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Abstract—For a number ε > 0 and a real function f on an interval [a, b], denote by N(ε, f, [a, b])
the least upper bound of the set of indices n for which there is a family of disjoint intervals [ai, bi],
i = 1, . . . , n, on [a, b] such that |f(ai) − f(bi)| > ε for any i = 1, . . . , n (sup ∅ = 0). The following
theorem is proved: if {fj} is a pointwise bounded sequence of real functions on the interval
[a, b] such that n(ε) ≡ lim supj→∞ N(ε, fj, [a, b]) < ∞ for any ε > 0, then the sequence {fj}
contains a subsequence which converges, everywhere on [a, b], to some function f such that
N(ε, f, [a, b]) ≤ n(ε) for any ε > 0. It is proved that the main condition in this theorem related to
the upper limit is necessary for any uniformly convergent sequence {fj} and is “almost” necessary
for any everywhere convergent sequence of measurable functions, and many pointwise selection
principles generalizing Helly’s classical theorem are consequences of our theorem. Examples are
presented which illustrate the sharpness of the theorem.
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1. MAIN RESULTS

The objective of the present note is to represent a new sufficient condition on a pointwise bounded
sequence of real functions {fj} ≡ {fj}j∈N on an interval [a, b] of a real line R under which this sequence
has a subsequence convergent everywhere on [a, b]. Our main result, Theorem 1, contains (as special
cases) both the classical Helly’s classical selection principles for monotone functions and for functions
of (Jordan) bounded variation ([1, Chap. VIII, Sec. 4]) and, as will be shown in Sec. 4, also the majority
of generalizations of these selection principles ([2, Part III, Sec. 2], [3]–[9], and the references therein).
Note that Theorem 1 remains valid for a pointwise relatively compact sequence of functions {fj} acting
from a nonempty subset of R to a metric space. However, to represent the ideas in the simplest form
and to be able to compare the result with other selection principles, in this note we consider only real
functions on an interval [a, b].

For a number ε > 0 and a function f : [a, b] → R on an interval [a, b], introduce the quantity

N(ε, f, [a, b]) ∈ {0} ∪ N ∪ {∞}
as the least upper bound of the set of indices n ∈ N for which there is a family of disjoint intervals
[ai, bi], i = 1, . . . , n, on [a, b] such that |f(ai) − f(bi)| > ε for any i = 1, . . . , n (with the agreement that
sup ∅ = 0). One of the known properties of the quantity N(ε, f, [a, b]) is as follows (Theorem 2.1 in [2,
Part III]): a function f : [a, b] → R has one-sided finite left and right limits at all points of the interval
[a, b] if and only if N(ε, f, [a, b]) < ∞ for any ε > 0; in this case, the function f is bounded.

The main result of the paper, which is another application of the quantity N(ε, f, [a, b]) introduced
above, is the following pointwise selection principle.
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Theorem 1. Let {fj} be a pointwise bounded sequence of real functions on an interval [a, b] such
that

lim sup
j→∞

N(ε, fj , [a, b]) < ∞ for any ε > 0. (1)

In this case, {fj} contains a subsequence which converges everywhere on [a, b] to some function
f : [a, b] → R such that the number N(ε, f, [a, b]) does not exceed the upper limit in (1) for any
ε > 0.

It is of interest to note that, as well as condition (9) presented in Sec. 4.4, which was found earlier
in [7, Theorem 2] and [10, Lemma 4], assumption (1) of Theorem 1 is necessary for any uniformly
convergent sequence {fj} and is “almost” necessary for any everywhere convergent sequence {fj} of
measurable functions, as is proved in Theorem 2 below. However, the assumptions for the majority of
known selection principles (cf. Secs. 4.1–4.3 and 4.5) are not necessary conditions.

Note that the quantity N(ε, f,E) can be introduced on any set E, ∅ �= E ⊂ [a, b], for any function
f : [a, b] → R, if one assumes in addition that the ends ai and bi of the disjoint intervals [ai, bi],
i = 1, . . . , n, mentioned above belong to E.

Theorem 2. (a) If a sequence {fj} of real functions converges uniformly on [a, b] to some function
f : [a, b] → R such that N(ε, f, [a, b]) < ∞ for any ε > 0, then condition (1) holds; more exactly,

lim sup
j→∞

N(ε, fj , [a, b]) ≤ lim
δ→ε−0

N(δ, f, [a, b]) for any ε > 0.

(b) If a sequence of real measurable functions {fj} converges on [a, b] everywhere (or almost
everywhere) to some function f : [a, b] → R satisfying the condition N(ε, f, [a, b]) < ∞ for any
ε > 0, then, for any η > 0, there is a Lebesgue measurable set Eη on [a, b] such that the measure
of Eη does not exceed η and

lim sup
j→∞

N(ε, fj , [a, b] \ Eη) < ∞ for any ε > 0.

These theorems are proved in the next section. In Sec. 3, the sharpness of the conditions of
Theorems 1 and 2 is illustrated by examples. In the last section, Sec. 4, Theorem 1 is compared with the
most well-known (at present) pointwise selection principles generalizing Helly’s theorem.

2. PROOF OF THE MAIN THEOREMS

Proof of Theorem 1. 1. Let us show that there is a subsequence of {fj}, which we denote by {fj}
again, and, for any k ∈ N, there is a nondecreasing bounded function nk : [a, b] → N such that

lim
j→∞

N(1/k, fj , [a, t]) = nk(t) for any k ∈ N and t ∈ [a, b]. (2)

Note first that, by condition (1), for any ε > 0, there are indices M(ε), j0(ε) ∈ N such that
N(ε, fj , [a, b]) ≤ M(ε) for any j ≥ j0(ε). The sequence

{t �→ N(1, fj , [a, t])}j≥j0(1)

consisting of nondecreasing functions is uniformly bounded on [a, b] by a constant M(1). By Helly’s
selection principle for monotone functions, the sequence {fj}j≥j0(1), and thus the original sequence
{fj}, has a subsequence {fJ1(j)}∞j=1 (here the sequence J1 : N → N, as well as similar sequences Jk for
k ≥ 2 occurring below, is strictly increasing) such that N(1, fJ1(j), [a, t]) converges as j → ∞ to n1(t)
for any t ∈ [a, b], where n1 : [a, b] → N is a nondecreasing bounded function. Choose the least number
j1 ∈ N such that J1(j1) ≥ j0(1/2). In this case, the sequence of nondecreasing functions

{t �→ N(1/2, fJ1(j), [a, t])}j≥j1

is uniformly bounded on [a, b] by a constant M(1/2). Applying Helly’s selection principle again, we find
a subsequence {fJ2(j)}∞j=1 of {fJ1(j)}j≥j1 such that N(1/2, fJ2(j), [a, t]) converges as j → ∞ to n2(t)
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398 TRET’YACHENKO, CHISTYAKOV

for any t ∈ [a, b], where n2 : [a, b] → N is also a nondecreasing bounded function. Choose the minimal
index j2 ∈ N such that J2(j2) ≥ j0(1/3). Let us now assume by induction that, for an index k ≥ 3, a
subsequence {fJk−1(j)}∞j=1 of the original sequence {fj} and the least index jk−1 ∈ N such that

Jk−1(jk−1) ≥ j0

(
1
k

)

are already chosen. Applying Helly’s theorem to the sequence of nondecreasing functions

{t �→ N(1/k, fJk−1(j), [a, t])}j≥jk−1
,

which is uniformly bounded on [a, b] by a constant M(1/k), shows that there are subsequences
{fJk(j)}∞j=1 of the sequence {fJk−1(j)}j≥jk−1

and a nondecreasing bounded function nk : [a, b] → N such
that N(1/k, fJk(j), [a, t]) converges as j → ∞ to nk(t) for any t ∈ [a, b]. Noticing that, for any k ∈ N,
the sequence {fJj(j)}j≥k is a subsequence of {fJk(j)}∞j=1, we see by the above considerations that the
diagonal sequence {fJj(j)}∞j=1, which we denote by {fj} again, satisfies condition (2).

2. For any k ∈ N, the set Sk ⊂ [a, b] of discontinuity points of the monotone function nk is at most
countable. Write

S = ([a, b] ∩ Q) ∪
∞⋃

k=1

Sk,

where Q is the set of all rational numbers. In this case, S is a countable dense subset of [a, b] such that

the function nk is continuous on [a, b] \ S for any k ∈ N. (3)

Since the sequence {fj} is pointwise bounded and S is countable, we can assume without loss of
generality (passing to a subsequence of {fj} by using the standard diagonal process if necessary) that,
for any s ∈ S, the sequence {fj(s)} converges on R as j → ∞ to some point denoted by f(s).

Let us now show that the sequence {fj(t)} is a Cauchy sequence at any point t ∈ [a, b] \ S. Let
ε > 0 be arbitrary. Choose and fix an index k = k(ε) ∈ N such that 1/k ≤ ε/3. Since by (3), t is a
continuity point for the function nk and the set S is dense in [a, b], there is a point s = s(k, t) ∈ S, which
thus depends on ε only, such that nk(t) = nk(s). To be definite, let s < t (the case of t < s is similar).
Using (2), we choose indices J1 = J1(k, t), J2 = J2(k, s) ∈ N also depending on ε only and such that

N

(
1
k
, fj, [a, t]

)
= nk(t) for any j ≥ J1 and N

(
1
k
, fj , [a, s]

)
= nk(s) for any j ≥ J2.

In this case, for j ≥ max{J1, J2}, we see that

N

(
1
k

, fj, [s, t]
)

≤ N

(
1
k

, fj , [a, t]
)
− N

(
1
k

, fj , [a, s]
)

= nk(t) − nk(s) = 0,

and hence N(1/k, fj , [s, t]) = 0, which means (by the definition of the quantity on the left-hand side of
the last equality) that, in particular,

|fj(s) − fj(t)| ≤
1
k
≤ ε

3
.

Since the sequence {fj(s)} converges, it is a Cauchy sequence, and therefore there is an index

J3 = J3(ε, s) ∈ N

such that

|fj(s) − fl(s)| ≤
ε

3
for any j, l ≥ J3.

Hence the index J = max{J1, J2, J3} depends on ε only, and, for any j, l ≥ J , we obtain

|fj(t) − fl(t)| ≤ |fj(t) − fj(s)| + |fj(s) − fl(s)| + |fl(s) − fl(t)| ≤ ε.
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The sequence {fj(t)} converges because it is a Cauchy sequence. Denote by f(t) the limit of this
sequence. This defines a function f : [a, b] = S ∪ ([a, b] \ S) → R, and the sequence {fj}, which is a
subsequence of the original sequence {fj}, converges to the function f everywhere on [a, b]. It remains
to note that

N(ε, f, [a, b]) ≤ lim inf
j→∞

N(ε, fj , [a, b]) ≤ lim sup
j→∞

N(ε, fj , [a, b]) (4)

for any ε > 0 and to establish here the left inequality.
To this end, without loss of generality, assume that N(ε, f, [a, b]) > 0. It is sufficient to show that, if,

for an index n ∈ N, there are disjoint intervals [ai, bi], i = 1, . . . , n, on [a, b] such that |f(ai)− f(bi)| > ε
for any i = 1, . . . , n, then

n ≤ lim inf
j→∞

N(ε, fj , [a, b]).

For any number ε′ = ε′(n) such that

min
1≤i≤n

|f(ai) − f(bi)| > ε′ > ε,

since fj converges to f everywhere on [a, b], there is an index J = J(n) ∈ N such that the values |f(ai)−
fj(ai)| and |fj(bi) − f(bi)| do not exceed (ε′ − ε)/2 for any i = 1, . . . , n and j ≥ J . Consequently, for
the same i and j, we see that

ε′ < |f(ai) − f(bi)| ≤ |f(ai) − fj(ai)| + |fj(ai) − fj(bi)| + |fj(bi) − f(bi)|

≤ ε′ − ε

2
+ |fj(ai) − fj(bi)| +

ε′ − ε

2
= |fj(ai) − fj(bi)| + ε′ − ε,

and therefore |fj(ai) − fj(bi)| > ε, i = 1, . . . , n. By definition of N(ε, fj , [a, b]), we then see that
n ≤ N(ε, fj , [a, b]) for any j ≥ J , and hence

n ≤ inf
j≥J

N(ε, fj , [a, b]) ≤ lim inf
j→∞

N(ε, fj , [a, b]),

which completes the proof of the inequality, and hence of Theorem 1 as well.

Proof of Theorem 2. (a) By assumption, the function f is bounded (see Sec. 1), and it follows from the
uniform convergence of {fj} to f that

sup
s,t∈[a,b]

|(fj − f)(s) − (fj − f)(t)| ≤ 2 sup
t∈[a,b]

|fj(t) − f(t)| → 0 as j → ∞.

Moreover, for any ε > 0 and j ∈ N, the following inequality holds:

N(ε, fj , [a, b]) ≤ N(ε − δ, fj − f, [a, b]) + N(δ, f, [a, b]) for any 0 < δ < ε. (5)

Indeed, without loss of generality, assuming that the left-hand side of the inequality in (5) is greater than
zero, we suppose that the index n ∈ N has the following property: there is a family [ai, bi], i = 1, . . . , n,
of disjoint intervals on [a, b] such that

|fj(ai) − fj(bi)| > ε for any i = 1, . . . , n.

Since, for these i, we have

ε < |fj(ai) − fj(bi)| ≤ |(fj − f)(ai) − (fj − f)(bi)| + |f(ai) − f(bi)|,
it follows that either

|(fj − f)(ai) − (fj − f)(bi)| > ε − δ or |f(ai) − f(bi)| > δ;

we refer the index i to the set I1 ⊂ {1, . . . , n} in the first case and to the set I2 ⊂ {1, . . . , n} in the other
case and denote by |I1| and |I2| the number (which can be zero) of elements in I1 and I2, respectively.
It is clear that |I1| + |I2| ≥ n. On the other hand, it follows from the definition of the quantity N(· · · ) in
Sec. 1 that

|I1| ≤ N(ε − δ, fj − f, [a, b]) and |I2| ≤ N(δ, f, [a, b]).
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Thus, we have

n ≤ N(ε − δ, fj − f, [a, b]) + N(δ, f, [a, b]),

which implies (5) because the above indices n are arbitrary.

Suppose now that ε, ε > 0, and δ, 0 < δ < ε, are arbitrary. There is an index J ∈ N depending on ε
and δ such that

|(fj − f)(s) − (fj − f)(t)| ≤ ε − δ for any s, t ∈ [a, b] and j ≥ J .

Hence, by the definition of N( · ), the first summand on the right-hand side in inequality (5) vanishes,
and thus N(ε, fj , [a, b]) ≤ N(δ, f, [a, b]) for any j ≥ J . Therefore

lim sup
j→∞

N(ε, fj , [a, b]) ≤ sup
j≥J

N(ε, fj , [a, b]) ≤ N(δ, f, [a, b]).

It remains to take into account the fact that the function δ �→ N(δ, f, [a, b]) is nonincreasing and to pass
to the limit in the last inequality for δ → ε − 0.

(b) By the Egorov theorem [1, Chap. IV, Sec. 3], it follows from the (almost) everywhere convergence
of {fj} to f that, for any η > 0, there is a measurable set Eη on [a, b] of measure ≤ η such that {fj}
uniformly converges to f on [a, b] \ Eη. Replacing the interval [a, b] by [a, b] \ Eη in the considerations
in (a), we arrive at the bound

lim sup
j→∞

N(ε, fj , [a, b] \ Eη) ≤ lim
δ→ε−0

N(δ, f, [a, b] \ Eη) ≤ lim
δ→ε−0

N(δ, f, [a, b]) < ∞

for any ε > 0, as was to be established.

3. EXAMPLES

In this section, we collect some examples of function sequences {fj} on the interval [0, 1] (except for
Secs. 3.2 and 3.4, where [a, b] = [0, 2π]) showing the sharpness of the assumptions and conclusions of
Theorems 1 and 2.

Since the oscillation

osc(f, [a, b]) = sup
s,t∈[a,b]

|f(s) − f(t)|

of any bounded function f : [a, b] → R is finite, it follows from the condition osc(f, [a, b]) = 0 that
f is constant, and hence N(ε, f, [a, b]) = 0 for any ε > 0; moreover, if ε ≥ osc(f, [a, b]) > 0, then
N(ε, f, [a, b]) = 0 by definition. Therefore, below we write out estimates for N(ε, f, [a, b]) only for the
case in which 0 < ε < osc(f, [a, b]). For instance, if V b

a (f) stands for the ordinary Jordan variation of a
function f on an interval [a, b] (see also Sec. 4.1 for ϕ(t, u) = u), then

osc(f, [a, b]) ≤ V b
a (f) and N(ε, f, [a, b]) ≤ 1

ε
V b

a (f) for 0 < ε < osc(f, [a, b]). (6)

3.1. The condition of pointwise boundedness of {fj} is essential in Theorem 1. Indeed, the function
sequence with fj(t) = 0 for 0 ≤ t < 1 and fj(1) = j has no everywhere convergent subsequence;
however, N(ε, fj , [0, 1]) = 1 for 0 < ε < j, and therefore

lim sup
j→∞

N(ε, fj , [0, 1]) = 1 for any ε > 0.

At the same time, the condition of pointwise boundedness is not necessary, because the function se-
quence with fj(t) = 0 for 0 ≤ t < 1 and fj(1) = j(−1)j

contains an everywhere convergent subsequence
corresponding to the odd indices j and is unbounded at the point t = 1, and, as above,

lim sup
j→∞

N(ε, fj , [0, 1]) = 1 for any ε > 0.
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3.2. Without assumption (1), Theorem 1 fails. Indeed, as is known, the sequence fj(t) = sin(jt),
0 ≤ t ≤ 2π, has no subsequence convergent everywhere on [0, 2π]. On the other hand, we claim that

4j ≤ N(ε, fj , [0, 2π]) ≤ 4j
ε

for any 0 < ε < 1. (7)

Since

osc(fj , [0, 2π]) = 2 and V 2π
0 (fj) = 4j,

the right inequality follows from (6) for 0 < ε < 2. Suppose now that 0 < ε < 1. For j ∈ N, write

tji =
πi

2j
, i = 0, 1, . . . , 4j, and [ai, bi] = [tji−1, t

j
i ], i = 1, . . . , 4j.

In this case, for any i = 1, . . . , 4j, we obtain

|fj(ai) − fj(bi)| =
∣∣∣∣sin

(
πi

2

)
− sin

(
π(i − 1)

2

)∣∣∣∣ = 1 > ε,

which implies the left inequality in (7) by the definition of the quantity N( · ), and it follows from this
inequality that

lim sup
j→∞

N(ε, fj , [0, 2π]) = ∞ for any 0 < ε < 1.

3.3. Condition (1) is not necessary, and thus Theorem 2, (a) is violated for some everywhere convergent
sequence {fj}. Let D be the Dirichlet function,

D(t) = 1 for t ∈ [0, 1] ∩ Q and D(t) = 0 for t ∈ [0, 1] \ Q.

In this case, N(ε,D , [0, 1]) = ∞ for 0 < ε < 1 = osc(D , [0, 1]). Consider the sequence

fj(t) = lim
m→∞

(cos(j!πt))2m

on [0, 1]; the function fj takes the value 1 if j!t is an integer and the value 0 otherwise, and therefore
the sequence converges to the Dirichlet function D everywhere on [0, 1]. Since osc(fj, [0, 1]) = 1 and
V 1

0 (fj) = 2 · j!, it follows that N(ε, fj , [0, 1]) = 2 · j! for 0 < ε < 1, and thus

lim sup
j→∞

N(ε, fj , [0, 1]) = ∞ for any 0 < ε < 1.

Note that, as is also proved here, for any everywhere convergent sequence {fj}, the condition that
N(ε, fj , [0, 1]) < ∞ for any ε > 0 and j ∈ N does not imply the relation

lim sup
j→∞

N(ε, fj , [0, 1]) < ∞ for any ε > 0.

Moreover, it can also happen that all functions fj in a sequence {fj} do not satisfy the condition
N(ε, fj , [a, b]) < ∞ for any ε > 0, whereas the limit function f in Theorem 1 always satisfies this
condition, for instance, the sequence fj(t) = D(t)/j converges to the zero function uniformly on [0, 1],
whereas N(ε, fj , [0, 1]) = ∞ for 0 < ε < 1/j = osc(fj , [0, 1]) and N(ε, fj , [0, 1]) = 0 for any ε > 0 and
j ≥ 1/ε.

3.4. Another example of a convergent sequence {fj} (tending to the zero function) for which condi-
tion (1) is violated is the example in [10, Example 4], namely, by setting

fj(t) = sin(j2t) for 0 ≤ t ≤ 2π/j and fj(t) = 0 for 2π/j ≤ t ≤ 2π,

we see that inequalities (7) are satisfied.
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3.5. One cannot replace the left limit as δ → ε − 0 in the inequality of Theorem 2, (a) by the expression
N(ε, f, [a, b]). Namely, the sequence given by

fj(t) = 0 for 0 ≤ t < 1 and fj(1) = 1 +
1
j

converges uniformly on [0, 1] to the function f with f(t) = 0 for 0 ≤ t < 1 and f(1) = 1, and thus, for
ε = 1, we have

N(ε, fj , [0, 1]) = 1 for any j ∈ N and N(δ, f, [0, 1]) = 1 for any 0 < δ < ε,

whereas N(ε, f, [0, 1]) = 0.

3.6. It can happen that, for some everywhere convergent sequence {fj}, condition (1) holds, whereas
the inequality in Theorem 2, (a) fails to hold. For instance, the sequence given by

fj(t) = 1 for t =
1

j + 1
and fj(t) = 0 for t �= 1

j + 1

converges everywhere on [0, 1] to the function with f(0) = 1 and f(t) = 0 for 0 < t ≤ 1; moreover, if
0 < ε < 1, then

N(ε, fj , [0, 1]) = 2 for any j ∈ N, and N(ε, f, [0, 1]) = 1.

3.7. We present here an example of a sequence {fj} on [0, 1] which is not uniformly bounded and to
which Theorem 1 can be applied. Set

fj(t) = j for t =
1

j + 1
and fj(t) = 0 for t �= 1

j + 1
.

In this case, {fj} converges everywhere to f ≡ 0, and therefore {fj} is pointwise bounded; moreover,

{fj(t)} = {0} for t /∈ {1/(k + 1)}k∈N and {fj(t)} = {0, k} for t = 1/(k + 1), k ∈ N.

Further, osc(fj, [0, 1]) = j (this value tends to infinity as j → ∞) and, by (6), we have

N(ε, fj , [0, 1]) = 2 for 0 < ε < j,

which yields

lim sup
j→∞

N(ε, fj , [0, 1]) = 2 for any ε > 0.

3.8. There are sequences {fj} which converge to zero everywhere (and hence are pointwise bounded)
for which condition (1) is violated and

lim sup
j→∞

osc(fj, [0, 1]) = ∞.

Set fj(t) = jtj for 0 ≤ t < 1 and fj(1) = 0. In this case, osc(fj , [0, 1]) = j and V 1
0 (fj) = 2j, and

therefore, by (6), we have

N(ε, fj , [0, 1]) ≤ 2j/ε for 0 < ε < j.

Let us show that

N(ε, fj , [0, 1]) ≥ [j/(2ε)] for j > 2ε

(here the square brackets stand for the integral part of a number), which will imply that

lim sup
j→∞

N(ε, fj , [0, 1]) = ∞ for any ε > 0.

Indeed, for j > 2ε, write

ti =
(

2iε
j

)1/j

, i = 0, 1, . . . ,
[

j

2ε

]
, and [ai, bi] = [ti−1, ti], i = 1, . . . ,

[
j

2ε

]
.
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Then 0 = t0 < t1 < · · · < t[j/(2ε)] ≤ 1 and

|fj(ai) − fj(bi)| = j(ti)j − j(ti−1)j = j
2iε
j

− j
2(i − 1)ε

j
= 2ε > ε

for any i = 1, . . . , [j/(2ε)], which implies the desired inequality.

3.9. In the definition of the quantity N(ε, f, [a, b]) in Sec. 1 it is assumed that the disjoint intervals [ai, bi]
have the following property: |f(ai)− f(bi)| > ε for any i = 1, . . . , n. If we replace here the inequality > ε
by ≥ ε and denote the new quantity by N≥(ε, f, [a, b]), then the left inequality in (4) can fail to hold for
the new quantity. For instance, the sequence given by fj(t) = 1 for t = 0, fj(t) = 0 for 0 < t < 1, and
fj(t) = 1 − (1/j) for t = 1 converges uniformly for [0, 1] to the function given by f(0) = f(1) = 1 and
f(t) = 0 for 0 < t < 1. For ε = 1, we see that

N≥(ε, fj , [0, 1]) = 1 for any j ∈ N and N≥(ε, f, [0, 1]) = 2.

4. COMPARISON WITH KNOWN SELECTION PRINCIPLES

4.1. Let a function ϕ : [a, b] × R
+ → R

+, where R
+ = [0,∞), satisfy the following two conditions:

(i) for any t ∈ [a, b], the function ϕ(t, · ) of the second argument is nondecreasing and continuous on
R

+, and ϕ(t, u) → ∞ as u → ∞;

(ii) ϕ(t, 0) = 0 for any t ∈ [a, b], and inft∈[a,b] ϕ(t, u) > 0 and any u > 0.

Following [3], for a function f : [a, b] → R, we set

Vϕ(f, [a, b]) = sup
n∑

i=1

ϕ(ti, |f(ai) − f(bi)|),

where the supremum is taken over all n ∈ N, all families [ai, bi], i = 1, . . . , n, of disjoint intervals on
[a, b], and all points ti ∈ [ai, bi], i = 1, . . . , n. This generalized variation of the function f corresponds
to the Wiener–Young ϕ-variation for ϕ(t, u) = ϕ(u) and to the ordinary Jordan variation V b

a (f) for
ϕ(t, u) = u. In [3], the following generalization of Helly’s theorem was established: if a sequence of
functions {fj} on an interval [a, b] is bounded at some point in [a, b] and if

sup
j∈N

Vϕ(fj, [a, b]) = C < ∞,

then {fj} contains a subsequence which converges to some function f everywhere on [a, b] for
which Vϕ(f, [a, b]) ≤ C. This result immediately follows from Theorem 1 (together with Helly’s theorem
for ϕ(t, u) = u and its generalization in [4, Theorem 1.3] for ϕ(t, u) = ϕ(u)) by taking into account the
bounds (cf. the bounds in the proof of Theorem 9 in [12])

osc(fj, [a, b]) ≤ 2max{u ∈ R
+ | ϕ(a, u) ≤ Vϕ(fj, [a, b])},

N(ε, fj , [a, b]) ≤ Vϕ(fj, [a, b])
inft∈[a,b] ϕ(t, ε)

for 0 < ε < osc(fj, [a, b]),

and also the sequential lower semicontinuity of the functional Vϕ meaning that, if a sequence {fj}
converges everywhere on [a, b] to a function f , then

Vϕ(f, [a, b]) ≤ lim inf
j→∞

Vϕ(fj, [a, b]) ≤ C.
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4.2. Let Φ = {ϕi}i∈N be a sequence consisting of continuous nondecreasing unbounded functions
ϕi : R

+ → R
+ such that ϕi(u) = 0 for u = 0 only and the following two conditions are satisfied:

(a) ϕi+1(u) ≤ ϕi(u) for any i ∈ N and u ∈ R
+;

(b)
∑∞

i=1 ϕi(u) = ∞ for any u > 0.

Following [8], for any function f : [a, b] → R, write

VΦ(f, [a, b]) = sup
n∑

i=1

ϕi(|f(ai) − f(bi)|),

where the supremum is taken over all n ∈ N and all unordered families [ai, bi], i = 1, . . . , n, of disjoint
intervals on [a, b]. This generalized variation of the function f corresponds to the Jordan variation V b

a (f)
for ϕi(u) = u, to the Wiener–Young ϕ-variation for ϕi(u) = ϕ(u), and to the Waterman Λ-variation [9]
for ϕi(u) = u/λi for any i ∈ N and u ∈ R

+, where Λ = {λi}i∈N is a nondecreasing sequence of positive
numbers for which

∑∞
i=1 1/λi = ∞. A generalization of Helly’s theorem in [8, Theorem 2.8] (and its

special case in [9, Theorem 5]) is formulated in just the same way as the corresponding assertion in
Sec. 4.1 in which Vϕ is replaced by VΦ. This result follows from Theorem 1 thanks to the following
bounds (cf. the bounds in the proof of Theorem 10 in [12]):

osc(fj , [a, b]) ≤ max{u ∈ R
+ | ϕ1(u) ≤ VΦ(fj, [a, b])},

N(ε, fj , [a, b]) ≤ max
{

n ∈ N

∣∣∣
n∑

i=1

ϕi(ε) ≤ VΦ(fj, [a, b])
}

for 0 < ε < osc(fj, [a, b]),

and also to the property of sequential lower semicontinuity of the functional VΦ.

4.3. Theorem 1 implies a Helly-type selection principle established in another way in [2, Part III, Sec. 2,
Proposition 2.8] in which, for the validity of the conclusion of Theorem 1, it is assumed much more,
namely, that the sequence {fj} is uniformly bounded,

sup
j∈N

osc(fj, [a, b]) < ∞, and sup
j∈N

N(ε, fj , [a, b]) < ∞ for any ε > 0. (8)

4.4. Recall that by the Chanturiya modulus of variation [13] of a function f : [a, b] → R one means
the sequence {ν(n, f, [a, b])}n∈N defined by the rule

ν(n, f, [a, b]) = sup
n∑

i=1

|f(ai) − f(bi)|,

where, for a chosen n ∈ N, the supremum is taken over all families [ai, bi], i = 1, . . . , n, of disjoint
intervals on [a, b]. As was noted in [13, Theorem 5] (see also [7, Theorem 3]), a function f : [a, b] → R

has finite one-sided left and right limits at all points of [a, b] if and only if ν(n, f, [a, b]) = o(n) (i.e.,
ν(n, f, [a, b])/n → 0 as n → ∞). Note that [2, Part III, Sec. 2, Theorem 2.2], for any sequence of
functions {fj}, conditions (8) are equivalent to the single condition

sup
j∈N

ν(n, fj, [a, b]) = o(n).

In [7, Theorem 1] (and in its generalizations in [10]–[12]), the following selection principle general-
izing Helly’s theorem was established: if a sequence of functions {fj} on [a, b] is bounded at some
point of [a, b] and if

lim sup
j→∞

ν(n, fj, [a, b]) = o(n), (9)

then {fj} contains a subsequence which converges, everywhere on [a, b], to some function f such
that ν(n, f, [a, b]) = o(n). This result follows from Theorem 1 if one takes into account that condition (9)
is equivalent to each of the following two conditions simultaneously, namely, to condition (1) and to the
condition lim supj→∞ osc(fj , [a, b]) < ∞. Note that, in all above generalizations of Helly’s theorem
except for Theorem 1, the assumptions of these theorems imply that the original sequence {fj} is
uniformly bounded.
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4.5. For a function f : [a, b] → R of alternating sign, denote by P(f) the set of all families of points
{t1, . . . , tn} ⊂ [a, b], where n ∈ N, such that t1 < · · · < tn and one of the following three conditions
holds: (−1)if(ti) > 0 for any i = 1, . . . , n, (−1)if(ti) < 0 for any i = 1, . . . , n, or (−1)if(ti) = 0 for
any i = 1, . . . , n. Following [14], write

T (f, [a, b]) = sup
{ n∑

i=1

|f(ti)|
∣∣∣ n ∈ N and {ti}n

i=1 ∈ P(f)
}

.

If the function f is either nonnegative everywhere on [a, b] or nonpositive everywhere on [a, b], then we
set T (f, [a, b]) = supt∈[a,b] |f(t)|. The quantity T (f, [a, b]) thus defined is referred to as the oscillation
of f on [a, b] in the sense of Schrader.

The following generalization of Helly’s theorem was established in [14, Theorem 1.2]: if a sequence
of functions {fj} on an interval [a, b] is such that

sup
j,k∈N

T (fj − fk, [a, b]) < ∞,

then it contains a subsequence which converges everywhere on [a, b]. Such a sequence {fj} is
pointwise bounded; however, no “regularity” properties of the limit function are claimed, as well as in
the previous generalizations in Secs. 4.1–4.4. Let us present examples showing that this result and
Theorem 1 are independent (a development of the Schrader oscillation was presented in [15], where the
corresponding generalization of Helly’s theorem was established (Theorem 2.1 in [15]; this result and
Theorem 1 are also independent [16]), namely, the sequence in Example 3.7 satisfies the assumptions
of Theorem 1 but does not satisfy any generalization of Helly’s theorem presented above, whereas the
sequence fj(t) = (−1)jD(t) on [0, 1] satisfies the Schrader selection principle but does not satisfy the
conditions of any other selection principle presented above.

4.6. As usual, the modulus of continuity

ω( · , f) : [0, b − a] → R
+

of a continuous function f : [a, b] → R is defined by the rule

ω(ρ, f) = sup{|f(s) − f(t)| : s, t ∈ [a, b], |s − t| ≤ ρ} for 0 < ρ ≤ b − a,

ω(0, f) = lim
ρ→+0

ω(ρ, f) = 0.

By the Weierstrass theorem, the oscillation osc(f, [a, b]) is finite. A sequence of functions {fj} on [a, b]
is said to be equicontinuous if

lim
ρ→+0

sup
j∈N

ω(ρ, fj) = 0.

The following well-known Ascoli theorem implies that every pointwise bounded equicontinuous
sequence of real functions {fj} on [a, b] contains an everywhere convergent subsequence. This
statement follows from Theorem 1 if one takes into account the relation

N(ε, fj , [a, b]) ≤ b − a

min{ρ ∈ R+ | ω(ρ, fj) = ε} for 0 < ε < osc(fj , [a, b]).
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