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Abstract

We characterize superposition Nemytskii operators, which map the Banach algebra of functions of
nreal variables with finite total variation in the sense of Vitali, Hardy and Krause into itself and satisfy
the global Lipschitz condition. Our results extend previous results in this direction by Matkowski and
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1. Main results of Part Il

This paper is a continuation {8, Part ] In order to make the presentation as independent
of Part | as possible, here we briefly recall definitions, lemmas and main theordbis of
and present the main results of this paper.
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Let N be the set of positive integers,e N be fixed andNg = {0} U N. Givenx € R",
we writex = (x; |i € {1,...,n}) = (x1,...,x,) and ify € R", we say thatt = y, x <y,
yzxorx <y (inR"ifandonly ifx; = y;, x; <yi, yi =x; orx; < y; foralli € {1, ..., n},
respectively. We set + y = (x1 &+ y1, ..., x5 £ yp). If x<y in R", the n-dimensional
rectanglel; with the endpoints andy is defined byl = [x1, y1] X - -+ X [xp, yal ={z €
R" |x<z<y}.

In what follows we fixa, » € R" with a <b and the rectangld?, called thebasic
rectangle which will be the domain of most functions under consideration.

Greek letters will designateultiindices i.e., elements ofNy = (Np)”. Giveno € Nj
andx € R", we set|a| = oy + --- + o, andox = (x1x1, ..., 0%x,) € R". We write O
for (0,...,0) € Njand 1for(d,...,1) e N§; each time the dimension of the zero or
unit multiindex will be clear from the context. We also s#b(n) = {o € Nj |« <1} and
< (n) = =/o(n)\{0}.

A summation over multiindices will be understood ovetlimensionamultiindices, the
range of the summation will be specified under the summation sign. Thus, tiesum,
will be written as} o, < 1.

The Vitali nth mixed difference off:’ — R on the subrectanglé; < 12, where
a<x < y<b,isthe quantityf10]:

md,(f, 1) = Y (D f(x+ 0 —x)).

0<0<1

The Vitali nth variation[7,10] of f : I’ — R s defined by

Va(f. 1) = sup > mdo (£ DL (1.2)

1<o<k

where the supremum is taken over all multiindiges N" and all partitions? = {x[c]}_,

of 12; here by a (net) partitios” of 1> we understand a collection of points of the form
x[o] = (x1(61), ..., xu(0,)) from If indexed byr= (a1, ..., 0,) € Njwith o <, written
as{x[a]};_y, and satisfyingc[0] = a, x[x] = b andx[c — 1] < x[s] in R" for all ¢ € N",
1<o<k.

The lower order (Hardy and Krause) variationof 1> — R is introduced as follows.
Let o € o/(n). Givenx € R", we define theruncation of x byx by x| = (x;|i €
(1,....n},x; =1) € R* and 1’ |o = Iftf If z € I, we define theruncated function
fZ: 1P| — Rwith the base at by

fixlo) = fe+akx —2z), xell.

The |«|-variation of f denoted by, (f¢, I?|«), is the value (1.1) where on the left is
replaced by«|, f — by f¢ and1? — by 1? | a.

Thetotal variationof f : Ijj — R in the sense of Hildebrand, 111.6.3] and Leonov
[7] (see alsg5]) is defined by

VLI = D Vig(fy. 1212 (1.2)

O#£0<1
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We set BMIY; R) ={f : I? — R|TV(f, I?) < oo} and equip it with the norm(6, 111.6.3]
if n=2,[7] foralln € N):

Ifll=1f@]+TV(f£, ID), feBVULR). (1.3)

The main result of Part | is the following:

Theorem 1 (Chistyako\5, Theorem 1]. The spacﬁV(Ia”; R) is a Banach algebra with
respect to the usual pointwise operations and n@trf),and the following inequality holds
If-gll<2 I f1l - llgll forall f, g € BV(; R).

Let R! be the algebra of all functiong : I — R from I = 1Y into R equipped with the
pointwise operations and: I x R — R be a given function. Theuperposition operator
H = H;, : Rl — R! generated by is defined by

Hf(x)=H(f)(x)=h(x, f(x)), xe€l, fe€ R!. (1.4)

As a consequence of Theorem 1 we gek: if/ x R — R is given byh(x, u) = h1(x)u +
ho(x), x € IP, u e R, for some functiongig, k1 € BV (I?; R), then the superposition
operatorH, generated by, maps B\(If; R) into itself and is Lipschitzian: there exists a
nonnegative constaht(actually,L = 2"||k1||) such that

IHf,— HfI<LIIfL— f2ll for all f1, f» € BV(IL; R). (1.5)

Itis the aim of this paper to show that the last assertion can be (at least partially) reversed, so
that it is almost a characterization of Lipschitzian superposition operetorsBV(12; R)
(see Theorem 3 and Corollary 4 below).
Givenf e BV(If; R), we define théeft regularizationf* : 1> — R of f as follows: for
anyy e I, a < y<b, and anyy € .«/o(n) we set

* Wy — = lim . 1.6
ffla+y(y—a) o @00 (a10) Jfx) (1.6)

Itistobe noted thatt — - - -”underthe limitsignin (1.6) meansthet(x1, ..., x,) € I(f,
x; <y; forthosei € {1, ..., n} for whichy, =1, a; < x; for thosei for whichy; =0 and
xtends toa + y(y —a) in R" (thatis,x; — y; —0if y; =1 andx; — a; +0if y;, =0,
i € {1,...,n}). The existence of all the limits in (1.6) will be proved in Lemma 12 in
Section 4.

Afunction f : I? — Ris said to beeft continuousf f*(y) = f(y) forall y € I? with
a < y<b.We denote by BW(If; R) the subset of B‘(/If; R) of those functions which are
left continuous.

The main results of Part Il are the following two theorems.

Theorem 2. If f € BV(I}; R), then f* € BV*(12; R) and we have

Vi ((F95 1< D" Vig(fg 2B, ae /() (L.7)

a<p<l
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and, in particular,
Va(f*, I <Va(f, 1) and TV(f*, 1) <2 = DTV(S, 1), (1.8)

Theorem 3. Let H : R! — R’ be the superposition operator generated by a function
h: 1 xR — Raccording to(1.4)with I = I%. If H mapsBV (I2; R) into itself and is
Lipschitzian(in the sense of1.5)), then the family{A (x, Nyerp : R >R is uniformly

Lipschitzian and there exist two functiohg, i1 € BV*(Ij; R) such that
R*(x,u) = hy(x)u + ho(x), xelI’, ueR, (1.9)

whereh* (x, u) is the left regularization of the function— % (y, u) at the pointx € 17 for
each fixed: € R.

This theorem contains as particular cases the resu®§ ¢for » = 1) and[2] (for n = 2).
As a corollary, we get:

Corollary 4. Suppose the generatér: I” x R — R of a superposition operator H is
such thath* = h on I? x R. Then the following two conditior® and (i) are equivalent
(i) H maps the spaoBV(If]; R) into itself and is Lipschitzign(ii) there exist two functions
ho, h1 € BV*(I2; R) such thath (x, u) = h1(x)u + ho(x) for all x € I? andu € R.

This paper (Part 1) is organized as follows. In Section 2, we study properties of the total
variation. In Section 3, we establish properties of totally monotone functions. Theorem 2
will be proved in Section 4. In Section 5, we prove Theorem 3 and construct an example
showing the sharpness of Theorem 3 in the sense that in general one cannotiéplace
hin the representation (1.9). Finally, Section 6 is devoted to certain generalizations of the
main results when functions under consideration have their values in normed linear spaces.

The main results of this paper were announcel@®j4).

To end this section, we recall some facts concerning properties of mixed differences of
all orders established {5] and needed below. Lemmas 5-7 below are respective Lemmas
5-7 from[5].

Lemma5. If f: 17 - R x,y e I?,x<y,z € I? andx € o/ (n), then

mdy (ff. o= Y (D f(z+ax —2)+0(y —x)). (1.10)

0<0<u

In particular, if z =a or z = x, we haverespectively

)

My (f5, 13 L) = ey (f5 20 1 L), (1.11)

mdo(fy Bl = > D fx+00 —x). (1.12)

0<0<a
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Lemma 6. Givenf : I’ — R, x,y € I?, x <y,andy € .«/(n), we have

fa+y =)= f@= > (=D"mdy £y, 1 12).

O0#a<y
Lemma7.If f:I? - R,x, y € I’, x <y, anda € .o/(n)\{1}, then

md(f5, 17100 = (=D >~ (~0)¥Imdyg(f5, 177070 1B,

a< <1

2. Properties of the total variation

The fundamental well-known property of meindV;, (and consequently, dfy,| for each
o € o/ (n), taking into account obvious modifications) is Heitivity, i.e., if Z?={x[a]}/_,
is a partition off? and f € BV (I?; R), then

md, (£ 1) = Y md(f L) and VanIh= Y Va(h ).
1<o<K 1<o<k

From Lemma 6 and definition (1.2) we get the following inequality due to Leonov
([7, Corollary 5):

IfO) — F@OISTV(A D), feBVULR), x, yell x<y, (2.1)

which generalizes the well-known property of functions of bounded variation of one variable
onto BV functions of several variables. In the following lemma we present one more property
of this type, which is classical for = 1 and known forn = 2 (cf. inequality (22) fron2]

if n=2).

Lemma 8. If f € BV(I’; R) andx, y € I, x<y, then

TV(f, ) <STV(S 12) = TV 1)

Proof. 1. We start with the following observation: givef: 1> — R, x, y € I?, x<y,
ando € </ (n),

if x; =y; ando; =1 for somei € {1,...,n}, thenV,(f<, I{ o) = 0. (2.2)

In fact, if 0 € Zo(n), 0< o, we setd = (01, ..., 0;—1,1— 0;, 0;41, ..., 0,) and employ
formula (1.10) withz = a. Sinceo; = 1, we havel) <«. The multiindices) and @ are of
different evenness and, moreover, because

ai + 0 (xi — a;) + 0; (vi — xi) = xi = a; + 04 (x; — a;) + 0: (yi — x7),

we haver+oa(x —a)+0(y —x)=a+o(x — a)+0(y —x). Itfollows that the sum of two terms
from (1.10) corresponding té and 0 vanishes, and since such paﬂ)rand@ exhaust the
set{0 € o/o(n) | 0< o}, we infer that me, (£9, I{ [«) = 0. Now if x’, y' € I}, x’ <y’, are
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arbitrary, sincer; = x; = y; = y;, similar arguments apply to show that jdf;, I, Loc) 0.
Then the definition ofx|-variation impliesV|y (£, I L) =0, which ends the proof of (2.2).

In what follows we will prove the following assertion equivalent to the inequality in our
lemma: if f € BV(I2; R), x, y € I?, x <y, andy € ./(n), then

TV LN <TV 707 — TV 1.

2. Let us show that ift € .«Z(n), then

V(5 R0 < Y Vig(ff L Zo LB (2.3)

a< <L

Note that ifx <x < y, then (1.11) witha replaced by andx—by x and Lemma 7 withx
replaced by + o(x — x) imply

M0y (£, 12 1) = Mo (57000 L)
== 3 —omdy (L LD, (2.4)

o< <1

LetZ?={x[c]};_, be apartition of},sothatc € N", x[0]=x, x[k]=y andx[c — 1] < x[0]
forall ¢ € N, 0 <x. We have

U Ix+a(x[c7] x) 1x+0<(y—X)
a+o(x[o—1]— a+o(x—a)
alo

is the union of nonoverlapping rectangles taken only over thpsethe range X o; <x;,
forwhiche; =1,i € {1, ..., n}. Settingx =x[¢ — 1] andy = x[a] in (2.4) and taking into
account the additivity property df 5 we get

Yo Amd (5 T ol < Y Y imdg (L L o LB

olo ol o< f<1

< D Y ViU L L)

ac<[f<1 alo

= > VU e

a<f<1

from which (2.3) follows.
3. Taking into account that

L =la;i, yil=la;, x;1U [x;, yi] = U 1{;;:;,-((;;_—;;))’ i=1....n
OC,':O,l
for eachf € .«7(n) we have the following union of nonoverlapping rectangles:

0= | @B =aipu | @O (25)

0<a<fy 00 < By
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This and the additivity property dfj g imply

Vipg (g 17O TB = Vig (5L IS+ Y. Vig U e s . (2.6)
Oa < fy

Now we estimate the total variation bover ;7™ If o € 7 (n) anday, theno; =1
andy; =0forsome € {1, ...,n}or,x; +7;(yi — x;) =x; andy; =1, and so, by (2.2) with
a=x, Vig (2, I | 0)=0. Moreover, we note thatif< y, then(x+y(y—x)) [a=y .
These remarks together with (1.2), (2.3) and (2.6) yield:

VLT = 30 V(L 1707 1)
O#a<y

D V(i 119

O#a<y

YooY ViU LEe T 2.7)

0£a<y a<f<1

YooY Vg L))

04B<1 0% < fiy

N

> W LTI = Vi (£ IELB)
0#f<1

=TV L7770 TV 1) (2.8)

and the desired inequality follows.[]

3. On totally monotone functions

Recall that a functionf:I’ — R is said to betotally monotone(e.g., [7,11]) if
(=Dmdy (fF, I¥ |0) >0 for all « € «/(n) andx,y € I?, x<y. In this casex<y
implies Vi (f5, I 1) = (=)™ mdy (f5, I |2), so that, by Lemma 6 withy = 1,
fO<FO and TV 1)) = f(0) — fx).

Given f € BV(I2; R), the functionv(x) = v,(x) = TV(f, I}), x € I2, is called the
total variation functionof f. We have

Lemma 9. If f € BV(I’; R), o € o/(n),andx, y € I/, x<y, then

=DMmd vy, o= Y Vig(ff Lo LB,

a<p<1
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Proof. By (1.12) and definitions of and TV, we get
mdy . Kl =Y (=D +0(y —x)

0<O<a

= > Y ) ). (3.1)

0£8<1 0<0<u

Let us show that the sum ov@re .o7(n) can be replaced by the sum oyeE .7 (n) with
B=o or, in other words, ifs € .o/ (n) and %o, then

> 0 1O =0, (3.2)

0<0<u

In fact, #0 € Zo(n) |0<a} = 2% is an even number, and sinf&«, there exists e
{1, ...,n} such thai$; = 0 andy; = 1, and so, in the union

{0 € Aon)|0<a}=1{0 € Lon)|0<0, 0; =1} U{0 € Zo(n)|0<a, 0; =0}

the sets on the right are disjoint and have the same number of elements edE&'a_Iltde
0 e .on),0<a,weset)=(0q,..., 0;—1,1—0;,0;11, ..., 0y),sothat) € .«Zo(n), 0<a
and||0] — |0]| =1. Sincef; =0, we havgx 4+ 0(y — x)) [ f= (x + 0(y — x)) | B, and so, the
sum of the two terms on the left in (3.2) corresponding @nd6 vanishes, and equality
(3.2) follows.

By virtue of (2.6) (withy replaced by € .«7o(n)),

Vg OB = D Vg T )
0<y< 0

and so, (3.1) yields (note that in the third sum below conditiogq¥, 0 < « ando < fimply
7<p)

mdy (05 Bln= Y. Y D3 v 100

2<f<10<0<a 0<y<0

0 +y(y—x)
= 2 2| 2 OGRS .
a<Pf<LLO<y<a | <0<
Let us denote the quantity in square brackets,b¥f y <0 <« andj=|0]|, then|y| < j <[«
and since
- . !
#0 € Ao 7<0<0, 101 = j) =l wherecl = —"— (33
Y i'(m —1)!

(with the usual convention that & 1), we have:
| ) .
_ il _ D@D =0 if o £ y<a,

which completes the proof of Lemma 901
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As a corollary, we get the following result due to Leorf@dy Theorem 3]

Corollary 10. If f € BV(Ia”; R), then the total variation function= v and the function
n=v — f are totally monotone

Proof. Thatv is totally monotone is a consequence of Lemma 9 and the definition of
monotonicity. The total monotonicity af is a consequence of (1.12) and Lemmas 9 and 7:
if o € o/(n)andx, y € If,xgy, then

(=DM (7, 17 (o) = (=D Imdoy (v, ¥ 1) — (=D*'mdiyg (f5', 17 ()
Yo Wi L B — (Dl

a<f<l

x mdg (£, Lo s B1=0. O

Corollary 11. If f € BV(I?; R) anda € ./ (n), then

V0% Ll = 3 Vgl L 01B)

a<f<1

and in particular, V, (v, I?) = V,,(f, I?) and TV (v, I?) = TV (£, ).

Proof. Givenx, y € I?,x <y, applying (1.11) and Lemma 9 wistreplaced by:+o(x—a),
we get

(=D)"Imdy (v, 17 [2) = (—1)* mdly (5 1 1)

Agoi—a)
= > VipUp 1hem )
a< Pl
Let 2 = {x[a]}5_, be a partition off’. The additivity ofV gives:
2 Imdog 05, 157 gy lool = 3 (=D md 0, 1377 120

glo olo

= 2: E: Vip(fg» 5I§?a 1= mLﬁ)

a<f<LL ala
= > VUE L.
a1
It remains to note that, by virtue of (2.7)—(2.8) with= 1, x = a andy = b,
VO I = Y Vig( 121w

O#£a<1

= D> D VU O =TV ). O

0£a<1 a< <1
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4. The left regularization

In order to prove the first main result of Part Il (Theorem 2 in Section 1), we first show
that the limits on the right in (1.6), defining the left regularizatiph of a function f €
BV (I!; R), do exist.

Lemma 12. If f € BV(I?; R), the functionf* : I> — R given by(1.6)is well defined

Proof. For the sake of clarity we divide the proof into four steps.

Lety € I’,a < y<b,y € Zo(n) andx € I” be suchthat; < y; forthose € {1, ..., n}
for whichy; = 1 anda; < x; for the remaining’s.

1. Givena € </ (n), (1.10) and the change of variablés> o — 0 yield:

+9(y— +(r—
md (f O O )

= > D@+ —a) + (= 0y — y) + 01— )(x — a)

0<0<u
=" Y D@+ —a) + 0y - y)
0<O<a
4+ (@—0A—)(x —a)). (4.2)

2. We have the following counterpart of Lemma 6:

FO=flatyy—an= Y (D@ Dmdy (7070 L0 0. (4.2)
O#0<1

In order to prove it, we note (see (4.1)) that, givem € «Zp(n), 0<0<y, 0<n<l—7y

anda € </ (n), the system of equatiod8y =9, (¢ — 0)(1 — y) =5} has a unique solution

0 € o(n), 0<a, ifand only if x>0 v n = max{o, n}; moreover, this solution is given
by0=o(l—-9)+6—-n=ald—7y+J—n and we havel| = |«(1 — y)| + [5] — |5
Consequently, the right-hand side of (4.2) can be rewritten, by virtue of (4.1), as the sum
of terms of the form

c,n) - fla+y(y—a)+o(x—y)+nx —a))

over all multiindices 6 0 <yand 0< n < 1—7. To evaluate the factei(d, ), we seti=0vn
and note that (cf. (3.3))

#oe ) |a=), ol =i)=C " if max(1, |} <i<n

n—|A
and so, the right-hand side of (4.2) and (4.1) imply

n
P i—lA
c@.m =P YT =i,
i=max(1,| ]}

The binomial formula gives:(0, 0) = —1 (which corresponds tf(a + y(y — a))), c¢(y, 1 —
1) = 1 (which corresponds t@(x) ), andc(d, ) = 0 otherwise.



V.V. Chistyakov / Nonlinear Analysis 63 (2005) 1—-22 11

3. The following equality is a variant of Lemma 73 y € I?, X <, anda € .7 (n),
we have

(_1)|O(|md|a‘ (f;‘I’V(Y*a)’ Ifyl_a): Z (_1)|ﬁ‘md‘ﬁ|(f/?+“(f_a) I)’-Hf@—y) Lﬁ)!

* ta+to(x—a)
a< f<Lavy
(4.3)
whereo vy = maX{o, y} = o« + 7 — ay.
In fact, according to (1.10) the left-hand side of (4.3) is equal to
DT D@+ - 0 - a) + ouF —a) + 05 — 1) (4.4)

0<0<u

and the right-hand side of (4.3) is the expression

Yo=Y ) fataE—a) +aly —a+aF -y —X+a)).

a<f<avy o<n<p [ieD)

(4.5)
Clearly, (4.5) can be written as the sum of terms of the foymf (- - -) over ally € «Zo(n),
n<avy.LetO<n<avy,andletus calculatg,. We sefu=ovnand note that < u<ovy,
since
oSpu=0+Q-—om<a+ QA —-—)(a+y—ap)=aVv(@Vvy =aVy.
It follows that |o| < |u| <o vyl If [u] <i <oV y], then, again by (3.3),

#P e o) | u<p<avy, |fl=i}=C M

vyl =lul
and so, (4.5) implies
vyl o vyl =Iul o
e =DM S DLy = DI ST DI,
i=|u| j=0
B { (_1)\'1|+|u| if |l = oV,
~lo if Jof < Jul < o vyl

We have]u| = |o Vv y|if and only if u = o v y if and only if there exists a uniquee .«7o(n)
such thatd <« andn = y(1 — o) + 6. Indeed, ify € /o(n) ando v n = o v y (recall
thaty = o v i), theny<a vy =o+ (1 — o), and soy — y(1 — o) <a; also, equality
oV n=oVyyieldsy>y(1l— a), for otherwise there exisise {1, ..., n} such thay; =0
andy; (1 —o;) =1,sothaty; v, =0 #o; +1=0; Vv ;. Itremains to define € 0 <o
by 0 =n—y(1—o).

Now, letf € .«Zo(n), <o (asin (4.4)). Setting = y(1 — o) + 6, we find

Il =lyA—-wl+10] and |u|= oV nl= oV y|=lal+[p1— o)
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and sog, = (—=1)*(—=1)%; it also follows that

atox—a)+yly—a+aly —y—x+a)l
=a+y1l—-w)(y—a)+ax —a)+ 0@ —X).

On the other hand, if € .«/o(n), n<o Vv y andy # (1 — o) + 0, thenc, = 0. In this way
we have proved that (4.5) is equal to (4.4).
4. Suppose : I? — R is totally monotone. Given € .</(n), we put

Sy={1=L1a|%,5 eIl T<7)

and define a function (on rectangleg) : .#, — R as follows: if/ € .7, is of the form
I =I|o for somex, y € I with ¥ <3, we set:

Qo (D) = (—1)Imdy, (£ [0,

Sincef is totally monotone, it follows from (4.3) th&,, is nonnegative, i.eQ, (1) >0 for

all 1 € #,.0Onthe other hand, (4.4) implies thaj, is additive in the sense that if arectangle
I € .7, is afinite union of nonoverlapping rectanglgse .7, thenQ, (1) = Zj 0u(1)).
ConsequentlyQ, is monotone, i.e., if’, 1" € ¥, andI’ c 1", thenQ,(I") < Q,(I").
Let.#,(a + y(y — a)) be the subset of , of all rectangles of the formI = I;‘Ef(();v:j)) Lo,
wherex € I” is such thaty; <y; if y; =1 anda; <x; if 7, =0,i € {1,...,n}. All
rectangled € #,(a + y(y — a)) have the point{a + y(y — a)) |« as a common vertex
and, asx — (@ +0) +7((y — 0) — (a + 0)), the rectanglesljjj’((xy:j)) | shrink to the
point(a + y(y — a)) . Considering#,(a + y(y — a)) as a directed set, the rectangles in it
being directed by inclusion, we find, due to the monotonicitpgf that the Moore—Smith
limit (e.g., [6, Chapter 1] of Q,(I) over rectangles € .#,(a + y(y — a)) shrinking to

(a +y(y — a)) | o exists and is equal to

gula +y(y —a)) = lim Qx(1) =inf{Qu(I) |1 € Iy(a+y(y —a))}.
led y(a+y(y—a))

It follows that

lim D)y, (£ETTO . IO o aa(y — a
My (D i) = gata + 9y — @)

and so, by (4.2), the desired limft*(a + y(y — a)) exists and is equal to

fra+it—a)=flat+yy—ay+ 3 HPEPH g @450 —a).
0#a<1

Now, if f € BV (I?; R), then, by Corollary 10, the total variation functioof f andr=v— f
are totally monotone, and so, as we have just seen, they admit theilirqits- y(y — a))
andzn*(a + y(y — a)), respectively, and it remains to note th@dt(a + y(y — a)) = v*(a +
Yy —a) —nta+y(y—a). U

Proof of Theorem 2. First we show thay™ is left continuous. Itis knowr{], [6, 111.5.4],
[11]) that the set of discontinuity points of any totally monotone functiorpiies on at
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most a countable set of hyperplanes of dimensgienl parallel to the coordinate axes. By
Corollary 10, the same is true for our functibrherefore for each € I with a < y<b
there exists a sequen¢et}2° | c I” of points of continuity off such thate* < y for all

k € N andx* — yin R" ask — oc. It then follows that

lim )= lim a5 =lim 5= lim  fx) = F*0).
x—>y—0 k—o00 k—o00 x—y—0
Now we prove inequalities (1.7) and (1.8). ket .o/ (n) and? = {x[c]};_, be a partition
of 1%, so thatc € N", x[0] = a, x[x] = b andx[os — 1] < x[c] for all ¢ € N", 1< o< k.

We set” = k1" - - - k" By definition of f*, for eachs € N§j, 1< o <k, we have:

ffa+oaxlo] —a)) = f )

lim
x—(a+0)+a((x[6]—0)—(a+0))

and
ff@= lim f(x)
x—a+0

and so, giver > 0, there exist’[d] € 17, x[c — 1] < x'[6] < x[0] anda’ = x'[0] € 17,
a <a’ <x'[1] (note that'[¢] anda’ depend orx ande) such that

|f*(@+ a(x[o] — @) — f(a@' +ax'[o] — a')|<e/ 2 ™),
|f*(@) — f(a) <e/(2%KY). (4.6)

Taking into account (1.10) we have:

M0y ()5, TiteL L)

= Y D" f* @+ axlo — 11 - a) + Ox[o] — x[o — 11)

0<0<u

/N

> 0@+ alxlo — 11— a) + 0(x[o] — x[o — 11))

0<O<a

—f@ +oa(x'lo — 1] = d') + 0(x"[0] — x'[0 — 11))]

+ Y ) fE + a0 — 11— )+ 0x[o] — x'[o — 1])

0<O<u

. @)

Noting that for0 < o the expression + a(x — a) 4+ 0(y — x) in the arguments of * andf
can also be written in the form

a+oax—a)+ 00 —x)=la+alx —a)l+0(a+aly —a)l —[a+alx —a)])
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(and so, inequalities (4.6) apply) and that, by (1.10),

Yo D fa+ax —a) + 0y — x)) = M (£ I 12),

0<0<a

applying (4.6) and (1.11), we proceed from (4.7) as follows:

a’'+a(x'[o—1]—d’) x'[o]
<( > oc) +imea s Ao aie—1-a) L9

0<0<u

= (¢/K%) + My(0). (4.8)

By Lemma 7 withx = a’ + a(x'[c — 1] — a’) andy = x'[¢], we get

Myo)< Y Imdy(ff 1 i) L.

a<f<1

Taking this into account, summing inequalities (4.7)—(4.8) ovesjall(i.e., over those;,
1< g; <k, for whicho; = 1) and using the additivity property &fg in the last inequality
below, we find

> Imduy((F5, 7L L0

glo
a x'[o]—a’
Y St X D mdy L )

glo a<f<l ola

ety Y Vg IS 1)

o< Pl ola

et Y Vg LSO
o< f<1
et Y Vg SO LB,

a<f<1

whence, taking the supremum over all partiticA®f 17,

Vig(f% 12l <e+ Y Vig(F5 12LB)

a<p<l

and (1.7) follows due to the arbitrarinesseof 0. The first inequality in (1.8) follows from
(1.7) witha = 1 and the second inequality in (1.8) is a consequence of (1.7), (1.2) and
the facts that the right-hand side of (1.7) does not exceed the total variatiofy T8 and
#od(n)=2"-1. O
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5. Lipschitzian superposition operators

This section is devoted to the proof of Theorem 3 and construction of an example (cf.
Theorem 14) showing that one cannot in general repgtad®sy h in the representation (1.9).

Proof of Theorem 3. Since H : BV (I%; R) — BV (I?; R) is Lipschitzian, there exists a
constanf.=L(H) > Osuchthatforalli, f» € BV(I;’; R)wehave|Hf 1—Hf5||<L| fi—
J2| or, more explicitly, using definitions (1.3) and (1.2),

((Hfy— Hf)@|+ Y Vig((Hfy— Hf )5, I712)

0£a<1
SLIIA- @I+ Y Vig((fi— 281010 | . (5.1)
O#£0<1
Givenr, s € R, r <, we define an auxiliary Lipschitz functiof(, ; : R — [0, 1] by
0 if t<r,
llrlr,s(t)z{(t_r)/(s_r) if r<r<s,
1 if r>5.

1. First we show that the familii(x, -) | X € 17} is uniformly Lipschitzian:
|h(X, u1) — h(X, uz)| <2L|ug —up|, X €I, us, up € R. (5.2)

Givenx € I”, we consider two cases: ) # a, and (i))x = a.
Case(i): There exisu < x <b andy € .&/(n) suchthakk =a + y(x —a). If ug, uz € R,
we define two functiongi, f» € BV (I?; R) by

n
ui .
f"(”:ﬁE 7% (i), a<y=O1....y)<b, j=12 (5.3)
i=1

Let us calculatd| f1 — f2]| (cf. (5.1)). Clearly,f;(a) =0, j =1, 2, and if we set(x) =
Vig (f1— f2)%, I2|o) for o € o (n), thenv(e) =7y, |ug —uz|/|y] if |a| = =1,i=1,...,n
(note thatv(x) for || = 1 is the usual Jordan variation of the functiofi — f2)¢ of one
variable on the closed intervéf |«). Also, v(x) = 0 if |« >2; in fact, givenp, ¢ € 17,
p <gq, by (1.12) and (5.3) foj = 1, 2 we have:

Mo (S I8 = 23 9 3 (W, (pi + i — i)

i 0<0<x
and so, ifi € {1,...,n} andy; =0, thend; = 0 and the last surh .y, - - - is equal to
|l
S DI W () = | Y (DR, | W (p)
0<0<a k=0

=1-D"¥, (p)=0
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andifi € {1,...,n}ando; =1, thenitis equal to

{ > (—1)'9'} %,.,xi(p,v){ o D Wy (e

0<0<a,0,=0 0<0<a,0;=1

|| —1 k2 ]
= [Z (—1>"C(;_1} W (Pi) + {Z (—DFClyty | Warw (@) =0.
k=0

k=1

Thus,

Ifa— fall =D vilus — ual /17| = lug — ual.
i=1
Noting that(H f1)(a) = (Hf)(a) and f; (X) = fj(a 4+ y(x —a)) =u;, j =1, 2, applying
Lemma 6 and taking into account (5.1) we get:
[h(x, u1) — h(x, u2)| = |h(x, f1(x)) — h(x, f200)| = |(Hf1 — Hf2)(X)|
=|[(Hf1—Hfy)(a+yx—a))— (Hfy— Hf)(a)

Y Dmdy ((Hfy— Hf )5, I 1)

O0#a<y
< Z Vig(Hf1 — Hf )%, 1210
00 <y
STV(Hf1— Hf2, 1)) = |Hf 1 — Hf5]
<Ll f1— f2ll = Lluy — uz]

and inequality (5.2) follows.
Case(ii): Givenu1, up € R, we set

1 ,
fj(y)=<1——z ‘Pa,-,b,-(yi)) uj, a<y=i...,y)<b, j=12
n i=1

and note thaif;(a) =u;, j =1, 2 and so|(f1 — f2)(a)| = lu1 — u2|. We also have (see
Case (i) for the definition of (x)): v(a) = |u1 — u2|/n if |a| =1, andv(e) = 0 if |a| >2.
Thus,|| f1— f2l| =2|u1 — uz|. Since(H f1)(b) = (H f5)(b), it follows from Lemma 6 (with
y=1) and (5.1) that

lh(a, u1) —h(a,uz)| =(Hf1— Hf2)(b) — (Hf1— Hf2)(a)]

< Y Imdy((Hfy— Hf ), 1719)]

0£0<1

< Y Vig(HfL = Hf )5, 119

0#£a<1
<2LJug — uy|,

which completes the proof of (5.2).
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2. Now we prove the validity of the representation (1.9). For this, wefig 12, so
thatx = a + y(x — a) for somea <x<b andy € Zo(n). We letm € N, and fork €
{1,...,m} we setx[k] = (x1(k), ..., x,(k)) andy[k] = (y1(k), ..., y.(k)), where, given
i € {1,...,n}, theith coordinates of[k] and y[k] satisfy the following inequalities:
ai <xi(D)<yi(D)<xi (D <yi@<---<xim—=1) <yi(m—1) <x;(m) <yj(m) <b; +
y; (xi — b;). Also, we definen auxiliary Lipschitz functionsPi,, :ai, bi] — [0,1] (i =
1,...,n)as follows:

0 if a; <t <x; (1),

i (1) = Wi (k). yi () (1) ff xi()<t<yik), k=1,...,m,
1-— Ty,-(k),x,-(k-i—l)([) if yilh)<t<xj(k+1,k=1,..., m—1,
1 if yi(m)<t<b;.

For arbitrary numbers;, uz € Randj =1, 2 we set

uj . i .
[0 =23 W00+ @= puz, a<y =01 3 <h
i=1

and note thafi, f» € BV(Ij’; R), (f1— f2)(y)=uzforally € If and so|| f1— fall=|uz|.
Setting# = Hf1 — Hf 5, let us estimate the sum o (y[k]) — A# (x[k])| over all
k=1,...,m.Applying (2.1), Lemma 8 and (5.1), we get:

S 1A GKD — A KDY TV, M) = TV, 1319
k=1 k=1

=TV, " =TV, 1719

m—1
= YTV, Y —Tver, 1)
k=1

STV, Z"Y<TV (o, 1Y)
SIHf1— Hf 2l Lluz|.
Since, fork € {1, ..., m},
S1ilkD = faak), ..., yn(k)) = % Z Pl (i (k) + uz = u + ua,
i=1
fo(ylk]) = u1, fi(x[k]) = uz and f2(x[k]) = O, we have:
A (ylk]) = h(ylk], fi(Y[kD) — h(ylk], f2(y[kD) = h(y[k], ur + uz) — h(ylk], u1)
and similarly,# (x[k]) = h(x[k], u2) — h(x[k], 0), and so, the last inequality implies

Z |h(y[k], us + u2) — h(ylk], u1) — h(x[k], u2) + h(x[k], 0)| < L|uz|. (5.4)
k=1
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Because constant functions @f lie in BV (12; R) and the operatorl maps BM1”; R)
into itself, the functiom (-, u) = [z — h(z, u)] also belongs to B‘(/lfj; R) for all u € R,
and hence, by Theorem 2, its left regularizatioi:, u) is in BV*(If; R) for all u € R.
Passing to the limit as

ylml+y(x[1] = y[m]) — (@ +0) + p((x = 0) — (a + 0))

(i.e.,xi(1) - x;—0ifi € {1,...,n}andy;=1, andy; (m) — a;+0forthose € {1, ..., n}
for whichy; = 0) in the inequality (5.4) and noting that

x[AL<xlk] < ylk]<y[m], k=1,...,m
so thatx[k] andy[k] tend to(a + 0) + y((x — 0) — (a + 0)) = x as well, we find
m|h* (¥, ur + uz) —h* (¥, u1) — h*(x, u2) + h*(x, 0| < L|uz|.
Due to the arbitrariness @t € N forall x € If anduq, us € R, we have:
h*(x, u1 +up) — h*(x,u1) — h*(x, us) + h*(x,0) =0. (5.5)

The rest of the proof of (1.9) is standard (&,8]). For the reader’s convenience we recall the
details. Giverx € 12, we define the functioff, : R — R by Ty (u) = h*(x, u) — h*(x, 0),

u € R, sothatequality (5.5) can be writtenBu1+u2) =T, (u1)+ Ty (u2) foralluy, us €

R, which shows thaf is an additive function. By (5.2) and the definition/of(-, u), we
have| T, (u1) — Ty (u2)| < 2L|u1—uz| forallui, uz € R, and so7y is (Lipschitz) continuous
onR. Therefore there exists a functiém : 12 — R such thatly, (u) =h1(x)u forall x € 10
andu € R. Settingho(x) =h*(x,0),x € If, we obtain the representation (1.9). It remains
to note that, sincég(-) = h*(-,0) andh1(-) = h*(-, 1) — h*(-, 0), then, by Theorem 2,
ho, h1 € BV*(I’; R). O

Remark 13. A theorem similar to Theorem 3 holds for the right regularization @f ),
u € R (the definition of the right regularization of a functighe BV(I;’; R) is analogous
to (1.6)).

In general the left regularizatioh* in (1.9) cannot be replaced byitself. The first
example in this direction for = 1 was constructed if®, p. 157] it was extended fot = 2
in [2, Theorem 3]Here we present an example of a general nature folN. Also, the next
theorem shows that a general Lipschitzian superposition opetaiam BV(I7; R) into
itself need not be generated by, u) of the formhy (x)u + ho(x), x € I(ﬁ’, u € R, forsome
ho, h1 € BV(Ij’; R) (cf. the characterization in Corollary 4 and the sufficient condition in
[5, Corollary 3).

Theorem 14. Let{p; (k)}7>, be asequence of all distinctrational numbers from the interval
[a;, bi1,i=1, ..., n.Letthe functiorh : Iff x R — R be defined fox = (x1, ..., x,) € Ié’
andu € R by

-ttt siny if x; = pi(€) with ¢; e N,i=1,...,n,
h(x1,...,xp,u) = {0 otherwise
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Then the superposition operator H generated by h satisfies the conditions

(@) |Hf|I<3 forall f e BV(I!; R),i.e, HmapsBV(I?; R) into itself

(b) |Hf1— Hf5 <3 f1— fol forall f1, f2 € BV(I{f; R), i.e, H is Lipschitzian

(c) the left regularization of h is given by*(x, u) = Ofor all x € I’ andu € R, i.e, itis
of the form(1.9).

Proof. (a) Givent = (¢1,...,¢,) € N, we setp[l] = (p1(£1), ..., pu(£y)). Let 2 =
{x[a]}s_o be a partition offb. Taking into account (1.10), for any € BV(I;’; R) and

o € .o/ (n) we have (below the sum overds |« means, as usual, the sum only over those
o; € {o1,...,0,}in the range Ko, <k; for whicho; = 1, and the same applies to the
sum over oo, butin the range & g; <k;):

> Imdy (Hf)S I L)
1<ola

< > Y IHhG@ + axlo — 1] - a) + Ox[o] - x[o — D).

1<oloe 0<O<u

Note that thath component in the argument Bf is equal ta; if o; = 0 (so that); = 0),
xilo; — 1]1if oy =1 and6; = 0, andx;[o;] if ; =1 andf; = 1. And so, since #§
/o(n) | <o} =21, we can proceed the above inequality in the following way:

<2" 3" |(Hf) (@ + a(x[o] — )]

0<gla

=2 %" |h(a +a(x[o] —a), f(a + o(x[o] — )|

0<gla

<2 3" Jhta+o(ple] — a). f(a+ x(ple] — a)))|
1</l

<2kl Y~ 27 sin f(a + a(ple] — a)))
1<l

o
<2 Y ol = ok
1<t

and it follows that
Vig (HP)S, 121 <2, o e o/ (n).
Since #u € 4/ (n) | |o| = j} = CJ, 1< j <n, we find

TVEH D= > Vig(HHL L o< Y 2

oo/ (n) oo/ (n)

n
= Z 2C) =2+1)"-1=3"—-1.
j=1

Noting that|(H f)(a)| <1, we get| Hf] <3".
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(b) Given f1, f> € BV(I%; R), o € /(n) and a partition?” = {x[c]}5_, of 12, we have
(cf. the calculations in (a) and take into account (1.3) and (2.1)):

> Imdy (Hfy — Hf )% I 1)

1<o|a

<2l Z (Hf 1 — Hf5)(a + a(x[c] — a))]

0<ola

<2P 3" hia + a(ple] — a), fila + a(ple] — a)))
1<l

— h(a + a(plt] — a), f2(a + a(plt] — a)))|

<2 3" 271 sin fi(a + ol ple] — @) — sin fa(a + a(plL] — a))|
1<l

<2 Y 27 (1 — fa)(a + ol pll] — @)

1<t

o0
<2 N 27— ol =2 A = fall.

1<l
It follows that
Vig(Hf 1 — Hf 9% 110 <2 f1 — foll. o€ L (n).
Finally, noting that

[(Hf1— Hf)(a)| = |h(a, fi(a)) — h(a, f2(a))|<]sin fi(a) —sin fa(a)
<I(fi— @< fa— I,

we conclude that H f1 — Hf,|| <3"|| f1 — fall.
Since item (c) is clear, the proof is completd.]

6. More generalizations

1.LetN e N and(RY)% = (R/)N be the algebra of all functiorisnapping/? into R" .
If h: I? x RN — Ris agiven function ofi + N variablesi =h(xy, ..., Xy, u1, ..., uy),

we denote by, : (RM)e — R thesuperposition operatodefined by
Hy )0 =h(x, il oo, fy@), x €Il f=(fr.... fn) € RN,
The Cartesian product

BV(I2: RN =BV(I2; R) x --- x BV(I’; R)

N times
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is endowed with the product norty v =", |l fill for f=(f1. ..., fx) € BVUL; RV,
inwhich case itis a Banach algebra with respect to the componentwise pointwise operations,
and, by virtue of Theorem 1, the following inequality holdg: - gliv <2"||flinllglly for

all f, g € BV(IL; R)N. We have the following converse to Corollary 13 frij:

Corollary 15. If H, maps the spacBV (I?; R)" into BV (I?; R) and is Lipschitziar(in
the obvious sengethen for the left regularization of(-, us, ..., uy) we haveh*(x, us,
s uy) =ho(x) +Z§-V=1hj(x)uj forall (u1,...,uy) € RY andx € Ij’ where functions
ho, h1, ..., hy belong toBV*(12; R).

2.Let(U, |-|y)and(V, |-|v) be normed linear spaces. The definition of the corresponding
space B\(I”; U) of functions f : I? — U of bounded variation in the sense of Vitali,
Hardy and Krause is straightforward (cf. Section 1). Let us denofe(hy, V) the normed
linear space of all linear continuous operators froninto V, and letU’ be the set of all
functions mapping = If into U. Givenh : I x U — V, the superposition operator
H : U - V!is defined as in (1.4) withf € R’ replaced byf € U’. Furthermore, let
P; ([a;, b;]; U) be the family of functions frorfu;, b;]into U having the following property:
if meN,uy, up e Uanda; <x; (1) <y; (D) <x;(2) <y;(2) <---<x;(m) <y;(m) <b;,
then the polygonal functiofu;, b;]1 > t ‘I”m (t)ur + uz € U belongs to RA[a;, b;]; U),
i =1,...,n (for the definition ofon see step 2 in the proof of Theorem 3). We have:
P(IL; U) = 3" Pi([a;, bi]; U) is a subspace of BV/; U), which we endow with the
norm|| - || from BV(I;’; U). The analysis of the proofs of Theorems 2 and 3 shows that the
following counterpart and generalization of Theorem 3 holds:

Theorem 16. Suppose that the superposition operafér: U/ — V! is generated by
afunctionk : I x U — V with I = [Y. If U is a real normed linear spageV is a
Banach space and H maps the sp&@’; U) into BV (I?; V) and is Lipschitzian(in
the sense of the norms in these spact®en there exists a constaiify > 0 such that
|[h(x, u1) —h(x, u2)|v < Lolui —u2|y, x € Iff, u1, up € U, and there exist two functions
ho € BV*(Ib; V) andhy : I — L(U; V) with the property thatiy (-)u € BV*(12; V)
for all u € Usuch thath*(x, u) = h1(x)u + ho(x) in V for all x € I? andu € U.

The proof of Theorem 16 is the same as that of Theorem 3, except the last paragraph:
sinceU is real, the additivity and continuity of the mappifigimply 7, € L(U; V) for all
x € 1Y, and so, if we sel(x)u = Ty (u), x € I?, u € U, then we find thak, mapsi? into
L(U; V) andhg, h1()u € BV*(Ij]; V) for all u € U. For the partial converse of Theorem
16 cf.[5, Theorem 14]
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