ,G)∗ IC( UdG) is concentrated in nonpositive degrees. A similar (dual)
argument proves that (p−

T̃ ,G
)∗(j

−
T̃ ,G

)! IC( UdG) is concentrated in nonnegative de-

grees. In other words, we must prove that H•c ( Adλ,T̃ ,G, IC( UdG)) lives in nonpositive
cohomological degrees.

Now IC( UdG) is smooth along the stratification

UdG =
⊔

m+|λ|=d

BunmG ×Sλ(A2),

the dimension of a stratum being equal to 2l(λ) + 2mh∨. Here for a partition
λ = (λ1, . . . , λl) we set l(λ) = l. The perverse sheaf IC( UdG) lives in coho-
mological degrees ≤ −2l(λ) − 2mh∨ on the stratum BunmG ×Sλ(A2). We have
Adλ,T̃ ,G ∩

(
BunmG ×Sλ(A2)

)
= ( Amλ,T̃ ,G ∩ BunmG )× Sλ(A1

v). Now it follows from Corol-
lary A.3.2 and the goodness assumption on λ that dim( Amλ,T̃ ,G) ≤ mh∨. Evidently,
dimSλ(A1

v) = l(λ). So the restriction of IC( UdG) to Adλ,T̃ ,G ∩
(
BunmG ×Sλ(A2)

)
lives

in degrees ≤ −2 dim
(

Adλ,T̃ ,G ∩
(
BunmG ×Sλ(A2)

))
. Now an application of the Cousin

spectral sequence for the stratification of Adλ,T̃ ,G finishes the proof.

The following corollary is not needed for the rest, but we include it for the sake of
completeness.

Corollary A.7.2. — dim Sd = dim p−1(Sd(A1)) = dh∨.

Proof. — We need to show that dim Adλ,T̃ ,G is at least dh∨. By induction on d we may
assume that this is true for all d′ < d. Assume that dim Adλ,T̃ ,G < dh∨. Then repeating
the argument from the above proof we see that Φ̃dT,G(IC( UdG)) is concentrated in
strictly negative cohomological degrees, which contradicts Theorem A.7.1.

Remark A.7.3. — The above argument only shows that the dimension of the whole
of Sd is equal to dh∨, but doesn’t show that this is true for each of its irreducible
components (however, we believe that this is true).

A.8. Exactness of ΦT,G

We can now show that ΦdT,G(IC( UdG)) is perverse. Indeed, using the factorization ar-
gument and induction on d, we may assume that ΦdT,G(IC( UdG)) is perverse away from
the main diagonal A2 ⊂ Sd(A2). Since according to [13] the complex ΦdT,G(IC( UdG)) is
semi-simple and since it is also equivariant with respect to the action of A2 on Sd(A2)

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016

SMF 6/10/16



Ép
re

uv
e S

M
F

Se
pt

em
be

r 2
2,

20
16

102 APPENDIX A. APPENDIX: EXACTNESS OF HYPERBOLIC RESTRICTION

by shifts, it follows that we just need to prove that ΦdT,G(IC( UdG)) doesn’t have any
direct summands which are isomorphic to constant sheaves on A2 sitting in coho-
mological degrees 6= −2. But if such a direct summand existed, it would imply that
Φd0(ΦdT,G(IC( UdG))) = Φ̃dT,G(IC( UdG)) has non-zero cohomology in degree 6= 0, which
contradicts Theorem A.7.1.

A.9. Exactness of ΦL,G

Let us now show that ΦdL,G(IC( UdG)) is perverse. Indeed, first of all, according to
Braden’s theorem [13], ΦdL,G(IC( UdG)) is a semi-simple complex, which is constructible
with respect to the stratification (2.3.1). In other words, it is a direct sum of (possibly
shifted) simple perverse sheaves, where each such sheaf is isomorphic to the Goresky-
MacPherson extension of a local system E on Bund1

L ×Sλ(A2) for some d1 and λ as
in 2.3.1.

Lemma A.9.1. — Any such E is necessarily of the form C
Bun

d1
L

� E′ where E′ is some
local system on Sλ(A2).

Proof. — To prove this it is enough to show that the restriction of ΦL,G(IC( UdG))

to Bund1

L ×Sd2(A2) (here d = d1 + d2) is isomorphic to the exterior tensor product of
the constant sheaf of Bund1

L and some complex on Sd2(A2). Moreover, it is enough to
construct such an isomorphism on some Zariski open subset U of Bund1

L ×Sd2(A2) (this
follows from the fact that a local system which is constant on a Zariski dense subset is
constant everywhere). Let us choose a projection a : A2 → A1 and let πd1

a,L : Bund1

L →
Sd1(A1) be the corresponding map. Let U be the open subset of Bund1

L ×Sd2(A2)

consisting of pairs ( F , x) such that πd1

a,L is disjoint from the projection of x to Sd2(A1).
Then locally in étale topology near every point of U the scheme UdG looks like the
product Bund1

G ×Ud2

G and the statement follows.

Now, we can finish the proof. Indeed, recall that the closure of Bund1

L ×Sλ(A2)

admits a finite birational map from Ud1

L ×S
λ
(A2), where S

λ
(A2) stands for the closure

of Sλ in Sd2(A2). Thus for any E as above we see that IC( E) is the direct image
of IC( Ud1

L ) � IC( E′) under this map. Moreover, the complex ΦT,L(IC( E)) is equal
to the direct image of ΦT,L(IC( Ud1

L )) � IC( E′). Hence, we see that it is perverse
and non-zero. Thus, if for some i 6= 0 the complex IC( E)[i] is a direct summand
of ΦL,G(IC( UdG)), then ΦT,L(ΦL,G( UdG)) is not perverse. Since ΦT,L ◦ ΦL,G ' ΦT,G,
this contradicts Subsection A.8.

Recall UdP,0
def.
= p−1(d · 0), see (4.8.14).

Corollary A.9.2. — dim UdP,0 ≤ dh∨ − 1.
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A.9. EXACTNESS OF ΦL,G 103

Proof. — We will argue by induction in d. We assume the claim for all d′ < d. We
know that the dual space (Ud)∗ ' H•c (p−1(d·0), j̃∗ IC(c UdG)) lives in degree 0. We con-
sider the Cousin spectral sequence for the stratification UdP,0 =

⊔
d′≤d( Ud

′

P,0 ∩Bund
′

G).
By the induction assumption, all the strata for d′ < d contribute to nonpositive
degrees of H•c (p−1(d · 0), j̃∗ IC(c UdG)) only. If we had dim UdP,0 > dh∨ − 1, the fun-
damental classes of the top dimensional components of UdP,0 would contribute to the
strictly positive degrees in H•c (p−1(d ·0), j̃∗ IC(c UdG)), and nothing would cancel their
contribution. This would contradict to H>0

c (p−1(d · 0), j̃∗ IC(c UdG)) = 0.

Here is a more direct proof suggested by the referee. We choose a faithful rep-
resentation % : G ↪→ SL(r). It gives rise to a closed embedding % U : c UdG ↪→ c Udr .
We choose a dominant coweight χ̌ of T such that L is the centralizer of χ̌(C×).
Let L%∗χ̌ ⊂ P%∗χ̌ ⊂ SL(r) be the corresponding Levi and parabolic subgroups. Then
% U(c UdP,0) ⊂ c Udφ(%)

P%∗χ̌,0
, where φ(%) is the Dynkin index of %. Now c Udφ(%)

r is equipped

with a Poisson structure compatible with the symplectic structure of c Ũ
dφ(%)

r . This
Poisson structure has finitely many symplectic leaves (the strata of the diagonal
stratification of c Udφ(%)

r ), and the intersection of c Udφ(%)
P%∗χ̌,0

with any symplectic leaf

is isotropic since the preimage of c Udφ(%)
P%∗χ̌,0

in c Ũ
dφ(%)

r is isotropic. Finally, % U : c UdG ↪→
c Udr induces a Poisson structure on c UdG whose symplectic leaves are the strata of
the diagonal stratification of c UdG. It follows that the intersection of c UdP,0 with any
symplectic leaf is isotropic, and hence dim UdP,0 ≤ dh∨ − 1.

This is the estimate of the attracting set for the most singular point d · 0. The
exactness also implies estimates for attracting sets of other points, more precisely
their intersection with the open locus BundG. Since any stratum of UdG is of the form
Bund1

G ×Sλ(A2), we have the corresponding dimension estimate for other strata from
the perversity of ΦL,G(IC( Ud1

G )) for any d1. Therefore we see that ΦL,G is hyperbolic
semi-small in the sense of Definition 3.5.1.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016

SMF 6/10/16



Ép
re

uv
e S

M
F

Se
pt

em
be

r 2
2,

20
16

SMF 6/10/16



Ép
re

uv
e S

M
F

Se
pt

em
be

r 2
2,

20
16

APPENDIX B

INTEGRAL FORM OF THE W -ALGEBRA

The purpose of this section is to introduce an A-form of the W -algebra, generalizing
the A-form Viri,A of the Virasoro algebra in §6.4, where the commutation relations
of integral generators of the Heisenberg algebra and the Virasoro algebra are (see
(6.3.12), (6.4.9))

[P̃ im, P̃
j
n] = −mδm,−n(αi, αj)ε1ε2,(B.0.1)

[L̃im, L̃
i
n] = ε1ε2

{
(m− n)L̃im+n +

(
ε1ε2 + 6(ε1 + ε2)2

)
δm,−n

m3 −m
12

}
,

and they are related by

L̃in = −1

4

∑
m

:P̃ imP̃
i
n−m:− n+ 1

2
(ε1 + ε2)P̃ in.

Let g be a complex simple Lie algebra. We do not assume g is of type ADE in this
section. Let ( , ) be the normalized bilinear form so that the square length of a long
root is 2. Let ` be its rank and d1 ≤ · · · ≤ d` be the exponents of g, counted with
multiplicities. For example, g = sl`+1, we have d1 = 1, d2 = 2, . . . , d` = `. We have
d` = h∨−1. The multiplicity of the exponent is equal to 1, except d`/2 = d`/2+1 = `−1
for D` with ` even.

B.1. Integral form of the BRST complex

In order to define an A-form of the W -algebra, we need to recall briefly the BRST
complex used in the definition of the W -algebra in [30, Ch. 15]. We assume that the
reader is familiar with [30, Ch. 15], as we skip details.

Let g = n+ ⊕ h⊕ n− be the Cartan decomposition of g. Let ∆± denote the set of
positive/negative roots. Let I be the set of simple roots.

We consider the vertex superalgebra C•k(g), which is the tensor product of the
affine vertex algebra Vk(g) of level k and the fermionic vertex superalgebra

∧•
n+

. We
have two anti-commuting differentials dst and χ on C•k so that W k(g) is defined as
the 0th cohomology with respect to d = dst + χ.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016

SMF 6/10/16



Ép
re

uv
e S

M
F

Se
pt

em
be

r 2
2,

20
16

106 APPENDIX B. INTEGRAL FORM OF THE W -ALGEBRA

We do not need the definition of dst, χ. We start with the subcomplex C•k(g)0 as
the cohomology of C•k(g) is a tensor product of C•k(g)0 and another complex, whose
cohomology is trivial (see [30, Lem. 15.2.7]).

We take a basis {Ja} of g consisting of root vectors and vectors hi, dual to simple
roots αi with respect to ( , ). Let cabd be the structure constants of g with respect
to the basis {Ja}. Latin indices are used to denote arbitrary basis elements, Latin
indices with bar are used to denote elements in b− = h⊕ n−. Therefore {J ā}ā∈∆−∪I
is a basis of b−. Greek indices are used to denote basis elements of n+. We also have
a basis {ψ∗α}α∈∆+

of n∗+. We denote the corresponding fields by Ĵ ā(z) and ψ∗α(z),
where the former has a correction term (see [30, (15.2.1)]). The field Ĵ ā(z) satisfies
the commutation relation for the affine Lie algebra at the level k + h∨ instead of k
because of the correction terms (cf. [2, (4.8.1)]):

(B.1.1) [Ĵ ā(z), Ĵ b̄(w)] =
∑
c̄

cāb̄c̄ Ĵ
c̄(w)δ(z − w) + (k + h∨)∂wδ(z − w).

Now the complex C•k(g)0 is spanned by monomials of the form

(B.1.2) Ĵ ā(1)
n1
· · · Ĵ ā(r)

nr ψ∗α(1),m1
· · ·ψ∗α(s),ms

|0〉,

and the action of the differentials is given by the following formulas

[χ, Ĵ ā(z)] =
∑
i∈I

∑
β∈∆+

cāβαiψ
∗
β(z),

[χ, ψ∗α(z)]+ = 0,

[dst, Ĵ
ā(z)] =

∑
b̄,α

cαāb̄ :Ĵ b̄(z)ψ∗α(z): + k
∑
α

(J ā, Jα)∂zψ
∗
α(z)−

∑
α,β,b

cαbβ c
βā
b ∂zψ

∗
α(z),

[dst, ψ
∗
α(z)]+ = −1

2

∑
β,γ

cβγα ψ∗β(z)ψ∗γ(z),

(B.1.3)

together with χ|0〉 = dst|0〉 = 0. Here the formulas are copied from [30, 15.2.4] except
that the first one is simplified as we only consider a field for J ā in b−.

The bidegree is defined by

bideg Ĵ ā(z) = (−n, n),

bidegψ∗α(z) = (l,−l + 1),
(B.1.4)

where n is the principal gradation of J ā and l is the height of the root α. (See [30,
15.1.7] for definitions of the principal gradation and the height.) Therefore χ has
bidegree (1, 0), and dst has bidegree (0, 1). We get the double complex C•k(g)0 =⊕

p,q C
p,q
k (g)0. From the definition of the bidegree, we see that Cp,qk (g)0 = 0 unless

p ≥ 0, −p ≤ q ≤ 0.
Now we rewrite the complex suitable for our purpose. By (6.0.1) we replace k

by −(h∨ + ε2/ε1).
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B.1. INTEGRAL FORM OF THE BRST COMPLEX 107

Next let us introduce a modification J̃ ā(z) of Ĵ ā(z), like P̃ im of P im in §6.3. There
is a simple recipe for this. Reading formulas in [30, §15.4.10], we note that Ĵ ā(z)

for ā ∈ I is denoted by ĥi(z) and satisfies the commutation relation

(B.1.5) [ĥim, ĥ
j
n] = mδm,−n(αi, αj)(k + h∨).

See also (B.1.1). This Heisenberg operator gives the embedding W k(g) → Heis(h).
Comparing (B.0.1) with (B.1.5), we find that it is natural to set

(B.1.6) J̃ ā(z) = ε1Ĵ
ā(z).

We also rescale χ by a function ϕ in ε1, ε2 as χ̃ = ϕχ. Unless ϕ vanishes, the
cohomology group is independent of ϕ. However we will specialize ε1, ε2 to 0, the
result will be different. Therefore the choice of ϕ is important. Remember that our
goal is to realize a generator W̃ (κ)

n in geometry. We want to assign it with the perverse
cohomological degree 2(dκ + 1), as L̃in in §6.4 is of degree 4. This generator is a sum
of a main term X0 of bidegree (dκ,−dκ) plus correction terms X1, X2, . . . of bidegree
(p,−p) with 0 ≤ p < dκ determined by the condition χ̃Xκ = −dstXκ−1. (See [30,
15.2.11].) Therefore we want all X0, X1, . . . to have the same (perverse) cohomological
degree. This is achieved if ϕ is of degree −2. We still have ambiguity, but look at the
Formulas (B.1.3) and (B.1.6), the simplest solution is to absorb 1/ε1 in J̃ ā(z) to χ̃,
i.e., χ̃ = χ/ε1.

We thus arrive at the following:

[χ̃, J̃ ā(z)] =
∑
i∈I

∑
β∈∆+

cāβαiψ
∗
β(z),

[χ̃, ψ∗α(z)]+ = 0,

[dst, J̃
ā(z)] =

∑
b̄,α

cαāb̄ :J̃ b̄(z)ψ∗α(z):− (h∨ε1 + ε2)
∑
α

(J ā, Jα)∂zψ
∗
α(z)

− ε1

∑
α,β,b

cαbβ c
βā
b ∂zψ

∗
α(z),

[dst, ψ
∗
α(z)]+ = −1

2

∑
β,γ

cβγα ψ∗β(z)ψ∗γ(z).

(B.1.7)

Definition B.1.8. — We consider an A-span of monomials of the form (B.1.2) replac-
ing Ĵ by J̃ . We define the differentials dst, χ̃ by (B.1.7). We get a double complex
C•A(g)0 defined over A. Its total cohomology group H•A(g) is a vertex superalgebra
defined over A.

The argument in the proof of [30, Th. 15.1.9] goes over A, and we get

(B.1.9) Hi
A(g) = 0 for i 6= 0.

We have

(B.1.10) H0
A(g)⊗A F ∼= H0

F(g),
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108 APPENDIX B. INTEGRAL FORM OF THE W -ALGEBRA

as the localization is an exact functor. Here H0
F(g) is the cohomology group of the

complex C•A(g)0 ⊗A F. It is isomorphic to W k(g) ⊗C(k) F as ε1 6= 0 in F, where
k = −h∨ − ε2/ε1 as before.

Proposition B.1.11. — H0
A(g) is free over A.

Proof. — Note that the complex C•A(g)0 is a direct sum of its homogeneous com-
ponents with respect to the Z-gradation. Each component forms a subcomplex and
is free of finite rank over A. Hence results in the homological algebra can be ap-
plied. Since only the 0th cohomology survives, a component M of H0

A(g) is quasi-
isomorphic to a complex of projective modules P • with P i = 0 for i < 0. Then we
compute Ext•A(M,N) via P • to deduce Ext>0

A (M,N) = 0 for any N . Therefore M is
projective. Since A is a polynomial ring, H0

A(g) is free.

Thus H0
A(g) is an A-form of the W -algebra.

Definition B.1.12. — We denoteH0
A(g) by WA(g). It is called an A-form of the W -al-

gebra.

Let us introduce a new degree, which corresponds to the half of the (perverse) coho-
mological degree in the geometric side. Let us denote it by ‘cdeg’. We set cdeg |0〉 = 0,
cdeg ε1 = cdeg ε2 = 1. The degree of operators Ĵ ā(z) and ψ∗α(z) is the first component
of the bidegree. Then we put cdeg J̃ ā(z) = cdeg Ĵ ā(z) + 1 by (B.1.6). For example,
P̃ im in §6.3 is a Fourier mode of J̃ ā(z) for J ā = hi. Therefore cdeg P̃ im = 1.

From the Definition (B.1.7) we see that both χ̃ and dst have degree 0. Therefore
this degree descends to the cohomology group H0

A(g) = WA(g). Hence WA(g) is a
graded A-module, where A = C[ε1, ε2] is graded in the same way.

Be warned that cdeg is not a Z-grading of the vertex algebra in the sense of [30,
§1.3.1]. All Fourier modes of vertex operators Y (A, z), say J̃ ā(z), have the same
degree, which is equal to the degree of the corresponding states A = Y (A, z)|0〉|z=0.
The translation operator T is of degree 0.

B.2. Generators W̃ (κ)
n

The W -algebra W k(g) is generated by certain elements Wκ (κ = 1, . . . , `) in the
sense of the reconstruction theorem. (See [30, 15.1.9].) Moreover the subspace spanned
byWκ generates a PBW basis of W k(g). (See [2, §3.6 and Prop. 4.12.1] for the meaning
of this statement.)

We briefly recall the definition ofWκ and see that their simple modifications live in
our integral form and generate a PBW base of WA(g). Let us change notation from
Wκ to W (κ) in order to avoid a possible conflict with Fourier modes.

We have a regular nilpotent element p− in n− so that χ is given by (p−, •) = χ(•).
(See [30, 15.2.9].) Let a− be the kernel of ad p−. It is a maximal abelian Lie subalgebra
of g.
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B.3. GRADING VS FILTRATION 109

The cohomology Hi of the complex C•k(g)0 with respect to χ vanishes for i 6= 0
and H0 is equal to V (a−), the vertex algebra associated with a−. It is a commutative
vertex algebra, and isomorphic to the symmetric algebra Sym(a−⊗t−1C[t−1]) of a−⊗
t−1C[t−1]. Therefore a basis of a− gives a PBW base of V (a−).

There is a standard choice of a base of a−. We take an sl2-triple {p+, p0, p−}
for p−, and decompose g into a direct sum of (2dκ + 1)-dimensional representations
Rκ (κ = 1, . . . , `). We choose a decomposition for g = D` with ` even, κ = `/2, `/2+1.
We then choose a lowest weight vector p(κ)

− in Rκ. Then {p(κ)
− }κ=1,...,` is a base of a−.

The vectors p(κ)
− are unique up to constant multiple, and we fix them hereafter. In

fact, our geometric consideration of the W -algebra will give us a canonical choice
of p(κ)

− for κ = `, at least up to sign. See several paragraphs after Theorem 8.3.3.
The same is true over A. The cohomology of C•A(g)0 with respect to χ vanishes

except the degree 0, and H0 is equal to V (a−)⊗C A. The PBW base is its A-basis.
Let 0W̃ (κ)(z) be the linear combination of J̃ ā(z) corresponding to p

(κ)
− , and

let 0W̃
(κ)
(−1) be its constant part. Then 0W̃

(κ)
(−1)|0〉 is contained in the kernel of χ̃. We

construct a cocycle W̃ (κ) with respect to d = dst +χ̃ which is the main term 0W̃
(κ)
(−1)|0〉

of bidegree (dκ,−dκ) plus a sum of terms of bidegree (p,−p) with 0 ≤ p < dκ, as we
mentioned above. It is unique up to an element in Ker χ̃ of a lower degree. We fix
W̃ (κ) hereafter. We write

(B.2.1) Y (W̃ (κ), z) =
∑
n∈Z

W̃ (κ)
n z−n−dκ−1.

Let us check that cdeg W̃ (κ) = dκ + 1. Since dst and χ̃ preserve cdeg, we have
cdeg W̃ (κ) = cdeg 0W̃ (κ)|0〉. (Remember that we modify χ to χ̃ so that this is
achieved.) Now the latter does not contain ψ∗α(z), its degree is equal to the first
component of the bidegree plus 1, i.e., dκ + 1. Thus cdeg W̃ (κ) = dκ + 1. This is what
we want from a geometry side.

B.3. Grading vs filtration

Let us make the relation between W k(g) and WA(g) more precise so that we could
easily transfer computation in the literature to our setting.

Recall that the complexes (B.1.3) and (B.1.7) become the same if we put ε1 = (k+

h∨)−1, ε2 = −1 and identify χ̃ (resp. J̃ ā(z)) with χ/ε1 (resp. ε1Ĵ
ā(z)). As H>0

A (g) =
0 and WA(g) is free, the Künneth spectral sequence degenerate at E2, and hence
the specialization commutes with the cohomology. In particular, the homomorphism
Ĵ ā(z) 7→ J̃ ā(z)/ε1 induces an isomorphism

(B.3.1) W k(g)
∼=−→ WA(g)⊗A/(ε1 − (k + h∨)−1, ε2 + 1).

Under this isomorphism standard generators W (κ)
n and our W̃ (κ)

n are related by

(B.3.2) our W̃ (κ)
n = εdκ+1

1 standard W (κ)
n ,
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110 APPENDIX B. INTEGRAL FORM OF THE W -ALGEBRA

as they are defined in the same way.
From this consideration, we can recover WA(g)⊗AB1 with B1 = C[ε1] = A/(ε2+1)

from W k(g) as follows. Let us consider k as a variable and understand that W k(g) is
a vertex algebra defined over C(k). We identify C(k) = C(ε1) via ε1 = (k + h∨)−1.
Then WA(g)⊗AB1⊗B1

C(k) is isomorphic to W k(g), the cohomology of the complex
over C(k) by the Künneth spectral sequence as above. Then we have an embedding
WA(g)⊗AB1 → W k(g), and the image is the B1-submodule generated by εdκ+1

1 W
(κ)
n .

We denote WA(g)⊗A B1 by WB1
(g) hereafter.

Note further that the entire WA(g) can be recovered from WB1
(g) as follows. Since

WA(g) is graded by cdeg, we have an induced filtration 0 = F−1 ⊂ F0 ⊂ F1 ⊂ · · ·
on WB1

(g) such that ε1Fp ⊂ Fp+1. Then we can recover WA(g) as the associated
Rees algebra:

(B.3.3) WA(g) =
⊕
p

εp2Fp.

In fact, we have a natural surjective homomorphism from the left hand side to the
right, and it is also injective as WA(g) is torsion free over B2 = C[ε2]. Note also
the specialization at ε2 = 0 can be also recovered as the associated graded of the
filtration.

The filtration F• on WB1
(g) can be defined directly. From its definition, we assign

cdeg(εdκ+1
1 W

(κ)
n ) = dκ + 1 and cdeg ε1 = 1. This gives us the filtration on WB1

(g).
Let us explain how the formula forW (1)

n given in [30, (15.3.1)] can be understood in
our framework, for example. The field T (z) written there is already divided by k+h∨

so that its Fourier modes gives Virasoro generators Ln. Therefore W
(1)
n = (k+h∨)Ln

and hence W̃ (1)
n = ε2

1(k + h∨)Ln = −ε1ε2Ln. This is compatible (up to sign) with
modified Virasoro generators in §6.4, as L̃(i)

n = ε1ε2L
i
n.

B.4. Specialization at ε1 = 0

In this subsection, we study the specialization at ε1 = 0. This is the classical limit
of the W -algebra, but it also contains ε2 as a parameter. The relevant computation
can be found in [30, §15.4.1∼6].

Let us set ε1 = 0 in (B.1.7). Since J̃ ā(z) and J̃ b̄(z) commute at ε1 = 0 (see (B.1.1)),
the complex is identified with polynomials in the commuting variables J̃ ān (n < 0) and
anti-commuting variables ψ∗α,m (m ≤ 0). Therefore

(B.4.1) C•A(g)0 ⊗A B2
∼= Sym b−((t))/b−[[t]]⊗C

∧•
n+[[t]]∗ ⊗B2,
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B.4. SPECIALIZATION AT ε1 = 0 111

where B2 = C[ε2] = A/ε1A. The differential is specialized as

[χ̃, J̃ ā(z)] =
∑
i∈I

∑
β∈∆+

cāβαiψ
∗
β(z),

[χ̃, ψ∗α(z)]+ = 0,

[dst, J̃
ā(z)] =

∑
b̄,α

cαāb̄ J̃ b̄(z)ψ∗α(z)− ε2

∑
α

(J ā, Jα)∂zψ
∗
α(z),

[dst, ψ
∗
α(z)]+ = −1

2

∑
β,γ

cβγα ψ∗β(z)ψ∗γ(z),

(B.4.2)

where power series in z contain only terms with non-negative degrees in z. This is
exactly the same complex as in [30, §15.4.2], if we set ε2 = −1. It is the complex at
the classical limit k →∞.

By [30, Cor. 15.4.6], the cohomology group Hi
ε1=0(g) of this complex (at ε2 = −1)

vanishes for i 6= 0, and H0
ε1=0(g) is isomorphic to the ring of functions on a+[[t]],

where a+ is the kernel of ad p+. Here p+ is as in the previous subsection.
In fact, a+[[t]] is obtained as the quotient of the space of connections of the form

(B.4.3) ∇ = ∂t + p− +A(t), A(t) ∈ b+[[t]],

modulo the action of the gauge transformations N+[[t]]. This is the space OpG(D)
of G-opers on the formal disk D = SpecC[[t]]. There exists a unique gauge transfor-
mation in N+[[t]] so that ∇ is transformed into the same form with A(t) ∈ a+[[t]].

It is easy to put ε2 in this picture. The term with ε2 corresponds to the differential
of the gauge transformation. Therefore the cohomology of our complex is the ring of
functions on the quotient space of (−ε2)-connections

(B.4.4) ∇ = −ε2∂t + p− +A(t)

modulo N+[[t]]. It is the space of (−ε2)-opers on D. This notion appears for example
in [7, §5.2]. See also §B.5 below.

We have a structure of a vertex Poisson algebra on H0
ε1=0(g) by [30, 16.2.4]. It is

defined by renormalizing the polar part of vertex operators

(B.4.5) Y−(A, z) =
1

ε1
Y−(Ã, z)

∣∣∣∣
ε1=0

.

We can further make ε2 = 0. Then we get (p− + b+[[t]])/N+[[t]]. This space is
also equal to a+[[t]]. The proof in [30, 15.4.5] works also at ε2 = 0. In fact, the
result is a consequence of a classical result of Kostant: (p− + b+)/N+

∼= a+. See [7,
§5.4] for further detail. Therefore the cohomology group Hi

ε1,ε2=0(g) of the complex
at ε1 = ε2 = 0 vanishes for i 6= 0, and H0

ε1,ε2=0(g) ∼= V (a−).
The argument for (B.3.1) works also here, i.e., the specialization commutes with

cohomology group. We have

WA(g)⊗A B2
∼= H0

ε1=0(g),

WA(g)⊗A C ∼= H0
ε1,ε2=0(g) ∼= V (a−),

(B.4.6)
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112 APPENDIX B. INTEGRAL FORM OF THE W -ALGEBRA

where B2 = A/ε1A, C = A/(ε1, ε2).

B.5. The opposite spectral sequence

The embedding of the W -algebra into the Heisenberg algebra is given by consid-
ering the ‘opposite’ spectral sequence associated with the double complex C•k(g)0,
where the E1-term is the cohomology with respect to dst. The detail is explained
in [30, §15.4.10], and we give a brief review in order to see that the embedding is
compatible with integral forms.

Let H̃i
k(g) be the ith cohomology of the complex C•k(g)0 with respect to dst. This

notation is taken from [30] and has nothing to do with our notation for elements in
the integral form. Let ĥi(z) denote Ĵ ā(z) for ā = i ∈ I. Then we have

(B.5.1) [dst, ĥ
i(z)] = 0, [dst, ψ

∗
αi(z)]+ = 0

by (B.1.3). Therefore we have linear maps C[ĥin]i∈I,n<0|0〉 → H̃0
k(g),

⊕
iC[ĥjn]j∈I,n<0ψ

∗
αi,0|0〉 →

H̃1
k(g) respectively. In fact, they live in the uppermost row as bideg ĥi(z) = (0, 0),

bidegψ∗αi(z) = (1, 0). Then by considering the limit k →∞, one can see that both co-
homology groups are exactly the same as the above spaces respectively if k is generic.
Moreover one can identify H̃0

k(g) with the Heisenberg vertex algebra associated with
the Cartan subalgebra h of g. This is because ĥin satisfies the commutation relation
(B.1.5). Modified generators h

i

n = ĥin/
√
k + h∨ satisfy the usual commutation rule

(B.5.2) [h
i

m, h
j

n] = mδm,−n(αi, αj).

And H̃1
k(g) is its module. It is a direct sum of (#I) Fock modules. The highest weights

are given by the formula

(B.5.3) h
i

0ψ
∗
αj ,0|0〉 = − (αi, αj)√

k + h∨
ψ∗αj ,0|0〉.

Another differential χ induces a homomorphism H̃0
k(g) → H̃1

k(g). Since H̃1
k(g) lives

only at bidegree (1, 0), we have W k(g) = H0
k(g) ∼= Kerχ for generic k.

Moreover χ is the sum of the residue of the field ψ∗αi(z), which is given by the
vertex operator in terms of the Heisenberg algebra:

(B.5.4) ψ∗αi(z) = V−αi/
√
k+h∨(z)

where

(B.5.5) Vλ(z) = Sλz
λb0 exp

(
−λ
∑
n<0

bn
n
z−n

)
exp

(
−λ
∑
n>0

bn
n
z−n

)
.

This formula is given in [30, (5.2.8)]. The operator Sλ sends the highest weight vector
|0〉 to the highest weight vector |λ〉 and commutes with all bn, n 6= 0. And λbn is
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B.5. THE OPPOSITE SPECTRAL SEQUENCE 113

replaced by

(B.5.6) λbn = − h
i

n√
k + h∨

= − ĥin
k + h∨

,

and Sλ sends |0〉 to ψ∗αi,0|0〉 here.
Now we consider the cohomology group H̃i

A(g) over A. The 0th cohomology
H̃0

A(g) = Ker dst is a direct sum of A[P̃ in]i∈I,n<0 with bidegree (0, 0) and the other
parts with bidegree (p,−p) with p > 0. Here we put P̃ in = ε1ĥ

i
n so that they satisfy

the commutation relation (6.3.12). Since dst on (p,−p) part is injective for generic
(ε1, ε2) by the above computation, it is injective as an A-homomorphism. Therefore
we have

Lemma B.5.7. —

(B.5.8) H̃0
A(g) = A[P̃ in]i∈I,n<0|0〉.

This is an A-form of the Heisenberg vertex algebra, denoted by HeisA(h) in §6.3.
We have an induced homomorphism WA(g) = H0

A(g) → H̃0
A(g), taking the bide-

gree (0, 0) component. It is injective as Ker dst = 0 on (p,−p) with p > 0. Therefore
we can consider WA(g) as an A-submodule of H̃0

A(g). We have an induced homomor-
phism χ̃ : H̃0

A(g)→ H̃1
A(g) and the double complex tells us that WA(g) is contained

in Ker χ̃.
When we compare the embedding with the usual one W k(g) → H̃0

k(g) in the
literature via the identification of W k(g) and WA(g) in §B.3, we use the relations
P̃ in = ε1ĥ

i
n as before.

For example, consider W̃ (1)
n for g = sl2. It is given by (6.4.9) up to sign, and is

contained in H̃0
A(g). The formula follows from the computation in the literature, say

[30, §15.4.14], with the rule for the change of generators above.
Let us look at H̃1

A(g) more closely. From the definition, we have

C1,−1
A (g)0 =

⊕
i,m<0

A[P̃ jn]j∈I,n<0f̃i,m|0〉,

C1,0
A (g)0 =

⊕
i,m≤0

A[P̃ jn]j∈I,n<0ψ
∗
αi,m|0〉,

(B.5.9)

where f̃i,m is the Fourier mode of J̃ ā(z) corresponding to the basis element fi =

fαi . The differential dst : C1,−1
A (g)0 → C1,0

A (g)0 can be calculated from (B.1.7), in
particular we have

[dst, P̃
i(z)] = 0,(B.5.10)

[dst, f̃i(z)] =
2

(αi, αi)

(
:P̃ i(z)ψ∗αi(z):− ε2∂zψ

∗
αi(z)

)
.(B.5.11)

See the formula in the middle of [30, p.261]. From the second formula we have

(B.5.12) − ε2∂zψ
∗
αi(z) = :P̃ i(z)ψ∗αi(z):

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2016

SMF 6/10/16



Ép
re

uv
e S

M
F

Se
pt

em
be

r 2
2,

20
16

114 APPENDIX B. INTEGRAL FORM OF THE W -ALGEBRA

modulo dst-exact term. If ε2 would be invertible, we could replace ψ∗αi,m|0〉 with
m 6= 0 in (B.5.9) by an element in A[P̃ in]ψ∗αi,0|0〉 so that H̃1

A(g) is isomorphic
to
⊕

iA[P̃ jn]ψ∗αi,0|0〉. As ε2 is not invertible in A, this cannot be true.
From this consideration, we set ε2 = −1 in the double complex (B.1.7), and consider

it over B1 = Q[ε1], as in §B.3. We denote it by C•B1
(g)0. This is not any loss of the

information for our purpose, as WA(g) can be recovered from WB1
(g) together with

its natural filtration, as explained in §B.3.
However, the higher cohomology groups H̃>0

A (g) may not vanish nor be free. Hence
the cohomology group H̃•B1

(g) of C•B1
(g)0 with respect to dst may be different from

H̃•A(g)⊗A B1. We will see that H̃•B1
(g) behaves better than H̃•A(g) at ε2 = 0 below.

Let us study first two terms of H̃•B1
(g). We have H̃0

B1
(g) ∼= B1[P̃ in]i∈I,n<0|0〉 by the

same argument as in (B.5.8). Let H̃1,0
B1

(g) be the (1, 0) part of the cohomology. We do
not know H̃1

B1
(g) ∼= H̃1,0

B1
(g), but χ̃ maps H̃0

B1
(g) to H̃1,0

B1
(g) anyway. From the above

argument we have a surjective homomorphism
⊕

B1[P̃ jn]ψ∗αi,0|0〉 → H̃1,0
B1

(g). It is an
isomorphism for generic ε1, in other words over C(ε1). Therefore it must be injective
also over B1. We thus get

Lemma B.5.13. —

H̃0
B1

(g) ∼= B1[P̃ in]i∈I,n<0|0〉,

H̃1,0
B1

(g) ∼=
⊕
i

B1[P̃ jn]j∈I,n<0ψ
∗
αi,0|0〉.

(B.5.14)

The substitution ε2 = −1 makes the vertex operator (B.5.5) well-defined: We
replace λbn by (B.5.6), hence

(B.5.15) λbn = −P̃ in.

The vertex operator is a homomorphism between B1-modules.
Now we let ε1 = 0. We have the Künneth theorem

(B.5.16) 0→ H̃n
B1

(g)⊗B1 C→ Hn(C•B1
(g)0 ⊗B1 C)→ TorB1

1 (H̃n+1
B1

(g),C)→ 0,

where C = B1/ε1B1. The middle term is the cohomology at the classical limit, and
is known (see [30, §15.4.8]). In particular, we get

(B.5.17)

C[P̃ in]|0〉 = H̃0
B1

(g)⊗B1
C ∼= H0(C•B1

(g)0 ⊗B1
C),⊕

C[P̃ jn]ψ∗αi,0|0〉 = H̃1,0
B1

(g)⊗B1 C ∼= H1(C1,•
B1

(g)0 ⊗B1 C),

H̃p+1,−p
B1

(g)⊗B1
C = H1(Cp+1,•

B1
(g)0 ⊗B1

C) = 0 for p > 0.

ASTÉRISQUE 385

SMF 6/10/16



Ép
re

uv
e S

M
F

Se
pt

em
be

r 2
2,

20
16

B.5. THE OPPOSITE SPECTRAL SEQUENCE 115

Next we study χ̃ at ε1 = 0. Recall that χ̃ = χ/ε1, so we need to divide
∫
Vλ(z) in

(B.5.5) by ε1. We see that the induced operator

(B.5.18) χ̃| ε1=0
ε2=−1

: H̃0
B1

(g)⊗B1
C = C[P̃ in]|0〉

→ H̃1
B1

(g)⊗B1
C =

⊕
C[P̃ jn]ψ∗αi,0|0〉

is given by the formula

(B.5.19)
∑
i

∑̀
j=1

(αi, αj)
∑
m≤0

Vi[m]
∂

∂P̃ jm−1

,

with

(B.5.20)
∑
n≤0

Vi[n]z−n = Si exp

(∑
n<0

P̃ in
n
z−n

)
.

Here the operator Si sends the highest weight vector |0〉 to ψ∗αi,0|0〉. The point here
is the commutation relation [P̃ im, P̃

j
n] = mε1(αi, αj)δm,−n at ε2 = −1. This vanishes

at ε1 = 0, and hence only linear terms in the expansion of the second exponential in
(B.5.5) survive.

This computation appears in the study of the classical limit of the W -algebra [29,
Chap. 8]. In particular, the followings were shown there:

— H̃0
B1

(g)⊗B1
C is isomorphic to the ring of functions on the space MOpG(D)gen

of generic Miura opers on the formal disk D.
— Each generic Miura oper can be uniquely transformed into the following form

(B.5.21) ∇ = ∂t + p− + u(t), u(t) ∈ h[[t]].

— The kernel of χ̃| ε1=0
ε2=−1

is isomorphic to the ring of functions on the space OpG(D)

of opers. The inclusion Ker( χ̃| ε1=0
ε2=−1

)→ H̃0
B1

(g)⊗B1
C is given by the forgetting

morphism MOpG(D)gen → OpG(D).
We do not recall the definition of generic Miura opers here, as it is enough to

consider the space of connections of the form (B.5.21). The morphism MOpG(D)gen →
OpG(D) is given just by considering a connection in (B.5.21) as a G-oper. As we have
already known that WA(g) at ε1 = 0, ε2 = −1 is the ring of functions on OpG(D) in
§B.4, we get

(B.5.22) WB1
(g)⊗B1

C = Ker( χ̃| ε1=0
ε2=−1

).

Finally we study the filtration in the both sides of (B.5.22). The left hand side has
a filtration as it comes from the specialization of the grading on WA(g) at ε1 = 0,
ε2 = −1. On the other hand, we have filtration on H̃0

B1
(g) and H̃0

B1
(g) ⊗B1

C given
by cdeg P̃ in = 1, as they are polynomial rings (see Lemma B.5.13 and (B.5.17).) Since
H̃0

A(g) is also free by Lemma B.5.7, the filtrations come from the specialization. We
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116 APPENDIX B. INTEGRAL FORM OF THE W -ALGEBRA

give an induced filtration on Ker( χ̃| ε1=0
ε2=−1

) as a subspace of H̃0
B1

(g) ⊗B1 C. Then

(B.5.22) respects the filtration as the inclusion WB1
(g)→ H̃0

B1
(g) does.

On the ring of functions on OpG(D), the filtration can be understood by considering
(−ε2)-opers [8, §3.1.14] as follows. A filtration on an algebra can be identified with
a graded flat C[ε2]-algebra with deg ε2 = 1. The latter is considered as the ring of
functions on a flat affine scheme X over A1 = SpecC[ε2] with a Gm-action compatible
with the action by homotheties on A1. The space of (−ε2)-opers provides such a
scheme, where the Gm-action is given by ∇ 7→ λ∇ for λ ∈ Gm. More precisely, we
need to compose it with a gauge transformation so that the form (B.4.3) is preserved.
Since (−ε2)-opers appear at the specialization at ε1 = 0 in §B.4, our filtration is given
in this way.

The action is induced from the action λAd(λ) on a+ under OpG(D) ∼= a+[[t]], where
Ad(λ) is given by the SL2 embedding associated with the nilpotent element p−. It is
known that the degrees of the Gm-action on a+ are given by dκ + 1 (κ = 1, . . . , `),
hence are the same as our ‘cdeg’ by §B.2. This is another reason why we define the
degree in that way.

We can define the Gm-action on MOpG(D)gen in the same way so that the mor-
phism MOpG(D)gen → OpG(D) is Gm-equivariant. Under MOpG(D)gen

∼= h[[t]], it is
just homotheties on h. The corresponding filtration is the same as ours.

The homomorphism between the associated graded of Ker( χ̃| ε1=0
ε2=−1

) and

H̃0
B1

(g)⊗B1
C is induced by the morphism

(B.5.23) {∇ = p− + u(t) | u(t) ∈ h[[t]]}
→ {∇ = p− +A(t) | A(t) ∈ b+[[t]]} /N+[[t]]

of 0-opers.
Let us write down the embedding of the W -algebra into the Heisenberg algebra

at ε1 = ε2 = 0 induced from the morphism (B.5.23) of 0-opers explicitly. It is given
in [29, §3.3.4]. Let F (κ) ∈ S(h)W (κ = 1, . . . , `) be generators of degree dκ + 1,
corresponding to p(κ)

− in §B.2. We regard it as a polynomial in hi, i.e., F (κ)(hi) =

F (κ)(h1, . . . , h`). Then W̃ (κ)
n (at ε1, ε2 = 0) is given by the formula

(B.5.24) F (κ)

(∑
n<0

P̃ (i)
n z−n−1

)
=
∑
n<0

W̃ (κ)
n z−n−dκ−1.

For example, we have

(B.5.25) L̃n = −1

4

∑
n<l<0

P̃lP̃n−l

for sl2.
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B.6. KERNEL OF THE SCREENING OPERATOR 117

B.6. Kernel of the screening operator

Recall that we have a natural inclusion WB1(g) ⊂ Ker( χ̃|ε2=−1) from the con-
struction. They coincide for generic ε1. We prove a stronger result.

Theorem B.6.1. — We have isomorphisms

WB1
(g) ∼= Ker( χ̃|ε2=−1),(B.6.2)

WA(g) ∼=
⋂
i

Viri,A|ε1→ε′1 ⊗A HeisA(α⊥i ),(B.6.3)

where Viri,A|ε1→ε′1 is the A-form of the Virasoro algebra with ε1 replaced by ε′1 =
ε1(αi,αi)

2 . Moreover (B.6.2) preserves filtrations.

Proof. — Let us first consider (B.6.2) and denote χ̃ at ε2 = −1 also by χ̃ for brevity:

(B.6.4) χ̃ : H̃0
B1

(g)→ H̃1,0
B1

(g).

We know that both H̃0
B1

(g) and H̃1,0
B1

(g) are free over B1 (see Lemma B.5.13). We
also know that their specialization is the cohomology group at ε1 = 0, ε2 = −1 (see
(B.5.17)). Therefore we have an exact sequence

(B.6.5) 0→ Ker χ̃⊗B1 C→ Ker( χ̃| ε1=0
ε2=−1

)→ TorB1
1 (Cok χ̃,C)→ 0.

We have a homomorphism from WB1(g)⊗B1 C to the first term Ker χ̃⊗B1 C, and
its composition to the middle term is an isomorphism by (B.5.22). Therefore we have

(B.6.6) WB1(g)⊗B1 C ∼= Ker χ̃⊗B1 C ∼= Ker( χ̃| ε1=0
ε2=−1

).

Since (B.5.22) preserves the filtration, we have an induced isomorphism between
the associated graded

(B.6.7) gr ( WB1
(g)⊗B1

C) ∼= gr (Ker χ̃⊗B1
C) .

Let 0 = F−1 ⊂ F0 ⊂ F1 ⊂ · · · be the filtration on WB1(g) as before. Then the
filtration on WB1

(g)⊗B1
C is given by

(B.6.8) 0 ⊂ F0/ε1 WB1
(g)∩F0 ⊂ F1/ε1 WB1

(g)∩F1 ⊂ · · · ,

as WB1
(g) ⊗B1

C ∼= WB1
(g)/ε1 WB1

(g). From the definition of Fp, we have
ε1 WB1(g) ∩ Fp = ε1Fp−1. Therefore

(B.6.9) gr ( WB1(g)⊗B1 C) =
⊕
p>0

Fp/ε1Fp−1+Fp−1
∼= gr WB1

(g)/ε1 gr WB1
(g).

(Here we have used grW/ε1 grW =
⊕

(Fp/Fp−1)/ε1(Fp−1/Fp−2) as ε1 shift the grad-
ing by 1). The same is true for gr (Ker χ̃⊗B1

C).
By graded Nakayama’s lemma, we conclude gr WB1

(g) ∼= gr Ker χ̃. Using it again,
we get (B.6.2).
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118 APPENDIX B. INTEGRAL FORM OF THE W -ALGEBRA

Next consider (B.6.3). Since both sides are Rees algebras of the corresponding
vertex algebras at ε2 = −1 with the induced filtration, it is enough to show that we
have a filtration preserving isomorphism at ε2 = −1:

(B.6.10) WB1
(g) ∼=

⋂
i

Viri,B1
|ε1→ε′1 ⊗B1

HeisB1
(α⊥i ),

where Viri,B1
, HeisB1

(α⊥i ) are defined in an obvious manner.
We use (B.6.2) WB1(sl2) = VirB1

∼= Ker( χ̃|ε2=−1) for g = sl2 and the observa-
tion that χ̃ is the sum of operators over i ∈ I, we see that the right hand side is
Ker( χ̃|ε2=−1). The substitution ε1 → ε′1 = (αi,αi)ε1

2 is necessary, as the Heisenberg
commutation (6.3.12) involves (αi, αj). Now we use (B.6.2) for the original g and
deduce (B.6.10).

From this result, we extend the duality for the W -algebra in [30, Prop. 15.4.16]
from generic to arbitrary level.

Corollary B.6.11. — Let Lg be the Langlands dual of g. Then we have

(B.6.12) WA(g) ∼= WA(Lg)
∣∣
ε1→r∨ε2
ε2→ε1

,

where r∨ is the maximal number of edges connecting two vertices of the Dynkin dia-
gram of g (the lacing number).

This is because Viri,A is invariant under ε1 ↔ ε2 and (ε1, ε2)→ (cε1, cε2) (c ∈ C∗).

B.7. The embedding WA(g)→ WA(l)

The result in this subsection will not be used elsewhere, but shows that the hyper-
bolic restriction functor ΦL,G for general L corresponds to in the W -algebra side.

Let L be a standard Levi subgroup of G with Lie algebra l. We can write l as
[l, l]⊕ z(l), where z(l) denotes the center of l. The above discussion can be applied to
the Lie algebra l instead of g and we get a well-defined vertex operator algebra WA(l)
over A and we have an embedding WA(l) ↪→ Heis(h). It is also clear that WA(l) is
isomorphic to WA([l, l])⊗

A
HeisA(z(l)).

Theorem B.7.1. — There exists an embedding WA(g) → WA(l) compatible with the
embedding of both algebras into Heis(h).

Proof. — Clearly, it is enough to construct any map WA(g) → WA(l) whose com-
position with the embedding WA(l) ↪→ Heis(h) gives the map WA(g) ↪→ Heis(h)
constructed before. To this end, we are going to construct another double complex
structure on C•A(g)0 (with the same total complex).

Let p be the parabolic subalgebra containing l and n+ and let n(p) be its nilpotent
radical. We can write n+ = n+(l)⊕ n(p). Accordingly, we can decompose χ = χ1 +χ2

where χ1 ∈ n+(l)∗ and χ2 ∈ n(p)∗. Let hl ∈ z(l) denote the (unique) element such
that for every simple root αi we have adhl(ei) = ei if ei is not in l and adhl(ei) = 0
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B.7. THE EMBEDDING WA(g)→ WA(l) 119

otherwise. Now define a new grading on C•A(g)0 in a way similar to (B.1.4) but where
instead of the principal gradation and the root height we use the eigenvalue with
respect to adhl . Then the action of χ2 has bidegree (1, 0) and the action of dst + χ1

has bidegree (0, 1). In this way we get a new bicomplex structure on C•A(g)0 with the
same total differential and total degree.

It is easy to see that we have Cp,qA (g)0 = 0 unless p ≥ 0 and p+ q ≥ 0. Note that it
is no longer true that for p = 0 the complex C0,q

A (g)0 vanishes unless q = 0; moreover,
the complex C0,•

A (g)0 (with respect to the differential dst+χ1) is just C•A(l)0. Thus we
get a morphism H0(C•A(g)0) → H0(C•A(l)0) by mapping every cocycle to its degree
(0, 0)-component with respect to the above grading.
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certain moduli spaces (“framed Uhlenbeck spaces”) together
with some structures on them (such as e.g., the Poincaré
pairing) in terms of representation theory of some vertex
operator algebras (“ W -algebras”).

SMF 6/10/16


	Chapter 1. Introduction
	1.1. Uhlenbeck spaces
	1.2. Main geometric object
	1.3. Main algebraic object: W-algebras
	1.4. The main result: localized form
	1.5. Relation to previous works
	1.6. Hyperbolic restriction
	1.7. Sketch of the proof
	1.8. Relation to previous works – technical parts
	1.9. The main result: integral form
	1.10. Remarks about non-simply laced case
	1.11. Further questions and open problems
	1.12. Organization of the paper
	1.13. Some notational conventions
	1.14. Acknowledgments

	Chapter 2. Preliminaries
	2.1. Instanton number
	2.2. Moduli of framed G-bundles
	2.3. Stratification
	2.4. Factorization

	Chapter 3. Localization
	3.1. General Statement
	3.2. The case of Ext algebras
	3.3. Attractors and repellents
	3.4. Hyperbolic restriction
	3.5. Hyperbolic semi-smallness
	3.6. Recovering the integral form

	Chapter 4. Hyperbolic restriction on Uhlenbeck spaces
	4.1. A category of semisimple perverse sheaves
	4.2. Fixed points
	4.3. Polarization
	4.4. Definition of hyperbolic restriction functor
	4.5. Associativity
	4.6. Preservation of perversity
	4.7. Hyperbolic restriction on BunLd
	4.8. Space Ud and its base
	4.9. Irreducible components
	4.10. A pairing on Ud
	4.11. Another base of Ud
	4.12. Dual base
	4.13. Aut(G) invariance

	Chapter 5. Hyperbolic restriction in type A
	5.1. Gieseker-Uhlenbeck
	5.2. Heisenberg operators
	5.3. Fixed points and polarization
	5.4. Stable envelope
	5.5. Tensor product module
	5.6. Sheaf theoretic analysis
	5.7. The associativity of stable envelopes
	5.8. Space Vd and its base given by irreducible components
	5.9. A pairing on Vd
	5.10. Another base of Vd
	5.11. Computation of the pairing
	5.12. Relation between Vd and Ud
	5.13. Compatibility
	5.14. Aut(G) invariance

	Chapter 6. W-algebra representation on localized equivariant cohomology
	6.1. Freeness
	6.2. Another base of Ud, continued
	6.3. Heisenberg algebra associated with the Cartan subalgebra
	6.4. Virasoro algebra
	6.5. The first Chern class of the tautological bundle
	6.6. W-algebra representation
	6.7. Highest weight
	6.8. Kac-Shapovalov form

	Chapter 7. R-matrix
	7.1. Definition
	7.2. Factorization
	7.3. Intertwiner property
	7.4. Yang-Baxter equation
	7.5. SL(2)-case
	7.6. G-equivariant cohomology
	7.7. A different proof of the Heisenberg commutation relation

	Chapter 8. Whittaker state
	8.1. Universal Verma/Wakimoto modules
	8.2. G-equivariant cohomology
	8.3. Whittaker condition
	8.4. Whittaker vector and Kac-Shapovalov form
	8.5. Lattices
	8.6. Pairing at epsilon1, epsilon2=0
	8.7. Proof, a geometric part
	8.8. Proof, a representation theoretic part
	8.9. Type A

	Appendix A. Appendix: exactness of hyperbolic restriction
	A.1. Zastava spaces
	A.2. Plan of the proof
	A.3. Attractors and repellents on the Uhlenbeck space: maximal torus case
	A.4. The map fd
	A.5. The central fiber
	A.6. Good coweights
	A.7. Exactness of twisted hyperbolic restriction
	A.8. Exactness of PhiT,G
	A.9. Exactness of PhiL,G

	Appendix B. Integral form of the W-algebra
	B.1. Integral form of the BRST complex
	B.2. Generators Wn(k)
	B.3. Grading vs filtration
	B.4. Specialization at epsilon1=0
	B.5. The opposite spectral sequence
	B.6. Kernel of the screening operator
	B.7. The embedding W(g) to W(l) 

	Bibliography
	List of notations



