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INSTANTON MODULI SPACES AND 9/-ALGEBRAS

by Alexander BRAVERMAN, Michael FINKELBERG & Hiraku NAKAJIMA

\Abstract. —We describe the (equivariant) intersection cohomology of certain moduli
spaces (“framed Uhlenbeck spaces”) together with some structures on them (such as
e.g., the Poincaré pairing) in terms of representation theory of some vertex operator
algebras (“W-algebras”).

Résumé (Sur la catégorie dérivée des 1-motifs.) — Nous décrivons la cohomologie
d’intersection (équivariante) de certains espaces de modules (“espaces d’Uhlenbeck
encadrés”) ainsi que quelques structures sur eux-(comme par exemple I’accouplement,
de dualité de Poincaré) en termes de tséorie des représentation de certaines algébres
vertex (“W-algébres”).
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CHAPTER 1

INTRODUCTION

The main purpose of this paper is to describe the (equivariant) intersection co-
homology of certain moduli spaces (“framed Uhlenbeck spaces”) together with some
structures on them (such as e.g., the Poincaré pairing) in terms of representation
theory of some vertex operator algebras (“W-algebras?). In this introduction we first
briefly introduce the relevant geometric and algebraic objects (cf. Subsections 1.1 and
1.3) and then state our main result (in a somewhat weak form) in Subsection 1.4 (a
more precise version is discussed in 1.9). In Subsection 1.5 we discuss the motivation
for our results and relate them to some previous works. In §1.8 we mention earlier
works from which we obtain strategy ard techniques of the proof.

1.1. Uhlenbeck spaces

Let G be an almost simple simply-connected algebraic group over C with Lie alge-
bra g. Let also h be a Cartan/subalgebra of g.

Let Bun‘é be the moduli space of algebraic G-bundles over the projective plane P?
(over C) with the instanton number d and with trivialization at the line at infinity £..
It is a non-empty smooth quasi-affine algebraic variety of dimension 2dh" for d € Z>,
where hV is the dual Coxeter number of G.

By results of Donaldson [24] (when G is classical) and Bando [5] (when G is ar-
bitrary) Bun‘é is homeomorphic to the moduli space of anti-self-dual connections
(instantons) on S* modulo gauge transformations  with v(0co0) = 1 where the struc-
ture group is the maximal compact subgroup of G. We will use an algebro-geometric
framework, as we-can use various tools.

It is well-known. that Bung has a natural partial compactification ‘l[dG, called the
Uhlenbeck space. Set-theoretically, ‘lldG can be described as follows:

U, = |_| Bun‘é: x 4= (A?),
0<d’'<d

where §4—¢ (A2) denotes the corresponding symmetric power of the affine plane A2.
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2 CHAPTER 1. INTRODUCTION

The variety ‘ll‘é is affine and it is always singular unless d = 0. It has a natural
action of the group G x GL(2), where G acts by changing the trivialization at £, and
GL(2) just acts on P? (preserving /.,). In what follows, it will be convenient for us
to restrict ourselves to the action of G = G x C* x C* where C* x C* is the diagonal
subgroup of GL(2).

Remark 1.1.1. — The compactification of the moduli space of instantons on a com-
pact C'*° 4-manifolds, as a topological space, was introduced by Donaldson, based
on the earlier fundamental work by Uhlenbeck. See [25, Notes to_Section 4.4.1] for
further historical comments. This construction works for any-compact Lie group, i.e.,
any reductive group G, and also the case when we take the quotient only by gauge
transformations vy with y(co) = 1 as above.

A construction as an affine variety was given in [21], which is one of our main
references. See Remark 1.5.2 for comments in type A.

1.2. Main geometric object

The main object of our study on the geometric side is the G-equivariant intersection
cohomology TH% (%%). By the definition, it is endowed with the following structures:

1) It is a module over H{(pt). The latter algebra can be canonically identified
with the algebra of polynomial functions on b x C? which are invariant under W,
where W is the Weyl group of G. In what foliows we shall denote this ring by Ag; let
also Fg denote its field of fractions. We shall typically denote an element of b x C2
by (a,e1,€2).

2) There exists a natural symmietric (Poincaré) pairing THS (%) 1;@ IHE (UL) — Fg

G

(this follows from the fact that (‘leG)TX(C2 consists of one point).
3) For every d > 0 we have a canonical unit cohomology class |1%) € TH} (%%).

The main purpose of this paper is to describe the above structures in terms of repre-
sentation theory. To formulate our results, we need to introduce the main algebraic
player — the 9W/-algebra.

1.3. Main algebraic object: 9//-algebras

In this subsection we recall some basic facts and constructions from the theory
of W-algebras (cf. [30] and references therein). First, we need to recall the notion of]
Kostant-Whittaker reduction for finite-dimensional Lie algebras.

Let g be as before a simple Lie algebra over C with the universal enveloping algebra,
U(g). Let us choose a triangular decomposition g =n, ®h@dn_ for g. Let x: np — C
be a non-degenerate character of n,, i.e., a Lie algebra homomorphism such that
Xln,, 7 0 for every vertex i of the Dynkin diagram of g (here n, ; denotes the
corresponding simple root subspace). Then we can define the finite W-algebra of g (to
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1.3. MAIN ALGEBRAIC OBJECT: W-ALGEBRAS 3

be denoted by W, (g)) as the quantum Hamiltonian reduction of U(g) with respect
to (ny,x). In other words, we have

Win(g) = Homyg)(U(g) © Cy,U(g) @ Cy).
U(ny) U(ny)
A well-known result of Kostant [41, Theorem 2.4.2| asserts that

(1f) Wsn(g) is naturally isomorphic to the center Z(g) of U(g).

In particular, we have

(2f) The algebra Wsy(g) has a natural embedding into S(h), whose image coincides
with the algebra S(h)"W.

(3f) The algebra Wsy,(g) is a polynomial algebra in some variables F(1), ..., F(©)
where £ = rank(g). Each F(*) is homogeneous as an element of S(h)" of some degree
de +12>2.

(4f) The algebra Wsn(g) is isomorphic to the algebra. Wan,(g¥).

Feigin and Frenkel (cf. [30] and references therein) have'generalized the above results
to the case of affine Lie algebras. Namely, let g((¢)) denote the Lie algebra of g-valued
formal loops. It has a natural central extension

0—-C—-g—g((t)—0

(this extension depends on a choice of an invariant form on g which we choose so that
the squared length of every short corost.is equal to 2). The group C* acts naturally
on § by “loop rotation” and the same is tiue for its Lie algebra C. We let g,z be the
semi-direct product of § and C (for the above action).

For every k € C one can consider the algebra @/ (§) — this is the quotient of U(g) by
the ideal generated by 1 —k where 1 denotes the generator of the central C C g,g. Let
us also extend x to ny ((t)) by taking the composition of the residue map ny ((t)) — ny
with x : n, — C. Abusing slightly the notation, we shall denote this map again by x.

The W-algebra Wy (g) is roughly speaking the Hamiltonian reduction of Ug(g)
with respect to (n4((¢)), x)- However, the reader must be warned that rigorously this
reduction must be performed in the language of vertex operator algebras; in particular,
Wi (g) is a vertex operator-algebra (cf. again [30] for the relevant definitions).

Unlike in the finite case, the algebra Wy (g) is usually non-commutative (unless
k = —h"). The main results of Feigin and Frenkel about Wy (g) can be summarized
as follows (notice the similarities between (1f)-(4f) and (1w)-(4w)):

(1w) The algebra W_}v (g) can be naturally identified with the center of the (vertex
operator algebra version of) U_v (§).

(2w) Let $eis(h) denote the central extension of h((¢)) corresponding to the bilinear
form on b chosen above. Abusing the notation we shall use the same symbol for
the corresponding vertex operator algebra. Also for any k& € C we can consider the
corresponding-algebra $yeisy(h) (“Heisenberg algebra of level k7). () Then for generic
k there exists a canonical embedding Wy (g) — $Heiskrnv (h).

1. Note that for all k& # 0 these algebras are isomorphic.
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4 CHAPTER 1. INTRODUCTION

(3w) The algebra Wpy(g) is generated (in the sense of [30, 15.1.9]) by certain ele-
ments W), x = 1,...,£ of conformal dimension d,, + 1. This (among other things)
means that for every module M over Wy (g) and every k = 1,...,£ there is a well

defined field Y/ (W (”), 2) = [/V,(f)z*”’d'f1 where wé’” can be regarded as a linear
nez
endomorphism of M.

(4w) Suppose k is generic. There is a natural isomorphism Wpy(g) ~ Wiv(g¥)
where (k +hy)(k¥ +hjv) = r" where r" is the lacing number of g (i.e., the maximal
number of edges between two vertices of the Dynkin diagram of g). We shall call this
isomorphism the Feigin-Frenkel duality.

The representation theory of Wy (g) has been extensively studied (cf. for example
[2]). In particular, to any A € h* one can attach a Verma module M (\) over Wi (g)
and M (A1) is isomorphic to M(\g) if Ay + p and Ay +p are on the same orbit of]
the Weyl group. This module carries a natural (Kac-Shapovalov) bilinear form, with
respect to which the operator W,(f) is conjugate to WS';) (up to sign). This module
can be obtained as the Hamiltonian reduction of the corresponding Verma module
for g.

1.4. The main result: localized form

Let us set
Mg _(a) = TH; (%) £ Foi “Mpe(a) = P Mg . (a).
d=0

It is easy to see that MgG (a) is also naturally isomorphic to IH% .(%%) ® Fg where
: An

the subscript . stands for cohomology with compact support.
Let us also set

k=—h' -2
€1

Then (a somewhat weakened) form of our main result is the following:

Theorem 1.4.1. — Assume that G is simply laced and let us identify b with b* by
means of the invariant form such that (a,a) = 2 for every root of g. Then there
exists an action of the algebra Wy(g) on Mg, (a) such that

1. The resulting module is isomorphic to the Verma module M()\) over Wy(g)

where
A= a_ p
€1
(here we take Fr = Frac(H(pt)) as our field of scalars).
2. Under the above identification a twisted Poincaré pairing on Mg, (a) goes over
to the Kac-Shapovalov form on M(X). (The twisting will be explained in §6.8.)
3. Under the above identification the grading by d corresponds to the grading by

eigenvalues of Lg.
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1.5. RELATION TO PREVIOUS WORKS 5

4. Letd > 1, n > 0. We have

WO = {ﬂl—lg;h T ge=tandn=t,

(1.4.2)
0 otherwise.

Remarks 1.4.3. — 1) We believe that the sign in (1.4.2) is actually always “+,” how-
ever, currently we don’t know how to eliminate the sign issue. Note, however, that
(1.4.2) still defines the scalar product (1¢|1¢) unambiguously. Also (assuming that
the above sign issue can be settled) it follows from (1.4.2) that if we formally set
w=3",|1%) then we have
W) (1) = {51_152_hv+1w if Kk = é and n =1,
0 otherwise!

Sometimes we shall write wgq ¢, ., to emphasize the dependence on the correspond-
ing parameters.

2) The assumption that G is simply laced is essential for Theorem 1.4.1 to hold as
stated. However, we believe that a certain modified version of Theorem 1.4.1 holds in
the non-simply laced case as well, although at the.moment we don’t have a proof of
this modified statement (cf. Subsection 1.10 for a brief discussion of the non-simply
laced case).

3) Since ‘Zé‘(i; is acted on by the full GL(2) and not just by C* x C*, it follows that
the vector space My, (a) has a natural autcmorphism which induces the involution
€1 < €2 on F (and leaves a untouched). Note that changing €; to €3 amounts to
changing k = —h" — £ to k¥ = —h" — £ and we have (k + h")(k" + h") = 1. Note
also that we are assuming that g is simply laced, so g is isomorphic to gV and the
above geometrically defined automorphism is in fact a corollary of the Feigin-Frenkel
duality (cf. (1w)—(4w)).

1.5. Relation to previous works

We discuss previous works related to the above result here and later in §1.8. This
subsection is devoted for those works related to statements themselves, and §1.8 is
for those which give us a strategy and techniques of the proof.

First we discuss'the statements (1),(2),(3). There are many previous works in
almost the same pattern: We consider moduli spaces of instantons or variants on
complex surfaces, and their homology groups or similar theory. Then some algebras
similar to affine Lie algebras act on direct sums of homology groups, where we sum
over various Chern classes.

The first example of such a result was given by the third-named author [51, 53]. The
4-manifold is C?/T for a nontrivial finite subgroup I' C SU(2), and the gauge group
is U(r). The direct sum of homology groups of symplectic resolutions of Uhlenbeck
spaces, called quiver varieties in more general context, is an integrable representation
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6 CHAPTER 1. INTRODUCTION

of the affine Lie algebra gr g of level r. Here gr is a simple Lie algebra of type ADE
corresponding to I' via the McKay correspondence, and gr .g is its affine Lie algebra.

This result nicely fitted with the S-duality conjecture on the modular invariance
of the partition function of 4d N = 4 supersymmetric gauge theory by Vafa-Witten
[70], as characters of integrable representations are modular forms. It was understood
that the correspondence [51, 53] should be understood in the framework of a duality
in string theories [68]. There are lots of subsequent developments in physics literature
since then.

In mathematics, the case I' = {e} was subsequently treated by [52] and Grojnowski
[35] for r = 1, and by Baranovsky [6] for general r. The corresponding gr .¢ is the
Heisenberg algebra, i.e., the affine Lie algebra associated with the trivial Lie algebra,
gl;, in this case.

For I' = {e}, the symplectic resolution ‘Zli — ‘leG of the Uhlenbeck space ‘Zéé is
given by the moduli space of torsion-free sheaves on P2 together with a trivialization
at £, of generic rank r and of second Chern class.d. We call it the Gieseker space in
this paper. For general I", we have its variant. All have description in terms of repre-
sentations of quivers by variants of the ADHM description, and hence are examples
of quiver varieties. (See Remark 1.5.2 for historical comments.)

This result was extended to an action of the quantum toroidal algebra Uy (Lgr aa)
on the equivariant K-theory of the meduli spaces when I # {e} [55, 57]. A variant for
equivariant homology groups was given by, Varagnolo [71].

In all these works, the action was given by introducing correspondences in products
of moduli spaces, which give generators of the algebra. In particular, the constructions
depend on good presentations of algebras. The case I' = {e} was studied much later,
as we explain below, as the corresponding algebra, which would be Uy (L(gl; )as), was
considerably more difficult.

Let us also mention that the second-named author with Kuznetsov [28] constructed
an action of the affine Lie algebra EIT on the homology group of moduli spaces of
parabolic sheaves on a surface, called flag Gieseker spaces or affine Laumon spaces
when the surface is P2, the parabolic structure is put on a line and the framing is
added. (Strictly speaking, the action was constructed on the homology group of the
fibers of morphisms from flag Gieseker spaces to flag Uhlenbeck spaces. The action for
the whole variety is constructed much later by Negut [63] in the equivariant K-theory
framework.)

Let us turn to works on the inner product (1¢|1¢), which motivate the statement
(4). It is given by the equivariant integration of 1 over %dG, and their generating
function

oo

(1.5.1) Z(Q,a,e1,2) = »_ Q4141

d=0

is called “the instanton part of the Nekrasov partition function for pure N = 2 su-
persymmetric gauge theory” [64]. This partition function has been studied intensively
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1.5. RELATION TO PREVIOUS WORKS 7

in both mathematical and physical literature. In particular, a result, which is very
similar to Theorem 1.4.1(1)~(4) (but technically much simpler) was proved by the
first-named author [14]. Namely, in the situation of [14] on the representation theory
side one deals with the affine Lie algebra g.g instead of the corresponding W/-algebra,
and on the geometric side one needs to replace the Uhlenbeck spaces ‘Zéé by flag Uh-
lenbeck spaces Z¢&. In fact, it is important to note that when the original group G is
not simply laced, the main result of [14] relates the equivariant intersection cohomol-
ogy of the flag Uhlenbeck spaces for the group G with the representation theory of the
affine Lie algebra g, whose root system is dual to that of g.¢. A somewhat simpler
construction exists also for the finite-dimensional Lie algebra gV '~ in that case on the
geometric side one has to work with the so called space of-based quasi-maps into the
flag variety of g, also known as Zastava spaces (cf. [15] for a survey on these spaces).

The Nekrasov partition functions are equal for %‘é and for flag Uhlenbeck spaces
at €5 = 0, and it is enough for some purposes, say to determine Seiberg-Witten curves,
but they are different in general. Therefore it was clear that we must replace g by
something else, but we did not know what it is.

A breakthrough was given in a physics context by Alday-Gaiotto-Tachikawa [1]
(AGT for short). They conjectured that the partition functions for G = SL(2) with
four fundamental matters and adjoint matters are conformal blocks of the Virasoro al-
gebra. They provided enough mathematically rigorous evidence, say numerical checks
for small instanton numbers. They also"give physical intuition that this correspon-
dence is coming from an observation that 4d N = 2 supersymmetric gauge theories
are obtained by compactifying the 6d theory c¢n a Riemann surface: the Virasoro al-
gebra naturally lives on the Riemann surface, which cannot be directly seen from the
4d side. They also guessed that the Virasoro algebra is replaced by the W-algebra for
a group G of type ADE.

There is a large literature in physics after AGT, especially for type A. We do not
give the list, though those works are implicitly related to ours. We mention only one
which was most relevant for us, it is [40] by Keller et al, where the statement (4) was
written down for the first time for general G. (There is an earlier work by Gaiotto
for G = SL(2) [32], and various others for classical groups.)

Around the same time when [1] appeared in a physics context, there was an in-
dependent advance on, the understanding of the algebra U,(L(gl;)a.s) acting on the
K-theory of resolutions of Uhlenbeck spaces of type A by Feigin-Tsymbaliuk [27] and
Schiffmann-Vasserot-[67]. They noticed that U,(L(gl;)as) is isomorphic to various
algebras, which had been studied in different contexts: a Ding-Iohara algebra, a shuf-
fle algebra with the wheel conditions, the Hall algebra for elliptic curves, and an
algebra studied by Miki [47]. Combined with the AGT picture, we understand that
U, (L(gl;)an) is the limit of the deformed W(sl,), or W(gl,) by the reason explained
below, when r — oo.

In [17] a similar result is conjectured (and proved in type A) for finite W -algebras
associated with a nilpotent element e € gV, which is principal in some Levi subalgebra,
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(in that case on the geometric side one works with the so called parabolic Zastava
spaces - cf. [15] for the relevant definitions).

Finally Maulik-Okounkov [46] and Schiffmann-Vasserot [66] proved Theorem 1.4.1
in the case when G = SL(r). More precisely, they work with the equivariant coho-

mology of EZ[? rather than with equivariant intersection cohomology. of ‘leg, which is
slightly bigger. As a result on the representation theory side they get a Verma module
over W(gl,) (this algebra is isomorphic to the tensor product of W(sl;) with a (rank
1) Heisenberg algebra). We should also mention that we use the construction of [46]
for » = 2 in a crucial way for the proof of Theorem 1.4.1.

Remark 1.5.2. — Gieseker constructed a moduli space of semistable sheaves on a
projective surface [33]. A morphism from Gieseker’s moduli space to Uhlenbeck com-
pactification was constructed by Li and Morgan [44, 50]. See [38, Ch. 8| as a modern
reference.

There is an alternative approach for the case of bundles with trivialization over P2:
The ADHM description [3] of instantons on S* describes the moduli space as a space
of certain linear maps modulo the action of the unitary group. The Uhlenbeck space
naturally arises by dropping an open condition, and considering a larger space (see
[25, Ch. 3]). Furthermore this description is an affine algebro-geometric quotient [24],
and one can introduce a GIT quotient by perturbing the stability condition [54, Ch. 3].
It gives the moduli space of torsion free sheaves with trivialization. The morphism
from Gieseker space to Uhlenbeck space is ziso naturally defined.

1.6. Hyperbolic restriction

One of the main technical tools used in the proof of Theorem 1.4.1 is the notion of]
hyperbolic restriction. Let us recall the general definition of this notion.

Let X be an algebraic variety endowed with an action of C*. Then X© is a closed
subvariety of X. Let @x/ denote the corresponding attracting set. Let i: XC — @x
and j: %x — X be the natural embeddings. Then we have the functor ® = i*j'
from the derived category of constructible sheaves on X to the derived category of
constructible sheaves on XC". This functor has been extensively studied by Braden in
[13]. In particular, the main result of [13] says that ® preserves the semi-simplicities
of complexes.

Assume that we have a symplectic resolution 7: ¥ — X in the sense of [46] and
assume in addition that the above C*-action lifts to Y preserving the symplectic
structure. Let & = 7m,Cy[dim X] (where Cy denotes the constant sheaf on Y). Then
we have

Theorem 1.6.1, — 1. [72] ®(&) is isomorphic to 7,Cycx [dim X7].
2. Maulik-Okounkov’s stable envelope [46] gives us a choice of an isomorphism in

(1).
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See [60] for the proof. Though both ®() and m,Cy-c+ [dim X©'] are isomorphic
semi-simple perverse sheaves, the proof of [72] only gives us a canonical filtration on
the former whose associated graded is canonically isomorphic to the latter. Then the
stable envelope [46] gives us a choice of a splitting.

Now we specialize the above discussion to the following situation. Let P C G be a
parabolic subgroup of G with Levi subgroup L. Let us choose a subgroup C* C Z(L)
(here Z(L) stands for the center of L) such that the fixed point set of its adjoint
action on P is L and the attracting set is equal to all of P. Let now X = ‘ZldG. We
denote by ‘lldL the fixed point set of the above C* on ‘Llé and by ‘Ll‘lig the corresponding
attracting set. It is easy to see that if L is not a torus, then ‘l[‘é is'just homeomorphic
to ‘Zl'[iL,L] (and if L is a torus, then %5 is just S¢(C2?)). See §4.2. Often we are going
to drop the instanton number d from the notation, when there is no fear of confusion.
We let i and p denote the corresponding maps from %; to %p and from %p to %,
Also we denote by j the embedding of %p to %;. We have the diagram

(1.6.2) Uy S Up S U,

Thus we can consider the corresponding hyperbolic restriction functor ®;, ¢ = i*j :
(note that the functor actually depends on P and not just on L, but it depend on the
choice of C* C Z(L) made above, as we will explain in §4.4).

The following is one of the main techuical results used in the proof of Theorem 1.4.1:

Theorem 1.6.3. — 1. Let Py C P; be two-parabolic subgroups and let Ly C Lo be the
corresponding Levi subgroups. Then we have a natural isomorphism of functors
br,6~=P,1,°PL,c-

2. For P and L as above the complex <I>L7g(IC([MdG)) s perverse and semi-simple.

Moreover, the same is true for any semi-simple perverse sheaf on [MdG which is
constructible with respect-to the natural stratification.

Note that when G = SL(r); it is easy to deduce Theorem 1.6.3 from Theo-

~d
rem 1.6.1(1), since in this case the scheme ‘lldG has a symplectic resolution %,..

1.7. Sketch of the proof

The proof of Theorem 1.4.1 will follow the following plan:

1) Replace G = G x.C* x C*-equivariant cohomology with T = T' x C* x C*-equiv-
ariant cohomology. Note that the former is just equal to the space of W-invari-
ants in the latter; so if we define an action of Wj(g) on & IH:(%%) AX) Fr (where

T

A7 = H} v o« (Pt) and Fr is its field of fractions) and check that if commutes with
the action of W, we get an action of Wy (g) on @, IHE‘;([LZdG) ® Fg.
Ag

2) We are going to construct an action of Heisyipv(h) on P, TH: () ﬁb Fr
T

and then get the action of Wy (g) by using the embedding W (g) — Heisgnv (h). It
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should be noted that the above $eis;.pv (h)-action will have several “disadvantages”
that will disappear when we restrict ourselves to Wy (g). For example, this action will
depend on a certain auxiliary choice (a choice of a Weyl chamber).
3) The action of the Heisenberg algebra on &, THE(US) 1;@ Fr will be constructed
T

in the following way. Let us choose a Borel subgroup B containing the chosen maximal
torus T. We can identify @, TH:(UE) ® Fr with @, H;®r, c(IC(%%)) ® Fr, so

it is enough to define an action of the Helsenberg algebra on the latter For this
it is enough to define the action of $eis(Cey’) for every simple coroot o of G
(and then check the corresponding relations). Let P; denote the corresponding sub-
minimal parabolic subgroup containing B. Let also L; be its,Levi subgroup (it is
canonical after the choice of T'). Note that [L;, L;] ~ SL(2). Using the isomorphism
@T’G(IC(’Z{dG)) ~ ®r . 0 @Li,G(IC(‘Mé)) and Theorem 1.6.1, we define the action
of $eis(Cay') on P, H{f(IJTyg(IC(‘ZZdG)) X@ Fr using the results of [46] for G = SL(2).
T

Here it is important for us to write down @th(IC(fl{é)) in terms of IC(%dLli)
(d' < d) and local systems on symmetric productsin.a ‘canonical’ way. In particular,
we need to construct a base in the multiplicity space of IC(%‘;;) in ® Li’G(IC(‘Ué)).
For G = SL(r), this follows from the stable envelope, thanks to Theorem 1.6.1(2).
For general G, this argument does not work; and we use the factorization property
of Uhlenbeck spaces together with the”special case G = SL(2). A further detail is
too complicated to be explained in Intrcduction, so we ask an interested reader to
proceed to the main text.

4) We now need to check the relations between various $yeis(Cay’). For this we have
two proofs. One reduces it again to the results of [46] for G = SL(3) (note that since
we assume that G is simply laced, any connected rank 2 subdiagram of the Dynkin
diagram of G is of type Ay). The other goes through the theory of certain “geometric”
R-matrices (cf. Section 7). The proof of assertions (2) and (3) of Theorem 1.4.1 is
more or less straightforward.: The proof of assertion (4) is more technical and we are
not going to discuss it in the Introduction. Let us just mention that for that proof
we need a stronger form of the first 3 statements of Theorem 1.4.1 which is briefly
discussed below.

1.8. Relation to previous works — technical parts

Let us mention previous works which give us a strategy and techniques of the proof.

First of all, we should mention that the overall framework of the proof is the same as
those in [46, 66]. We realize the Feigin-Frenkel embedding of W (g) into $Heisginv (h)
in a geometric way via the fixed point (%%)C" = %}, as is explained the geometric
realization in 3),4) in §1.7. This was first used in [46, 66] for type A.
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1.8. RELATION TO PREVIOUS WORKS — TECHNICAL PARTS 11

What we do here is to replace the equivariant homology of Gieseker spaces %f by
intersection cohomology of ‘Ué as the former exists only in type A. Various founda-
tional issues were discussed in the joint work of the first and second-named- authors
with Gaitsgory [21]. In particular, the fact that the character of Mg, (a) is equal to
the character of a Verma module over Wy, (g) follows from the main result of [21]. (For
type A, it was done earlier in the joint work of the third-named author with Yoshioka.
See [54, Exercise 5.15] and its solution in [61].)

A search of a replacement of Maulik-Okounkov’s stable envelope [46] was initi-
ated by the third-named author [60]. In particular, the relevance of the hyperbolic
restriction functor ® and the statement Theorem 1.6.1(2) were found. Therefore our
technical aim is to find a ‘canonical’ isomorphism between ® L’G(IC(’MdG)) and a cer-
tain perverse sheaf on @/2.

Let us also mention that Theorem 1.6.1(1) was proved much earlier by Varagnolo-
Vasserot [72] in their study of quiver varieties. The functor ® realized tensor products
of representations of gr ,s. (Strictly speaking, only quiver varieties of finite types
were considered in [72]. A slight complication occurs for quiver varieties of affine
types which give gr ,x. See [60, Remark 1] for detail.)

When we do not have a symplectic resolution like %2, we need another tool to
analyze ®. Fortunately the hyperbolic restriction functor was studied by Mirkovié-
Vilonen [48, 49] in the context of the geometric Satake isomorphism, which asserts the
category of G(C[[t]])-equivariant perversessheaves on the affine Grassmannian Grg =
G(C((¢)))/G(C][t]]) is equivalent to the category of finite dimensional representations
of the Langlands dual GV of G as tensor categories. The hyperbolic restriction functor
realizes the restriction from GV to its Levi subgroup.

In particular, it was proved that ® sends perverse sheaves to perverse sheaves.
This was proved by estimating dimension of certain subvarieties of Grg, now called
Mirkovié-Vilonen cycles. The proof of Theorem 1.6.3 is given in the same manner,
replacing Mirkovié-Vilonen cycles by attracting sets of the C*-action.

It is clear that we should mimic the geometric Satake isomorphism from the con-
jecture of the first and second-named authors [18] which roughly says the following;: it
is difficult to make sense of perverse sheaves on the double affine Grassmannian, i.e.,
the affine Grassmannian Grg,, for the affine Kac-Moody group G,s. But perverse
sheaves on %% (and more generally instanton moduli spaces on C2/T" with I = Z/kZ)
serve as their substitute. Then they control the representation theory of GY at level k.

This conjecture nicely fits with the third-named author’s works [51, 53] on quiver
varieties via I. Frenkel’s level-rank duality for the affine Lie algebra of type A [31].
Namely in the correspondence between moduli spaces and representation theory, the
gauge group determines the rank, and I" the level respectively in the double affine
Grassmannian. And the role is reversed in quiver varieties.

In [20], the first and second-named authors proposed a functor, acting on perverse
sheaves, which conjecturally gives tensor products of G)s. This proposal was checked
in [58] for type A, by observing that the same functor gives the branching from gr .g
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to the affine Lie algebra of a Levi subalgebra. The interchange of tensor products and
branching is again compatible with the level-rank duality.

Here in this paper, tensor products and branching appear in the opposite side: The
hyperbolic restriction functor ® realizes the tensor product in the quiver variety side,
as we mentioned above. Therefore it should correspond to branching in the dual affine
Grassmannian side. This is a philosophical explanation why the study of analog of]
Mirkovié-Vilonen cycles is relevant here.

1.9. The main result: integral form

The formulation of Theorem 1.4.1 has an obvious drawback: it is only formulated
in terms of localized equivariant cohomology. First of all, it is clear that as stated
Theorem 1.4.1 only has a chance to work over the localized field F = C(e1, e2) rather
than over A = Cley,e2]. The reason is that our formula for the level k = —hY — =
and the highest weight A = 2 — p are not elements of A. For many purposes, it
is convenient to have an A-version of Theorem1.4.1. In fact, technically in order
to prove the last assertion of Theorem 1.4.1 we need such a refinement of the first
3 assertions (the reason is that we nized touse the cohomological grading which is

lost after localization). In earlier works' [46, 66| for type A, the A-version appears
only implicitly, as operators Wéﬂ) are given by cup products on Gieseker spaces. But
in our case, Uhlenbeck spaces are singular, aind we need to work with intersection
cohomology groups. Hence Wnn) do not have such descriptions.

So, in order to formulate a non-localized version of Theorem 1.4.1 one needs to
define an A-version Wa(g) of the W-algebra (such that after tensoring with F we
get the algebra 1 (g) with k= —hY — £2). We also want this algebra to be graded
(such that the degrees of €1 and &5 are equal to 2); in addition we need analogs of]
statements (2w) and (3w). This is performed in the Appendix B. Let us note, that
although this A-form is motivated by geometry, it can be defined purely in an algebraic
way, following the work of Feigin and Frenkel. As far as we know, this A-form does
not appear in the literature before. As a purely algebraic application, we can remove
the genericity assumption.in (4w). The third named author learns from Arakawa that
this was known to him-before, but the proof is not written. After this we prove an
A-version of Theorem 1.4.1 in Section 8.

The non-localized equivariant cohomology groups also give us a refined structure
in our construction. We construct Wa (g)-module structures on four modules

D (1), D Hi (Prc(C(%E))
d d

P Hi(@r,c(1C(UE))), EPIHL(%E),
d d
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1.10. REMARKS ABOUT NON-SIMPLY LACED CASE 13

where the subscript ¢ stands for cohomology with compact support. They become
isomorphic if we take tensor products with Fr, i.e., in the localized equivariant co-
homology. But they are different over Ag and Ar. We show that they are universal
Verma, Wakimoto modules Ma (a), Na(a), and their duals respectively. Here by a
Wakimoto module, we mean the pull-back of a Fock space via the embedding of W(g)
in $eis(h). They are universal in the sense that we can specialize to Verma/Wakimoto
and their duals at any evaluation Ag — C, Ar — C. This will be important for us
to derive character formulas for simple modules, which will be discussed in a separate
publication.

The importance of the integral form and the application to character formulas were
first noticed in the context of the equivariant K-theory of-the Steinberg variety and
the affine Hecke algebra (see [23]), and then in quiver varieties [55] and parabolic
Laumon spaces (= handsaw quiver varieties) [59].

1.10. Remarks about non-simply laced case

We have already mentioned above that verbatim Theorem 1.4.1 doesn’t hold for
non-simply laced G. However, we expect that the following modification of Theo-
rem 1.4.1 should hold.

First, let & be any affine Lie algebra in.the sense of [39] with connected Dynkin
diagram. For example, ¥ can be untwisted, @nd in this case it is isomorphic to a Lie
algebra of the form g, for some simple finite-dirnensional Lie algebra. But in addition
there exist twisted affine Lie algebras. We refer the reader to [39] for the relevant
definitions; let us just mention that every twisted & comes from a pair (ﬁ/, o) where
?’ = g.g for some simply laced simple finite-dimensional Lie algebra g and o is a
certain automorphism of g of finite order.

The Dynkin diagram of & comes equipped with a special “affine” vertex. We let Gy
denote the semi-simple and simply connected group whose Dynkin diagram is obtained
from that of ¢ by removing that vertex.

To such an algebra one can attach another affine Lie algebra ﬁv — “the Langlands
dual Lie algebra”. By definition, this is just the Lie algebra whose generalized Cartan
matrix is transposed to that of &. It is worthwhile to note that:

1) If g is a simply laced finite-dimensional simple Lie algebra, then g/ is isomorphic
to gag (which is also the same as (g").g in this case).

2) In general, if g is not simply laced, then g is not isomorphic to (g¥)ag. In fact,
if g is not simply laced, then gY; is always a twisted Lie algebra.

It turns our that one can define the Uhlenbeck spaces ‘Llé for any affine Lie algebra

@ in such a way that that ‘lldg = ‘ZldG when & = gag and g = Lie(G) (the definition
uses the corresponding simply laced algebra g and its automorphism o mentioned
above). We are not going to explain the definition here (we shall postpone it for a
later publication). This scheme is endowed with an action of the group Gy x C* x C*.
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In addition to & as above one can also attach a W-algebra W(%). Then we expect
the following to be true:

Conjecture 1.10.1. — There exists an action of W(%) on & IHG vy o xex (%dﬁv) sat-
isfying properties similar to those of Theorem 1.4.1.

Let us discuss one curious corollary of the above conjecture. Let .g be a finite-
dimensional simple Lie algebra. Set ¥, = g4, G, = (¢¥)Ys- Then Conjecture 1.10.1
together with Feigin-Frenkel duality imply that there should be an isomorphism be-
tween IH*G(%)XC*XC*(%%I) and IH*G(%)XC*XC*(‘ZZCéz) which sends 22 and to r¥ 2.
It would be interesting to see whether this isomorphism can be constructed geomet-
rically (let us note that the naive guess that there exists an isomorphism between

‘Ll‘él and ‘ZldyZ giving rise to the above isomorphism between IHE(%)XC*XC*(‘U%J

and IHg g )c- xc- (’Zl%z) is probably wrong). This question might be related to the
work [69] where the author explains how to derive the 4-dimensional Montonen-Olive
duality for non-simply laced groups from 6-dimensional (2,0) theory.

1.11. Further questions and open problems

In this subsection we indicate soni¢’ possible directions for future research on the
subject (apart from generalizing everything to the non-simply laced case, which was
discussed before).

1.11(roman@subsection). VOA structure and CFT. — Our results imply that the
space Mg (a) has a natural vertex operator algebra structure. It would be extremely
interesting to construct this structure geometrically.

The AGT conjecture predicts a duality between N = 2 4d gauge theories and
2d conformal field theories (CFT). The equivariant intersection cohomology group.
Mgy (a) is just the quantum Hilbert space associated with S!, appeared as a boundary
of a Riemann surface. We should further explore the 4d gauge theory from CFT
perspective, as almost nothing is known so far.

1.11(roman@subsection). ‘Gauge theories with matter. — Our results give a representation-| | N
theoretic interpretation of the Nekrasov partition function of the pure N = 2 super-
symmetric gauge theory on R?%. For physical reasons it is also interesting to study
gauge theories with matter. Mathematically it usually means that in the definition ofi
the partition function (1.5.1) one should replace the equivariant integral of 1 by the
equivariant integral of some other (intersection) cohomology class. However, when
G is not of type A even the definition of the partition function is not clear to us.

~d
Namely, for G'= SL(r) one usually works with the Gieseker space %, instead of 2.
In this case the cohomology classes in question are usually defined as Chern classes

~d
of certain natural sheaves %, (such as, for example, the tangent sheaf). Since %% is
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singular and we work with intersection cohomology such constructions don’t literally
make sense for 9.

1.11(roman@subsection). The case of C?/T. — It would be interesting to try and
generalize our results to Uhlenbeck space of C2?/T. Here we expect the case when I'
is a cyclic group to be more accessible than the general case; in fact, in this case one
should be able to see connections with [18],[20] and on the other hand with [10, 9].
On the other hand the theory of quiver varieties deals with general I', but the group
G is of type A, as we mentioned in §1.5. The case when-both I' and G are not of]
type A seems more difficult. Note that we must impose €1 = &, therefore the level
k = —hY — e53/e1 cannot be deformed. In particular, the would-be W-algebra does
not have a classical limit.

1.11(roman@subsection). Surface operators. — As we have already mentioned in §1.5,
there are flag Uhlenbeck spaces parametrizing (generalized) G-bundles on P? with
parabolic structure on the line P!. A type of parabolic structure corresponds to a.
parabolic subgroup P of G. Generalizing results in two extreme cases, P = B in [14]
and P = G in this paper, it is expected that the equivariant intersection cohomology
group admits a representation of the W-algebra associated with the principal nilpotent
element in the Lie algebra [ of the Levi pa:t of P. (We assume G is of type ADE,
and the issue of Langlands duality ‘does not-occur, for brevity.) This is an affine
version of the conjecture in [17] mentioned before. Moduli of G-bundles with parabolic
structure of type P is called a surface operator of Levi type [ in the context of N = 4
supersymmetric gauge theory [36].

However there is a surface operator corresponding to arbitrary nilpotent element
e in Lie G proposed in [22], which-is supposed to have the symmetry of W(g,e), the
W-algebra associated with e. We do not understand what kind of parabolic structures
nor equivariant intersection cohomology groups we should consider if e is not regular
in Levi.

1.12. Organization of the paper

In Section 2 we discuss some generalities about Uhlenbeck spaces. Section 3 is de-
voted to the general discussion of hyperbolic restriction and Section 4 — to hyperbolic
restriction on Uhlenbeck spaces. In Section 5 we relate the constructions and results
of Section 4 to certain constructions of [46] in the case when G is of type A. Sec-
tion 6 is devoted to the construction of the action of the algebra Wy (g) on Mg, (a)
along the lines presented above. Section 7 is devoted to the discussion of “geometric
R-matrices”.
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1.13. Some notational conventions

(i) A partition A is a nonincreasing sequence A\; > Ay > - -+ of nonnegative integers
with Ay = 0 for sufficiently large N. We set [A| = D A, I(A) =#{s | \; # 0}.
We also write A = (1™12"2...) with nj, = #{i | \; = k}.

(ii) The equivariant cohomology group H (pt) of a point is canonically identified
with the ring of invariant polynomials on the Lie algebra Lie G of G. The coor-
dinate functions for the two factors C* are denoted by €1, &5 respectively. We
identify the ring of invariant polynomials on g = Lie G with the ring of the Weyl
group invariant polynomials on the Cartan subalgebra f of g. When we consider
the simple root a; as a polynomial on b, we denote it by a.

(iii) For a variety X, let D?(X) denote the bounded derived category of complexes of
constructible C-sheaves on X. Let IC(Xy, ¥) denote the intersection cohomology
complex associated with a local system ¥ over a Zariski open subvariety X in
the smooth locus of X. We denote it also by IC(X) if £ is trivial. When X is
smooth and irreducible, & x denotes the constant sheaf on X shifted by dim X.
If X is a disjoint union of irreducible smooth-varieties X,, we understand & x
as the direct sum of G'x_ .

(iv) We make a preferred degree shift for the Borel-Moore homology group (with
complex coefficients), and denote it by Hpy(X). The shift is coming from a re-
lated perverse sheaf, which is clear from the context. For example, if X is smooth,
€x is a perverse sheaf. Hence H|,)(X) = H.dim x (X) is a natural degree shift,
as it is isomorphic to H~*(X, G x). More generally, if L is a closed subvariety
in a smooth variety X, we consider H,j(L) = Hitaim x(L) = H*(L,j'€x),
where j: L — X is the inclusion.

(v) We use the ADHM description of framed torsion free sheaves on P? at several
places. We change the notation (B, Ba,t,3) in [54, Ch. 2] to (By, Bz, I, J) as 1,
j are used for different things.
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CHAPTER 2

PRELIMINARIES

A basic reference to results in this section is [21], where [4, 54] are quoted occa-
sionally.

2.1. Instanton number

We define an instanton number of a G-bundle S over P?. It is explained in, for
example, [4]. Since it is related to our assumption that G is simply-laced, we briefly
recall the definition.

The instanton number is the characteristic class associated with an invariant bi-
linear form ( , ) on the Lie algebra g of G. 3ince we assume G is simple, the bilinear
form is unique up to scalar. We normalize-it so-that the square length of the highest
root 0 is 2.

When G = SL(r), it is nothing but the second Chern class of the associated
complex vector bundle.

For an embedding SL(2) — G corresponding to a root o, we can induce a G-bundle
& from an SL(2)-bundle & gy (2).  Then the corresponding instanton numbers are
related by

2

(2.1.1) d(F) = d(gSL(z)) X (@)

Since we assume G is simply-laced, we have (a,«) = 2 for any root «. Thus the
instanton number is preserved under the induction.

2.2. Moduli of framed G-bundles

Let Bung be the moduli space of G-bundles with trivialization at £s, of instanton
number d as before. We often call them framed G-bundles.

The tangent space of BundG at & is equal to the cohomology group H' (P2, g (—£)),
where gois the vector bundle associated with & by the adjoint representation
G — GL(g) ([21, 3.5]). Other degree cohomology groups vanish, and hence the
dimension of H'! is given by the Riemann-Roch formula. It is equal to 2dh" ([4]).
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Here hV is the dual Coxeter number of G, appearing as the ratio of the Killing form
and our normalized inner product (, ).

It is known that Bung is connected, and hence irreducible ([21, Prop. 2.25]).

It is also known that BundG is a holomorphic symplectic manifold. Here the sym-
plectic form is given by the isomorphism

(2:2.1) HY(P?, g7 (—200)) = H' (P2, g (—Lo)),

where g 2 g* is induced by the invariant bilinear form, and Op2(—£fo) — Op2(—20s,)
is given by the multiplication by the coordinate zy corresponding to £.,. The tangent
space Ty Bung = H'(P?, g (—£s)) is isomorphic also to H!(P?, g5 (—2/s)) and the
above isomorphism can be regarded as To Bun‘é — T Bundg. It is nondegenerate
and closed. (See [54, Ch. 2, 3] for G = SL(r). General cases can be deduced from the

SL(r)-case by a faithful embedding G — SL(r).)

2.3. Stratification
Let ‘ZédG be the Uhlenbeck space for G. It has a stratification
(2.3.1) ‘lldG = |_|Bun‘é}7/\, Bun‘é},/\ > Bun‘le1 x S\A?,

where the sum runs over pairs of intégers d; and partitions A with d; + |A\| = d. Here
S\A? is a stratum of the symmetric product SI* A2, consisting of configurations ofl
points whose multiplicities are given by A, that is

2.3.2 S A2 = Nz, € SNAZ #x; fori#j
J
for A= (A1 > Ay > ---). We have
(2.3.3) dimBun$ , = 2(d1h" +1())).
Let [leGly 5 be the closure of Bun‘ély - We have a finite morphism
(2.3.4) Ugk x S\AZ — UG,
extending the identification BundG1 xSHAZ = Bundcl,)\, where S),A2 is the closure

of SxA? in SMAZ2.

2.4. Factorization

For any projection a: A2 — Al we have a natural map 7T§7G: ‘ZldG — S4AL. See [21,
§6.4]. It is equivariant under G = G x C* x C*: it is purely invariant under G. We
also change the projection a according to the C* x C*-action.

Let us explain a few properties. Let & € BundG. It is a principal G-bundle over P?
trivialized ‘at /., but can be also considered as a G-bundle over P! x P! trivialized
at the union of two lines {0} x P! and P! x {co}. We extend a to P! x P! — P!
Then 7 () measures how the restriction of & to a projective line a~'(z) differs
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from the trivial G-bundle for z € P'. If z is disjoint from 7¢ ;(7), then F,-1(4) is a
trivial G-bundle. If not, the coefficient of z in ﬂia(g ) counts non-triviality with an
appropriate multiplicity. (See [21, §4].)

On the stratum Bun xS)A2 wg’G is given as the sum of ﬂng and the natural
morphism SyA2 — SIMA! induced from a. This property comes from the definition
of the Uhlenbeck as a space of quasi-maps. (See [21, §§1,2].)

For type A, it is given as follows in terms of the ADHM description (By, Bs, I, J)
(see [54, Ch. 2]): let B, be the linear combination of By, By corresponding to the
projection a: A2 — A'. Then ﬂ(‘f’G is the characteristic polynomial of B,. (See [21,
Lem. 5.9].)

Moreover, most importantly, this map enjoys the factorization property, which says
the following. Let us write d = d; + da with dy,dz > 0. Let (S# A x S%2A')) be the
open subset of S?1 A! x §%2 A where the first divisor is disjoint from the second divisor.
Then we have a natural isomorphism

(2.4.1) UG X gap (STA! x §2A )y = (7 ) wd2,)7H(STAY x S A)).
See [21, Prop. 6.5]. We call ﬂ'g,G the factorization morphism. Often we are going to

make statements about fll‘é and we are going to prove them by induction on d; (2.4.1)
will usually allow us to say that the inductive step is trivial away from the preimage
under W(‘iG of the main diagonal in 54A'. In this case we are going to say that (the
generic part of) the induction step “follows by the factorization argument”.
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CHAPTER 3

LOCALIZATION

3.1. General Statement

Let T be a torus acting on X and Y be a closed invariant subset containing X7 .

Let ¢: Y — X be the inclusion. Let U o x \Y and ¢: U — X be the inclusion.

Let F € D5(X). We consider distinguished triangles
(3.1.1) 0T — T = F L,

Denote the Lie algebra of T" by t. Natuzal homomorphisms

(3.1.2) Hy(X,9) — Hp(Xipo' T) = Hy(Y, "),
(3.1.3) H7(Y,¢'T) = Hi(X;0.0'9) 2 Hi (X, 019'T) — H7(X, F)
become isomorphisms after inverting an element f € C[t] such that
(3.1.4) {zet|f(z)=0}> [J Lie(Stab,).

zeX\Y

See [34, (6.2)]. These assertions follow by observing Hx(X;9)'d) = HA(X,Y; )
and H}(X;¢.*F) = Hi(U; F) are torsion in C[t]. The same is true also for co-
homology groups with compact supports. We call these statements the localization
theorem.
We now suppose that we have an action of C* x C* commuting with the T-action
such that
— X©xC" s a single point, denoted by 0.

3.1.5
( ) — If g, me > 0, (£"1,t"2) - = goes to 0 when t — 0.

In fact, it is enough to have a C*-action for the result below, but we consider a
C* x C*-action, as the Uhlenbeck space has natural C* x C*-action.
Let T=Tx C* x C*.

Lemma 3.1.6. — The natural homomorphisms Hy (X, ) — Hy(Y,p* ), Hy (Y, 0 F) —>_
H; (X, ) are isomorphisms for & € D5(X).

SOCIETE MATHEMATIQUE DE FRANCE 2016
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Proof. — Let by : {0} — X, b : {0} — Y beinclusions, and ax: X — {0},ay: Y —

{0} be the obvious morphisms. Since 0 is the unique fixed point of an attracting action

of C* x C* by our assumption, adjunction gives us isomorphisms (ax )« = (b5)*,

(ay)« =N (bY)* on equivariant objects by [13, Lemma 6]. Therefore we have a diagram
H%(ng) - H%(Y’¢*g)

(3.1.7) %l lg

Hi((bg)*T) == H:((bg )¢ T);
where the lower horizontal equality follows from @by = bg. If & is a sheaf, other
three homomorphisms are given by restrictions, therefore the diagram is commutative.

Hence it is also so for & € D%(X ) by a standard argument. Taking the dual spaces,
we obtain the second assertion. O

3.2. The case of Ext algebras

Let 7, § € D%(X). We claim that
(3.2.1) Extps (x)(7, §) = Extpr (' 7, ' 0),
(3.2.2) Extps (x) (7, G) — Extpr vy (©" T, 0" §)

are isomorphisms after inverting an appropriate element f. Taking adjoint and con-
sidering (3.1.1), we see that it is enough to.show that

(3.2.3) EXtD%(X)(w*w*g7 ), EXED’Q’-(X)(gv ¢'¢|ﬁ)
are torsion. Let us observe that
(3.2.4) Ext ps () (4" T ™ F) & Exct s (1) (07920 T, 4" )

is torsion, as it is an equivariant cohomology group over U. Then multiply-
ing the identity endomorphism of ¥.9*F to ExtD%(X)(w*w*g,ﬁ), we con-
clude that ExtDbT x)(Yp* I, G) is torsion. The same argument applies also

to EXtDl%(X)(ga "/)'d)'g)

3.3. Attractors and repellents

Let X be a T-invariant closed subvariety in an affine space with a linear T-action.
Let A C T be a subtorus and X# denote the fixed point set.
Let X.(A) be'the space of cocharacters of A. It is a free Z-module. Let

(3.3.1) ap = X.(A) @z R.

Let Stab, be the stabilizer subgroup of a point x € X. A chamber € is a connected
component of

(3.3.2) ar\ |J X.(Stab,)®zR.
zeX\ XA
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We fix a chamber €. Choose a cocharacter A in €. Let z € X4. We introduce
attracting and repelling sets:

(3.3.3) @, = {y e X

the map ¢t — A(t)(y) extends to a map Al — X
sending 0 to x ’

the map t — A(t71)(y) extends to amap Al — X
sending 0 to z '

%zz{yeX

These are closed subvarieties of X, and independent of the choice of A € €. Similarly
we can define %y, Rx if we do not fix the point z as above. Note that X4 is a
closed subvariety of both @Zx and Rx; in addition we have the natural morphisms
Gx — X4 and Rx — X4,

3.4. Hyperbolic restriction

We continue the setting in the previous subsection. We choose a chamber in ag,
and consider the diagram

(3.4.1) x4 5ty Lx,

3

where ¢, j are embeddings, and p is defined by p(y) = lim;—o A(t)y.
We consider Braden’s hyperbolic restriction functor [13] defined by ® = i*j'. (See
also a recent paper [26].) Braden’s theorem says that we have a canonical isomorphism

(3.4.2) it o

on weakly A-equivariant objects, where i_, j_ are defined as in (3.4.1) for R x instead
of ﬁx.

Braden proved his theorem for a normal algebraic variety. It is not known that %dG
is normal or not. Therefore we use a more general result [26, Theorem 3.1.6].

Note also that ¢* and p, are isomorphic on weakly equivariant objects, we have
® = p,j'. (See [13, (1)].)

Let & € D5(X). A homomorphism

(3.4.3) HA(XA ') = HA (XA, p.j'F) = Hi(Gx, 7' F) — HH (X, F)

becomes an isomorphism after inverting a certain element by the localization theorem
in the previous subsection, applied to the pair @x C X.
We also have two naive restrictions

(3.4.4) Hi(X4,(jod)'T), Hi(X4,(joi)T).
For the first one; we have a homomorphism to the hyperbolic restriction
(3.4.5) Hp(X4,(j01)'S) — Hp(X4,5'9),

which factors through H*(@x,j'). Then it also becomes an isomorphism after in-
verting an element.
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The second one in (3.4.4) fits into a commutative diagram

Hp(XA,5'T) —— Hip(XA,(joi)*T)

(3.4.6) T T
Hy(tx,j'9) —— Hj(lx,j*9).

Two vertical arrows are isomorphisms after inverting an element f. Thelower horizon-
tal homomorphism factors through Hy.(X, ) and the resulting two homomorphisms
are isomorphisms after inverting an element, which we may assume equal to f. There-
fore the upper arrow is also an isomorphism after inverting-an element.

3.5. Hyperbolic semi-smallness

Braden’s isomorphism p.j' = (p_)ij* implies that p.j' preserves the purity of]
weakly equivariant mixed sheaves. ([13, Theorem 8]). In particular, p.j'IC(X) is
isomorphic to a direct sum of shifts of intersection-cohomology complexes ([13, The-
orem 2]).

Braden’s result could be viewed as a formal-analog of the decomposition theorem
(see [23, Theorem 8.4.8] for example). We give a sufficient condition so that p,j' IC(X)
remains perverse (and semi-simple by’the above discussion) in this subsection. This
result is a formal analog of the decompgsition theorem for semi-small morphisms
(see [23, Proposition 8.9.3]). Therefore we call the condition the hyperbolic semi-
smallness. This condition, without its naming,‘appeared in [48, 49] mentioned in the
introduction. We give the statement in a general setting, as it might be useful also in
other situations.

Let X, X# as before. Let X =] X, be a stratification of X such that i}, IC(X),
i IC(X) are locally constant sheaves up to shifts. Here i, denotes the inclusion X, —
X. We suppose that Xg is the smooth locus of X as a convention.

We also suppose that the fixed point set X4 has a stratification X4 = | | Y} such
that the restriction of p to'p~!(Y3) N X, is a topologically locally trivial fibration
over Y for any «, § (if it is nonempty). We assume the same is true for p_. We take
a point y3 € Y3.

Definition 3.5.1. — We-say ® is hyperbolic semi-small if the following two estimates
hold

1
dimp~t(ys) N Xo < i(dimXa — dim Yp),

(3.5.2)

1
dimp=!(ys) N X, < 5 (dim Xo — dim V).

In order to state the result, we need a little more notation. We have two local
systems over Yj, whose fibers at a point yg are Hgim x—dimY; (p~(ys) N Xp) and

Jim X—dim Vs (-1 (ys)NX,) respectively. Note that p~! (y5)NXo and p~* (yz)N X, are

ASTERISQUE 385



3.6. RECOVERING THE INTEGRAL FORM 27

at most (dim X —dim Yp)/2-dimensional if ® is hyperbolic semi-small. In this case, co-
homology groups have bases given by (dim X —dim Yj3)/2-dimensional irreducible com-
ponents of p~1(yz) N Xo and pjl(y[g) N X respectively. Let Haim X —dim Y (p7(yp) N
Xo)y and Hym XA Y (p=*(ys) N Xo), denote the components corresponding to a
simple local system x on Yjg.

Theorem 3.5.3. — Suppose ® is hyperbolic semi-small. Then ®(IC(X)) is perverse
and it is isomorphic to

P IC(Vs,X) ® Haim x —dim v, (0~ (¥5) N Xo)x-
Bx
Moreover, we have an isomorphism
Hgim X —dim v (P (ys) N Xo)y = gemxTdmY (p="(ys) N Xo)y-

The proof is similar to one in [49, Theorem 3.5], hence the detail is left as an
exercise for the reader. In fact, we only use the case when X7 is a point, and we
explain the argument in detail for that case in Theorem A.7.1.

The same assertion holds for IC(Xy, ) the intersection cohomology complex with
coefficients in a simple local system # over Xy, if we put ¥ also to cohomology groups
of fibers.

Note that ®(IC(Xg, £3)) is also perverse for a local system Lg on Xg, and iso-
morphic to

@IC(YQ, X) ® Hding—d:mYB (p_l(yﬁ) n X,B)X
Bix

Conversely, if ®(IC(Xg, #)) is perverse, we have the dimension estimates (3.5.2).
It is because the top degree cohomology groups are nonvanishing, and contribute to
nonzero perverse degrees. See the argument in Corollary A.9.2 for detail.

3.6. Recovering the integral form

We assume (3.1.5) and also that X is affine. We consider the hyperbolic restriction
with respect to T'.

Let A = C[Lie(T)] = Cle1, €2, a] and Fr be its quotient field.

We further assume that Hp (X,Y) is torsion free over Hj(pt) = Ar, ie,
Hy (X,9) — Hy (X, 9)®a, Fr is injective. This property for the Uhlenbeck space
will be proved in Lemma 6.1.1.

We consider a‘homomorphism

(3.6.1) H; (X, 9) =2 Hp (XT,i''T) — Hf (XT,i"5'F)
for 7 € D(X). The first isomorphism is given in Lemma 3.1.6. By the localization
theorem, the second homomorphism becomes an isomorphism after inverting an ele-

ment f € C[Lie T| which vanishes on the union of the Lie algebras of the stabilizers
of the points z € @x \ X7.
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Theorem 3.6.2. — Consider the intersection Hj (XT,i*j'9) n Hy (XT,i*j )
in Hy (X,Y) ®ar Fr. It coincides with Hy (X, ).

The proof occupies the rest of this subsection. We first give a key lemma studying
stabilizers of points in @x \ X7T.

Lemma 3.6.3. — Suppose that (A\Y,n1,n2) s a cocharacter of T such-that either of
the followings holds

1. \V is dominant and ny, ny > 0.
2. X\ is reqular dominant and nqy, ny > 0.

Then there is no point in Gx \ X1 whose stabilizer contains (\Y,ny,n2)(C*).

Proof. — Assume ) is dominant and nq, ng > 0.
Suppose that z € @x is fixed by (A\Y,n1,n2)(C*). Then we have
(3.6.4) A = (", t72) .

Since AV is dominant, its attracting set contains @x. Therefore the left hand side has
a limit when ¢ — co. On the other hand, the right-hand side has a limit when ¢t — 0.
Therefore C* 3 ¢ — AV (¢t7!) -z € X extends to a morphism P! — X. As X is affine,
such a morphism must be constant, i.e., (3.6.4) must be equal to z.

If ny, ng > 0, x must be the unique C* x C*fixed point. It is contained in X7 .

If \V is regular, z is fixed by T, that-is z € X7T. O

Proof of Theorem 3.6.2. — Let o be an ¢lement in Hy (X, ) which is not divis-
ible by any non-constant element of Ag. Let JI be two fractional ideals of Ap
consisting of those rational functions f such that fa € Hﬁ’c(XT,z'*j!g) and fa €
Hq}"c(XT,iij!_ ) respectively. We need to show that J} N J; = Ar. Note that a
priori the right hand side is embedded in the left hand side.

Let f € J¥. Then f = g/hwhere g, h € A and h is a product of linear factors of
the form (u, m1,mg) such that

— (AY, ) > 0 for a regular dominant coweight AV, and
— mq, mo > 0 with at least one of them nonzero.

In fact, we have ((A\Y,n1,n2), (1, m1, m2)) # 0 for any (A\V,n1,n2) as in Lemma 3.6.3.
Taking a regular dominant coweight AV and n;, no = 0, we get the first condition.
Next we take A = 0 and ni, ne > 0 and get the second condition.

Similarly for f ="g/h € J,, h is a product of (u,m1,ma) with (A\V,u) < 0 for
a regular dominant coweight AV, and the same conditions for (m;,mz) as above.
Then there are no linear factors satisfying both conditions, hence we have J} NJ; =
Ar. O
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CHAPTER 4

HYPERBOLIC RESTRICTION ON UHLENBECK SPACES

This section is of technical nature, but will play a quite important role later. Feigin-
Frenkel realized the W-algebra W (g) in the Heisenberg algebra $eis(h) associated
with the Cartan subalgebra b of g. (See [30, Ch. 15].)

We will realize this picture in a geometric way. In[46] Maulik-Okounkov achieved
it by stable envelopes which relate the cohomology group of Gieseker space to that
of the fixed point set with respect to a torus. The former is a module over Wy(g)
and the latter is a Heisenberg module. In [66] Schiffmann-Vasserot also related two
cohomology groups by a different metbod.

We will take a similar approach, but we need to use a sheaf theoretic language,
as Uhlenbeck space is singular. We use the hyperbolic restriction functor in §3.4, and
combine it with the theory of stable envelopes- This study was initiated by the third
author [60]. A new and main result here is Theorem 4.6.1, which says that perversity
is preserved under the hyperbolic restriction in our situation.

We fix a pair T C B of a maximal torus 7' and a Borel subgroup B, and con-
sider only parabolic subgroups P containing B, except we occasionally use opposite
parabolic subgroups P_ until §4.13. In §4.13, we consider other parabolic subgroups
also.

4.1. A category of semisimple perverse sheaves

Let IC(BundG’ s> p)-denote the intersection cohomology (IC) complexes, where p

is a simple local system on Bun‘é, , = Bung xSyA? corresponding to an irreducible
representation of Sy, X Sp, X -+ via the covering

(4.1.1) (A%)™ x (A%)™ x ...\ diagonal — SyA?,

where X = (1™1272...). (Recall S\A? is a stratum of SI* A2, see (2.3.2).)

Definition 4.1.2. — Let Perv(%é) be the additive subcategory of the abelian category
of semisimple perverse sheaves on %%, consisting of finite direct sums of IC(BundG’ )R
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By abuse of notation, we use the same notation IC(BundG, »» p) even if p is a reducible
representation of S, x Sp, X ---. It is the direct sum of the corresponding simple IC
sheaves.

If p is the trivial rank 1 local system, we omit p from the notation and denote the
corresponding IC complex by IC(BundG’)\), or IC(’ZldG’A).

Furthermore, we omit A from the notation when it is the empty partition &. There-
fore IC(%%) means IC(BundG’g).

Objects in Perv(%dc) naturally have structures of equivariant perverse sheaves in
the sense of [11] with respect to the group action G = G x C* x C* on ‘Zldg. We often
view Perv(‘ll‘(i;) as the subcategory of equivariant perverse sheaves.

4.2. Fixed points

Let P be a parabolic subgroup of G with a Levi subgroup L. Let A = Z(L)° denote
the connected center of L. Let Bun% denote the moduli space of L-bundles on P? with
trivialization at £, of ‘instanton number d’. The latter expression makes sense, since
the notion of instanton number, defined as in §2:1, corresponds to a choice of a bilinear
form on the coweight lattice, which is-the same for G and for L.

Suppose that & € Bun‘é is fixed by the A-action. It means that bundle automor-
phisms at £, parametrized by A extend‘c the whole space P2. The extensions are
unique. Therefore the structure group G of & reduces to the centralizer of A, which
is L. Hence (Bunf)4 = Bun{.

Let us consider the fixed point subvariety

(4.2.1) UG = (U)A
in the Uhlenbeck space. Then we have an induced stratification

d
(4.2.2) U, = |__| Bun}',, Bun}, = Bun xS)A%
di+do=d,\Fd>

Strictly speaking, our ‘L[dL depends on the choice of the embedding L — G, therefore
should be denoted, say by %%,G- We think that there is no fear of confusion.

Note that [L, L] is.again semi-simple and simply-connected. (See [12, Cor. 4.4].)
Suppose that we have only one simple factor. Since we assume G is simply-laced,
[L, L] is also. The instanton number is the same for G and [L, L]. Otherwise we define
the instanton number for [L, L] by the invariant form on Lie([L, L]) induced from one
on g.

We only have trivial framed L/[L, L]-bundles as H?(P?) is 1-dimensional hence the
first Chern class of a framed bundle vanishes. Thus we have

(4.2.3) Bun}' = Bun‘[iLlﬁL] .
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Since [L, L] is a subgroup of G, we have the induced closed embedding (M‘[Z L= ‘lédg
(see [21, Lem. 6.2]), which clearly factors as

(4.2.4) U, 1y — U

By (4.2.3), this map is bijective. Since both spaces are closed subschemes of ‘Zéé, we
have

Proposition 4.2.5. — The morphism ‘ZZ?L’L] — U = (UL)A is o homeomorphism
between the underlying topological spaces.

We are interested in perverse sheaves on ‘ZldL, hence we only need underlying topo-
logical spaces. Hence we may identify ‘ZldL and %?L, 1]- We define the category Perv(‘lldL)

in the same way as Perv(‘ué).

Example 4.2.6. — The case when L is a maximal torus 7" is most important. We have
(4.2.7) Up = 87 = | | SxAZ,
Ard

as we do not have nontrivial framed T-bundles.

4.3. Polarization

Following [46, §3.3.2], we introduce the niction of a polarization of a normal bundle
of the smooth part of a fixed point componeiit:

Let us give a definition in a general situation. Suppose a torus A acts on a holomor-
phic symplectic manifold X, preserving the symplectic structure. Let Z be a connected
component of X4 and N be its normal bundle in X. Consider A-weights of a fiber
of Nz. Let e(Nz)|m+ (pt) be the Hj(pt)-part of the Euler class of the normal bundle,
namely the product of all A-weights of a fiber of N. Since A preserves the symplectic
form, Z is a symplectic submanifold, and weights of N appear in the pairs (o;, —«;).
Hence

(4.3.1) (— 1)t D2 e(Ng) g oy = [ [ @F

is a perfect square. A choice of a square root ¢ of (4.3.1) is called a polarization of Z
in X.

In the next subsection we consider attractors and repellents. We have a polarization
drep given by product.of weights in repellent directions. However this will not be a right
choice to save signs. Our choice of the polarization d, which follows [46, Ex. 3.3.3], will
be explained in §5.3 for Gieseker spaces, and in §6.2 for Uhlenbeck spaces. Then we
understand § = &1, depending on whether it is the same as or the opposite to rep,
in other words we identify § with 6/dyep, as dyep is clear from the context.

Note that a polarization does not make sense unless the variety X is smooth.
Therefore we restrict the normal bundle to Z N BundG =7ZnN Bun‘i and consider a
polarization there for Uhlenbeck spaces.
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However a fixed point component Z, in general, does not intersect with Buné. Say
ZN Bun‘é = @ if L = T. We do not consider a polarization of Z in this case, and
smooth cases are enough for our purpose.

4.4. Definition of hyperbolic restriction functor

We now return to the situation when X = ‘ZldG. We choose a parabolic subgroup P
with a Levi subgroup L as before.

We consider the setting in §§3.3,3.4 with A = Z(L)°. Then (3.3.2) is the hyperplane
arrangement induced by roots:

(4.4.1) ag \ [J{al,, =0},

where the union runs over all positive roots a which do not vanish on ag. The chambers
are in one to one correspondence to the parabolic subgroups containing L as their
Levi (associated parabolics). Therefore the fixed P determines a ‘positive’ chamber.

We denote the corresponding attracting and repelling sets @x, x by ‘M% and
[L/;L. Often we are going to drop the instanton number d from the notation, when
there is no fear of confusion. We let i and p denote the corresponding maps from %/,
to Up and from Up to %;. Also we(denote by j the embedding of %p to U,. We
shall sometimes also use similar maps 7. j—and p_ where %p is replaced with %p .
We have diagrams

p j p— j_

Definition 4.4.3. — We define the functor ®1, ¢ by i*j' = p.j'.

We apply it to weakly A-equivariant objects, in particular on Perv(%‘é).
Warning. Of course, the functor ®; ¢ depends on P and not just on L. When we
want to emphasize P, we write @ILD,G. Otherwise P is always chosen so that P O B
for the fixed Borel subgroup B.

Let us justify our notation %p for the attracting set. We have a one parameter
subgroup A: G, — G such that

_ . o
(4.4.4) P= {g &G ‘ lim A(t)gA(t) ex1sts} ,
L=GY®) = {g e G|\(t)g =gA(t) for any t € G} .

Then we have

Up I {ze g

lim A(¢) -z exists} ,
(4.4.5) =0
U, def. (UN)C) = {x € Ug | A(t) -z =z for any t € Gy, } .

We embed G into SL(N) and consider the corresponding space for G = SL(N). We
use the ADHM description for %g; (ny to identify it with the affine GIT quotient as in
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[54, Ch. 3]|. Then SL(N) = SL(W), and %p coincides with the variety 7(3) studied
in [56, §3|. Here 7 is Gieseker-Uhlenbeck morphism, and 3 is the attracting set in the
Gieseker space, which will be denoted by @p later.

In [56, Rem. 3.16] it was remarked that 3 parametrizes framed torsion free sheaves
having a filtration E = E° D E! > ... D EF D EF! = 0. If all F% = E/E!
are locally free, F is a P-bundle. Thus %p contains a possibly empty open subset
p~1(Buny) consisting of P-bundles.

Let us, however, note that %, NBun, is not entirely consisting of P-bundles, hence
larger than p~!(Bun ): Consider a short exact sequence

0-F!>E—->F'=4,-0,

arising from the Koszul resolution of the skyscraper sheaf at a point z € A2. Here 7,
is the ideal sheaf for z. Then E € %p N Bung, but E is'not a P-bundle as F! is not
locally free. More detailed analysis will be given in the proof of Proposition 5.8.9.

4.5. Associativity

Proposition 4.5.1. — Let Q be another parabolic subgroup of G, contained in P and
let M denote its Levi subgroup. Let QQp, be the image of Q in L and we identify M
with the corresponding Levi group. Then we have a natural isomorphism of functors

(4.5.2) PrpoPra = Puc.

Proof. — It is enough to show that
(453) %P X(}'{L %QL = %Q’

as

TN/ !

pLi"pedt = plpli" 5 = (' o p")u(j 0 5")
in the diagram

(4.5.4) Uy, —— 1,

The left hand side of (4.5.3) is just equal to p‘l(WQL). By embedding G into
SL(N) we may assume that G = SL(N). In this case, we use the ADHM description
to describe Up, Ug, Ug, - By [56, Proof of Lemma 3.6], they are consisting of data
(B1, Ba, I,J) such that JF(By, Bs)I are in P, Q, Q respectively, i.e., upper trian-
gular in appropriate sense, for any products F'(Bj, Bs) of By, By of arbitrary order.
Now the assertion is clear. O
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4.6. Preservation of perversity

The following is our first main result:

Theorem 4.6.1. — @L,G(IC(%dG)) is perverse (and semi-simple, according to [13, The-
orem 2|). Moreover, the same is true for any perverse sheaf in Perv(’lldG).

The proof will be given in §A.
Let us remark that the result is easy to prove for type A, see [60, §4.4, Lemma 3].
The argument goes back to an earlier work by Varagnolo-Vasserot {72].

4.7. Hyperbolic restriction on BundL

Let us consider the restriction of ® L,G(IC(‘LZdG)) to the open subset Bun§ in this
subsection.

For simplicity, suppose that [L, L] has one simple factor so that the instanton
numbers of L-bundles are the same as those of [L;L]-bundles. In particular, Bun‘i is
irreducible. Then IC(‘ZldL) is a simple perverse sheaf; and we study

(471) HomPerV(‘Mi)(IC((u%%QL,G(IC(%?})))

We restrict (4.4.2) to the open subseis consisting of genuine bundles:

p ,
(4.7.2) Bun{ = p~1(Bunl) L Bung .

Let us take & € Bun?. Then the tangent space of Bun at 7 is H'(P2, [y (—{x)),
where [ is the Lie algebra of L. This is the subspace of H'(P?, g5 (—fs)) = T Bun,
consisting of Z(L)°-fixed elements. The normal bundle of Bun} in Bun% splits into
the sum of H'(P?, ny(—{s)) and H'(P?,n;(—£s)), where n is the nil radical of p =
Lie P, and n~ is its opposite.-They correspond to attracting and repellent directions
respectively. Then p‘l(Bun‘i) is a vector bundle over Bun?, whose fiber at & is
H'(P?,ng(—£s)). It parametrizes framed P-bundles. The morphism p is the projec-
tion and ¢ is the inclusion of the zero section. Therefore we have the Thom isomorphism
between i*j!(iﬁBuné) and Gp,¢ up to shift.

Note further that dim p_l(BundL) is the half of the sum of dimensions of Bun% and
Bung, as H!(P?, ng(—{s)) and H* (P2, n;(—(s)) are dual to each other with respect
to the symplectic form. Hence a shift is unnecessary, and the Thom isomorphism
gives the canonical identification * j!(i?Buné ) = ‘€Buni . Therefore we normalize the
canonical homomorphism

(4.7.3) 14 € Hompgy, ) (I0(%4), @16 (1C(2L)))

so that it is equal to the Thom isomorphism on the open subset.
Note also that a homomorphism in (4.7.1) is determined by its restriction to Bun?
hence (4.7.1) is 1-dimensional from the above observation. And 1%,G is its base.
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If [L, L] has more than one simple factors Gl, Go,. .., Bun‘i is not irreducible as it is
isomorphic to | |; 44, .. BunG1 X Bun .+. Then IC(%%) must be understood
as the direct sum
(4.7.4) @ IC(Bun Pox BunG X e ).

di+da+-=d

In particular, (4.7.1) is not 1-dimensional. But it does not cause us any trouble. We
have the canonical isomorphism for each summand, and 1%,G is understood as their
sum.

4.8. Space U? and its base

We shall introduce the space U? of homomorphisms from €'54yn2 t0 @ Lyg(IC(%é))
and study its properties in this subsection. A part of computation is a byproduct of]
the proof of Theorem 4.6.1 (see Lemma 4.8.15). The study of U? will be continued in
the remainder of this section, and also in the next section.

Definition 4.8.1. — For d > 0, we define a vector space
U =0 Homperv ) (Csiynz, @1, (IC(UE)))
(‘S(JJA27§.¢L7G(IC(%G)))7

where (d) is the partition of d consisting of a single entry d, and £: SyA? — ‘lli is
the inclusion.

(4.8.2)

We use the notation U¢, when L, G are clear from the context.

Since the hyperbolic restriction ®1, ¢ depends on P, the space U‘Li’G depends also
on P. When we want to emphasize P, we denote it by Uﬁ:g or simply by U%F.

We have a natural evaluation homomorphism

(4.8.3) U® 65,02 — 1o(IC(U)),

which gives the isotypical component of ® L,G(IC(‘Z&dG)) corresponding to the simple
perverse sheaf Gg 2.
By the factorization §2.4 together with the Thom isomorphism i*j!(i?Bundl) =
G

6

i, We get
Bun®1 g

Proposition 4.8.4. ~—_We have the canonical isomorphism in Perv(U3):
(4.8.5) 01, c(IC(%)) = P IC(Bung,, p).

Here p is the (semisimple) local system on BunL/\ = Bun‘é1 xS\A? with X =
(1m2m2...) corresponding to the representation of Sp, X Sp, X --- on (U')®™ @
(U?)®"2'® ... given by permutation of factors.

Moreover the isomorphism is also in the equivariant category with respect to L X

C* x C*.
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For example, the isotypical component for the intersection cohomology complex
IC(Bun‘é1 y) for the trivial simple local system is

(4.8.6) Sym™ U'® Sym™ U’ ®-- -,

where Sym denotes the symmetric power.

The second statement is the consequence of the first as the spaces-of homomor-
phisms between objects in Perv(@l‘z) are canonically isomorphic for equivariant cate-
gory with respect to L x C* x C* and non-equivariant one. (See [45, 1.16(a)].) Therefore
(4.8.5) is an isomorphism in the equivariant derived category, though we use the fac-
torization, which is not equivariant with respect to C* x C*.

Lemma 4.8.7. — Suppose L =T. We have

(4.8.8) H*(SA?, &7.6(IC(%E)) = € Sym™ U @ Sym™ U? @ - -
[A|=d

where A = (1™12"2 .. .).

Proof. — Since L = T, we have ‘Ll% = S9A2%. See Example 4.2.6. Then the assertion

means that only trivial representation of S,, x'S,, X --- contribute to the global
cohomology group.
Let U be an open subset of (A2)?" x (A2)"2 x ... consisting of pairwise disjoint

n, ordered points, ny ordered points, and so-on in A2. Forgetting orderings, we get
an (S, X S, X -+ )-covering p: U — SyA%. The pushforward of the trivial rank 1
system with respect to p is the regular representation preg 0f (Sp, X Sp, X -+ +).
Since p extends to a finite morphism (A?)" x (A%)"2 x ... — S,A2 we have
IC(SAA?, preg) = Ps(C(a2)m1 x(a2)n2x...). By the Kiinneth theorem, the global coho-
mology group H*(e) of the right hand side is H*((A2)")® H*((A?)"2)®---. This is
1-dimensional, and corresponds to the trivial isotypical component of p.c;. Now the
assertion follows. O

Let us continue the study of U?. Let us note that all of our spaces ‘ZédG, ‘Ll%,
‘ll(lip have trivial factors A% given by the center of instantons, or the translation on
the base space A? except d = 0 where ‘Ll% = ‘M% = %(1)3 = pt. We assume d # 0
hereafter. Let C‘LédG denote the centered Uhlenbeck space at the origin, thus we have
9%, = C%dG x A2, Let us compose factorization morphisms 7r,”‘f7g, 71‘5’(; for the horizontal
and vertical projections h: A2 — Al v: A2 — Al with the sum map o: SIA! — Al.
Then %% = (awg’g X UWZ’G)_I(O,O). We use the notation ¢%%, U} for Us, UL
cases. The diagrams ' (4.4.2) factor and induce the diagrams for the centered spaces,
and the factorization is compatible with the hyperbolic restriction. Let us use the
same notation for ¢, j, p for the centered spaces. Then we have

(4.8.9) Ut = HO(&hp.j TC(CUL)),

where & is the inclusion of the single point d-0 in C‘ZédL. Here d-0 is the point in S(d)AZ,
the origin with multiplicity d.
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By base change we get

(4.8.10) U= H(p~(d-0), 7 IC(°UE)),
where j: p~1(d - 0) — ©%% is the inclusion.
We have
Lemma 4.8.11. —
(4.8.12) dim U? = rank G — rank[L, L.
Proof. — According to a theorem of Laumon [42], given a constructible complex F'

on a complex algebraic variety X, and a morphism f: X = Y the classes [Rf.F]
and [RfiF] in the Grothendieck group of constructible complexes on Y coincide.
In particular, x(X,F) = x.(X,F). It follows that the Euler characteristic of the
stalk of IC(‘leG) at a point of S(d)A2 is equal to the Euler characteristic of the stalk
of @L’G(IC(%Z;)) at the same point; the former was computed in Theorem 7.10 in
[21].

Now let us give a proof in the case L = T. Then it is easy to see that Proposi-
tion 4.8.4 implies that the stalk of ®7 ¢(IC(%%)) at a point of S(a)A? is isomorphic
to Symd(@i U%,G), where we regard €, U:ir,c as-a graded vector space (with the nat-
ural grading coming from ¢) and the_super-script' d means degree d with respect to
that grading. On the other hand, [21, Theorem 7.10] implies that a similar description
fits the stalk of IC(‘ZJé) at a point of S(d)A? if we disregard the cohomological grading
(the “first” grading in the language of [21]) @ud take a rank(G)-dimensional space V*
in place of UL . above. We get dimUg = rank(G) for every d by induction in d.

Let us now consider the case of afbitrary L. Again, it is easy to deduce from
Proposition 4.8.4 that the stalk of @T’L(CDL,G(IC(‘ZJdG))) o~ @T’G(IC(‘LZdG)) at a point
of S(d)A2 is isomorphic to

D Ssym™ P UL @ Sym™ (P UL e).
di+da=d i J
where the meaning of the super-scripts d; and ds is as above. In view of the preceding

paragraph, we get dim Ug,G =rank(G) — rank([L, L]). O

The dimension estimate Corollary A.9.2 and the argument in [49, Prop. 3.10] im-
plies that
HO(p™'(d-0),3'1C(°Ug))
(4.8.13) ~ HO(p~'(d- 0) N Bund, j' IC(°%%))
= H(p~"(d-0)N Bung, C).
Here we use the degree shift convention of the Borel-Moore homology group (see
Convention (iv)), which is shift by dimc‘ll(é = 2dhY — 2 in this case.

Let us set

(4.8.14) Ut 4 p=1(d-0).
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The subscript 0 stands for d - 0, and this convention will be also used later. More
generally, we denote p~!(z) by wdp7z for z € UL,

Then H [0](%‘11370 N Bunf, C) has a base given by (dh¥ — 1)-dimensional irreducible
components of %‘;0 N BundG. The dimension estimate Corollary A.9.2 implies that
%?370 N BundG’ (d' < d) is lower-dimensional. Therefore

Lemma 4.8.15. — We have
(4.8.16) U 2 Hig(Up).

This space has a base given by (dh — 1)-dimensional irreducible components of [M%O.

4.9. Irreducible components

Let us describe (dh" — 1)-dimensional irreducible components of ‘Ll}i;,o for P =B
explicitly. We believe that there is no irreducible component of smaller dimension (see
Remark A.7.3), but we do not have a proof.

First consider the case G = SL(2). By Lemma 4.8.11 we have dimU¢ = 1, and
hence ‘llgo has only one (2d — 1)-dimensional irreducible component. As we have
observed in the previous subsection, it is the closure of ‘lldB’O N Bung. In §5.8, it will
be shown that %‘}3’0 N Bun‘é consists ofrank 2 vector bundles E arising from a short
exact sequence
(4.9.1) 0—-O—>E=17—0

compatible with framing, where / is an ideal sheaf of colength d.

For a general G, consider the diagram (4.5.4) with M = T, L = L; the Levi
subgroup corresponding to a simple root «;. Note that [L;, L;] = SL(2), and hence
%‘L_ is homeomorphic to %% L(2)~ Therefore U, 2,0 ﬂBun‘ii is irreducible of dimension
2d — 1 by the above consideration.

Proposition 4.9.2. — The irreducible components of %é’o of dimension dh¥ — 1 are

the closures ofp_l(%}igb’o N Bun‘zi) foriel.

Definition 4.9.3. — Let us denote the closure of pil(‘ll‘éLivo N Bun%i) by Y;.

Proof. — Consider the upper right part of (4.5.4), which is (4.4.2). Its restriction to
the open subset BundLi has been described in §4.7. As p is a vector bundle whose rank
is equal to the half of the codimension of BundLi in Bung, it follows that the inverse
image p_l(‘ll%L_’O N Bun‘ii) is irreducible and has dimension dh" — 1. Therefore the
closure of p_l(‘lldBL_ on Bun‘ii) is an irreducible component of ‘M%’O.

Since dim U? = rank G by Lemma 4.8.11, it is enough to check that p_l(‘lé%b’o N
Bun‘ii) # p_l(‘lé(fng on BundLj) if i # j. When G = SL(r), ‘l/]ig’o N Bun, consists of
vector bundles F having a filtration 0 = Ey C E; C --- C E,. = E compatible with
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framing. Moreover p_l(‘ll%ho N BundLi) consists of those with ¢o(E;/E;_1) = d and
c2(Ej/Ej_1) = 0 for j # i. Therefore p_l((lldBLwo N Bun‘ii) # p_l(%}éb’o A Bun%j)
for i # j. (See §5.8 for detail.) For a general G, we embed G into SL(NN). Then we

need to replace B by a parabolic P, but Pil(%f}?%,o N BundLi) is embedded into a
corresponding space, and the same argument still works. O

4.10. A pairing on U*

Let us introduce a pairing between U%* and U%P- in this subsection.
We combine Braden’s isomorphism (3.4.2) with the natural homomorphism &}, — &;
to get

(4.10.1) HO(&hi* ' IC(CUL)) — HO(E4i 5% IC(CUL)).
The right hand side is dual to
(4.10.2) ULP- = HO(ehi* j* 1C(CUL)).

Thus we have a pairing between U%? and U%P~. Following the convention in [46,
3.1.3], we multiply the pairing by the sign (—l)dimm”dG/2 = (—l)dhv_l. Let us denote
it by (, ). When we want to emphasize that it depends on the choice of the parabolic
subgroup P, we denote it by (, )p.
Since &,Cg.0 — £5Cq.0 is obviously an igomorphism, this pairing is nondegenerate.
The transpose of the homomorphism U%F — (U%F-)V is a linear map U%F- —
(USPYV. Tt is

(4.10.3) HO(&yi7 jL IC(CUG)) — HO (&5 IC(CUE)),

given by the transpose of the composite of flo — &5 and Braden’s isomorphism ¢*j o
i' j*. They are the same as original homomorphisms 5(!) — &; and A Y
respectively. It means that

4.10.4 u,v)p = (w,u)p forue UHY ve UL~
(

where ( , )p_ is the pairing defined with respect to the opposite parabolic, i.e., one
given after exchanging i, j and i_, j_ respectively.

4.11. Another base of ¢

We next construet another base of U¢ = U%G for L = T, which is (rank G)-
dimensional by Lemma 4.8.11. This new base is better behaved under hyperbolic
restrictions than the previous one given by irreducible components.

This subsection is preliminary, and the construction will be completed in §6.2.

We study quq’G, using the associativity of the hyperbolic localization (Proposi-
tion 4.5.1)for M = T, L = L; the Levi subgroup corresponding to a simple root «;.
Since various Levi subgroups appear, we use the notation U%’G indicating groups we
are considering.
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Note that [L;, L;] & SL(2), and hence ‘ZldLi is homeomorphic to ‘l[’é L(2)- We under-
stand IC(‘Uii) as IC((M‘;L(Z)) and apply Lemma 4.8.11 to see that

(4.11.1) UTL = Homp,,, %d)(gS(d)A? P71, (IC(%L )

is 1-dimensional. In the next section, we shall introduce an element ldLi in U%’ 1, using
the theory of the stable envelope in [46].

Taking L = L; in the construction in §4.7, we apply the functor @7 r,. By Propo-
sition 4.5.1 we get an element

(4.11.2) 071,17, ) € Homp,, (g (@, (IC(%1,)), @16 (IC(%5)))-
Composing with the element 1dLi in Urj!, 1, mentioned just above, we get
(4.11.3) ®rp, (19 ¢) 01}, €Ul g

We have (rank G)-choices of 3. Then we will show that
(4.11.4) {ad < op,(61¢ &)old ),

gives a basis of U%G in the next subsection. Here we will introduce an appropriate
polarization § = £1, using a consideration of rank 2 case. See (6.2.1). Moreover, this
will give us an identification U%G with the Cartan subalgebra b of g such that a¢ is
sent to the i*® simple coroot a. Seea remark after Proposition 6.3.8.

We normalize the inclusion IC(’Z/% ) — @, G(IC(’Zld )) by §1¢. ..c as above. Then
the projection @y, G(IC(‘ZZ ) — IC(‘Léd ) is also determined, as IC(‘ZJL ) has multi-

plicity 1 in @ Li,g(IC(‘ZlG)) (see §4.7). Therefore we have the canonical isomorphism
(4.11.5) O, c(IC(UE)) = 1C(US) @ IC(UE )*,

where IC(Z{%i)J— is the sum of isotypical components for simple factors not isomor-
phic to IC(‘lldLi). Applying ® 1, and using @7 1,Pr,. ¢ = ®Pr,c, we get an induced
decomposition

(4.11.6) Ufg="Ufp, ®UtL)"

This decomposition is orthogonal with respect to the pairing in §4.10 in the fol-
lowing sense. We have the decomposition Ug:g = Ugf nLi g (Uﬁf’ mLi)l for the

opposite Borel'B_, and

d d,B_NL;\1 d d,B_NL;
(4-11-7) <UT,L,-7 (UT,Li, ) > =0= <(UT,L ) UT L; >
Moreover the restriction of the pairing to Ug:iﬂLi, U;:i’ ML coincides with one de-

fined via ‘ZldLi )
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4.12. Dual base
Let d?’_ denote the element defined as &¢ for the opposite Borel. We shall prove

(412.1) (Y], 887) = £6,(~1)%d
modulo the computation for G = SL(2), corresponding to the case ¢ .= j in this
subsection. The computation for G = SL(2) will be given in Remark 5.13.9. This
formula means that 64?’7 is the dual base to the base given by irreducible components
Y; with respect to the pairing %( , ) up to sign.

Consider the diagram (4.5.4) for the centered version, where we take M = T,
L = L; as in §4.11. Let us consider the open embedding of ¢ Bun‘ii to C‘Uii. We have

the corresponding restriction homomorphism
U, = HO(& (@ op")u(j 0 5") 1C(°Ug))
=~ H(6pl " ®L,,c(IC(*U)))
= HO(p'~'(d- 0), 7" 1, c(IC(U)))
— HO(p'"}(d - 0) N °Bung ,j"®r, c(IC(*U%g))),

(4.12.2)

where j' is the restriction of 5’ to p'~'(d - 0). When we restrict @Li,g(IC(C‘M‘é)) to
the open set cBundLi, the first summand IC(%’L) in the decomposition (4.11.5) is
replaced by the constant sheaf &. Bun? and the second summand is killed. Therefore

we have an isomorphism

-1
HO(p'~!(d-0) N “Bung,, j" @1, 6 (1C(°U)))
2 Hi)(p'~'(d - 0) N °Bunf ,C) 2 Uf 1,
where the second isomorphism is'nothing but (4.8.13) for G replaced by L;.
Thus the projection qu",c — U%,Li to the first summand in (4.11.6) is nothing but
the restriction homomorphism we have just constructed.

Let us further consider the restriction of the upper right corner of the diagram
(4.5.4) to the open subset-¢ Bun‘ii. Then

P~ (' 7(d-0) N ° Bund ) = p~! (U, o Bunf)

has been studied in §4.9: Its closure is an irreducible component of ‘Zé%,o. By the
base change the restriction to CBun‘zi is replaced by one to p_l(‘lfligLi’O N cBun‘éi),
and we can replace relevant IC sheaves by constant sheaves. The Thom isomorphism

gives us p. j!??Buné & Cpund as in §4.7. Note that the intersection of an irreducible

component Y; of Proposition 4.9.2 with the open subset p*l(fu%% one Bun‘zi) is lower-
dimensional if 7. # j, as pil(%dBLi oN° Bun‘zi) is irreducible. Therefore the fundamental
class of ¥ goes to 0 under the restriction. Hence we have (4.12.1) for ¢ # j by (4.11.7).
In fact, we will see that Y; ﬂp‘l(%‘éLNO N CBun%i) = & for type A in §5.8, and the
same is true for any G thanks to an embedding G — SL(N).
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The Thom isomorphism sends [Y;] to [‘LlBL o] from the definition of Y;. The sign
in (4.12.1) appears as we multiply the Thom isomorphism by a polarization ¢ (see
(6.2.1) below). Therefore the computation of (4.12.1) for ¢ = j is reduced to the case
G = SL(2). The relevant computation will be given in Remark 5.13.9 as we mentioned
above.

4.13. Aut(G) invariance

Let Aut(G) be the group of automorphisms of G. Its natural action on BundG
extends to ‘Ll‘(i; ([21, §6.1]).

Let us fix a cocharacter \: G,, — G, and consider our construction with respect
to o o A for 0 € Aut(G). Here L = G*®m) is considered as a fixed Levi subgroup.
Substituting oo into A in the Formula (4.4.4), we define-a pair (P?,L?) of a parabolic
subgroup and its Levi part. The action @, : % — %% induces p,: Ub — Up.,

Yot ‘ZlL — ‘Zch,, and we have a commutative diagram

(4.13.1) wal «pal %l

d d d
%L" X 7 (!lpo' ” WG’

o Jo

where the subscript o indicates morphisms between spaces for o € Aut(G).
Since IC(%%) is an Aut(G -equivariant perverse sheaf, we have an isomorphism
G
wr IC(%dG) = IC(%é). Therefore we have an isomorphism

(4.13.2) i"§ IC(UG) = @55 IC(Ug).

The isomorphism (4.13.2) is-equivariant in the following sense: The right hand
side is a T = T x C* x-C*-equivariant perverse sheaf, while the left hand side
is T-equivariant. The isomorphism (4.13.2) respects equivariant structures under the

group isomorphism o: T 2 T9. In particular, we have an isomorphism
(4.13.3) 0o Hi (UL, "5 IC(UG)) = Hio (Uia,i%d, 1C(UG)),

which respects the Hi(pt) and Hy. (pt) structures via T = T7.
In the same way, we obtain a canonical isomorphism

~

(4.13.4) Upe = Uple,
which is denoted-also by ¢, for brevity.
The pairing (, ) in §4.10 is compatible with goU Let us denote by ( , )po the

o

d,
pairing between ULU ¢ and ULZ,P& We have ¢, : UL’G — LUF’)G as above, and the
following holds

(4.13.5) (o), 0o (v))pz = (u,v)p,  weUpbveUpg .
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The decomposition (4.11.5) is transferred under ¢, to
(4.13.6) %4y 10(U) = £1C(UT, ) © IC(Uge )™

Here the sign + means that we multiply the projection to IC([LZdLa) by =+, according to

whether o respects the polarization § for 94 1, and 94 Lo Or not. Our polarization will be
invariant under inner automorphisms, so the sign depends on diagram automorphisms
Aut(G)/Inn(G). The decomposition (4.11.6) is mapped to

(4.13.7) Uplg = Ug et @ (UR7 20

Suppose 0 € L. We have L° = L, P° = P, i, = i, jo, .= j. Then i*jIIC(%dG)
is an L-equivariant perverse sheaf, and (4.13.2) is the isomorphism induced by the
equivariant structure.

Let us further assume L = T'. Then T acts trivially on %% = S?A2, and Polga = id.
The equivariant structure of the T-equivariant perverse sheaf i*;' IC(‘LZdG) is trivial. In
particular, the isomorphism (4.13.2) is the identity. Therefore (4.13.2) is well-defined
for 0 € Aut(GQ)/(T/Z(G)), where Z(G) is the center.of G.

Note that chambers of hyperbolic restrictions for L = T are Weyl chambers. They
appear as a subfamily for W = Ng(T)/T in Aut(G)/(T/Z(G)).

Let us take 0 = wy, the longest element of the Weyl group. Then BY° = B_. We
come back to B via (4.10.4), and hencewe get

(4.13.8) (U, 0) B = (P (W), Puo (0)) 3 = (Puo (V); Puo (1)) B

for u € U;zg,v € U;:g‘.

We can take o € Aut(G), which preserves T and the set of positive roots, and
induces a Dynkin diagram automorphism. Then B° = B. Hence U%g is a representa-
tion of the group of Dynkin diagram automorphisms. The inner product is preserved.

We have LY = L, (;), where ¢ (i) is the vertex of the Dynkin diagram, the image
of 4 under the corresponding Dynkin diagram automorphism. From (4.13.6) ¢, (&%)
is equal to dg(i) up to scalar. We will prove the following in §5.14.

Lemma 4.13.9. — We have
(4.13.10) 900-( ) :l:aa_( )

where + is the ratio of the polarizations for BunLi and Bun‘ig(i), compared under .
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CHAPTER 5

HYPERBOLIC RESTRICTION IN TYPE A

We shall study the case G = SL(r) in detail in this section.

~d
We have the moduli space %,. of framed torsion free sheaves (E, ¢) of rank r, second
Chern class d over P2, It is called the Gieseker space. We have a projective morphism

~d
7 (the Gieseker-Uhlenbeck morphism) from %, to the corresponding Uhlenbeck space
~d
%‘é. It is known that %, is smooth and = is a semi-small resolution of singularities.

~d
Therefore we can study IC(‘ZédG) via the constant sheaf G';a over %,.

~d
If r = 1, we understand %, as the Hilbert scheme Hilb%(A2) of d points on A2,
while %% (1) is the symmetric power S4A?.

5.1. Gieseker-Uhlenbeck

Let us first explain the relation between IC(%%) and €4 in more detail.

"

~d
Theorem 5.1.1 ([6, §3]). — The Gieseker-Uhlenbeck morphism w: U, — ‘ZldG is semi-
small with respect to the standard stratification (2.3.1). All strata are relevant and
fibers are irreducible. Therefore

(5.1.2) MG P Hip(r ' (23)) @ IC(Bung} ),
" di+|A=d

dy - 3 . dq
where x\' is a point in the stratum BunG’A.

~d

(See also [54, Ch..3,5,6], where %,., ‘Zlé are denoted by M(n,r), Mo(n,r) respec-
tively. See also [61, Ch.3] for the detail on the irreducibility of fibers.)

Since IC(‘M‘& ») is isomorphic to the pushforward of IC(%%) K G5z under the
finite morphism(2.3.4), we have

* ~d * 1 _ 1 x| /4 o

(5.1.3) Y (%) = I (UE) © Huop(n 1 (23)) © HE(S2A2).
We also have the corresponding isomorphism for the cohomology with compact sup-
port.
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5.2. Heisenberg operators

For r = 1, the third author and Grojnowski independently constructed operators

~d

acting on the direct sum of homology groups of %/, satisfying the Heisenberg relation
(see [54, Ch. 8]). It was extended by Baranovsky to higher rank case [6]. Let us review,
his construction in this subsecti(?in. 4

We consider here both H1[r*] (%,) and Hq[ftlc(‘llr), the equivariant cohomology with ar-
bitrary and compact support, which is Poincaré dual to Borel-Moore and the ordinary

~d

equivariant homology groups. To save the notation, we use the notation H'J[T*(] C)(‘Zér)
meaning either of cohomology groups.

For n > 0 we consider subvariety

~d ~d+n
(5.2.1) Poc| % x U, xA?
d
consisting of triples (E7, Fa,x) such that E1 D Ey and Ey/E, is supported at z. We
have
. . . . . ~d ~d+n
Proposition 5.2.2. — P, is half-dimensional in U, x U, x A% for each d.

Let us denote the projection to the third factor by II. For a cohomology class
~d  ~d+k

o € HT[F*(] 0 (A2), we consider P2, (a) =1P,]NTT*(«) as a correspondence in %, x U, .
Then we have the convolution product

* 54 [+ +dega] ,5,dtT
(5.2.3) PA,(o): HE! Sy = B, ).

Thanks to the previous proposition, the shift of the degree is simple in our perverse
degree convention. The reason why we put A in the notation will be clear later.
We define P2 () as the adjoint operator
d+n

* Yy *+deg o
(5:2.4) P a): HEL (1, ") — HES (1)),

Here we have two remarks. First we follow the sign convention in [46, 3.1.3] for the
intersection pairing

(5.2.5) (o,0) = (_1)dimX/2/ elUe.

X

~d ~d
Second, we take o € Hq[;:]c(Az) for Hq[r*](‘ll,,) and a € Hﬂ[r*] (A?) for Hq[r*]c(‘ll,,) Then the

operators are well-defined, though various projections are not proper. (See [54, §8.3].)
We have the commutator relation

(5.2.6) [P (), P ()] = (@, Bymbynn,0 7

If m +mn =20, one of a or § is in H1[r*] (A2) and another is in Hj[ff]c(AQ). Hence (a, 3) is
well-defined.
Since the construction is linear over Hy(pt), and H.J[;:]C(A2), H1[r*] (A?) are free of rank

1, we can choose a to be their generators, i.e., the Poincaré dual of [0] for HW[T*L(A2),
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and 1 (dual of [A2)) for H/(A2?). We assume these choices hereafter until §6. Note
also that ([0],1) = —1 in our sign convention.
We take the direct sum over d in (5.1.3):

(5.2.7) @H[* @IH[*] (UL) ® @Htop 7 (z%)) ® HI (S A?).

Note that H1[r* (S\A?) = H(pt) - 1, as SyA? is equivariantly contractible. Here 1 €
HY(S\A?) = HE VI (5,4%).

From the definition of the Heisenberg operators, it acts only on the second factor
of (5.2.7): A = @ are killed by P2([0]) (k > 0) and the summand for A = (171272 ...)
is spanned by the monomial in P_q(1)™ /ni!- P_o(1)™/ng!- -+ The second factor is
isomorphic to the Fock space.

Let us give another representation of the Heisenberg algebra. Let 0 denote the point
d-0¢ S(d)AQ, and consider the inverse image 7—1(0) C ‘Zlf, and denote it by szf’O. It
is the Quot scheme parametrizing quotients of @g?zr of length d whose support is 0.

Let us restate Theorem 5.1.1 in a different form:

~d ~d
Proposition 5.2.8. — U, o is an irreducible (dr-— 1)-dimensional subvariety in U,.,
unless d = 0.

~B ~0
It is needless to say that we have %, ; = %, = pt.

~ dtk
The convolution product by P£, () sends H [+ ](‘ll o) to H[* dega](‘dm ), where

o€ H{EC(AQ) for k < 0, « € H:(A?) for k > 0. Therefore
d
(5.2.9) P =, (u
d

~d
is a representation of the Heisenberg algebra. It is known that %, , is homotopy
~ ~d
equivalent to ‘ZJ hence H, [*](‘Ll o) is isomorphic to the ordinary homology group
of ‘Lé , and hence to Hy iy *]([M ) by the Poincaré duality.

5.3. Fixed points and polarization

Let us take a decomposition r = ry + r9 + - -+ 4+ rny. We have the corresponding
(N — 1)-dimensional torus, which is the connected center A = Z(L)° of the Levi sub-
group L = S(GL(r1) X --- X GL(rn)) C SL(r). We have the corresponding parabolic
subgroup P consisting of block upper triangular elements.

~ ~d
Let us consider the fixed point set %; = (%,)*. It consists of framed sheaves,

which is a direct sum of sheaves of rank r{, 7s,..., rny. Thus we have
~d ~dy ~d
(5.3.1) Uy,= || U xx U,
d=dy+-+dn
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We omit the superscript d, when there is no fear of confusion. _

Following [46, Ex.3.3.3|, we choose a polarization § for each component.of %y, as
a quiver variety associated with the Jordan quiver. Let us review the construction
quickly. See the original paper for more detail: We represent %; as the space of
quadruples (Bi, Ba, I, J) satisfying certain conditions. We decide to choose pairs, say
(B1,I), from quadruples. The choice gives us a decomposition of the tangent bundle
of U, as

(5.3.2) TU, =TY? + (T/?)Y

in the equivariant K-theory with respect to the A-action.on i&i We also have the
decomposition of T‘ZJL, and hence also of the normal bundle. Then we choose a po-
larization & of % in %, as product of weights in the normal bundle part of (TV/2)V.

Let us also explain another description of the polarization § given in [46, §12.1.5].
We consider the following Quot scheme

(5.3.3) Qr = {(E,¢) | 220" c EC O} c U,

where x5 is one of coordinates of A2. This is a fixed point component of a certain
C*-action, and is a smooth lagrangian subvariety in %,.. In the ADHM description, it
is given by the equation By = 0 = J. Now (T%/?)V is the normal direction to Q, at
a point in @,.. Since any component of ‘il[ intersects with @, and the intersection is
again a smooth lagrangian subvariety, @, gives us the polarization. B

Note that the polarization is invariant under the action of G = SL(r) on %g, as
we promised in §4.13.

We calculate the sign + of the ratio of this polarization § and the repellent one
Orep, Of @; X %g and @(1) X @;l in ZZZg for a later purpose. Here L = S(GL(2) x GL(1))
in the first case and L = S(GL(1) x GL(2)) for the latter case.

~d ~0 ~0 ~d
Lemma 5.3.4. — We have 0yep/0 = 1 for Uy x Uy, Srep/d = (=1) for Uy x Us.

Proof. — Both components @Z X @?, [Zl(l) X @Z intersect with the open set
W;E(S(ld)Al), the inverse image of the open stratum under the factorization
morphism. Since the normal bundle decomposes according to the factorization, the
polarization is of the form (£1)?. Hence it is enough to determine the case d = 1.

~1
We factor out A% in %, and consider the centered Gieseker spaces. We have
(5.3.5) “Uy = T*P2,
~1 ~0 ~0 ~2
(5.3.6) By x Uy = Tz =0), Uy x Uy = T*(z0 = 0),

where [zg : 21 : 23] is the homogeneous coordinate system of P2. The polarization &
above is given by the base direction of the cotangent bundle.
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On the other hand, the repellent directions are base in the first case and fibers in
the second case. Therefore we have dyp/0 = 1 in the first case and —1 in the second
case. O

5.4. Stable envelope

Recall we considered the attracting set %p in the Uhlenbeck space %g. Let us

denote its inverse image 7~ 1(%p) in ‘M by %p This is the-tensor product variety,
denoted by ¥ in [60], where %/ is denoted by %y. (In [56] T was denoted by 3.)
We have the following moduli theoretic description:

F admits a filtration 0 = FEy C By C---C Exn = F
with rank E;/E;_1 = r;, compatible with ¢. )

(5.4.1) Up = {(E,go) €U,

See §4.4. N _
We consider the fiber product Zp of %p and %y, over U :

(5.4.2) Zp = @P X, (ZZL,

where the map from %y to U;, is the restriction of 7, and the map from Up to U, is
the composition of the restriction %p <= Up of w and the map p in §4.4. In the above

description of EZ/P, it is just given as the direct sum Q(E;/F;—1)VV

plus the sum of|
singularities of E;/E;_;. One can show that Zp is a lagrangian subvariety in ’Zl,n X ‘ZlL.
See [60, Prop. 1]. (There are no lower dimensional irreducible components, as all strata
are relevant for the semismall morphism 7: U, — Ua.)

Maulik-Okounkov stable envelope is a ‘canonical’ lagrangian cycle class £ in Zp:
(5.4.3) £ € H(Zp).

See [46, §3.5]. Note that ¥ depends on the choice of the parabolic subgroup P as
well as the polarization §: Since they are canonically chosen, we suppress them in the
notation #£.

The convolution by # defines a homomorphism

(5.4.4) L5~ =pru(py(=) N 2): Hy(Up) — Hyg(Up).

It is known that £ * = is an isomorphism (see [60, §4.2]), and it does also make sense
for equivariant homology groups, as Hip(Zp) = H, E&(Z P)

We have H[*](‘ZlL) = H[*}(‘ZlL) by the Poincaré duality. Then we have
(5.4.5) =2 (u) — Y (%)

as the composite of ¥*— and the pushforward with respect to the inclusion %p - (er.
This is the original formulation of stable envelope in [46, Ch. 3], and properties of ¥
are often stated in terms of this homomorphism there.
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Let € U;,. Let ‘ZlL » denote the inverse image of x under the Gieseker-Uhlenbeck
morphism %L — U;,. Similarly let ‘Mpw denote the inverse image of z-under the
composition U p — Up — U;,. Then the convolution ¥ % — also defines

(5.4.6) Px— (%L 2) — Hp (%pz)

where T, is the stabilizer of z.

5.5. Tensor product module

~d ~d
Let 0 = d - 0 as before and consider the inverse image %p of 0 under %p — ‘LlCLl
as in the previous subsection.
We consider the direct sum

(5.5.1) @ HE,(Ury).
d

The Heisenberg algebra acts on the sum: This follows from a general theory of the

~d ~d+n

convolution algebra: it is enough to check that %pq o (P, NII7(0)) C Up, (for
k > 0). If (Ey, Es,x) € P, N1I71(0), then 7(Ey) = m(E1) + n - 0. Therefore the
assertion follows. J J

The stable envelope ¥ x — gives an‘isemorphism €, H[E](%L,O) =P, H[E](‘MP’O),
where the left hand side is the tensor product

~dy ~dy
(552) @ H[E](%rl,o) ® B H[E]([MTN,O)
di,...,dNn

by (5.3.1). This is a representation of N copies of Heisenberg algebras. Under the
stable envelope, P2, ([0]) on (5.5:1) is mapped to

N
(5.5.3) Zl‘@"'@P—Ak([O])@"'@L
i*® factor

This is [46, Th. 12.2.1]. Our Heisenberg generators are diagonal in this sense, and
hence we put A in the notation. This result is compatible with the decomposition
W(gl,) = W(sl,) ® Heis, where W(sl.) is contained in the tensor product of the
remaining (N — 1) copies of Heisenberg algebras, orthogonal to the diagonal one.

5.6. Sheaf theoretic analysis

By [60, §4, Lem. 4] we have a natural isomorphism

(5.6.1) H[o] (Zp) = Homperv(%L) (p!j*ﬂ'! €%T,7F! gi&)

where j, p are as in §i1'.4 and we use the same symbol 7 for Gieseker-Uhlenbeck
morphisms for %, and %r.
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The Verdier duality gives us an isomorphism
(5.6.2) Hom(pi7*m i?;];r, M i?—%) =~ Hom (. ((?@L ,Dej Ty 6%).
Therefore the stable envelope gives us the canonical isomorphism
L .
(5.6.3) m6y, = Pre(mCy )= pej'mGy

as m = 7. This is nothing but Theorem 1.6.1(2) in Introduction.
Let z € 9, and i, denote the inclusion of z in %,. Then € Hom(m €7, P mE7) )
defines an operator

H*(il,m Cy,) —— H” (3 paj'm 5%)
(5.6.4) H H
H[—*](%L,z) H[—*](@P,z)-

This is equal to ¥ * — in (5.4.6) under the isomorphism (5.6.1). See [60, §4.4].

5.7. The associativity of stable envelopes

Let us take parabolic subgroups Q. P C G and the corresponding Levi subgroup
M C L as in §4.5. (G is still SL(r).) Let.Qr bethe image of @ in L.
Let us denote by £, ¢ the isomorphism given by the stable envelope in (5.6.3):

L £
(5.7.1) M (6’5& % & aim E?%T)
We similarly have isomorphisms
2 £
(5.7.2) 7T!€%M %QNLG(W!g%T)’ Wli?%M %}(I)M’L(mi?%L)'

Then stable envelopes are compatible with the associativity (4.5.2) of the hyper-
bolic restriction:

Proposition 5.7.3. — We havea commutative diagram
mGs e Pyc(mby)
(5.7.4) glfw (4.5.2)“
@n,L(LL,6)
(I)M,L(W!E?@L) ME e (DM,Lq)L,G(ﬂ'!g%r)'

Let us check that this follows from the proof of [46, Lemma 3.6.1]. (To compare
the following with the original paper, the reader should note that the tori A > A’
were used in [46], which correspond to Z(M)® D Z(L)° respectively in our situation.)

We consider

(5.7.5) Zp = @p X, EZIL, Zg = %Q X, @M, 2o, = %QL X0, %M-
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The stable envelopes L1 g, £, £, are classes in Hig(Zp), Hi(Zq), Hi)(Zq,,)
respectively. We consider the convolution product

(5.7.6) Lra*Lmr € Hp(ZpoZq,).

Note that Zp o Zg, consists of (z1,z3) € ;Z[p X @M such that-there exists zo €
%QL C 9y, with (x1,22) € Zp, (x2,23) € Zg, by definition. This'is nothing but Zg.
Therefore £¥ x 9% is a class in Hj)(Zgq). The proof in [46, Lemma 3.6.1| actually
gives fL,G * fM,L - fM,G-

Therefore the commutativity of (5.7.4) follows, once we check that the convolution
product corresponds to the composition of homomorphisms (Yoneda product) under
the isomorphism (5.6.1). This is not covered by [23, Prop. 8.6.35], as the base spaces
of fiber products are different: %; and %,,. But we can easily modify its proof to our
situation.

5.8. Space V¢ and its base given by irreducible components

Let us write d for the instanton number again. Similarly to (4.8.2) we define

U

Vg,G — yd def Hom(f\?g(d)Az,@L,G(ﬂ'! G-a))
(5.8.1) T

where ¢: S’(d)Az — ‘lédL is as before. We denote by VLd”g or V4P when we want to
emphasize P.
As in Lemma 4.8.15 we have

~d
(5.8.2) 4= Hio)(Upyp),

and V¢ has a base given by (dh" — 1)-dimensional irreducible components of ‘ZJ;O.
On the other hand, H [0]((24;13,0) is isomorphic to H [0](%20) by the stable envelope.

In the description (5.3.1), note that the fiber ‘Zlf:’o has dim = dim ‘Zli/? —1 by

Proposition 5.2.8 unless d; = 0. Therefore we can achieve the degree [0] = dim @l(z -

2 =Y dim (Zli: — 2 only when all d; = 0 except one. There are N choices i = 1,...,
N. Therefore dim V¢ = N. 4

Let us study V¢ = H[O](‘ZJP,O) in more detail. This will give the detail left over
from §4.9. By [56, §3] we have a decomposition

~d
(5.8.3) Upo= ||  F(da,....dn)o,
dr+—t-dn=n
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where

(5.8.4)
FE admits a filtration 0 = Ey C E; C -+ C

~d;
T(d1,...,dn)o =4 (E,9) | Ey = E with E,/E;_; € U,, o compatible with

®.
We have a projection
~dy ~dy
(5.8.5) T(dry- - ydN)o = Upy g X oo X Uy o,
which is a vector bundle of rank dr — Y d;r;. Note that
~d; 0 if d; = 0,
(5.8.6) dim %, 4= '
v dﬂ"i -1 if dz 7é 0.

(See Proposition 5.2.8.) Therefore

(5.8.7) dim T(dy,...,dn)o = dr — #{i | di#0} < dr — 1.

The equality holds if and only if there is only one i with d; # 0. Therefore Hy (‘Zli_ 0)
is spanned by fundamental cycles

(5.8.8) (@0, 0)0), -+ [E(D,.,0,d)a].

Thus it is N-dimensional, as expected.
In the remainder of this subsection, “we study the corresponding space U? =
H[O](fl/]igwo) for the Uhlenbeck space. Note -that we have projective morphism

~d ~d
T Upy — ‘L/Iigwo, and the Quot scheme 77'(d - 0) = %, is contained in %p.

~d
The class of fiber %, , is given by P_4([0])[%%], and H[O](‘U}iy’o) is killed by Bara-
novsky’s Heisenberg operators by the construction.

Proposition 5.8.9. — Among N cycles in (5.8.8), the first one [Z(d,0,...,0)0] is

~d
[U,.]. The remaining cycles give a base of U* = H[O](%?Dwo) under .

From the definition, this description of irreducible components of ‘Zédp’o is the same
as one in Proposition 4.9:2 when G = SL(r), P = B.

Proof. — Suppose that F € ¥(d,0,...,0)o. Then we have a short exact sequence
(5810) 0—FE - F— @®"'2+~~+TN -0

with E; € @i,@ Consider

(5.8.11) 0 0PN BV Ly BY L £t (077N )

Since Szt2 (0T TN 0) = 0, the last homomorphism EY — EY is surjective.
Therefore this is a short exact sequence. Dualizing again, we get

(5.8.12) 0 — Ei/v BV @@7«24..4._”1\, o
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_ @@7‘2+"'+7‘N

The last homomorphism EVV is surjective as E — 9%V g s0.

~d
(Or, we observe EYY = 0% as E; € U,, o, and Eat' (0%, 0) = 0.) Therefore this
~d
is also exact. We have EYY = 0°™ as E; € %«11,0- Since the extension between the
~d
trivial sheaves is zero on P2, we have EVY = 0%, Therefore E € U, -

Thus we have %(d,0,...,0)p C ’Zéio. Since both are (dr — 1)-dimensional, and ‘Zlio
is irreducible, they must coincide. This shows the first claim.

The second claim follows as we have already shown dimU¢ = N — 1 in
Lemma 4.8.11, hence other classes cannot be killed by ..

Let us directly check that any of ¥(0,d,0,...,0)0,...; F(0,...,0,d)o contains a
locally free sheaf for definiteness. (It gives us another proof of Lemma 4.8.11, which
does not dependent on [21, Theorem 7.10].) Then it is enough to consider the case
N = 2 and check that (0, d)o contains a locally free sheaf, as an extension of a locally
free sheaf by a locally free sheaf is again locally free. Furthermore we may assume
r=2andr; =rqyg =1.

We use the ADHM description. Let

0 0 0
0 1 0
B, = By =0,
0
0 0
0.0

We have [By, By] +IJ'= 0. We see (By, By, I,J) is stable, i.e., a subspace S C C?
containing the image of I and invariant under B;, By must be S = C?. We also see
that (By, B, I,.J) is costable, i.e., a subspace S C C? contained in the kernel of .J and
invariant under By, Bs must be S = 0. Therefore (B1, Bs, I, J) defines a framed locally

0
free sheaf (E,¢);i.e., an element in BundSL(z). We consider a subspace { . } c C?,

which is the kernel of a. Taking 0 as a subspace in C?, we have a subrepresentation
of a quiver. Therefore E contains the trivial rank 1 sheaf @p2 correspondingly. The
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quotient F/Op: is given by the data

~d
and J = 0, By, B, the same as above. This is the ideal sheaf (x%, ), and hence in Uy o-
Thus E is a point in (0, d),. O

5.9. A pairing on V¢

In the same way as §4.10, we can define a nondegenerate pairing between V%¥
and V4P-,
We have an isomorphism

(5.9.1) HO(9i"j'm € 52) —

o

HO(&iljmm® 5 7))

where we also used 7w, = m as 7 is ptoper. By the base change and the replacement

*

i*, i* to p., (p_)i, we can identify thiswith

~d oy, d
(5.9.2) Hyg(Upy) = Hél](%P,,o)y

and we have a pairing
(5.9.3) (,): 0](%130) ® Ho (%P 0 —C.

~d

Note that we also have the intersection pairing in the centered Gieseker space ¢%,..
~d ~d ~d

As the intersection %p M Up , consists of a compact space U, o, the pairing is

7
well-defined, and takes values in C. We multiply the sign (—1)3m % /2 = (—1)dr—1
as before.

Lemma 5.9.4. — The pairing is equal to the intersection pairing.
Proof. — The pairing is the restriction of that on equivariant cohomology groups:
(5:95) (o) HHE T C ) © HE(EW" jLm 6. g0) — HE (DY)

By the localization theorem, natural homomorphisms
(5.9.6) Hi (60157 € 1) = Hi (6017w € 50),
(5.9.7) HE (Ei* L€ 50) — HF (i j2m. G 50)
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become isomorphisms over the fractional field of H(pt). Then the pairing between
Hr(&)i's' m.© ~d) and Hi (&1 j*m. G @d) is equal to the intersection pairing by [23,
§8.5]. Therefore we only need to show that the composition

(5.9.8) 7,] —* ] — i;j_

is equal to i'j' = 4" j. — i' j*. This is a consequence of the following general state-
ment : Let T be a torus action on X and Y = X7 (more generally, it can be a
closed invariant subset containing X7). Let a: Y — X be the embedding. Let F be a
functor from D7 (X) to Dr(Y). Assume that we have two morphisms of functors «,
B:a' — F. Then a = f3 if and only if it is so on the image-of ay: Dr(Y) — Dp(X).
We apply this claim to a = ji, F = i' j*. In our case, a = 3 on ayD7(Y) is evident,
as all the involved morphisms are identities on the fixed point set Y.

Let us give the proof of the claim. We consider a natural map aja' — & for & €
Dr(X). It becomes an isomorphism if we apply a' by the base change. We set § =
aia'7. We have ag = Py, as homomorphisms a'f > F(4), from the assumption.
Then we have ag = B as the composition of ay = By and F(Y) — F(§). O

5.10. Another base of V¢
Recall we have the canonical isonicrphism. m @5 % Oy c(m i?%d) in (5.6.3).
L = T

~d
Thanks to the decomposition (5.3.1), the mmorphism m: %; — ‘ZldL is the compos-
ite of

~d ~dy
(5.10.1) TX oo X T ‘l(Ti X e X %T (lldL(T )Xo X %SL(TN)
with the sum map

(5.10.2) K Uy % X UGy oy — UL

The latter is a finite birational morphism. Then ‘(?%d decomposes under (5.10.1) as
L
n (5.1.2):

(5.10.3) ! g‘ad = @Htop x/\l) X (xf\?\’,))

® ki IC(Bun?* - x Bun?¥

SL(r1), )\1 SL(rn), )\N)

where A1,..., Ay are partitions with d = dy + |A\1| + -+ + dn + |An|. (These dy,.. .,
dy are different from above.) The image of the closure of Bung}L(n) A X X

Bungjz(w))w under & is the closure of
d d
(5:104) Bunfy ) x-+x Bundy, xS,4%

where g = A, U -+ U Ay. Let us denote this stratum by Bunstl’i'"’dN. Then as & is a
finite morphism, we have

(5.10.5) Ky IC(Bun?L(T Joap X X Bungfz(m)’)w) & IC(BundLl’;L'"’dN,p),
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where p is the local system corresponding to the covering
(5.10.6) Sy, A% x -+ x Sy A%\ diagonal — S, A?

and gy = A1 U--- U Ay. Taking sum over A1, Az, ...which give the same pu, we get

d d
(5107) @ K IC(Bunle(rl),)\l X X BunS]z(TN),AN)

AU UAN=p

where p is now given by the permutation representation
(5.10.8) (VhHEm @ (Ve g ...

of Sp, X Sp, X -+ if p = (1™2"2...) with dim’V¢ = N. Here we define 'V? as the
cohomology of the union of the fibers of (5.10.6) for the special case when u is the

partition (d) with the single entry d, where the union runs over Ag,..., An:

(5.10.9) o: |_| Sa A% x -+ x Sy A%\ diagonal — S(g)A?,
AU--UAN=(d)

and

(5.10.10) Vi ="Hya=(d-0)).

Since p = (d), one of Aq,. .., Ay is (d) and others are the empty partition @. Therefore
the fiber 01(d - 0) consists of N distinct points, hence we have dim’'V? = N.
o 0,...,0
Moreover Homperv(ql%)(i?s(d)Az , ) i?%i) is given by the component IC(BunL’(d) R

where p is the trivial representation of S; on V<. Therefore we have a canonical
isomorphism
d ~Y
(5.10.11) V7 Hompgiug) (Csio M E7)
o ~ HomPerv(%%)(i?S(d)AQvQL,G(Flgﬁi))a
where the first isomorphism is via Htop(ﬂ"l(:vill) X +ee X wfl(xfx)) 2C(dy=--=
dy = 0, one of A1,..., Ay is (d) and others are the empty partition) given by the
fundamental class, and the second isomorphism is given by the stable envelope #.
Thus our 'V is isomorphic to V¥ in (5.8.1). We will identify 'V¢ with V¢ hereafter.
We have just shown

(5.10.12) m g?/i ~ @IC(Bunil’X"’dN,p).

This is similar to Proposition 4.8.4, where we used the factorization argument to
construct an isomorphism. Our argument looks slightly different, as we have not used
the projection a: A2 — A!. But the isomorphism is the same as one given by the
factorization argument from the above construction, together with the observation
that a, i, j commute with the projection ¢, (? = G, P, L).

a;?
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Note that we have e; € V¢ = Hy(oc~(d - 0)) corresponding to the component
of 071(d - 0) in

(5.10.13) SpA? x oo x S A% x - x SgA®
——
i*® factor
Then ey,...,en gives a base of V4.
If we view V¢ as Homp,, (92 )(Cs4ya2, ™ i?%i), e; is the composite of homomor-
phisms
(5.10.14) (gs(d)Az — gz&d — m g@i,

where the left homomorphism is given by the fundamental class [r~1(d - 0)], and the

right one is given by the inclusion of the component d; = d, d; = 0 (j # %) in the
decomposition (5.3.1).

~1
Example 5.10.15. — For d = 1, U, (resp. U¢,) is isomorphic to the product of A2 and
the cotangent bundle of P! (resp. the closure of the minimal nilpotent orbit of s[.).

Further suppose N = r and ry = --- = ry = 1. Then [46, Remark 3.5.3] gives us the
relation:
(5.10.16) [2(0,...,0, 1 ,0,.25,0= (-1 (ex +ers1+ - +ep).

k' factor
Here the sign (—1)*~! comes from the polarizztion, mentioned in §5.3.

. Y ~d
Example 5.10.17. — We know that [T(d,0,...,0)o] = [%, ] (Proposition 5.8.9), and

hence
(5.10.18) [(d,0,.:.,0)] =e1 +--- +en

by (5.5.3).

On the other hand, the opposite extreme [%(0,0,...,d)o] is equal to ey up to sign
by the support property of the stable envelope [46, Th. 3.3.4 (i)]. The polarization is
opposite, therefore the sign is the half of the codimension of the corresponding fixed
point component. We get

(510.19) F0.0, -] = (~1)"" ey,

If N =2, two elements exhaust the base.

The transition matrix between two bases for d > 1, N > 2 can be calcu-
lated from (4:12.1) together with (5.11.5) below. Though (4.12.1) determines
[2(0,...,0,d,0,...,0)] (d is in the k" entry) up to C[Z(d,0,...,0)e], it is a linear
span of eg, ..., ey thanks to the support property of the stable envelope. Therefore
we can fix the ambiguity.
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5.11. Computation of the pairing

~d
Let us relate the pairing in §5.9 to the pairing defined on %; using the stable
envelope

~d ~ ~d
(5.11.1) L Hyo)(Uy,0) = Hio)(Upy)-

Let us temporarily denote the stable envelope with respect to the opposite parabolic
by £~ . Then we want to compute

(5.11.2) (L(a), £27(8)),

. ezd
which is equal to the intersection pairing times (—1)4™ "% by Lemma 5.9.4.

Suppose that «, 3 are classes on a component Z of ZZ/;O_ Let us take equivari-
ant lifts of a, 8 to Z(L)°-equivariant cohomology. Since the supports of #(a) and
£~ (B) intersect along Z by one of characterizing properties of the stable envelope
[46, Th. 3.3.4(i)], we need to compute the restriction of the (Poincaré dual of) £(a),
£ () to the fixed point component Z. Again by a property of the stable envelop [46,
Th. 3.3.4(ii)], we have £(a)|z = (brep/)e(N)Ua and £ (8)|z = (8att/8)e(NT)US,
where d;ep, 0att are the polarizations given by attracting and repellent directions. Then
we have

(5.11.3) 1@’1 Lla)U L (B) = % 1771 e(N)UaUB = (_1)c0dimZ/2/ aUB

Z

by the fixed point formula. Therefore if we multiply (—1)‘“‘“@:%/2

(—1)¥m 22 [ au B = (a, ).
~d
If a, 8 are supported on different components Z, Z’ of %, ; respectively, we use
a property |46, Th. 3.7.5], which says the restrictions of #(a), £(8) to components
other than Z, Z’' are zero. Then it is clear that (£(a), £~ (8)) = 0.
As an application of this formula, we compute (e;, ej_>, where e; € V¢ as in the

, we get

previous subsection, and e; € V4P~ is defined in the same way using the opposite

hyperbolic restriction ¥~ . This is reduced to the computation of the self-intersection

~d ~d
number of the punctual Quot scheme %, , in the centered Gieseker space °%,.,. This
e
is given by (—1)79=1dr; = (—=1)3™ ““/24r, ([6, §4]). Therefore we get
Proposition 5.11.4. — We have

(5115) (€i,63»_> = dri&j.
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5.12. Relation between V¢ and U
Let us apply the decomposition (5.1.2) to (5.10.11). We have
Ve = Hom((@s(d)AL q)L,G(W! 6%5))

- @ Htop(w—l(wgl))@Hom(ﬁs(d)M,@L,G(IC(BundG{A))).
di+|\|=d

(5.12.1)

Then Hom(€'s a2, ®1,c(IC (Bun‘él)\))) is nonzero only in either of the following cases:

1. di=dand A\ =g,
2. d; =0and A = (d).

In the first case, it is U? by definition. And in the second case, it is

(5.12.2) Hom(i?g(d)Az , ‘I’L,G(gs(d)zv)) = Hom(i?g(d)Az, gs(d)Az) ~2Cid.
Thus
(5.12.3) Ve (Hyop(nH(25)) @ U?) & Hiop(n ™" (2(y)))-

Note that 7—1(z%) is a single point. Therefore we have the canonical isomorphism
~d
Hiop(r™!(z%)) = C. Now the homomorphism ,: V¢ = Hyg(Upy) — U® =
H[O](fl[‘li’o) is identified with the projection to the first component in (5.12.3). In
particular, bases of U¢ and V¢ given by irreducible components (see Lemma 4.8.15

and Proposition 5.8.9) are related by the projection.
The subspace Hiop (7 (2(,))) is 1-dimensiotal space spanned by the fundamental

class [77_1(33(() )], or equivalently P_q([0]) - [%%] where P_4([0]) is the Heisenberg

operator, and [%3] =1 € H%(‘ZZOG). Recall that the Baranovsky’s Heisenberg operator
is mapped to the diagonal operator.under the stable envelope, see §5.5. It means that
[~ (fy))] is equal to

(5.12.4) e1+---+en,

where {e;} is the base of V' in the previous subsection.
And U is the subspace killed by the Heisenberg operator P;(1). Therefore

(5.12.5) Ul {Xie; + -+ Aven | A1+ -+ Ay =0} .

We have a base {e; ~e;+1}i=1.. n—1 of U

It is also clear that the decomposition (5.12.3) is orthogonal with respect to the
pairing in §5.9. And the restriction of the pairing to U? is equal to one in §4.10.
Therefore we can calculate the pairing between U%* and U%P-. Let us consider the
case P = B for brevity. We have

2 ifi=j,
(5.12.6) (ei —eir1,e; —e; )= —d if[i—j|=1,

0 otherwise
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by Proposition 5.11.4. Thus the pairing between U%® and U%B- is identified with
the natural pairing on the Cartan subalgebra § of sl multiplied by d, under the
identification e; — e;41 and e; — ;| ; with the simple coroot «'.

5.13. Compatibility

Let us take L = T. We shall show that the base {e; — e;11}; of U? is compatible
with the construction in §4.11 in this subsection.

We fix the Borel subgroup B consisting of upper triangular matrices, and let P; be
the parabolic subgroup corresponding to a simple root «; and L; be the Levi subgroup
(i=1,...7 —1). Recall that we have taken

(5.13.1) 19, 6 € Hompeyy e ) (I0(%4,), ®1, 6(IC(U)).
(See (4.7.3).)
~d

~d
Let us consider the corresponding fixed point set %, = (%,.)
space. The decomposition (5.3.1) in our case is

Z(L4) in the Gieseker

~d ~diq2 ~d,

~d ~di_1 i
(5.13.2) | ] Uy XX Uy X Uy X Uy XX Uy
i+t dipr ot dr=d

~d
There is a distinguished connected component, isomorphic to %, with d; =d, d; =0
for j # i. Let us denote it by Z.
Recall that [M(L_ is equal to [ng L(z) as a-topological space and the open subvariety
Bun%i is equal to Bun% L(2)- The connected component Z is characterized among all

components of %, as it contains Bun‘ii.

We denote by § the polarization of Z in @[f in §5.3. We understand it is +1,
according to whether it is equal to the polarization given by attracting directions or
not, as in §4.3. We correct 1dLi,G by MdL,-,G so that it will be compatible with the
stable envelope.

Let us consider the diagram

IC(%4 ) Mo, g L0
L: L., (IC(Ug))

(5.13.3) T T

7T1€~d i CI)L. 7T1€~d.
CA— 6 (mGga)

The upper arrow is given just above, and the bottom arrow is the stable envelope.
The right vertical arrow comes from the natural projection to the direct summand
W!(ﬁ@d) — 1C(%%) in (5.1.2), which is the identity homomorphism on the open subset

Bun, of %% The left vertical arrow is defined as follows. We have the distinguished
~d ~d
component Z of %;_isomorphic to 9,. We have IC(‘MdLi) = IC((L/;L(Z)), and hence
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have a natural projection m €~d — IC(‘ZZ 1.), as for the right vertical arrow. Compos-

ing with the restriction to the dlstlngulshed component i?% — m Gy ;we define
L;

the left vertical arrow.
Proposition 5.13.4. — The diagram (5.13.3) is commutative.

Proof. — From the construction of the diagram, it is clear that we need to check the
commutativity on the open subset BundLi. Then the commutativity is clear, as two
constructions 51dLi’G and £, ¢ are the same: Both are given by the Thom isomor-
phism corrected by polarization. See [46, Th. 3.3.4(ii)] for the stable envelope. O

Recall also that we have proposed that there exists a canonical element

19, € Hom(Gs, 42, ®r.L, (IC(%7,)))

(5.13.5) d
= Hom (G, a2, Pex 51, (IC(Usy,)))

in §4.11. We define it so that the following diagram is commutative:

d
1L

Cswnz —7 et s (IC(UsL)))

(5.13.6) l T

Tl'lg B q)(C* JL(z)(Tl'lg

U Per s ‘/j

where we choose the parabolic/subgroup in SL(2) & [L;,L;] corresponding to the
chosen Borel subgroup B to define the hyperbolic restriction £c+ gr(2). The right
vertical arrow is the projection-to the direct summand as before. The left vertical
arrow is e; — e;+1, where {e;;e;1} is the base of Vd*,SL(Z) = Hom(i?s(d>Az,7l'1 i??ﬂ*),

~d =0 ~d ~d;  ~d ~0 ~d
i.e., e; corresponds to U x U, © U = ‘léll X 7,/12, and e; 1 corresponds to % x U;.
We enlarge the bottom row as

d

1Li
Csnz —— O1.1,(IC(%))
(5137) lei—ezdrl T

W!g‘"d — (I)TL< 7T[€~d .
U Lr.L, ’ 1( %Li)

~d ~d
Here we identify %, with the distinguished component Z. We similarly consider %.

~d
as a union of components of %, putting it in 4 and (i + 1)** components. The left

vertical arrow is e; — e; 1, where {e,...,e.} is the base of Vq‘ilG. Two bases are
obviously compatible, so it is safe to use the same notation.
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We apply @71, to the commutative diagram (5.13.3) and combine it with (5.13.7):

d

17
Csgynz —— Prp, (IC(%1,)) Or,c(IC(%L))

(5.13.8) lei_em T T

W!i?@; = ‘PT,L,-(W!g@d) — @T,G(W!i‘?@i)-

Lr.L, L; @71, (Lr;,6)

@71, (01L,;,6)
e wr

The composite of lower horizontal arrows is £ ¢ by the commutativity (5.7.4). Recall
we made an identification of V¢ by £ ¢ (see (5.10.11)). Therefore e; — ;1 € V¢
considered as a homomorphism in Hom(Cs, a2, ®1,¢(m G54)) is the composition of
arrows from the upper left corner to the lower right corner. i

It is also clear that the homomorphism V¢ — U? given by the composition of the
rightmost upper arrow coincides with the projection in (5.12.3).

We thus see that {a¢ = &1, (Mi,c) ) 1%i}i coincides with the base {e; — e;1+1}
of U?. This gives the construction promised in §4.11 when G is of type A.

Remark 5.13.9. — Suppose G = SL(2). Thanks to Example 5.10.17, we have
[T(0,d)o] = (—1)%ed. (Here r; = ry = 1.) Therefore we have

([Z0,d)ol, 677) = (=1)!ef, "~ e37) = (-1)**d
by Proposition 5.11.4. This completesthe proof of (4.12.1).

5.14. Aut(G) invariance

Recall that we have studied Aut(G) -invariance of various constructions for ‘L/é
~d
in §4.13. The same applies also'to,the Gieseker space %,., if we restrict to the inner
~d
automorphism Inn(G). This is' because Inn(G) acts on %,., and hence the same applies.
Let us consider Aut(G)/Inn(G): It is {£1} for type A, and is the Dynkin diagram
automorphism given by the reflection at the center. It is represented modulo inner
automorphisms by a group automorphism g — *¢g~'. In terms of Bundg, it corresponds
to taking the dual vector bundle. In particular, it does not extend to an action on the
~d
Gieseker space %,., as the second Chern class may drop when we take the dual of a
sheaf.
In the ADHM description, the diagram automorphism is given by

(5.14.1) [(B1, B2, 1,J)] — [(Bt, B:, —Jt, I")].
This does not preserve the stability condition. Therefore we must be careful when we

study what happens under this automorphism.
Nevertheless we give

Proof of Lemma 4.13.9. — Recall 0 € Aut(G) preserves T', B, and corresponds to a
Dynkin diagram automorphism. Recall also G¢ = @7 1, (51%1,,G) ) ldLi.
It is clear that (I)T,Li(l%,-,c) is sent to @71, (1(137@)76‘) under ¢, from its definition.
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Next consider 1¢ € U{,{Li. In view of Lemma 4.8.15, U%’Li is H[O](%%ﬂLi,0)7 which
is 1-dimensional space spanned by the irreducible component [‘L&dBm L0}~ The class

[’ZldBnLi)O] is sent to [(udBnLU(i),O] under ¢, as it is induced from the isomorphism
d d
Upar,0 — %BnLa(i),O'
__ ~d
On the other hand, [%dBmLi,O] is the image of [T(0, d)o] under 7. : Hioj(Upny, 0) —

H[O](%(IiBQLi,O)- We have [T(0,d)o] = (—1)%> by Example 5.10.17. Hence [W%mLi’O] =
—1)4+114 /2. Combining with the above observation, we deduce the assertion. [
L;
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CHAPTER 6

W-ALGEBRA REPRESENTATION ON LOCALIZED
EQUIVARIANT COHOMOLOGY

The goal of this section is to define a representation of the W-algebra Wy (g) on the
direct sum of equivariant intersection cohomology:groups IH%([M%) over d, isomorphic
to the Verma module with the level and highest weight, given by the equivariant
variables by

(6.0.1) k—|—hV:—6—2, A=2 — p, “where a = (a!,...,a")
€1 €1

respectively. Here a is a collection of variables, but will be regarded also as a variable
in the Cartan subalgebra b so that a® = «;(a) for a simple root «;.

Since the level is a rational function in &1, €2, we must be careful over which ring
the representation is defined. In geometric terms, it corresponds to that we need to
consider localized equivariant cohomology groups. The equivariant cohomology group
H7 () is a module over Hy(pt) = C|Lie T] = Cle1, €2, a]. Let us denote this polynomial
ring by A7 and its quotient field by Fr. In algebraic terms, it means that our
W-algebra is defined over C(e1,€2). Then the level k is a generic point in A'. Moreover
we consider a Verma module whose highest weight is in h* ® Fp. This means that
the highest weight is also generic. More precisely, we regard a as a canonical element
in h* @ Fr = b* ® Frac(S(h*)[e1,e2]) given by the inner product on h. Here we have
used the Langlands duality implicitly : we first consider a as the identity element
in h® b* C h ® Fr. Then we regard the first b as the dual of the Cartan subalgebra
of the Langlands dual of g. But the Langlands dual is g itself as we are considering
ADE cases.

We will construct a representation on

(6.0.2) P I (UE) ®ar Fr = @D Hi (UG, IC(%E)) ®ar Fr.
d d
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By the localization theorem and Lemma 3.1.6, natural homomorphisms
I (Ug) = Hi (U715 (10(%g)))

— Hi (Up, 27,6(IC(%)))

— Hi(Up, 1,6 (IC(U)))

— Hi(Uz, i 5" (IC(Ug))) = THE (%)

all become isomorphisms over Fr. Thus over Fr, we could use any of these four
spaces. Let us denote its direct sum by Mg (a):

(6.0.4) Mg (a) = @D TH] (%) ®ar Fr.
d

(6.0.3)

In fact, we will construct representations of integral forms (i.e., Ap-forms) of
Heisenberg and Virasoro algebras on non-localized equivariant cohomology groups
@D, Hr, c(%, @T,G(IC(‘Z&CCI;))) of hyperbolic restrictions in this section. This construc-
tion will be the first step towards a construction of the W-algebra representation on
non-localized equivariant cohomology groups. To follow the remaining argument, the
reader needs to read our definition of an integral form of the W-algebra given in §B.
Therefore the whole construction will be postponed to §8.1.

Let us denote the fundamental class 1 € TH (%g) = IH%)C(‘ZZOG) = H(pt) by |a). It
will be identified with the highest weight vector (or the vacuum vector) of the Verma
module. See Proposition 6.7.9 below.

We also use the following notation:

A=C[€1,€2], F=(C(€1,82).

6.1. Freeness
Lemma 6.1.1. — Four modules_appearing in (6.0.3) are free over Ar.

Proof. — By Lemma 3.1.6 all four modules are pure, as ( ‘llé)T is a single point, and
they are stalks at the point. Now freeness follows as in [34, Th. 14.1(8)].

Or we have odd cohomology vanishing by [21, Th. 7.10]. So it also follows from [34,
Th. 14.1(1)]. O

In particular, homomorphisms in (6.0.3) are all injective.

6.2. Another base of U?, continued

Let U? = U%’G be as in §4.8. Let L; be the Levi subgroup corresponding to a simple
root a; and consider U ; as in §4.11. We identify IC(%dLi) with IC(%dSL(z)) by the

bijective morphism %/% L@y — (L/L (see Proposition 4.2.5). We have a maximal torus
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and a Borel subgroup induced from those of G. Then U{,iw) 1, has the base in (5.12.5),
where it consists of a single element as N = 2. Let us denote the element by ldLi, as
we promised in §4.11.

Next consider 1dLi’G given by the Thom isomorphism as in §4.7. We have the repel-

lent polarization drep, of BundLi in Buné. We modify it to § according to Lemma 5.3.4.
We choose and fix a bipartite coloring of the vertices of the Dynkin diagram, i.e.,
o: I — {£1} such that o(i) = —o(j) if ¢ and j are connected in the diagram. Then
we set

(6.2.1) § = 0(i)%Srep-
This is our polarization, which was promised in (4.11.4). Let us write

(6.2.2) &l L Dr (818, g) 014 .

This gives us a collection {a¢}; of elements in U? labeled by I. Thanks to (4.12.1), it
is a base of U¢. This will follow also from Proposition 6.3.8.

6.3. Heisenberg algebra associated with the Cartan subalgebra

‘We construct a representation of the Heisenberg algebra associated with the Cartan
subalgebra h of g on the direct sum 0f’{6.0:2) in this subsection. It will be the first
step towards the W-algebra representatioxt.

Let us first review the construction of tiie Heisenberg algebra representation in
§5.5 for the case r = 2 and L = S(GL(1) x GL(1)) = C*. We consider Heisenberg

operators P> = P2 (1) associated with the cohomology class 1 € Hq[r*](Az). We omit
~d
(1) hereafter. They are not well-defined on @, H [E} (Up) if d > 0, but are well-defined

~d
on the localized equivariant homology group @, H [E](%P) ®a, Fr, and satisfy the
commutation relations

(6.3.1) [P5, P2 = —2m5m,,ni.
£1E2

Via the stable envelope, we have the isomorphism
~d ~d ~dy ~d;
(6.3.2) @H[E](%P) = @H[E](WL) = @ Hiy(U, ) ® Hiy (%),
d d di,d2

and we have the representation of the tensor product of two copies of Heisenberg
algebras, given by Pr(Ll) =PFP,®1 and PY(LQ) = 1® P, on the localized equivariant ho-
mology group, where P, is the Heisenberg generator for 7 = 1. The above Heisenberg
generator P> is the diagonal PT(LI) + PT(L2). See §5.5.

We have

~d
(6.3.3) H[T_*}(’MP) o H{f(’ldé*,p*]’!mg%g) = H%(ﬂg:*,¢c*,sL(2)(W1€%;))
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by 85.6 and m = m,.. This homology group contains

(6.3.4) H{F(‘Ué*,‘I’C*,SL(Q)(IC(%dSL(z))))

as a direct summand, and the anti-diagonal Heisenberg algebra generated by Rgl) —

P? acts on its direct sum over d. (See §5.12.)

Let us return back to general G. Let L; be the Levi subgroup as in the previous
subsection. We identify IC(‘L[‘;L(Q)) with IC(‘lldLi) as before, and we have a(n anti-
diagonal) Heisenberg algebra representation on

(6.3.5) D Hi (U, @70, (0C(%1,))) ®ar Fr-
d
Using the decomposition (4.11.5) and &1 1, P, ¢ = Pr., we have an induced
Heisenberg algebra representation on My(a) in (6.0.4). Let us denote the Heisenberg
generator by P!.
By Lemma 4.8.7, the space Mg (a) is isomorphic to

(6.3.6) Sym(U'e U’ @ ---) ®cFr),

where Sym denotes the symmetric power. (U4 = U%’G as before.)

Let us describe P! in this space. Recall that we have the orthogonal decomposition
U = U%’Li & (U%,Li)L in (4.11.6). Then we have the factorization

(6.3.7) Sym((U'@U?®---)®c Fr)
= Sym((U%)Li &) U%,Li @) ®c Fr)®r,
Sym(((Ut,,)* @ (U, p)* @) ®c Fr)

The first factor of the right hand side is the usual Fock space associated with the
Cartan subalgebra B, of sly. In fact, using Uf, ;= C1¢ , we identify Ug, , with
Bsr,. The pairing is multiplied by —1/g1e5 from the natural one. Then the factor
is Sym(z7hs1,[271]) and the Heisenberg algebra acts in the standard way. From its
definition, our Heisenberg operator P! is given by the tensor product of the Heisenberg
operator for Sym(z~1h,(,[271]), and the identity.

The following means that the operators P! define the Heisenberg algebra $eis(h)
associated with the Cartan subalgebra h of g.

Proposition 6.3.8. — Heisenberg generators satisfy commutation relations
o 1
(6.3.9) [P, P)] = —mdpm, (0, 05) —.
E1€2

If we normalize the generator by ﬁﬁl = 5P}, the relations match with a standard
convention with level —e5/e1 =k + hY. See (B.1.5).

From the construction, P? ; applied to the vacuum vector |a) € HY(Uy, &7 ¢ (IC(‘M%)))_
is equal to P, (51%727G) o 1%i € U¢ divided by e1€2, considered as an element in
(6.3.6).
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From the construction, (6.3.6) is the Fock space of the Heisenberg algebra associ-
ated with the Cartan subalgebra . It is Sym(z~1h[z71]), where the base field is Fr.
The element &¢ is a linear function, living on z~9h.

Proof of Proposition 6.3.8. — The case (a;, ;) = 2, i.e., i = j is obvious from the
construction.
Next consider the case (a;,a;) = —1. Then ¢ and j are connected by an edge

in the Dynkin diagram. Let us take the parabolic subgroup P corresponding to the
subset consisting of two vertices ¢ and j, and the corresponding Levi subgroup L. We
have [L, L] = SL(3). Then from our construction and the compatibility of the stable
envelope with the hyperbolic restriction functor in §5.13, the assertion follows from
the SL(3)-case, which is clear as Heisenberg algebra generators are given by

(6.3.10) PP=P,®1®1-19P,®1, PI=108P,01-1®1Q P,.
Note also that our polarization ¢ in (6.2.1) was chosen so that it is the same as the

polarization for ZZ/; L(3) Via Lemma 5.3.4 up to overall sign independent of d.

Finally consider the case (a;, a;) = 0. We argue as.above by taking the correspond-
ing Levi subgroup L with [L,L] & SL(2) x SL(2). Then it is clear that Heisenberg
generators commute.

If a reader would wonder that SL{2) x SL(2)is not considered in §5, we instead
take a type Ay subdiagram containing’7z.j and take the corresponding Levi subgroup
L with [L,L] 2 SL(k + 1). Then it is cléar that the Heisenberg generators P¢ , P’
commute for SL(k 4 1). Therefore they commute also for G. O

Let us consider Heisenberg operators P; ([0]) = e162 P, coupled with the Poincaré
dual of [0] € HJ(A?), and denote them by P:. Then they are well-defined on non-
localized equivariant cohomology groups
(6.3.11) P Hi (Ur, 21,6(1C(%g))),

d
and satisfy the commutation relations

(6.3.12) [Pl Pl = —mbp, —n(ai, aj)e1€2.
The same is true for the non-localized equivariant cohomology with compact supports.

We define the A-form $eisa (h) of the Heisenberg vertex algebra as the vertex
A-subalgebra of $eis(h) generated by P, .

6.4. Virasoro algebra

Let us introduce 0-mode operators Pi. In §5.2 we did not introduce them. Since
they commute with all other operators, we can set them any scalars. We follow the
convention in [46, §13.1.5, §14.3.1], that is

al

6.4.1 Pl = )
( ) 0=
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Here a' is the i*" simple root, and should be identified with a; —a;; 1 in [46] in the Fock
space F(a1) ® --- ® F(a,) corresponding to the equivariant cohomology of Gieseker
spaces for rank r sheaves. We also set Pi = 169 Pi = d’.

We then introduce Virasoro generators by

n . (e1+892)2
— —(e1 + &) P + —— .
(e1+€e2)P, + de1ey n,0

[N)

. 1 L
(6.4.2) L, = ;12 DI 0 .

See [46, (13.10),(14.10)]. Let us briefly explain how to derive the above expression
from [46]: The Virasoro field T'(y,k) = Y L, (v, %)z~ "™ in [46, (13.10)] is given by

(6.4.3) T(v,k) = %:aQ:(’y) + da(vyk) — %T(’Yﬁz),

where a(y) = Y a,(7)2z~™ is the free field. Note that 7" and « are different from the
usual convention, as the exponents are not —n — 1, —n —2 respectively. Also 0 = 20,.

We take v = 1, the fundamental class of H2(A?). Next note that & = a~/v2
[46, (14.8)], and our P* is identified with ac~. This is the reason we have 1/4 instead
of 1/2. The remaining factor —¢,e5 comes from 14 = —1 ® pt in [46, §13.3.2].

For the second term, note k = %/v/2 (see [46, (14.8)]), h = —t, — t5 (see [46,
§17.1.1,(18.10)] for example). We denate their ¢1;t3 by €1, €2 instead.

For the last constant term, we have =-yk? = —(e1 +€2)?/2 and 7(1) = — [,, 1 =
—1/5‘152.

The Virasoro algebra commutation relaticas are

P ; 6(c1 + €2)? m3 —m
(6.4.4) L L] = (m—n)Li, o (14 SELEEN 5 mT—m
E1€9 12

See [46, §13.3.2]. And the highest weight is given by

(6.4.5) Lijay==1 <(“i)2 _leat 52)2) la).

4 E1E2 E1€2

See [46, §13.3.5].
In order to apply the result of Feigin-Frenkel to our situation later, we shift P! in
(6.4.2) as P! — (g1 + e3)/e1€20,,0 (see [46, §19.2.5]) so that

n+1
2

. 1 . .
(6.4.6) L, =- €12 > PP - (e1+e2)PL.

This is a standard embedding of the Virasoro algebra in the Heisenberg algebra, given

as the kernel of the screening operator (see [30, §15.4.14]). We have

. 1 .
(6.4.7) Py=—(a'— (61 +&2))
E1€9

in this convention.
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We modify (6.4.2) as

€1+ €2 €1+ €2

Lil = - 35152 ; :(an 125 5m,0)(Priz—m 160 Omn):
- %(El + &9) P! + (514:1;2)26”,0
(6.4.8) D+ ea)Pi+ (514;;2)25%0
= — 3&‘162 Em: 2(Pfin - 518:-:2&2 5m,0)(PT1i—m > gl{_:;252 5"“"):
_ntl (e1+ €2)(be - 616;262 On,0)-

Therefore if we replace P} by P! — (g1 + €2)/e1€20,,0, We get the above expression.
We denote by Uir; the Virasoro vertex subalgebra of $eis(h)) generated by L¢ .
Let us introduce a modified Virasoro generator L, = e1e5L}. We have

(61 +&2) P

Ti 1 pipi . ntl
(6.4.9) L=-7 ; PLP
Hence f/fz is an element in $eisa (h). We denote the corresponding vertex A-subalgebra
by mi‘ti,A.
Note that the central charge 1+ 6(c; +&5)?/e165 is equal to that of Virasoro alge-
bras, appearing in the construction of the V/-algebra W (g) as the BRST reduction
of the affine vertex algebra at level k, if we have the relation

(1 +&2)° v
6.4.10 S - P AV S
( ) €1€2 + + k+hY
see |30, §15.4.14] and Corollary B:6.11 below. In other words, k + hY = —e3/e;

or —e1/ey. It is known that the W-algebra for type ADE has a symmetry under
k+ hY < (k+ hY)~! [30, Prop. 15.4.16]. Therefore either choice gives the same
result. We here take k+ hY =—¢eo/e1, see (6.0.1). It is remarkable that the symmetry
k+hY < (k+ hY)~! corresponds to a trivial symmetry €; < €2 in geometry.

6.5. The first Chern class of the tautological bundle

Let us explain a geometric meaning of the Virasoro generators in the previous
subsection. It was-obtained in [46, Th. 14.2.3], based on an earlier work by Lehn [43]
for the rank 1 case. Let us first consider the rank 2 case.

Consider the Gieseker space ’212 of rank 2 framed sheaves on P? with ¢; = d.
For (E,p) € @Z, consider H!(P?, E(—{)). Other cohomology groups vanish, and
hence it-has dimension equal to d by the Riemann-Roch formula. In the ADHM
description, it is identified with the vector space V. When we vary F, it forms a vector

~d
bundle over 9/,, which we denote by V. Its first Chern class c1(%) can be considered
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~d
as an operator on Hi(%,) acting by the cup product. Then its commutator with the
diagonal Heisenberg generator, restricted to IH}(‘M% L,), is the Virasoro generator up
to constant:
A _

(6'5'1) [Cl((l/)vpn HIH{F(”%LZ) - nLny
where we denote L! in the previous subsection by L, since G- = SLy. (See [46,
Th. 14.2.3].)

Let us remark that c¢; (V) is defined on non-localized equivariant cohomology groups

IH%},C(‘Zl;). Therefore L, = e165L, is also well-defined on non-localized equivariant
cohomology groups for n # 0. The operator Lo = e162Lg is also well-defined as it is
the grading operator ([46, Lem. 13.1.1]).

Returning back to general G, we see that fil is well-defined on

(6.5.2) P H: (%, ®L, c(IC(UE))
d

thanks to the decomposition (4.11.5). Namely this space is a module over Uir; a. It
lies in between the first two spaces in (6.0.3):

(6.5.3)  IHI (%) — Hi (U, s, c(IC(Ug)) — Hi (Ur, ®1,6(IC(Ug)))-

The Formula (6.4.9) relates operators E; and f’fl acting on the middle and right spaces
respectively via the second homomorphism:

6.6. /-algebra representation

Let us consider the vertex algebra associated with the Heisenberg algebra, and
denote it by the same notation $jeis(h) for brevity. It is regarded as a vertex algebra
over F.

We have the Virasoro vertex subalgebra Qit; corresponding to each simple root «;
as in §6.4. Consider the orthogonal complement a; of Ca; in b, and the corresponding
Heisenberg vertex algebra feis(a; ). It commutes with Uit;, and the tensor product
Vir; ® Heis(a;") is a vertex subalgebra of Heis(h).

By a result of Feigin-Frenkel (see [30, Th. 15.4.12]), the W-algebra Wy (g) is iden-
tified with the intersection

(6.6.1) [ DBir; ® Heis(o;")

in $ieis(h) when the level k is generic. More precisely, ir; ® Heis(a;") is given by the
kernel of a screening operator on $eis(h), and Wy (g) is the intersection of the kernel
of screening operators.

Now Wy (g) has a representation on the direct sum of localized equivariant coho-
mology groups Mg(a) (see (6.0.4)), as a vertex subalgebra of $eis(h).
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6.7. Highest weight

In this subsection we explain that we can identify a with the highest weight of the
Wi (g)-module My(a), where the highest weight vector is |a).

Let us first briefly review the definition of Verma modules of the W/-algebra to set
up the notation. See [2, §5] for detail.

Let (W (g)) be the current algebra of the W-algebra as in |2, §4]. (The finite di-
mensional Lie algebra is denoted by g, while g is the corresponding untwisted affine Lie
algebra in [2].) We denote the current algebra of the Heisenberg algebra by $4($jeis(h)).
It is a completion of the universal enveloping algebra of the Heisenberg Lie algebra.
The embedding Wy (g) C $Heis(h) induces an embedding U(W i (g)) — LU(Heis(h)).

We have decompositions $( Wy (g)) = @, U Wi (g))a, U(Heis(h)) = P, U(Heis(h))q

by degree. Two decompositions are compatible under the embedding. Let

(67.0)  UWi(0)20 L DUWi(@)ar U Wil8))>0 "L EDUWi(g
d>0 d>0
The Zhu algebra of (Wi (g)) is given by
(6.7.2) 30(Wi(g) S U(Wil(8))o/d WWk(8)—r U Wi(g))..
r>0

Then it is isomorphic to the center Z(g) of the universal enveloping algebra U(g) of g
([2, Th. 4.16.3]). We further identify it with the Weyl group invariant part of the
symmetric algebra of § ([2, (55)]):

(6.7.3) 30(Wi(e)) = Z(g) = S(H)".

We have an induced embedding 36(Wy(g)) — 3h(LU($Heis(h))), where the latter is
the subalgebra generated by zero modes. We have

(6.7.4) 35 (8($Heis(h))) = S(b).

Lemma 6.7.5. — Under the identifications (6.7.3), 6.7.4, the embedding 3H(W(g)) —
3h(U($Heis(h))) is induced by

(6.7.6) Rt h' + (k+ hY),

where h' is a simple ‘coroot of b.

Proof — The assertion follows from [2, Th. 4.16.4], together with an isomorphism
t_,v which sends.the old Zhu algebra, denoted by H° (3[)(Ck( )a)) there, to a new
one HO(Sb(Ck(g)new)) The zero mode is written as J( ) there. We can calculate
t_pv (7;(0)) = J;(0) + k + A" by formulas in [2, bottom of p.276]. O

We regard A € h* as a homomorphism S(h)"Y — C by the evaluation at A + p,
where p is the half sum of positive roots of g. (It is denoted by 75 in [2, §5].) We
further regard C as a 3h(Wi(g))-module by the above isomorphism, and denote it
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by Cy. We extend it to a {(W(g))>o-module on which (W (g))so acts trivially.
Then we define
def.
(6.7.7) M) =" U Wk(9) @uw,(g))so Cr-
This is called the Verma module with highest weight \.
Now we turn to our Wy (g)-module My (a). We identify h = LieT with h* by the
invariant bilinear form (, ). Then we have an identification

(6.7.8) SV = ClLieT)V = Hi(pt)".

We regard the collection a = (a!,...,a%) as a variable in Lie T by considering a’ its

coordinate. Hence a has value in h* by the above identification:

Recall that |a) is the fundamental class 1 € TH(%g). Since the degree d
corresponds to an instanton number, U(Wy(g))>o ‘acts via a homomorphism
U(Wr(g))so — Fr induced from 34(Wi(g)) — Fr on Frla) = IHH (%) ®a, Fr.
Hence we have a Wy (g)-homomorphism M(X) — Mg(a), sending 1 € Cy C M())
to |a) € Mp(a). Here we generalize the above definition to A: 3H(Wk(g)) — Fr.

Proposition 6.7.9. — (1) The highest weight X\ is given by
a

(6.7.10) A=——p.
€1

(2) Mg(a) is irreducible as a Wy (g)-module, and isomorphic to M(X).

Note that the Weyl group action on a corresponds to the dot action on A\, wo A =
w(A+p) — p.

Proof. — (1) Recall that our Heisenberg generators and standard generators are re-
lated by h, = e2P:. Then the zero.mode acts by

a’ a v
(6.7.11) a—l—a—(ai,a—p)+k+h
thanks to (6.4.7).

We compare this formula with a realization of M(A) in [2, §5.2]. Our E; is
t_pv (Ji(n)) € U(Cr(g ), and t_pv (J;(0)) = J;(0)+ k+h" as in Lemma 6.7.5. Since
7J;(0) acts by A(J;) on M()\), we obtain A = a/e; — p.

(2) It is well-known that M(\) is irreducible when A is generic. It follows, for
example, from the fact that the determinant of the Kac-Shapovalov form is a nonzero
rational function, hence the form is nondegenerate if A is neither a zero nor a pole. (See
below for the Kac-Shapovalov form.) It also means that the form is nondegenerate
when one views A as a rational function like us. Therefore M (\) — Mg(a) is injective.

Now' we compare the graded characters. The character of M(\) is the same as
the character of S(th[t]) where deg(t) = 1. We have Mr(a) = P, ey IH* (U%) @
Fr. According to [21, Theorem 7.10], the character of My (a) (with grading by the

instanton number) is the same as the character of S(tg”[t]) where f is a principal
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nilpotent. Since dim g/ = dim b, the graded characters of M (\) and Mg (a) coincide.
U

6.8. Kac-Shapovalov form

We shall identify the Kac-Shapovalov form on M (A) with-a natural pairing
on Mg(a) given by the Verdier duality in this subsection.

Let o be the Dynkin diagram automorphism given by —a(;) = wo(c;). We denote
the corresponding element in Aut(G) also by o. We have an induced isomorphism

SOUQDUJO : IH%,C(%dG) - IH'E‘,C(%dG)?

which is Ap = Hj(pt)-linear if we twist the Ap-structure on the second IH;‘T’C(%dG)
by composing the automorphism a — —a of Ar. This is explained in the paragraph
after (4.13.2).

Let us denote the natural perfect pairing by

(6.8.1) ()¢ THE (Ue) ©a, THR(UE) — Ar,

where we compose the above ¢, ¢, for the first factor. We also multiply it by (—1)‘“’v

as in (5.2.5). The notation conflicts wit5-the pairing between U%* and U4 P~ in §4.10.
But the two pairings are closely related, ®o the same notation does not give us any
confusion. (See §8.1 for a more precise relaticn:)

By the localization theorem and Lemma 3.1°6 we extend it to a perfect pairing

(682) < y >Z MF(—CL) ® MF(O,) — FT.

(cf. [14, §2.6].) Here the highest weight of the first factor is —a since we compose the
automorphism a — —a.

When we localize the equivariant cohomology groups, there is no distinction be-
tween compact support and arbitrary support. We then see that (6.8.2) is symmetric
in the sense as in (4.10.4).

We also have the pairing

(6:83)  (, ): Hf (Up ®r,6(IC(Ue))) ®@ar Hi(Up, B1,6(IC(Ug))) — Ar,

where we compose @@, on the first factor as above. Since cwy sends B to the oppo-
site Borel B_, the above is coming from the pairing between Hﬁc(%, @?)’G (IC(‘lZdG)))
and H{'T‘((Ll%, <DT7g(IC(%é))). Therefore it is a perfect pairing thanks to Braden’s iso-
morphism (3.4.2)., This pairing also extends to a pairing (6.8.2), which is the same
as defined above thanks to the compatibility between Braden’s isomorphism and
. ) .

i'j° — 1'j"as in the proof of Lemma 5.9.4.

The Heisenberg generator P! satisfies

(6.8.4) (u, P v) = (0(P})u,v),
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where 6 is an anti-involution on the Heisenberg algebra given by

2(51 + 62)
E1€2

(6.8.5) O(P)=—-P', — 5no-

Let us explain the reason for this formula of #. Thanks to a standard property of
convolution algebras, the diagonal Heisenberg generator PnA in §5.2 was defined so
that P2 is adjoint to P2, . Since the intersection pairing (5.2.5) is compatible with the
above one, we change n to —n. Moreover, since P is defined via the stable envelope
and we must use the opposite Borel as in §4.10, we need to swap Pfll) and Pflz) in §6.3.
Therefore we need to change the sign of P?, . The zero mode-P} was defined by hand
as (6.4.7). We must also change the sign of a’, as the Ap-module structure is twisted
by a — —a on the first factor. Then we must correct —P¢ by ~2(g1 + £2)/e1€2.

The Virasoro generator L?, is mapped to L’ ,, by 6. This is clear from (6.5.1): c1 (V)
is self adjoint and §(P2) = P2, as we have just explained. It can be also checked by
the Formula (6.4.6).

Therefore 6 preserves Wy (g), more precisely the associated Lie algebra £(Wk(g))
and the current algebra U( Wy (g)), thanks to (6.6:1). We have

(6.8.6) (u, zv) = (0(x)u;v)

for x € £(Wk(g)), u,v € Mr(a). On the other hand, £(Wy(g)) has an anti-involution
as in [2, §5.5], denoted also by 6.

Proposition 6.8.7. — Our 6 coincides with one in [2, §5.5].

Proof. — We use the formula [2, Prop.-3.9.1] for the Heisenberg vertex algebra. We
follow various notation in [2].

Since jl(n) is a Fourier mode of the vertex operator Y (v,2) = > ji(n)z_”_l with
v = :7;—(—1)|0>, we have

(6.8.8) 0(J3(n)) = —(eT v)_p.
Here T* must be substituted by 77", in [2, (173)]. Using

new

(6.8.9) v =Ji(=1)[0) = Ji(—1)[0) = Y a(h")P_a(0)3pa(—1)[0)

a€A

(see [2, the beginning of §4.8]), we can check
(6.8.10) eI v = J;(=1)|0) + 2(1 — (k + hY))|0).

Therefore we get the same formula as (6.8.5) under the identification ji(—l) =gy Pl
(This J;(—1) is in-$(Ck(g)",,,) and we do not need to apply t_,v in the proof of

new
Proposition 6.7.9; as it is in T O

IleW')

Remark 6.8.11. — We can identify the graded dual D(Mg(a)) of Mg(a) with
Mg(—a) wvia { , ). The graded dual has a Wjy(g)-module structure via 6 and
the Formula (6.8.6). This is the duality functor D in [2, §5.5]. The isomorphism
D(Mg(a)) = Mg(—a) respects Wy(g)-module structures.
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When ) is generic and M () is irreducible, the dual module D(M ())) is isomorphic
to M (—wo(\)), where wy is the longest element in the Weyl group by [2, Th. 5.5.4].
Under the correspondence in Proposition 6.7.9(1), we have

(6.8.12) —wp(\) = —wo<§> —p,

as wo(p) = —p. This means that the equivariant variable a is replaced by —wg(a).
Since the highest weight module is invariant under the Weyl group action, we can omit
wop. So the equivariant variable is —a for D(Mp(a)). Therefore we have D(Mp(a)) =
My (—a). This is what we already observed in a geometric way above.

The pairing (-,-) is uniquely determined from (6.8.6) and the normalization
(—ala) = 1 for generic a. It is called the Kac-Shapovalov form. We thus see that
the Poincaré pairing twisted by ¢,¢., on Mg (a) coincides with the Kac-Shapovalov
form.
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CHAPTER 7

R-MATRIX

Recall that our hyperbolic restriction @1, ¢ depends‘on the choice of a parabolic
subgroup P. Following [46, Ch. 4] (see also [19, §1.3]); we introduce R-matrices giv-
ing isomorphisms between various hyperbolic restrictions, and study their properties.
They are defined as rational functions in equivariant variables, and their existence is
an immediate corollary to localization theorem in the previous section.

As for the usual R-matrices for Yangians, they satisfy the Yang-Baxter equation
and are ultimately related to the W-algebra.

As an application, we give a different. proof of the Heisenberg commutation relation
(Proposition 6.3.8) up to sign, which does not depend on Gieseker spaces for SL(3).
We hope that this proof could be generalized to other rank 2 cases Bs, Gs.

Since the dependence on a parabolic subgioup is important, we denote the hyper-
bolic restriction by <I>ILD7G in this section.

7.1. Definition

Let us consider the diagram (4.4:2) with respect to a parabolic subgroup P. Let us
consider the homomorphism in (3.4.3)

(7.1.1) Ip: Hy (UL 7 6(T) — Hi(U, "5 F) = Hi(Ug, T)

for & € D%(%é). This is an isomorphism over the quotient field Fr of A =
C[Lie(T)]. When we want to emphasize &, we write J‘IZ.

Definition 7.1.2. — Let. P, P> be two parabolic subgroups compatible with (G, L).
Let us introduce the R-matriz

(713) Rp, py = (jpl)_lypzz H’E‘(%%’QE?G(Q)) Qar Fr
= Hi (U, ®76(7)) ®ar Fr

When we want to view Rp, p, as a rational function in equivariant variables, we
denote it by Rp, p,(a). Dependence on €1, €5 are not important, so they are omitted.
When we want to emphasize &, we write R;{h Py
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From the definition, we have

(7.1.4) Rp,,p,Rp, p, = Rp,,p;-

7.2. Factorization

Suppose that )1 C P be a pair of parabolic subgroups as in §4.5. Let M C L be the
corresponding Levi subgroups. We have @%LL ) <I>ZG = <I>C’]\2/[1’G by Proposition 4.5.1.
We further suppose that there is another parabolic subgroup )2 contained in P,

such that the corresponding Levi subgroup is also M:
(721) M C QI)QQ CP.

Then we also have the factorization @%LL o®] o = Q%”G. It is clear from the definition
that we have

1% _ p®re(@)
(7.2.2) Rg, . = RQ1,L,Q2,L'

Consider the case L = T. Note that Borel subgroups containing a fixed torus T
are parametrized by the Weyl group 7. Let us denote by B"™ the Borel subgroup
corresponding to w € W, where B¢ = B is ¢ne which we have fixed at the beginning.
From (7.1.4) R%. g, factors to a composition of R-matrices for two Borel subgroups
related by a simpfe reflection, i.e., y =ws;. Then we choose P = P D BY, B¥% for
the parabolic subgroup to use (7.2.2). We have

@7 (9)
(7.2.3) Rfugos = Rpy U by o

where L is the Levi subgroup-of P and B, By are images of BY, B“% in L
respectively. As [L, L] = SL(2), we are reduced to study the SL(2) case. The R-matrix
for SL(2) was computed in [46, Th. 14.3.1] and will be explained in §7.5.

7.3. Intertwiner property

d :
Let & € D%(%e). We have representations of the Ext algebra Ext pr(ut) (9, 9) on

two cohomology groups in (7.1.1). This is thanks to (3.2.1), 3.2.2. Since /;{ is defined
by a natural transformation of functors, it is a homomorphism of the Ext algebra.
Therefore

Proposition 7.3.1. — The R-matriz Rgl,& is a homomorphism of modules over the
Ext algebra Ext pp g0 \(9,. ).
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7.4. Yang-Baxter equation

Take L = T and & = IC(%%) in this subsection.
By (4.13.3) we can map all cohomology groups in (7.1.3) to the fixed one
Hq‘f(‘&l%, @?wa(IC(‘Ué))) ®a, Fr &2 Mg(a) by ¢,. We conjugate the R-matrix as

(7.4.1) P Rt oz pu, € End(Hi (U7, @F 6 (IC(%g))) ©a, Fr).

Remark that Hj (pt)-structures are twisted by isomorphisms wq,ws: T — T, as men-
tioned after (4.13.2). In practice, we change the equivariant variable a according to w;
,Wa.

Since Jp is p,-equivariant, (7.4.1) depends only on wywj ‘. Moreover by (7.1.4)
it is enough to consider the case wiw, lisa simple reflection s;. Therefore we define

(7.4.2) R Y 07 Rpes ppe.
By the factorization (§7.2), this is the R-matrix for SL(2). Since we only have two
chambers, (7.1.4) implies

(7.4.3) Ri(s;a)R;i(a) = 1.

We change the equivariant variable to s;a, as-it is'the R-matrix from the opposite
Borel to the original Borel. In the conventional notation for the R-matrix, we write
u = {a;, a) for the variable. Then («;, 5;4) = —u, so this equation means the unitarity
of the R-matrix.

Consider R-matrices R;, R;. By the factorization (§7.2), we consider them as the
R-matrices for the rank 2 Levi subgroup. L cortaining SL(2) for i and j. We compute
the R-matrix from a Borel subgroup of L to the opposite Borel by (7.1.4) in two ways
to get

Theorem 7.4.4. —
(745) z(sja) J(a) = Rj(sia)fvii(a) ’Lf (Oli,Olj) = 0,
(7.4.6) Rj(sis;a)Ri(s;a)Ri(a) = Ri(sjsia)R;(sia)Ri(a) if (i, ;) = —1.

7.5. SL(2)-case

As we mentioned earlier, it is enough to compute the R-matrix for SL(2), which was
given in [46, Th. 14:3.1]. We briefly recall the result, and point out a slight difference
for the formulation.

By Proposition’ 7.3.1 and the observation that the left hand side of the For-
mula (6.5.1) is contained in the Ext algebra, we deduce that the R-matrix is an
intertwiner of the Virasoro algebra. This is a fundamental observation due to Maulik-
Okounkov [46].

The highest weight is generic, since we work over Fr. Therefore the intertwiner is
unique up to scalar, and we normalize it so that it preserves the highest weight vector

la).
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In [46] the R-matrix is given as an endomorphism of the localized equivariant
cohomology group of the fixed point set via the stable envelop. On the other hand,
our R is an endomorphism of H{f(%dT, Q%G(IC(%dG))). Concretely

(7.5.1) R = P,RMO|

anti-diagonal part ’

where Pjs is the exchange of factors of the Fock space FF ® F, as s; = Pia.
By [46, Prop. 4.1.3] we have

(7.5.2) R=-14+0(a™"), a — oo.

7.6. G-equivariant cohomology

Recall that a larger group G = G x C* x C* acts on %dc sothat IC(‘ZldG) is a G-equiv-
ariant perverse sheaf. Therefore we can consider IHE(‘Z&dG) = HE(‘U&IC(’M%)). It is
related to the T-equivariant cohomology TH:(%%) as follows.

Let N(T) (resp. N(T')) be the normalizer of T (resp. T') in G (resp. G). Then we
have forgetful homomorphisms IH% (%) — IH () (UL) — THE(UL). Tt is well-known
that the first homomorphism is an isomorphism, as the cohomology of G/N(T) =
G/N(T) is 1-dimensional (see e.g., [371). The Weyl group W = N(T')/T acts naturally
on IH%}(‘LZdG), induced from the N (T')-action-on (chl;. Moreover we have

(7.6.1) THZ (%) = THy ) (%) = THR(UG)W.
Let us consider the following diagram
g *
H; (Up, 9% c(10(Ug))) ®ar Fr —2— TH;(%g) ®a, Fr
(7.6.2) Rli lsi

H2 (U, 88 o(IC(UL))) ©ap Fr —22— THY(UL) @A, Fr,

o

where s; is a simple reflection of the above W-action.
Lemma 7.6.3. — The diagram (7.6.2) is commutative.

Proof. — We have R; = ¢;1jgjj3<pe. As an endomorphism of TH:(%%) ® ., Fr, it
is replaced by JBw;ljgil, as . = id.

From the definition of /g, and the commutativity of the diagram (4.13.1), we have
IB, s, = ¢s, I By Where @, in the right hand side is the action on ‘Ll‘(i;, the rightmost
arrow in (4.13.1). Since the W-action is induced from ¢,, the assertion follows. O

Proposition 7.6.4. — The Weyl group action on My(a) = @, TH:(UL) @A, Fr com-

mutes with the Wy (g) action. Hence Wy (g) acts on the W -invariant part Mg (a)V =

@, H: (Ug) ®ac Fo.
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Proof. — Since Wy(g) is the intersection of Vit; ® Heis(a;-) (see (6.6.1)), it is enough
to show that Uit; ® Heis(a; ) commutes with s;. By the previous lemma, s; is given
by the R-matrix.

Let us first factorize the hyperbolic restriction functors <I>T o <I>T G as

B BL; 1 P; g1 Blsji P
‘@T,G = (I)T,Liq)L,-,G” cI’T,G = ‘I)T,Liq’Li,G

by Proposition 4.5.1. Then the same argument as in Proposition 7.3.1 shows that R;
commutes with the action of the Ext algebra of <I>fi G(IC(’U%)). Since the Virasoro
generators Z; are in this Ext algebra, the first assertion follows.

For the second assertion, we only need to check

(IH}(%e) ®ar Fr)V 2 THE (%) ®a, Fa.

By (7.6.1) we have a natural injective homomorphism form the right hand side to the
left. On the other hand, if m/f (f € Ar, m € IH:(%%)) is fixed by W, we have

P |W|<H”f)_1Z”mHTf'

ceEW. ceW T#0

This is contained in the right hand side. Therefore the above follows. U

7.7. A different proof of the Heisenberg commutation relation

We give a different proof of Proposition 6.3.8.

Let df’_ be the element defined as in &¢ for the opposite Borel. Since the pairing
can be computed from the SL(2) = [L;, L;] case, we already know that
(7.7.1) (@, ab"y = 2d.

1 K3

We generalize this to

Proposition 7.7.2. —
(7.7.3) (6d,677) = xd(o, o).

The following proof-does not determine +, though we know that it is 4+ by the
reduction to the SL(3) case and the Formula (5.12.6), which has been proved via
Gieseker spaces.

Proof. — We consider the case (a;,a;) = —1. The proof for the case (a;, ;) = 0 is
similar (and simpler).

Let us study the leading part of Yang-Baxter Equation (7.4.6). We consider R-ma-
trices as endomorphisms of the space (6.3.6). By the factorization (7.2.2), we can use
the expansion (7.5.2) for SL(2). Then ‘=1’ in (7.5.2) is replaced by the direct sum
of (=1) on U%Li = hgr, and the identity on (U%’Li)J- in (6.3.7). Let us denote it by §;.
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Since (Uf ;)" is the orthogonal complement of Ca~, we have

—\ 0
(7.7.4) Gi(z) =z — (x,a® ), forze Ue.
From the Yang-Baxter equation, we have the braid relation
(7.7.5) 3;5;8; = 5;3;3;.
Since we are considering the SL(3)-case, there is the diagram automorphism o
exchanging i and j. By Lemma 4.13.9, we have ¢, (&%) = (—1)d6/j. Since ¢, preserves
the inner product, we get

(7.7.6) (@d,677) = (ad,ad7).

Now §; is the usual reflection with respect to the hyperplane df’_ = 0. Hence we
conclude (a4, d?’_) = +d.

Note that a¢ = j:éz? are excluded thanks to (4.12.1), which has been proved without
using Gieseker spaces for SL(3). O

Once we compute the inner product, the Heisenberg relation is a consequence of]
the factorization (6.3.7). The generator P! is the tensor product of the Heisenberg
generator for the first factor and the identity in (6.3.7).
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WHITTAKER STATE

8.1. Universal Verma/Wakimoto modules

Let us denote the direct sum of four Ap-modules overd € Z> in (6.0.3) by Ma (a),
Na(a), D(Na(—a)), D(Ma(—a)) respectively. Thus we have
(8.1.1) MA(CL) C NA(a) C D(NA(—CL)) C D(MA(—G,)).

The reason for notation will be clear shortly.
The pairing (6.8.2) restricts to a perfect pairing

(8.1.2) (,): Ma(~a)@D(Ma(-a)) - Ar,

given by the Verdier duality, where the Ap-structure is twisted by the automorphism
a — —a as in §6.8, and hence the notation is chianged to Ma (—a). Then D(Ma (—a))
is identified with the graded dual of M4 (—a) by (8.1.2), hence our notation is com-
patible with the convention in Remark 6.8.11. Similarly if we twist Na (a), we have
an isomorphism

(8.1.3) Youo: Na(=a) = @ Hi (U3, 7.5 (IC(U))),
d

where @?b is the hyperbolic restriction with respect to the opposite Borel B_. Then
we have a perfect pairing

(8.1.4) {4 ): Na(—a)® D(Na(—a)) — Ar.

Recall that Na (a), D(Na(—a)) are modules over the integral form of the Heisenberg
algebra $eisa (h), as-we remarked at the end of §6.3.
Using Lemma 4.8.7, we make an identification

(8.1.5) Na(a) = P Sym™ U' @ Sym™ U ® - -- ® Hi .(SxA?),
A

where U4 = Ug{g and A = (1™272 ...). We also have an identification for the opposite
Borel B-:

(8.1.6) D(Na(a)) = P Sym™ UV~ @ Sym™ U~ @ - - @ Hi (S\A?),
X
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where U4~ = ;:g’. Then the pairing (8.1.4) is the product of the pairing between

U? and U4~ in §4.10 and one between HC*T(W) and H7(Sx\A?).

Moreover, two pairings (8.1.2) and (8.1.4) are compatible with the embeddings
(8.1.1).

Let Wa(g) be the A-form of the W-algebra in §B.

Proposition 8.1.7. — Ma (a), D(Ma(a)) are W a(g)-modules.

Proof. — Note that D(Ma (a)) is characterized as
(818) {m € Mp(a) | <m,MA(a)> € AT}

Therefore it is enough to show the assertion for Ma (a).

We consider M (a) as a subspace of Na (a). The latter is a module over Heisa (h),
and hence over Dir; o. By Theorem B.6.1, it is enough to check that Ma(a) is in-
variant under the intersection of Uiv; s for all 4. Recall that we know that (6.5.2) is
a Yir; o-module, as Eﬁl is well-defined. Therefore it is enough to show that

(8.1.9) T (W) = [V Hio(Ur, @1,60C(U))-

K2

By Theorem 3.6.2 we have

(8.1.10)  HZ (U},, %1, c(IC(%)))
* d 3 d * d Sq d
= Hy (U, ‘b?,G(\IC(%G))) N Hy (Ur, (I)g,G(IC(%G)))v
where B®¢ is the Borel subgroup correspondingto a simple reflection s;. Therefore it
is enough to show that the intersection-of the right hand side of (8.1.10) for all ¢ is
IH;})C(‘ZJdG). This is proved in a similar manner as Theorem 3.6.2. The only thing we

need to use is the fact for any non-zero dominant A there exists ¢ € I such that s;()\)
is not dominant. O

Proposition 8.1.11. — The W a(g)-submodule of My (a) generated by |a) is Ma(a),

(8.1.12) Ma(a) = Wal(g)|a).

Proof. — Comparison' of bigraded dimensions: W (g)|a) is bigraded by the usual
degree and “deg, so that the bidegree of st) is (n,d, + 1), see §B.2. According to
loc. cit., Wa(g)|a)is afree A-module (the bidegree of €1, €2, h equals (0,1)) with the
space of generators S(tw[t]) where w = @izl r0(®) with the bidegree of 10(*) equal
to (0,d, + 1), and the bidegree of ¢t equal to (1,0).

On the other hand, Ma (a) is bigraded by the instanton number and half the
cohomological degree. It is a free A-module with the space of generators equal
to D cn IH*(%%). According to [21, Theorem 7.10], Daen IH: (%) ~ S(te’[t])
where gf = @i=1 9{,@) with the bidegree of g{n) equal to (0,d, + 1), and the bidegree
of ¢ equal to (1,0). O
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On the other hand, it is clear from (8.1.5) that

(8.1.13) Na(a) = Heisa(h)|a)
For a homomorphism x: Ar — C = C,, the specialization
(8.1.14) Ma(a) ®a C,

is a module over Wy(g) with level k = x(—e2/e1) — hY. It is a Verma module with
highest weight x(a/c1) — p, see §6.7. Here  is regarded as the assignment of variables
a, €1, €2, or more concretely x(a) = Y x(a*)w; for fundamental weights ;.

Definition 8.1.15. — We call M4 (a) the universal Verma module.

Similarly Na (a) is specialized to the Fock representation of the Heisenberg algebra
by x. We call Na(a) the universal Wakimoto module. Similarly D(Ma(a)) is the
universal dual Verma module, and D(Na (a)) the universal’dual Wakimoto module.

8.2. G-equivariant cohomology

Let us consider the G-equivariant intersection cohomology groups as in §7.6. We
have

(8.2.1) P (Ue) = Mal0)”, D HE(Ue) = D(Ma(-a))"
d d

by (7.6.1). Since the W-action commutes with the W (g)-action by Proposition 7.6.4,
we see that both of (8.2.1) are modules over Wa (g).

8.3. Whittaker condition

Let W be as in §B.2, which generates Wa (g) in the sense of the reconstruction

theorem. Let |1¢) aet- [‘Ué] € IH%(@/&) be the fundamental class. It conjecturally

satisfies the following Whittaker conditions
Conjecture 8.3.1. — Let d > 1, n > 0. We have
1971 if k =fand n = 1,

(8.3.2) W19y = _
0 otherwise.

Since W™ is contained in Wal(g), it is a well-defined operator on D(Ma(—a)) =
@ IH:(%L). Since W™ has °deg = d,.+1 (d, is an exponent as in §B), it sends |1%) €
THY.(%%) into IH%(d“H_"hv)(fl/é_"). Since d,, < dy = hY — 1, we have W,”|1) = 0
unless n = 1,k = £. Also we see that Wl(é)|1d> is a multiple of [1971) with the multiple
constant, of degree 0, i.e., a complex number. Moreover, if the multiple constant would
be 0, it is-a highest weight vector and generates a nontrivial submodule. Since MF is
irreducible, it is a contradiction. Therefore the constant cannot be zero. In particular,
if we divide |1¢) by the constant, it satisfies the Whittaker condition (8.3.2).
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Let |w?) be the vector determined by with the normalization |w®) = |1°) = |a) €
TH2(%2) = TH3(pt). Its existence and uniqueness will follow from the discussion in
§8.4 below. (However it is not a priori clear that |w?) € D(Ma(—a)), as for [1%).)
Therefore we already know that [1¢) = c4|w?) for some c; € C by the above observa-
tion. The goal of this section is to prove a slightly weaker version of (8:3.2).

Theorem 8.3.3. — Conjecture 8.3.1 holds up to sign.

Our strategy of the proof is as follows. To determine ¢4 up-to sign, it is enough to
compare pairings (1¢|1¢) with (w?|w?). Moreover, as c, is a complex number, we may
do it after specifying equivariant variables €1, 5. We will show that

1 d
(5152)d<1d|1d>|51,82=0 = E (6152<11|11>|51,a2=0) )
1
!

(8.3.4) d
(6152)d<wd|wd>|61’52:0 = E (51€2<w1|w1>|€1,52:0> .

It implies that
2d

3 =it

Recall that the top degree field W® in §B.2 is well-defined only up to nonzero
multiple even ignoring lower degree {terms; as we just take it as a highest weight
vector of a certain sl, representation. Therefore if we divide W by ¢y, (8.3.2) holds
up to sign.

Since |19) is canonically determined from geometry, it means that the top degree
generator W® is fixed without constant multiple ambiguity (up to sign). In particular,
when we applied Wéz) to the highest weight vector |a), we get an invariant polynomial
in a of degree h". (See 6.7.) We do not study what this natural choice of the highest
degree generator of the invariant polynomial S(h)" is in general. But we will check
that it is indeed a natural one for g = sly; in §8.9.

8.4. Whittaker vector and Kac-Shapovalov form

In this subsection, we shall prove that the Whittaker vector exists and is unique in
the localized equivariant cohomology Mg (a), which we think of Verma module with
generic highest weight by Proposition 6.7.9. The argument is more or less standard
(see e.g., [40]), but we give the detail, as we will use similar one later in §8.8.

We have a nondegenerate Kac-Shapovalov form ( , ) on Mg(a). Let 6 denote the
anti-involution.on Y( Wr(g)) as in §6.8. We have

(841) 6(7) = (-1,

See [2, §5:5]. In particular, (W a(g)) is invariant under 6.
Let us denote the highest weight vector of D(Mg(a)) by (—a|. See Remark 6.8.11
to see that its highest weight is —a.

ASTERISQUE 385



8.5. LATTICES 89

Let A = (A!,...,XY) be an f-partition, i.e., it is an ¢-tuple of partitions \* =
(M3, )%, ...). We consider the corresponding operator

(8.4.2) win < whwd, w9, wY, .
1 2 1 2

in the current algebra of the W-algebra. Then

(8.4.3) W(A]|a)

form a PBW base of My (a). We define the Kac-Shapovalov form
def. ST

(8.4.4) K = K= ((~ald(WADW [u]la) )au,

where A, p runs over {-partitions whose total sizes are d. We consider it as a matrix,
and an entry is denoted by K.

Let (19) = (1,...,1) be the partition of n whose all entries are 1. Let A9 =
(@,...,9,(1%)) be the f-partition where the first (£ — 1) partitions are all & and the
last one is (1%). The corresponding operator W[)\O] is (Wﬁ))d.

‘We have
— 1 ifA=X
(8.4.5) (~alg(WAD )y = { = 52— 20
0 otherwise

from (8.3.2) by the induction on d. Néte that |w®) = |a), and hence (—ala) = 1.
Let us write the Whittaker vector |w?) in the PBW base as

(8.4.6) lw?) =" a, Winlla).
In
By (8.4.5) we have
(8.4.7) 3 Kauau = 0xx,-
i

In other words,
(8.4.8) a, = K,

where K—! = (K “") is the inverse of K. In particular, the existence and the unique-
ness of |w?) follow.
We also get

(8.4.9) (w|w?) = KAoro,

8.5. Lattices
Let
(8.5.1) W = (e165) ' W)

fork=1,.... 4, neZ.
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Lemma 8.5.2. — Ma(a) is invariant under W with m > 0. Equivalently
D(Ma(a)) is invariant under Wi'j,)l with m > 0.

Proof. — Recall that Ma(a) is graded by the instanton number d: Ma(a) =
@, My a. In algebraic terms, it is the grading by Lg. Let us take Wr(,f) with m > 0.
We show

(8.5.3) Wz € My_pm.a

for any x € M4 Ao by an induction on d. If d = 0, we have W,(,f)x = 0. Therefore the
assertion is true. .,
Suppose that the statement is true for d’ < d. We may_assume z = WS;) z’ with

n >0, 2’ € Mg_, o by Proposition 8.1.11. Since /Wéf)x' € Ma(a) by the induction
hypothesis, it is enough to show that [W,Sf),w&';) ]z’ € Ma(a). In the Heisenberg
algebra, we have [a,b] € e1e2HS (g) for a, b € HS (g) from the relation (6.3.12). Since

Walg) — ffg(g) is an embedding, we have the same assertion for 1 a(g). Therefore
the assertion follows. 0

Let R C¢ F = Q(e1,e2) be the local ring of regular functions at ¢y = €5 = 0.
Let Ry = R(a). We set

Mgr(a) = Ma(a) ®a, R7y. D(Mgr(—a)) = D(Ma(—a)) ®a, Rr,
Nr(a) = Na(a)®a, Ry, DB{Nr(—a)) = D(Na(—a)) ®a, Rr.
These modules are the localization with respect to the ideal

(8.5.5) Ker (A7 = Cley, €2, a] = C[Lie T] — Cla] = C[Lie T])

(8.5.4)

consisting of polynomials vanishing on Lie T

From the definition, operators W\ are well-defined on four modules in (8.5.4).
Moreover operators W™ and /WE';) are well-defined on Mg(a) and D(Mg(a)) re-
spectively if n > 0 by Lemma 8.5.2.

By the localization theorem, the first and the third homomorphisms in (6.0.3)
become isomorphisms over Rz . Therefore

o

(8.5.6) Mg(a) = Ngr(a),  D(Nr(—a)) = D(Mgr(-a)).

Recall that we have Heisenberg operators P! = (5152)_113};, coupled with the
fundamental class 1.€ H2(A?). Let

(8.5.7) P\|=PLy Py PLL P, o

fori=1,...,¢;m € Z, and an f-partition A = (A\!,..., \¥). It is a well-defined operator
on D(Mg(—a)) by the proof of Lemma 8.5.2.
Replacing P% by P!, we introduce similar operators P[A].

Proposition 8.5.8. — We have
(8:5.9) D(Mg(=a)) = Spang, {P[M|a)},
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where X runs all £-partitions.

Proof. — Thanks to (8.5.6), it is enough to show the assertion for D(Ng(—a)). We
shall prove that D(Na (—a)) is spanned by P[A] over A.

Recall that N (a) = Spany {P[A]|a)}, see (8.1.13). From the commutation rela-
tion
(8.5.10) [P, PI] = —mbpm, (v, a;),
we clearly have a perfect pairing between Na(—a) and Span,  {P[A]|a)}. The asser-
tion follows. O

8.6. Pairingate;,e0 =0

We consider the pairing ( , ) on Mp(—a) ®r, Mg(a) in §6.8, and restrict it
to D(Mr(a)) ®r, D(Mr(-a)).

Lemma 8.6.1. — We decompose D(Mgr(+a)) as €@ D(MiR) by the instanton number
d as before.

(1) (e182)¢( , ) takes values in Ry on D(Mjg)® D(M;:R).

(2) Let (, )o be its specialization at €1 = €3 = 0. For m > 0, we have

— — DAL WPz g ifm =1
8.6.2 z, W) = (=1) " ’
( ) ( my)o {0 otherwise.

Since ( , ) is symmetric, (2) remains true when we exchange the first and second
entries.

Proof. — (1) Thanks to (8.5.6), it is enough to show the assertion for D(Ngr(a)) ®
D(Nr(—a)). By (8.1.3) and %% = S%A?, it is enough to show that the intersection
pairing ( , ) on H}(S%A?) satisfies the same property. Note that S?A? is a smooth
orbifold. Since we only have a single fixed point d - 0 in S?A? and the weight of the
tangent space there is €15€9,£1,€9,... (d times), the fixed point formula implies the

assertion.
(2) Suppose z € D(MIR)7 y € D(M,_,, g) with m > 0. Then

(8.6.3) (er22) @, W) = (1) er12)™ 1) ™ (WP, )
by (8.4.1). Now we specialize €1,e2 = 0 to get the assertion. O

Let us consider My(+a) aef- D(Mgr(+a)) ®r, C/Rad(, )o, where Ry — C is the
evaluation at ¢4 = €3 = 0, and Rad( , )¢ is the radical of (, ). Then (8.6.2) implies

that WS’Z =0if m > 1, and WE’?, Wfﬂ) are well-defined on My(+a).

Proposition 8.64.— (1) P) = 0 if m > 1, and PY), P are well-defined
on My(xa): And we have

(8.6.5) (@, PYy)o = (P2, y)o.
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(2) We have commutation relations
(8.6.6) P, P =0, (R P71 =0, [P, PY)] = (s 09).

3) My(xa) is isomorphic to the polynomial ring in PEZ') i=1,...,0).-The pairing
1
(', Yo is the induced pairing on the symmetric power from the pairing

(8.6.7) (—a|P"PD|a)y = (o, ).

Proof. — The same argument as above shows (1).

By Proposition 8.5.8 and (1), My(a) is spanned by monomials. in Pﬁ’{ applied
to |a).

(2) follows from Proposition 6.3.8.

(3) Let us replace P, P by @), @!" corresponding to an orthonormal basis
of h so that the commutation relation is [~§’>, Q(_J%] = —0;;/Then (8.6.5) implies that
monomials in Q(_Z)l are orthogonal. More precisely, the pairing is the standard one
on C[QY]

(8.6.8) (=al(@")" Q%) a)y = nldnn,

and the pairing factors on My(a) = (C[Q(_li] ®- ® (C[Q(_Q]. This proves the assertion.
O

8.7. Proof, a geometric part
Lemma 8.7.1. — The first equality of (8.3.4) is true.

Proof. — We have a natural homomorphism IH?}(’U‘{G) — HT (’ZldG) and the image of 1¢
is the fundamental class [%%]. Then (14|19) is equal to .7 1[%%], where ¢: {d-0} — U,
is the embedding of the T-fixed point d - 0, and we use the localization theorem to
invert ¢,: H({d-0}) — HE(‘M%) over Frp.

Let us consider the embedding &: (%%)T = S4A2 — %%, of the T-fixed point set.
Then

(8.7.2) &t HT(SA?) — HI(U)
is an isomorphism over Ryz. Since HY (S?A?) = Ar[S?A?], we have
(8.7.3) £ UG = fala,e1,62)[S?AY)

for fd(a’a€17€2) € RT'
We have ¢, = &£,¢, for ¢: {d-0} — S?A% and (7 '[S?A?] = (e162)%/d!. Therefore

(8.7.4) d! (e182)(141%)| fa(a,0,0).

We replace the group T by T in (8.7.2) and denote the homomorphism by ¢7, i.e.,
¢T: HT(89A2) — HT(%%). Tt is an isomorphism over C(a). Then we have

(8.7.5) (EN UG = fa(a,0,0)[S?A?),

81,62:0 -
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where [%%], [S¢A?] are considered in T-equivariant homology groups.

Let us take the projection a: A2 — A'! and the factorization morphism WiG : ‘leG —
S4AL. Let S%a: S?A? — S9A! denote the induced projection. Let (S¢A'), be the open
subset of S?A! consisting of distinct d points. Then ¢ induces a morphism between
inverse images (S%)~!(S?A!) and (7 o)1 (SPA)o. We get

(8.7.6) (€)M (nd o)1 (STA)o] = fa(@a,0,0)[(S%a) " (STA)o]

by restricting (8.7.5) to open subsets. Now by the factorization we deduce f4(a,0,0) =
fi(a,0,0)<. O

Remark 8.7.7. — This result is also a simple consequence of a property of Nekrasov’s
partition function

oo

(8.7.8) Z"(e1, 0,0, A) =Y (1919 A4
d=0
stating that
(8.7.9) e162log 7% (g1, 2, a, A) = Fi™*(a;A) + o(e1, €2)

at £1 = e = 0. This property was proved by [62, 65] for type A and by [16] for general
G.

8.8. Proof, a representation theoretic part

We shall complete the proof of the second eguation in (8.3.4) in this subsection.
Let F(*) € S(§)" be one of generators as in §B.5. It has degree d,. + 1.

Lemma 8.8.1. — Following relations hold as operators on D(Mg(—a)) ®gr, C:
(8.8.2) Wi =S"F@l,. L, PP,
N

: it? factor
(8.8.3) W =Y FW@,..., PY ... 4.
~—

i*® factor

%

Proof. — At first sight, the Formula (B.5.24) seems to imply W(N) = 0, and hence
also Wl('i) = 0 thanksto the anti-involution . But (B.5.24) is the formula in the
W-algebra at e; =9 = 0, and we want to consider ’W\;l(n) on D(Mg(—a)). Since the
highest weight A = a/e; — p cannot be specialized at £; = 0, it could be nontrivial.

Let W) be the state corresponding to the field Y(W("), z) =Y, W zn—de—1
as in (B.2.1). By (B.5.24) we have

(8.8.4) W =W jo) = F&)(PY))o)
at €1 = €5 = 0. It implies that
(8.8.5) YW, 2) = :F) (PO (2)): + o(e, 2),
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where o(e1,¢€2) is a field in W (g) which vanishes at 1 = 5 = 0.

Let the field act on Mg (a) and specialize at 1 = €5 = 0. The point is-that ﬁéz)
acts on Mg (a) by a' at e; = e, = 0. Therefore the field P (z) = Yom Piy—n-1ig
specialized to
(8.8.6) alz7t + Z P ==t

n<0
on Mg(a).

Let us specialize (8.8.5) at &1 = €5 = 0. Then P()(z) is replaced by (8.8.6), and
the normal ordering by the usual multiplication. Therefore we obtain

(8.8.7) Y(W®, 2) = F® (0’2t + > PPz7Y),
n<0
Taking coefficients of z~ %= and then applying #, we obtain (8.8.2).

Next we study the action of Y(W(”), z) on D(Mgr(—a)). Let us consider Wi’? in
(8.8.5). So we take coefficients of 27%=. The term-o(e1,e2) can be represented as a
linear combination of monomials in ]37(;) with coefficients in the maximal ideal of R.
We have at least one ﬁ,(,? with m < 0 in each monomial. It can be divided, as an
operator on D(Mg(—a)), by €162 thanks to Lemma 8.5.2. Therefore o(e1,¢2)/e1€2
still specialized to 0 at &1 = €2 = 0. Therefore (8.8.5) implies (8.8.3). O

Lemma 8.8.8. — The determinant of the matriz

(GF(") (ai))
da’ ik=1,...,0

FRREE)

is a nonzero constant multiple of the discriminant A(a).

Proof. — Consider F = (F(), ... F®) as the morphism from h to /W, written in
a coordinate system on h/W. Then the matrix in question is the differential of F'.
Since h — h/W is a covering branched along root hyperplanes, we deduce that a) its
determinant is nonzero, and b) it is divisible by A(a). The degree of the determinant
is the sum Y d,, which is'equal to the number of positive roots. Therefore we get the
assertion. O

Since A(a) is invertible in C(a), we deduce
Lemma 8.8.9. — Mg(a) is isomorphic to the polynomial ring in Wi’? (k=1,...,0).

Now the specialization of the Whittaker vector |w?) in My(a) is characterized by
the conditions

— d—1 f = E
(8.8.10) Wty = W) iR=6
0 if kK #1.
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The existence and the uniqueness in My(a) are proved exactly as in §8.4. Moreover
the pairing (w?|w?), is an entry of the inverse of the matrix

def. = Fon
(8.8.11) Ki = ((—a|Wm]Wn]a)o)m.n,
where m = (mq,...,my), n=(ny1,...,ng) € Zéo and

Wim] == (W)™ . (W)™,
(8.8.12) e — 0 —
Win] := (W)™t (Wyp)me.

Here multi-indices m, n runs over >, m, = Y n, = d for each d.
Now the matrix K¢ is the d'" symmetric power of K¢~1, and hence we complete
the proof of (8.3.4).

8.9. Type A

Let us consider the special case g = s, in this section. Let us switch to the notation
for gl,.. We have standard generators of the invariant polynomial ring:

(8.9.1) F® = " hihz. R,
11 <ip <+ <ip
where (h!,...,h") is the standard cocidinate system of the Cartan subalgebra of gl,.

such that (h*, h7) = §;;.
Let us denote by @Sf ), ng ) the Heisenberg@algebra generators corresponding to 157(]),
P?. Then

W'a)

Do 2Qer QY - Qyla)

11 <ig<w:<ip =1

p
Z Zailaiz"'ai\l”'ailefll|a>’

11 <ta< - <iy =1

(8.9.2)

We use the Heisenberg algebra commutation relation

(89.3) [ Zi,Q];1] = 0i;
to get
inﬁpl)m} = Z ailai2-~~65---aip|a>
i1<i2<"'<ip
(8.9.4) G1=i

0

= %ep(a”a)’
where €,(a) is the p*® elementary symmetric polynomial in a.
The determinant of the r x r-matrix (de,(a)/0a;); p=1,...r is equal to HKj(ai —aj).

Therefore the matrix is invertible. This, in particular, implies that {Wﬁpl)|a>}p:1,m,
form a basis of (M (a)g);.
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Proposition 8.9.5. — The Whittaker vector |w1) at the instanton number 1 is given by
Q'4|a)
(8.9.6) =
zi: I 005 — ai
Proof. — We have
i 0
(8.9.7) WiQLyla) = 5 —ey(a)la)
as above. Now it is elementary to check that
)
—ep(a
(8.9.8) ‘9‘11‘7"() =0
Z L0 —ai

if p<r.If p=r, we have

(8.9.9) Z H

=211

a; o Q5
Jij#i I @i i j]:,éz ¢

Now we have
1
(8.9.10) (wifw)o =3 JI o

This coincides with what is known from ggometry.
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APPENDIX: EXACTNESS OF HYPERBOLIC RESTRICTION

A.1. Zastava spaces

Let us denote by Bung, g the moduli space of G-bundles endowed with the following
structures:

a) A trivialization at the infinite line PL = /.

b) A B-structure on the horizontal line P} = {y = 0}.

These two structures are required to be compatible at the intersection of P.  and IP)}L
in the obvious way.

The connected components of Buns z are numbered by positive elements of the
coroot lattice of Gag (cf. [21, §9]); for sich element o we denote by Bung p the
corresponding connected component.

We will also denote by Z¢ the corresponding/Zastava” space (a.k.a. “flag Uhlenbeck
space”) defined in [21]. We are going to need the following properties of Z¢. (Some of]
them are proved for the space QMa,p(IP’,ll, ﬁg’p) of based quasi-maps to a flag scheme

ﬁg » of a Kac-Moody Lie algebra g associated with its parabolic p. Since Z¢; is the

fiber product QMap(P}, Gaw) XQMap (P}, 7, ,) 92, for a Borel subalgebra b of an affine
Lie algebra g and a maximal parabolic p, we can deduce assertions for Z¢ from those
for QMap(P},, G, ,)-)

(Z1) Z¢ is an irreducible affine scheme of dimension 2|a| endowed with an action
of T x C* x C* which contains Bun¢; p as an open subset (here we set |a| = ) a; if
a =Y a;a; where a; are the simple coroots of G.g).

(Z2) There is a (factorization) map 7%: Z& — S%(A}). This map is T x C* x
C*-equivariant if we let 7' x C* x C* act on S*(A}) just through the horizontal C*
(denoted by C;) and it admits a T' x C* x C*-equivariant section ¢*. In particular, the
fibers of 7& are stable under T'x C; where the C; = C*-action comes from the vertical
action on AZ. All of these fibers have dimension |a|. (See Conjecture 2.27, which is
reduced to Conjecture 15.3 and proved for affine Lie algebras in §15.6 in [21].)

(Z3) Let set % = (7%)"'(a - 0). Let p: C* — T =T x C be any one-parameter
subgroup which is a regular dominant coweight of G, (i.e., such that (p, 3) > 0 for any
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affine positive root 3). Then the corresponding C*-action contracts Zg to .*(S*(A})),
and hence 7% to 1*(a - 0). (cf. Proposition 2.6 and Corollary 10.4 in [21]).

(Z4) Let o denote the affine simple coroot and let d be the coefficient of ap in «
(in other words, d = (&, wp) where wy denotes the corresponding fundamental weight
of Ga.g). Then there is a (“forgetting the B-structure”) T' x C* x C*-equivariant map
fo: Z& — UZ which fits into a commutative diagram

7§~ U

x| | =
SoA} —— S4AL
where the bottom horizontal map sends a divisor Y B;z; to > (B, wo)z;

A.2. Plan of the proof

Let us discuss our strategy for proving Theorem 4.6.1. As we have explained in
§3.5, it follows from dimension estimates of attracting and repelling sets by using
arguments similar to those of [49]. However, at the moment we do not know how to
prove estimates directly. So, our actual strategy will be slightly different. First, recall
that we have

(2%e)" = 5%(A%),
and that we denote by %(]lg, %d37 the corresponding attracting and repelling sets. Also

we denote by p: ‘lZdB — S%(A?) the corresponding map (sometimes we shall denote
it by p? when dependence on d is important). Then we are going to proceed in the
following way:

1) Prove that the prelmage of §4(A!) C $9(A2) under the map p: U% — S4(A2) =

‘UT ¢ has dimension dm; (here-A' C A? is any line). The proof will involve some
facts about the Zastava spaces from [21].

2) Deduce Theorem 4:6.1 for L = T from 1).

3) Using Proposition 4.5.1 deduce Theorem 4.6.1 for arbitrary L from the case
L=T.

A.3. Attractors and repellents on the Uhlenbeck space: maximal torus case

Let us first look mere closely at the case when P = B: a Borel subgroup of G. In
this case L = T: a.maximal torus of G.
Let us also define the set dd C [LédG to be the attracting set in ‘ZldG with respect to the

torus 7' to S%(AL\0) where Al is the vertical line. In other words, J* = p~1(S4(AL\0)).
Proposition A.3.1. — We have
.o
dim % < dhY = %.
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Corollary A.3.2. — Let A' — A? be any linear embedding. Then

. d
aimp~(s(a")) < P21,

Corollary A.3.2 clearly follows from A.3.1. Indeed, first of all; it is ‘clear that
it is enough to prove Corollary A.3.2 when Al = Al. In this case, J° is open
in p~1(S%(AL)), hence we have dim J* < dimp~2(S%(AL)). On the other hand, (the
vertical) A! acts naturally on p~1(S%(Al)) by shifts and any point of p~1(S%(Al)) lies
in an open subset of the form x(dd) for some x € A', hence the opposite inequality
follows.

Let us now pass to the proof of Proposition A.3.1.

A.4. The map fy

We have the natural (forgetting the flag) birational'map fgs: Z ‘g — ‘ué, which we
shall simply denote by f;. This map gives an isomorphism between the open subset
of ‘lldG consisting of (generalized) bundles which are trivial on the horizontal P}, and
the open subset of Z& consisting of (generalized) bundles which are trivial on the
horizontal P} (and then the B-structure on the horizontal P} is automatically trivial).

A.5. The central fiber

Recall that 7% denotes the preimage of dd -2 under the map w%‘s 1 Z ((1;6 — G (A}).
Again, to simplify the notation, we shall just write & 4 instead of T%. According to
(22), dim ¢ = dn.

We claim that

1) gjd lies in the open subset. of ‘leG over which f; is an isomorphism.

2) f7H () c T°.

The first statement is clear, since the image of J* in S%(Al) under the factorization
morphism 7¢ (to the symmetric product of the vertical line) must lie in S¢(AL\0). To
prove the second statement, let us note that f 1(Jd) must lie in the attracting set
in 7% with respect to the'torus T to f; *(S#(AL\0)). It is clear that f;*(S?(AL\0)) C
% and thus the statement follows, since every fiber of the map ™. Z P (ALY

is stable under the action of T'.
Hence we get dim J* < dhY = dim #°.

A.6. Good coweights

Let X be an-affine variety endowed with an action of T' x C* (here T' can be any
torus). Let « be any T x C*-fixed point (in practice this point will always be unique,
but this is not needed formally for what follows) and let Y C X7 be the C*-attractor
to x inside X7. Let now A : C* — T be any coweight. Let us denote by @, the
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attractor to Y with respect to the C*-action given by A. Let us also denote by 7 A the
attractor to z with respect to the C*-action given by the cocharacter (A1) of T' x C*.

We say that X is good if G\ = G,.
Lemma A.6.1. — For any X\ as above, the coweight n\ is good for n € Nularge enough.

Proof. — Obviously, there exists a closed T-equivariant embedding of X into a vector
space V such that the action of T' x C* on V is linear and such that x corresponds
to 0 € V. Then it is clear that if A is good for V, then it is-also good for X. Hence
we may assume that X = V.

In this case, we see that n\ is good if and only if for every weight of ' x C* on V|
of the form (0, k) the following condition is satisfied:

n{A,0) + k > 0 if and only if either (\,0) > 0, or (A\,6) =0 and k > 0.

Now, every n € N such that n|(A,0)| > |k| for any (0,k) as above such that
(A, 0) # 0 will satisfy the conditions of the lemma. O

Let A be as before and assume in addition that

(i) z is the only fixed point of C* acting by means of the coweight (A, 1);

(i) X*C©) = xT
(in this case we automatically have (X7)C" = {z}). Let us denote by ® the hyperbolic
restriction for (A, 1) (acting from sheaves‘on X to sheaves on {z}), by ® the hyperbolic
restriction for A\: C* — T (acting from sheaves on X to sheaves on X7) and by @,
the hyperbolic restriction for the action of C* on XT (from sheaves on X7 to sheaves
on {z}). Then the definition of “goodness” implies

Lemma A.6.2. — Assume that X is_ good and satisfies the conditions (i) and (). Then|
we have ® = $go P.

A.7. Exactness of twisted hyperbolic restriction

Let T = T x C* and let us-make it act on ‘Zfé so that the action of C* comes from
the hyperbolic action of C* on A2 of the form z(z,y) = (2~ 'z, zy). Note that (%%)T
consists of one point.

Let us fix d and let us choose a dominant regular coweight A : C* — T which is
good in the sense of Subsection A.6 (such A exists because of Lemma A.6.1). Then
the fact that \ is regular implies that it satisfies the conditions (i) and (ii). Consider
the corresponding functors EI;, ® and ®y. Obviously we have & = (I)%,G’ so we shall
write 5%’(; instead of . Also, to emphasize the dependence on d we set <I>g instead

of ®¢. According to Lemma A.6.2 we have <f>§£’c = ®f o ®f .

Theorem A.7.1. — The complex of vector spaces &)%’G(IC(‘ZZdG)) is concentrated in de-
gree Q.
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Proof. — We will use the same notations as before for L = T replaced with T,
such as i7 o, J7 ¢ P o z% o j%G, p%G. The attracting set is denoted by ﬁ'i Fa

According to [13, Theorem 1], the natural morphism (7 G)*(j% G)!IC(Wé) —
(p7 o) (UF.q)" IC(U%) = 5%@,(10(%(&)) is an isomorphism. We will prove that
(p7, o) (UF.6)" IC(‘L&dG) is concentrated in nonpositive degrees: A similar (dual)

argument proves that (p- G)*(j% G)IIC(‘ZédG) is concentrated in nonnegative de-

d

A,%,lec(fﬂé)) lives in nonpositive

grees. In other words, we must prove that H? (%
cohomological degrees.

Now IC(%%) is smooth along the stratification
Uy = || Bund xS\(A?),
m+|A|=d
the dimension of a stratum being equal to 2I(\) +2mh". Here for a partition
A = (A,...,N) we set I(A) = I. The perverse sheaf IC(%%) lives in coho-
mological degrees < —2I(\) — 2mh" on the stratum Bung xS)(A2). We have
ﬁi 7 o N (Bung xS\ (A?)) = (G)'7 o N Bung) x Sx(Al). Now it follows from Corol-
lary A.3.2 and the goodness assumption on A that dim( Tfa) < mhV. Evidently,
dim Sy (AL) = I(A). So the restriction of IC(%%) to ﬁi,f,G N (Bung xSx(A?)) lives
in degrees < —2dim (ﬁi,f,a N (Bung1 X S (AQ))> Now an application of the Cousin
spectral sequence for the stratification of ﬁi 7 ¢ finishes the proof. O

The following corollary is not needed for the rest, but we include it for the sake of
completeness.

Corollary A.7.2. — dim J* = dimp~*(S%(A)) = dh".

Proof. — We need to show that dim ﬁf\ Fa

assume that this is true for-all d’ < d. Assume that dim ﬁi 7 o < dhY. Then repeating

is at least dh". By induction on d we may

the argument from the above proof we see that <f’ﬁ‘,{’G(IC(‘lé‘é)) is concentrated in
strictly negative cohomological degrees, which contradicts Theorem A.7.1. U

Remark A.7.3. — The above argument only shows that the dimension of the whole
of dd is equal to dhY,-but doesn’t show that this is true for each of its irreducible
components (however; we believe that this is true).

A.8. Exactnessof @7 ¢

We can now show that @%,G(IC(%dg)) is perverse. Indeed, using the factorization ar-
gument and induction on d, we may assume that @%,G(IC(%dG)) is perverse away from
the main diagonal A2 C S%(A?). Since according to [13] the complex <I>dT7G(IC(fl/é)) is
semi-simple and since it is also equivariant with respect to the action of A% on S%(A?)
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by shifts, it follows that we just need to prove that CIJdT,G(IC(‘ZldG)) doesn’t have any
direct summands which are isomorphic to constant sheaves on A? sitting in coho-
mological degrees # —2. But if such a direct summand existed, it would imply that
od(dd G(IC(‘LZdG))) = idTG(IC(%é)) has non-zero cohomology in degree # 0, which
contradicts Theorem A.7.1.

A.9. Exactness of @, ¢

Let us now show that CIJ‘AG(IC(‘U‘é)) is perverse. Indeed; first of all, according to
Braden’s theorem [13], @%7G(IC(%g)) is a semi-simple complex, which is constructible
with respect to the stratification (2.3.1). In other words, it is a direct sum of (possibly
shifted) simple perverse sheaves, where each such sheaf is isomorphic to the Goresky-
MacPherson extension of a local system & on Bun‘z1 xS (A?) for some d; and \ as
in 2.3.1.

Lemma A.9.1. — Any such & is necessarily of the form Cpuptr ® & where &' is some
L
local system on Sy (A?).

Proof. — To prove this it is enough %o -show that the restriction of @Lyg(IC(Wé))
to Bun* x 5% (A2?) (here d = d; + dy) is i$emorphic to the exterior tensor product of
the constant sheaf of Bun"lL1 and some complex on S92 (A2). Moreover, it is enough to
construct such an isomorphism on some Zariski open subset U of Bun?' x $92(A2) (this
follows from the fact that a local system which is constant on a Zariski dense subset is
constant everywhere). Let us choose a projection a : A2 — Al and let 7TZ’1L : Bun‘z1 —
S% (A') be the corresponding map. Let U be the open subset of Bun‘z1 x 992 (A?)
consisting of pairs (&, z) such that WZ}L is disjoint from the projection of z to S%(Al).
Then locally in étale topology near every point of U the scheme ‘lldG looks like the
product Buné1 X ‘Ll‘éz and the statement follows. O

Now, we can finish the proof. Indeed, recall that the closure of Bun‘z1 xSy (A?%)
admits a finite birational map from 24" x5 (A?%), where 5 (A?) stands for the closure
of Sy in S9(A2?). Thus for any & as above we see that IC(&) is the direct image
of IC(%%") K IC(&) under this map. Moreover, the complex & (IC(8)) is equal
to the direct image of ®r,,(IC(%%)) K IC(&'). Hence, we see that it is perverse
and non-zero. Thus, if for some i # 0 the complex IC(&)[¢] is a direct summand
of ®L7g(10(%é)), then <I>T7L(<I>ng(%é)) is not perverse. Since &7 0 @1 ¢ ~ Pr ¢,
this contradicts Subsection A.8. O

Recall ‘Ll}i;.,@ U p=1(d - 0), see (4.8.14).

Corollary A.9.2. — dim U} o < dh” — 1.
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Proof. — We will argue by induction in d. We assume the claim for all d’ < d. We
know that the dual space (U?)* ~ H®(p~'(d-0), j* IC(° ‘lldG)) lives in degree 0. We con-
sider the Cousin spectral sequence for the stratification %i’,o =Uaw< d(%go NBun%).
By the induction assumption, all the strata for d < d contribute to monpositive
degrees of H*(p~1(d - 0),* IC(°%%)) only. If we had dim ‘l/]ipyo > dhY =1, the fun-
damental classes of the top dimensional components of ‘llji,o would contribute to the
strictly positive degrees in H?(p~*(d-0),7* IC(° fllé)), and nothing would cancel their
contribution. This would contradict to H>(p~1(d - 0), j* IC(¢U%)) = 0. O

Here is a more direct proof suggested by the referee. We choose a faithful rep-
resentation g: G — SL(r). It gives rise to a closed embedding g, : C‘Ll‘é — C‘Llf.
We choose a dominant coweight ¥ of T such that L is the centralizer of x(C*).
Let L, x C P,y C SL(r) be the corresponding Levi and parabolic subgroups. Then
0q(° %(2’,0) C C‘Z/}i)f(g) where ¢(p) is the Dynkin index of o. Now %% is equipped

«x507
. . . . . ~do(o) .
with a Poisson structure compatible with the symplectic structure of %, . This

Poisson structure has finitely many symplectic leaves (the strata of the diagonal

c tudd’(g) )

stratification of , and the intersection of C‘Ll(ﬁ;(i) o With any symplectic leaf]

. . . . . .o ad(e)
is isotropic since the preimage of C‘lédp‘é(ao in ¢%,.

is isotropic. Finally, g¢: C‘lldG >
c%f induces a Poisson structure on c’(';fi; whose symplectic leaves are the strata of
the diagonal stratification of C‘Z/é. It follews that the intersection of C‘ll}ip,o with any
symplectic leaf is isotropic, and hence dim ‘h’j;‘o <dhV —1. O

This is the estimate of the attracting set for the most singular point d - 0. The
exactness also implies estimates for attracting sets of other points, more precisely
their intersection with the open locus Bun. Since any stratum of ‘leG is of the form
BundG1 xSy (A?), we have the corresponding dimension estimate for other strata from
the perversity of ® L,G(IC(’ZZdGl)) for any d;. Therefore we see that @y, ¢ is hyperbolic
semi-small in the sense of Definition 3.5.1.
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APPENDIX B

INTEGRAL FORM OF THE 9/-ALGEBRA

The purpose of this section is to introduce an A-form of the 9W/-algebra, generalizing
the A-form Dir; o of the Virasoro algebra in §6.4, where the commutation relations
of integral generators of the Heisenberg algebra and-the Virasoro algebra are (see
(6.3.12), (6.4.9))

(B.0.1) [Pl PI] = —mbpm,_n(ai, o)e1€9,

o = ~ 9 m3 —m
[Ly,, L] =¢e1e2{ (m —n)L,, ., + (5152 +6(g1 + £2) ) 6m’7”T ,

and they are related by

I n+1 ~
L =—-- PP v —— P:.
n 4; mt n—m 9 (51—’_82) n

Let g be a complex simple Liealgebra. We do not assume g is of type ADFE in this
section. Let ( , ) be the normalized bilinear form so that the square length of a long
root is 2. Let £ be its rank and d; < --- < dy be the exponents of g, counted with
multiplicities. For example, g = sl 1, we have dy = 1,ds = 2,...,dy = £. We have
dy = hY —1. The multiplicity of the exponent is equal to 1, except dgjo = dgjap1 = £€—1
for D, with £ even.

B.1. Integral form of the BRST complex

In order to define-an A-form of the W-algebra, we need to recall briefly the BRST
complex used in the definition of the W-algebra in [30, Ch. 15]. We assume that the
reader is familiar with [30, Ch. 15], as we skip details.

Let g =n, & bh @ n_ be the Cartan decomposition of g. Let AL denote the set of]
positive/negative roots. Let I be the set of simple roots.

We consider-the vertex superalgebra Cp(g), which is the tensor product of the
affine vertex algebra Vi (g) of level k and the fermionic vertex superalgebra /\;+ We
have two anti-commuting differentials dgy and x on Cj so that W;(g) is defined as
the 0" cohomology with respect to d = dg + X.
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106 APPENDIX B. INTEGRAL FORM OF THE W-ALGEBRA

We do not need the definition of dy, x. We start with the subcomplex C}(g)o as
the cohomology of Cp(g) is a tensor product of Cp(g)o and another complex, whose
cohomology is trivial (see [30, Lem. 15.2.7]).

We take a basis {J%} of g consisting of root vectors and vectors h’, dual to simple
roots «; with respect to (, ). Let cgb be the structure constants of g with respect
to the basis {J*}. Latin indices are used to denote arbitrary basis elements, Latin
indices with bar are used to denote elements in b_ = h @ n_. Therefore {J%}zen_ur
is a basis of b_. Greek indices are used to denote basis elements of n,. We also have
a basis {9} }aca, of n. We denote the corresponding fields by J%(z) and ¢ (z2),
where the former has a correction term (see [30, (15.2.1)]): The field J%(z) satisfies
the commutation relation for the affine Lie algebra at the level k + h" instead of k
because of the correction terms (cf. [2, (4.8.1)]):

(B.1.1) [J%(2), J*(w)] = Z AT (w)5(z — w) + (b + hY)0ud(z — w).

Now the complex Cy(g)o is spanned by monomials-of the form

(B.12) Ti0 - TaOW )y = UGy . 0D
and the action of the differentials is given by the following formulas
(B.1.3)
o T =22 D
i€l BeAy
[x, ¥a (2 ]+ =0,
[dst, J°( Zc 2 +kZ T TN0A5(2) — D gty 0.7 (2),

a,B,b
1
[dst, Yo (2)]+ = —5 D (s (2),
Byy

together with x|0) = ds:|0).= 0. Here the formulas are copied from [30, 15.2.4] except
that the first one is simplified as we only consider a field for J% in b_.
The bidegree is defined by

bideg J%(2) = (—n,n),

(B.1.4) ]
bideg¢%(2) = (I, =l + 1),

where n is the principal gradation of J and [ is the height of the root a. (See |30,
15.1.7] for definitions of the principal gradation and the height.) Therefore x has
bidegree (1,0), and dg has bidegree (0,1). We get the double complex Cr(g)o =
@D, ., Cr"(8)o. From the definition of the bidegree, we see that C7'?(g)o = 0 unless
p=>0,—p< g<O.

Now we rewrite the complex suitable for our purpose. By (6.0.1) we replace k
by —(hY +e2/e1).
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Next let us introduce a modification J%(z) of J%(z), like P, of P! in §6.3. There
is a simple recipe for this. Reading formulas in [30, §15.4.10], we note that J%(z)
for @ € I is denoted by h'(z) and satisfies the commutation relation

(B.1.5) [hi Bi) = My _n (i, ;) (k+ BY).

m) n

See also (B.1.1). This Heisenberg operator gives the embedding Wy (g) — $Heis(h).
Comparing (B.0.1) with (B.1.5), we find that it is natural to set
(B.1.6) J%(2) = e1J%(2).

We also rescale x by a function ¢ in g1, €3 as ¥ = x." Unless ¢ vanishes, the
cohomology group is independent of . However we will specialize €1, €5 to 0, the
result will be different. Therefore the choice of ¢ is important. Remember that our
goal is to realize a generator ’Viz(f) in geometry. We want to assign it with the perverse
cohomological degree 2(d, + 1), as L, in §6.4 is of degree 4. This generator is a sum
of a main term X of bidegree (d., —d,) plus correction terms X, X, ...of bidegree
(p, —p) with 0 < p < d, determined by the condition XX, = —dsX,—1. (See [30,
15.2.11].) Therefore we want all Xo, X1, ... to have the'same (perverse) cohomological
degree. This is achieved if ¢ is of degree —2. We still have ambiguity, but look at the
Formulas (B.1.3) and (B.1.6), the simplest solution is to absorb 1/e1 in J%(2) to X,
ie, X = x/e1-

We thus arrive at the following:

X T8@ =2 Y cdlvpe),
i€l BEAY
(X; ¥a(2)]l+ =0,

[dst, J8(2)] = Y c@%dP(2)9(2): — (hVer +€2) D (J%, J¥)D02(2)
b«

[e3

(B.1.7)
D IR A R EIN

a,B,b

s 03 ()] == S ST ).
By

Definition B.1.8. — We consider an A-span of monomials of the form (B.1.2) replac-
ing J by J. We define the differentials dg;, X by (B.1.7). We get a double complex
C4(g)o defined over A. Its total cohomology group H} (g) is a vertex superalgebra
defined over A.

The argument in the proof of [30, Th. 15.1.9] goes over A, and we get

(B.1.9) Hi(g) =0 fori#0.
We have
(B.1.10) H{ (g) @4 F = Hp(g),
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as the localization is an exact functor. Here Hp(g) is the cohomology group of the
complex C3(g)o ®a F. It is isomorphic to Wi(g) ®ck) F as €1 # 0/in F, where
k = —hY — e5/e1 as before.

Proposition B.1.11. — H$ (g) is free over A.

Proof. — Note that the complex Cq(g)o is a direct sum of its' homogeneous com-
ponents with respect to the Z-gradation. Each component forms a subcomplex and
is free of finite rank over A. Hence results in the homological algebra can be ap-
plied. Since only the 0" cohomology survives, a component M of HY (g) is quasi-
isomorphic to a complex of projective modules P* with P = 0/for 4 < 0. Then we
compute Ext% (M, N) via P* to deduce Ext3°(M, N) = 0 for any N. Therefore M is
projective. Since A is a polynomial ring, H3 (g) is free. O

Thus HS (g) is an A-form of the W-algebra.

Definition B.1.12. — We denote HY (g) by Wa(g). It is called an A-form of the W-al-
gebra.

Let us introduce a new degree, which corresponds to the half of the (perverse) coho-
mological degree in the geometric side. Let us denote it by ‘°deg’. We set °deg |0) = 0,
°dege; = °degey = 1. The degree of operators f‘i(z) and ¢ (z) is the first component
of the bidegree. Then we put °deg j‘i(z) == “deg fa(z) + 1 by (B.1.6). For example,
P! in §6.3 is a Fourier mode of J%(z) for J% = h'. Therefore “deg P, = 1.

From the Definition (B.1.7) we see that both X and ds; have degree 0. Therefore
this degree descends to the cohomology group HQ (g) = Wa(g). Hence Wa(g) is a
graded A-module, where A = Cleq, e2] is graded in the same way.

Be warned that °deg is not ‘a-Z-grading of the vertex algebra in the sense of [30,
§1.3.1]. All Fourier modes of vertex operators Y (A4, z), say J%(z), have the same
degree, which is equal to the degree of the corresponding states A = Y (4, 2)[0)|,_,-
The translation operator T is of degree 0.

B.2. Generators W,

The W-algebra Wpy(g) is generated by certain elements W, (k = 1,...,£) in the
sense of the reconstruction theorem. (See [30, 15.1.9].) Moreover the subspace spanned
by W,, generates a PBW basis of Wy (g). (See [2, §3.6 and Prop. 4.12.1] for the meaning
of this statement.)

We briefly recall the definition of W,; and see that their simple modifications live in
our integral form and generate a PBW base of W (g). Let us change notation from
W, to W) in order to avoid a possible conflict with Fourier modes.

We have a regular nilpotent element p_ in n_ so that x is given by (p—,e) = x(e).
(See [30, 15.2.9].) Let a_ be the kernel of ad p_. It is a maximal abelian Lie subalgebra
of g.
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The cohomology H® of the complex Cp(g)o with respect to x vanishes for i # 0
and HY is equal to V(a_), the vertex algebra associated with a_. It is a commutative
vertex algebra, and isomorphic to the symmetric algebra Sym(a_ ®¢~'C[t71]) of a_ ®
t~1C[t™!]. Therefore a basis of a_ gives a PBW base of V(a_).

There is a standard choice of a base of a_. We take an sly-triple {p,,po,p-}
for p_, and decompose g into a direct sum of (2d, + 1)-dimensional representations
R, (k=1,...,¢). We choose a decomposition for g = D, With Ceven, k=4£/2,0/2+1.
We then choose a lowest weight vector p( ) in R,.. Then {p },.Z 1,..is abaseof a_.

The vectors p( *) are unique up to constant multiple, and we fix them hereafter. In
fact, our geometric consideration of the W-algebra will give us a canonical choice
of p(_'i) for k = £, at least up to sign. See several paragraphs after Theorem 8.3.3.
The same is true over A. The cohomology of C} (g)o- with respect to x vanishes
except the degree 0, and H is equal to V(a_) ®c A. The PBW base is its A-basis.

(& )

Let OW(”)(Z) be the linear combination of J%(z) corresponding to p'™, and

let OW((f)l) be its constant part. Then 0W("”°))|0) is contained in the kernel of Y. We

construct a cocycle W) with respect to d = dy; +x which is the main term OW((f)l) |0)
of bidegree (d., —d,) plus a sum of terms of bidegree (p, —p) with 0 < p < d,, as we
mentioned above. It is unique up to an element in Kery of a lower degree. We fix
W (%) hereafter. We write

(B.2.1) Y(W®), 2) = 32 Wi pmnmdet,
nez

Let us check that °deg W = di + 1. Since dg; and X preserve °deg, we have
°deg W = CdegOW(”)m)_ (Remember that we modify x to X so that this is
achieved.) Now the latter does not contain ©¥(z), its degree is equal to the first
component of the bidegree plus 1, i.e:, d,; + 1. Thus “deg W = = d, + 1. This is what
we want from a geometry side.

B.3. Grading vs filtration

Let us make the relation between Wy (g) and W (g) more precise so that we could
easily transfer computation in the literature to our setting.

Recall that the complexes (B.1.3) and (B.1.7) become the same if we put 1 = (k+
hV)~1, ey = —1 and identify X (resp. J%(z)) with x/e1 (resp. £1J%(2)). As HZ'(g) =
0 and Wa(g) is free, the Kiinneth spectral sequence degenerate at Es, and hence
the specialization commutes with the cohomology. In particular, the homomorphism
J%(z) — J%(z)/e1 induces an isomorphism

(B.3.1) Wilg) = Walg) ® A/(e1 — (k+hY) " ey +1).
Under this isomorphism standard generators WT(LK) and our ’W\//}(bn) are related by
(B.3.2) our ’W,(L") = e standard W),
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as they are defined in the same way.

From this consideration, we can recover Wa (g)®aB1 with By = Cle1| = A/(e2+1)
from Wy (g) as follows. Let us consider k as a variable and understand that W (g) is
a vertex algebra defined over C(k). We identify C(k) = C(e1) via e; =(k+ hY)~ L
Then Wa(g) ®a B1®p, C(k) is isomorphic to Wi (g), the cohomology of the complex
over C(k) by the Kiinneth spectral sequence as above. Then we have an embedding
Walg)®aB1 — Wi(g), and the image is the B;-submodule generated by 5?"+1W,(f).
We denote Wa(g) ®a By by Wg, (g) hereafter.

Note further that the entire W (g) can be recovered from Wy, (g) as follows. Since
Wa(g) is graded by °deg, we have an induced filtration 0-= F.y C Fy C Fy C ---
on W, (g) such that e1F, C Fpy1. Then we can recover Wa(g) as the associated
Rees algebra:

(B.3.3) Wa(s) = PeLF,.

In fact, we have a natural surjective homomorphism from the left hand side to the
right, and it is also injective as Wa(g) is torsion free over By = Clez]. Note also
the specialization at es = 0 can be elso recovered as the associated graded of the
filtration.

The filtration F, on Wg, (g) can be defined directly. From its definition, we assign
Cdeg(s‘f”HWTS'{)) =d, + 1 and °dege; = 1. This gives us the filtration on Wg, (g).

Let us explain how the formula for /AR given in [30, (15.3.1)] can be understood in
our framework, for example. The field T'(z) written there is already divided by k+ h"
so that its Fourier modes gives Virasoro generators L,,. Therefore Wi = (k+h")L,
and hence W," = e2(k + hV)L, = —e1e2L,. This is compatible (up to sign) with
modified Virasoro generators in §6.4, as ﬂf) =e169LE,.

B.4. Specialization ate; = 0

In this subsection, we study the specialization at £; = 0. This is the classical limit
of the W-algebra, but it also contains €5 as a parameter. The relevant computation
can be found in-[30,§15.4.1~6].

Let us set 3. =0 in (B.1.7). Since J%(z) and J?(z) commute at £; = 0 (see (B.1.1)),
the complex‘is.identified with polynomials in the commuting variables jna (n < 0) and
anti-commuting variables 97, ,, (m < 0). Therefore

(B41) C3.(8)o @ B2 = Symb_((6))/b_[[t]) @c A*n..[[]" @ Ba,
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where By = Cleg] = A/e1A. The differential is specialized as

X T2 =D Y BPy(a),

iel Ben,

[X; ¥a(2)]+ =0,

(B.4.2) [det, J2(2)] = D 2T ()05 (2) —e2 D _(J*, J)0.45(2),
b,a a
* 1 * *
[dst, Yo (2)]+ = —5 > B ()wi(2),
By

where power series in z contain only terms with non-negative degrees in z. This is
exactly the same complex as in [30, §15.4.2], if we set e = —1. It is the complex at

the classical limit £ — oo.

By (30, Cor. 15.4.6], the cohomology group H: _(g) of this complex (at e, = —1)
vanishes for i # 0, and H? _y(g) is isomorphic to the ring of functions on a[[t]],
where a is the kernel of adp;. Here p, is as in the previous subsection.

In fact, ai[[¢]] is obtained as the quotient of the space of connections of the form

(B.4.3) V=0, +p_ +A1), _Aw)e bt

modulo the action of the gauge transformations N [[¢]]. This is the space Opg (D)
of G-opers on the formal disk D = Spe¢/C[[¢t]]. There exists a unique gauge transfor-
mation in N [[t]] so that V is transformed into the same form with A(t) € a[[t]].

It is easy to put €2 in this picture. The term with €5 corresponds to the differential
of the gauge transformation. Therefore the coliomology of our complex is the ring of
functions on the quotient space of (—e3)-connections

(B.4.4) V = —e20; + p_ + A(t)

modulo N [[t]]. It is the space of (—&3)-opers on D. This notion appears for example
in [7, §5.2]. See also §B.5 below.

We have a structure of a vertex Poisson algebra on HY _(g) by [30, 16.2.4]. It is
defined by renormalizing the polar part of vertex operators

(B.4.5) Y_(A,z) = iY,(Z, z)
€1 e1=0

We can further make e = 0. Then we get (p— + b [[t]])/N+[[t]]. This space is
also equal to ay[[t]].-The proof in [30, 15.4.5] works also at €2 = 0. In fact, the
result is a consequence of a classical result of Kostant: (p_ + by)/Ny = a. See [7,
§5.4] for further detail. Therefore the cohomology group H L.ea=0(8) of the complex
at €1 = g5 = 0 vanishes for i # 0, and H? ., _,(g) = V(a_).

The argument for (B.3.1) works also here, i.e., the specialization commutes with
cohomology group. We have

Wa(g) ®a B2 = H? _(g),

(B.4.6) .
Walg)@a C=H, _,_o(g)=V(a),
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where By = A/e1 A, C= A/(e1,¢2).

B.5. The opposite spectral sequence

The embedding of the W-algebra into the Heisenberg algebra is given by consid-
ering the ‘opposite’ spectral sequence associated with the double complex C}(g)o,
where the Fq-term is the cohomology with respect to dg;. The detail is explained
in [30, §15.4.10], and we give a brief review in order to see-that the embedding is
compatible with integral forms.

Let I?I}c (g) be the i*" cohomology of the complex Cg(g)o with respect to dg;. This
notation is taken from [30] and has nothing to do with our netation for elements in
the integral form. Let hi(z) denote J%(z) for @ = i € I. Then we have

(B.5.1) [det, h'(2)] = 0, [ds, 5, (2)]4= 0

by (B.1.3). Therefore we have linear maps C[hé]ic; n<00) — H2(a), @, C[ﬁ%]je]7n<0¢2i,0|0> —>-
H 1(g) respectively. In fact, they live in the uppermost row as bidegﬁi(z) = (0,0),
bideg ;. (2) = (1,0). Then by considering the limit.# — oo, one can see that both co-
homology groups are exactly the same as the above spaces respectively if k is generic.
Moreover one can identify H ,‘3 (g) witlv/the Heisenberg vertex algebra associated with
the Cartan subalgebra h of g. This is because ﬁ; satisfies the commutation relation

(B.1.5). Modified generators E; = ﬁﬁl /Vk+EY satisfy the usual commutation rule
(B.5.2) [P B ] = M8y (0, ;).

And I:VI,% (g) is its module. It is a direct sum of (#I) Fock modules. The highest weights
are given by the formula

(O‘i’ aj)

VE+ b

Another differential y induces a homomorphism H?(g) — H}(g). Since H}(g) lives
only at bidegree (1,0), we have Wy(g) = HY(g) = Ker x for generic k.

Moreover x is the sum-of the residue of the field } (z), which is given by the
vertex operator in terms of the Heisenberg algebra:

(B.5.3) B, 0l0) = — Ve, 00)-

(B.5.4) Vo, (2) =V_q, /i (2)

where

(B.5.5) Va(z) = Sxz 0 exp [ =\ Z b—"zfn exp [ =\ Z b—”;f" .
n<0 n n>0 n

This formula is given in [30, (5.2.8)]. The operator Sy sends the highest weight vector
|0) to the highest weight vector |A) and commutes with all b,,, n # 0. And Ab,, is
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replaced by

h hi
B.5.6 oo = — M
(B.5.6) n = T TR R

and Sy sends |0) to ¥y, (|0) here.

Now we consider the cohomology group H i (g) over A. The 0% cohomology
f[g(g) Kerdg; is a direct sum of A[P lict.n<o with bldegree (0,0) and the other
parts with bidegree (p, —p) with p > 0. Here we put PZ = 81hl so that they satisfy
the commutation relation (6.3.12). Since dg on (p, p) part is injective for generic

(e1,€2) by the above computation, it is injective as an A-homomorphism. Therefore
we have

Lemma B.5.7. —
(B.5.8) H3(9) = A[Pilic1 n<0l0).

This is an A-form of the Heisenberg vertex algebra, denoted by $eisa (h) in §6.3.

We have an induced homomorphism W (g) = H%(g) — HS (g), taking the bide-
gree (0,0) component. It is injective as Kerdg = 0 on (p, —p) with p > 0. Therefore
we can consider Wa (g) as an A-submodule of flg(g). We have an induced homomor-
phism X: I;Tg(g) — ff}x (g) and the deuble complex tells us that Wa(g) is contained
in Ker .

When we compare the embedding witli-the usual one Wy(g) — ﬁg(g) in the
literature via the identification of Wy (g) and-Wa(g) in §B.3, we use the relations
Pi = e1hi as before.

For example, consider ’I/I\//}(Ll) for g = sly. It is given by (6.4.9) up to sign, and is
contained in ﬁg(g). The formula follows from the computation in the literature, say
[30, §15.4.14], with the rule for the change of generators above.

Let us look at ITI},‘(Q) more closely. From the definition, we have

1 _l(g 0 - @ A JElI, n<0fz m|0>

i,m<0

0 - @ A jGI n<0wa1,m|0>

1,m<0

(B.5.9)

where ﬁ-’m is the Fourier mode of jd(z) corresponding to the basis element f; =
f@i. The differential d: Ck_l(g)o — Cko(g)o can be calculated from (B.1.7), in
particular we have

(B.5.10) [det, P (2)] = 0,

B511) e, B = s (P, (2 = 2a0.02,(2)).

See the formula in the middle of [30, p.261]. From the second formula we have

(B.5.12) — 2017 (2) = P ()7 (2):
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modulo dg-exact term. If e would be invertible, we could replace v7, ,,|0) with
m # 0 in (B.5.9) by an element in A[ﬁﬁ]wzi’0|0> so that fI}&(g) is isomorphic
to P, A[P7] %:.0/0). As g2 is not invertible in A, this cannot be true.

From this consideration, we set ¢, = —1 in the double complex (B.1.7), and consider
it over By = Qle1], as in §B.3. We denote it by Cg (g)o- This is not any loss of the
information for our purpose, as Wa(g) can be recovered from Wg, (g) together with
its natural filtration, as explained in §B.3.

However, the higher cohomology groups H ;0(9) may not vanish nor be free. Hence
the cohomology group ﬁél(g) of O, (9)o with respect to dy; may be different from
ITIA(g) ®a B1. We will see that PNIél(g) behaves better than ITIA(g) at €2 = 0 below.

Let us study first two terms of ffél (g). We have ﬁ%l(g) = Bl[ﬁi]ie[’n<0|0> by the

same argument as in (B.5.8). Let ﬁé{? (g) be the (1,0) part of the cohomology. We do

~

not know ﬁél (g) = ﬁé’?(g), but Y maps fNI%I (g) to ﬁé’?(g) anyway. From the above
argument we have a surjective homomorphism P Bl[ﬁ,{] wi010) — fI}B’? (g). It is an
isomorphism for generic €1, in other words over C(g; ). Therefore it must be injective

also over B;. We thus get

Lemma B.5.13. —
flgl(g) = B, [P]ic1,n0l0),
B.5.14 =~ ~ =i *
(B34 50(0) = P BulPL <ot o).
The substitution €2 = —1 makes the vertex operator (B.5.5) well-defined: We

replace Ab, by (B.5.6), hence
(B.5.15) Ab, = —P!.

The vertex operator is a homomorphism between Bi-modules.
Now we let €1 = 0. We have the Kiinneth theorem

(B.5.16) 0 — HE (g)®s, C — H"(CH, ()0 ®B, C) — TorP (Hp ' (g),C) — 0,

where C = By /e:;B;. The middle term is the cohomology at the classical limit, and
is known (see [30, §15.4.8]). In particular, we get

C[f);‘]|0> = ﬁgl (g) ®B1 C= HO(C].31 (g)O ®B1 C))
(B.5.17) P CIB ez, 0l0) = HE () ®8, C = HY(CE(8)o ®s, C),
ﬁglrl’_p(g) ®B, C= HI(CQ_L.(E)O ®g, C)=0 forp>0.
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Next we study X at 1 = 0. Recall that X = x/e1, so we need to divide [ Vy(z) in
(B.5.5) by £1. We see that the induced operator

(B5.18)  X|e=o : HY (g) ®s, C = C[Pi]|0)

go=—1
— Hg, (8) @8, C = TPV}, o[0)

is given by the formula

¢
0
(B.5.19) S (aiey) > Vi[m]aT’
i j=1 m<0 m—1

with

(B.5.20) Z V;[n]z™" = S; exp <Z Rﬁz‘”) .

n
n<0 n<0

Here the operator S; sends the highest weight vector |0) to v7. (|0). The point here
is the commutation relation [P? , PJ] = me1 (o, @ )0m —n at €2 = —1. This vanishes
at €1 = 0, and hence only linear terms in the expansion of the second exponential in
(B.5.5) survive.

This computation appears in the study of the classical limit of the W-algebra [29,
Chap. 8]. In particular, the followings were shown there:

— ﬁ%l (g) ®B, C is isomorphic to the ring of functions on the space MOpg(D)gen
of generic Miura opers on the formal disk-D.
— Each generic Miura oper can be uniquely transformed into the following form

(B.5.21) V=0+p_ +ut), u) ey
— The kernel of X| ¢,—0 isisomorphic to the ring of functions on the space Op(D)

go=—1
of opers. The inclusion-Ker(X| ¢;=0 ) — H]%I (9) ®B, C is given by the forgetting
gg=—1
morphism MOpg(D)gen-— Opg (D).

We do not recall the definition of generic Miura opers here, as it is enough to
consider the space of connections of the form (B.5.21). The morphism MOpg(D)gen —
Op (D) is given just by considering a connection in (B.5.21) as a G-oper. As we have
already known that Wa(g) at €1 =0, e2 = —1 is the ring of functions on Opg(D) in
§B.4, we get
(B.5.22) We,(9) ®8, C = Ker(X| ¢,=0 )-

Eo=—

Finally we study the filtration in the both sides of (B.5.22). The left hand side has
a filtration as it comes from the specialization of the grading on Wa(g) at €1 = 0,
g2 = —1..0n the other hand, we have filtration on H (g) and Hp (g) ®B, C given
by “deg }5; =1, as they are polynomial rings (see Lemma B.5.13 and (B.5.17).) Since
H? (g) is also free by Lemma B.5.7, the filtrations come from the specialization. We
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give an induced filtration on Ker(X| ;=0 ) as a subspace of }NI%l(g) ®B, C. Then

gg=—1
(B.5.22) respects the filtration as the inclusion Wy, (g) — 11~I]031 (g) does.

On the ring of functions on Op (D), the filtration can be understood by considering
(—ez)-opers [8, §3.1.14] as follows. A filtration on an algebra can be-identified with
a graded flat Cles]-algebra with degey = 1. The latter is considered as the ring of]
functions on a flat affine scheme X over A! = Spec C[e3] with a G,,-action compatible
with the action by homotheties on A!l. The space of (—eq)-opers provides such a
scheme, where the G,,-action is given by V — AV for A € G,,. More precisely, we
need to compose it with a gauge transformation so that the form (B.4.3) is preserved.
Since (—e2)-opers appear at the specialization at &1 = 0 in §B.4, our filtration is given
in this way.

The action is induced from the action A Ad()) on a under Op(D) £ a, [[t]], where
Ad()\) is given by the SLy embedding associated with the nilpotent element p_. It is
known that the degrees of the G,,-action on ay are given by d,, +1 (k = 1,...,4),
hence are the same as our ‘°deg’ by §B.2. This is another reason why we define the
degree in that way.

We can define the G,,-action on MOpg(D)gen in the same way so that the mor-
phism MOpg(D)gen — Opg(D) is Gi,-equivariant. Under MOpg(D)gen = B[[t]], it is
just homotheties on §. The corresponding filtration is the same as ours.

The homomorphism between the- associated graded of Ker(X|e,=0) and
go=—1

I:j]%l (g9) ®B, C is induced by the morphism

(B.5.23) {V =p_ +u(t) [ u(t) € bift]]}
= {V=p_+A@) [ At) € b [[t]]} /N [[¢]]

of 0-opers.

Let us write down the embedding of the 9/-algebra into the Heisenberg algebra,
at €1 = €3 = 0 induced from the morphism (B.5.23) of 0-opers explicitly. It is given
in [29, §3.3.4]. Let F®) e S(H)" (k = 1,...,£) be generators of degree d, + 1,
corresponding to p(_”) in §B.2. We regard it as a polynomial in Af, i.e., F(“)(hi) =
F® (R, ... h%). Then Wi (at €1, €2 = 0) is given by the formula

(B.5.24) P (Z ﬁng—n—l) S e,
n<0 n<0
For example, we have
~ 1 -
(B.5.25) L, = - Z PP,

n<l<0

for sls.
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B.6. Kernel of the screening operator

Recall that we have a natural inclusion Ws,(g) C Ker(X]|.,__;) from the con-
struction. They coincide for generic 1. We prove a stronger result.

Theorem B.6.1. — We have isomorphisms
(B.6.2) We, () = Ker(X].,—_1),
(B.6.3) Wal(g) = ﬂ Qliti,A|€1ﬁ€,l A ﬁeisA(aiL),

3

where Bit; Al

e1(ai,o)
2

, is the A-form of the Virasoro algebra with €1 replaced by &) =
1

£1—¢

. Moreover (B.6.2) preserves filtrations.

Proof. — Let us first consider (B.6.2) and denote ¥ at £2 = —1 also by X for brevity:

(B.6.4) x: Hg, (s) — Hg|(0)-
We know that both ﬁ%l(g) and ﬁé’?(g) are free over B; (see Lemma B.5.13). We
also know that their specialization is the cohomology group at €1 = 0, 3 = —1 (see

(B.5.17)). Therefore we have an exact sequence

(B.6.5) 0 — Ker Y ®B, C — Kar(X| ey=0 ) — TorP*(Cok X,C) — 0.

eg=—1

We have a homomorphism from Wg,(g) @z, C to the first term Ker ¥ ®p, C, and
its composition to the middle term is an-isomotphism by (B.5.22). Therefore we have

(B66) (WB1 (g) ®B1 C= Ker;{ ®B1 C= Ker(%l 51:()1)'
Eoq=—

Since (B.5.22) preserves the filtration, we have an induced isomorphism between
the associated graded
(B67) gr ((WB1 (g) ®B, C) =gr (Ker%®B1 C) :

Let 0 = F_; C Fy C F; C --- be the filtration on Wg,(g) as before. Then the
filtration on Wg, (g) ®B, C is given by
(B.6.8) 0'C Fo/e; We, (9)nFo C Fife; Wr, (g)nFy1 C -+,

as Wg,(9) ®B, C= Wg,(9)/c1Ws,(g). From the definition of F,, we have
e1 W, (g) N F, = 1F,_;. Therefore

(B.6.9) gt (Wg,(9) ®B, C) = @ Fr/erFyor+Fpr =2 88 Wn1 (0)/ey ax Wa, (a)-
p>0
(Here we have used gr W/e1 gt W = @ (F,/Fp—1)/1(Fp—1/Fp—2) as €1 shift the grad-
ing by 1)-The same is true for gr (Ker ¥ ®g, C).
By graded Nakayama’s lemma, we conclude gr Wg, (g) = gr Ker . Using it again,
we get (B.6.2).
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Next consider (B.6.3). Since both sides are Rees algebras of the corresponding
vertex algebras at e, = —1 with the induced filtration, it is enough to show that we
have a filtration preserving isomorphism at e, = —1:

(B.6.10) W, (g) = ﬂ Divi, ., .. ®B, Heisp, (a7 ),

K2

where Uit; g, , Heisg, (o; ) are defined in an obvious manner.
We use (B.6.2) W, (slz) = Virg, = Ker(x|,,__,) for g = sl and the observa-

tion that X is the sum of operators over i € I, we see that the right hand side is

Ker(X|.,—_;)- The substitution e, — ¢} = (26,0001 jg necessary; as the Heisenberg
commutation (6.3.12) involves (o, ;). Now we use (B.6.2) for the original g and
deduce (B.6.10). O

From this result, we extend the duality for the W-algebra in [30, Prop. 15.4.16]
from generic to arbitrary level.

Corollary B.6.11. — Let “g be the Langlands dual of g. Then we have
(B.6.12) Walg) = Wal"g)|eimrve, s
Eo—E1
where vV is the mazimal number of edges connecting two vertices of the Dynkin dia-
gram of g (the lacing number).

This is because Vir; 4 is invariant undez €1 + £ and (€1, e2) — (ce1, ce2) (c € C¥).

B.7. The embedding WA (g) — Wal(l)

The result in this subsection will not be used elsewhere, but shows that the hyper-
bolic restriction functor ®y, ¢ for.general L corresponds to in the W-algebra side.

Let L be a standard Levi subgroup of G with Lie algebra [. We can write [ as
[, 1] @ 3(1), where 3(I) denotes the center of [. The above discussion can be applied to
the Lie algebra [ instead of g and we get a well-defined vertex operator algebra W ([)
over A and we have an embedding Wa (I) — $Heis(h). It is also clear that Wa(I) is
isomorphic to Wa ({1, 1]) ® $eisa (3(0)).

Theorem B.7.1. — There-exists an embedding Wa(g) — Wa(l) compatible with the
embedding of both algebras into $Heis(h).

Proof. — Clearly, it-is enough to construct any map Wa(g) — Wa(l) whose com-
position with the embedding Wa () — $eis(h) gives the map Wa(g) — $Heis(h)
constructed before. To this end, we are going to construct another double complex
structure on C%(g)o (with the same total complex).

Let p be the parabolic subalgebra containing [ and ny and let n(p) be its nilpotent
radical. We can write ny = ny () ® n(p). Accordingly, we can decompose x = x1 + X2
where x1 € np(I)* and x2 € n(p)*. Let h; € 3([) denote the (unique) element such
that for every simple root a; we have ady, (e;) = e; if e; is not in [ and ad,, (e;) =0
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otherwise. Now define a new grading on C3 (g)o in a way similar to (B.1.4) but where
instead of the principal gradation and the root height we use the eigenvalue with
respect to adp,. Then the action of x3 has bidegree (1,0) and the action of dg: + X1
has bidegree (0,1). In this way we get a new bicomplex structure on C'3 (g)p with the
same total differential and total degree.

It is easy to see that we have C3?(g)o = 0 unless p > 0 and p+ ¢ > 0- Note that it
is no longer true that for p = 0 the complex C&q(g)o vanishes unless ¢ = 0; moreover,
the complex C3*(g)o (with respect to the differential dy; + 1) is just C4 (I)o. Thus we
get a morphism H°(C4 (g)o) — H°(C4(I)o) by mapping every cocycle to its degree
(0,0)-component with respect to the above grading. O
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