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Abstract
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1. Introduction

1.1. Overview

Let R be a finitely generated connected graded associative algebra over a fieldk. We
discuss the solutions of a linear equation

a1x1 + · · · + anxn = 0 (1.1)

overR, wherea1, . . . , an are homogeneous elements ofR or of a (free)R-moduleM , and
x1, . . . , xn are indeterminates. When and how can such an equation be solved, an
does one describe the solutions?

For general finitely generatedR, there is no algorithm even to check if a solution ex
(at least in the nonhomogeneous case for a free moduleM , see [38]). Also, the set of so
lutionsΩ may be infinitely generated as a submodule of the free moduleRn (for example,
over the algebraF ⊗F , whereF is a free associative algebra with a large number of ge
ators). That is why it seems reasonable to restrict the class of algebras under consid
to algebrasR such that the module of solutions of Eq. (1.1) is finitely generated. S
algebras are called (right)coherent[9,19]; this class includes all Noetherian algebras,
associative algebras, and many other examples. However, the condition of coheren
not in general give a way to find all the generators ofΩ : we can find the generators one
one, but when we have to stop?

If R is a commutative affine algebra, there is an easy (but not the most effective
to find the generators ofΩ . It was established by Hermann [24] in 1926 that there exis
functionDR : N → N such thatΩ is generated in degrees at mostDR(d) provided that all
coefficientsai have degrees at mostd . So, to find all the solutions, it is sufficient to find th
solutions in the finite-dimensional vector spaceR�DR(d): it is a standard exercise in line
algebra.

The main object of this paper is to consider noncommutative algebrasR which admit
such a functionDR(d). We call these algebraseffectively coherent. An analogous concep
for commutative (non)graded algebras has been introduced by Soublin [36]. A co
tative ring R is called uniformly coherent if there is a function∆R : N → N such that
Ω is generated by at most∆R(n) elements. It was shown in [21] that an affine or lo
Noetherian commutative ring is uniformly coherent if and only if its dimension is at m
two.

Fortunately, our graded analogue of this concept is more common. We show tha
rings considered in noncommutative projective geometry, that is, strongly Noether
gebras [5] over algebraically closed fields, are effectively coherent (R is called (right)
strongly Noetherianif R ⊗ C is right Noetherian for every commutative Noetheriank-
algebraC). This class includes, in particular, Sklyanin algebras, Noetherian PI alg
(in particular, standard Noetherian semigroup algebras of polynomial growth [20,
orem 3.1]), Noetherian domains of Gelfand–Kirillov dimension two, and Artin–Sh
regular algebras of dimension three [5]. Also, free associative algebras and finite
sented monomial algebras are effectively coherent as well. Every coherent algebra
finite field k is effectively coherent; however, ifk contains two algebraically independe
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algebras.

The class of finitely generated effectively coherent algebras is closed under exte
by finitely presented modules, free products, direct sums, and taking Veronese su
bras (in the degree-one generated case). Every finitely presented graded moduleM over
such an algebra is effectively coherent as well, that is, there is a similar functionDM(d)

which bounds the degrees of generators in the case of Eq. (1.1) overM . This means tha
homogeneous linear equations over such modules are effectively solvable as well.

The degree bound functionDR(d) for the commutative polynomial ringR grows as a
double exponent. That is why we cannot hope that there is a wide class of noncomm
algebrasR with slow growth ofDR(d). However, there are interesting classes of alge
with linear growth ofDR(d). We call an algebrauniversally coherentif D(d) � 2d for all
d � 0. We investigate this class of algebras and more general classes, so-called a
with Koszul filtrations and with coherent families of ideals. In particular, it is shown
every finitely presented module over a universally coherent algebra has rational H
series, including the algebraR itself, andR has finite Backelin’s rate (that is, there is
numberr such that every space TorR

i (k, k) is concentrated in degrees at mostri). Free as-
sociative algebras are universally coherent, as well as finitely presented monomial a
andalgebras withr-processing[30], that is, algebras with finite Groebner basis such
the normal form of a product of two their elements can be calculated by the product o
normal forms via a bounded number of reductions. The main property of such alge
that every right-sided idealI has finite Groebner basis: it consists of elements of de
less thand + r [30, Theorem 5], whereI is generated in degrees at mostd .

Note that the most effective modern method to solve an equation of type (1.1) is
on the theory of Groebner bases [22,26,29,30]. LetI be a submodule ofM generated by
the coefficientsa1, . . . , an. In this method, we can calculate the Groebner bases of rela
of R, of relations ofM , and of the submoduleI up to degreeD(d), and then find a genera
ing set of the relations of degrees at mostD(d) between these elements of Groebner b
of I , again using standard Groebner theory methods. The calculation of the Groebne
above may be done in the same way as the usual calculation of Groebner bases of i
algebras, sinceI is an ideal in the trivial extension algebraR′ = M ⊕ R; this calculation
is equivalent also to finding the two-sided Groebner basis of relations of the larger
extensionR′/I ⊕ R′ (a similar trick has been described in [25]).

1.2. Motivation

Despite of the famous recent progress in noncommutative projective geometry, n
eral noncommutative version of computational methods of algebraic geometry is k
In this paper, we try to show that a “computational noncommutative geometry” is pos
At least, ifR is a “ring of noncommutative projective geometry” [28], then there exist a
rithms to solve linear equations overR (sinceR is usually strongly Noetherian), therefor
to calculate the relations and the minimal projective resolution of a finite module (be
R has often finite global dimension).
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1.3. Notation and assumptions

We will deal with finitely generatedZ+-graded connected associative algebras ov
fixed fieldk, that is, algebras of the formR = ⊕

i�0 Ri with R0 = k. Also, all algebras ar
assumed to be finitely generated. All modules and ideals are graded and right-sided

A solutionx = (x1, . . . , xn) of Eq. (1.1) is calledhomogeneous, if there isD > 0 (the
degreeof x) such that degai + degxi = D for all nonzeroxi .

If a sequencea = {a1, . . . , an} of homogeneous elements in anR-moduleM generates
a submoduleI , let b = {a1, . . . , am} (m � n) be a minimal subsequence ofa generating
the same submodule. LetΩx be the module of solutions of Eq. (1.1), letΩy be the module
of solutions of the corresponding equation forb

a1y1 + · · · + amym = 0, (1.2)

and letDx andDy be the maximal degrees of homogeneous generators ofΩx andΩy . It
is easy to see thatDx � max{Dy,d}. Therefore, we may (and will) always assume that
coefficients in Eq. (1.1)minimallygenerate some submoduleI = a1R + · · · + anR ⊂ M .

For anR-moduleM , we will denote byHiM the graded vector space TorR
i (M,k). By

HiR we will denote the graded vector space TorR
i (k, k) = HikR . In particular, the vecto

spaceH1R is isomorphic to the lineark-span of a minimal set of homogeneous genera
of R, andH2R is isomorphic to thek-span of a minimal set of its homogeneous relatio
Analogously, the spaceH0M is the span of generators ofM , andH1M is the span of its
relations.

Let m(M) = m0(M) denote the supremum of degrees of minimal homogeneous g
ators ofM : if M is just a vector space with the trivial module structure, it is simply
supremum of degrees of elements ofM . For i � 0, let us also putmi(M) := m(HiM) =
sup{j | TorRi (M,k)j �= 0}. Similarly, let us putmi(R) = m(HiR) = mi(kR). For example
m(R) = m1(R) is the supremum of degrees of the generators ofR, andm2(R) (respec-
tively m1(M)) is the supremum of degrees of the relations ofR (respectively ofM). In
other words, if a moduleI is minimally generated by the coefficientsa1, . . . , an of Eq. (1.1)
andΩ is the module of solutions of this equation, thenm(Ω) = m1(I ).

Note that the symbolsHiR andmi(R) for an algebra have different meaning that
respective symbolsHiRR andmi(RR) for R considered as a module over itself; howev
the homologiesHiRR are trivial, so that there is no place for confusion.

Definition 1.1. For a finitely generated moduleM , let us define a functionDM : N →
N ∪ {∞} by takingDM(d) = sup{m1(L) | L ⊂ M,m0(L) � d}.

This means that every submoduleL ⊂ M generated in degrees at mostd has relations
in degrees at mostD = DM(d), and that the module of solutions of every linear eq
tion (1.1) with coefficients of degrees at mostd in M is generated in degrees at mo
max{D(d), d}.

For a graded locally finite vector space (algebra, module. . . ) V , its Hilbert series is
defined as the formal power seriesV (z) = ∑

(dimVi)z
i . For example, the Euler cha
i∈Z
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R(z)−1 =
∑
i�0

(−1)iHiR(z). (1.3)

As usual, we write
∑

i�0 aiz
i = o(zn) iff ai = 0 for i � n.

Let us introduce a lexicographical total order on the set of all power series with in
coefficients, i.e., we put

∑
i�0 aiz

i >lex
∑

i�0 biz
i iff there is q � 0 such thatai = bi

for i < q and aq > bq . This order extends the coefficient-wise partial order given∑
i�0 aiz

i �
∑

i�0 biz
i iff ai � bi for all i � 0.

1.4. Results

Our technique is based on the investigation of Hilbert series of algebras and
ules. We begin with recalling a classical theorem of Anick on the Hilbert series
nitely presented algebras: the set of Hilbert series of alln-generated algebrasR with
m1(R),m2(R) < Const satisfies the ascending chain condition with respect to th
der>lex. Then we improve this theorem for the algebras with additional conditionm3(R) <

Const: that is, we state

Theorem 1.2 (Theorem 2.2). Given four integersn, a, b, c, let D(n,a, b, c) denote the
set of all connected algebrasR over a fixed fieldk with at mostn generators such tha
m1(R) � a, m2(R) � b, andm3(R) � c. Then the set of Hilbert series of algebras fro
D(n,a, b, c) is finite.

This additional restrictionm3(R) < Const (the weakest among all considered in this
per) is discussed in Section 2.1. We give also a version of both these theorems for m
(Section 2.3): in particular, ifmi(R) < Const fori = 1,2,3, then the set of Hilbert serie
of idealsI ⊂ R with m0(I ),m1(I ) < Const is finite.

In Section 3, we introduce and study effectively coherent rings. First, we give se
criteria for a ring to be effectively coherent and show that finitely presented exten
free products, free sums, and Veronese subrings of effectively coherent rings are
tively coherent as well, and give appropriate estimates for the functionD(d). Further, we
introduce other effectivity properties of graded algebras, related to Hilbert series o
finitely presented modules. LetM be a finitely presented module, and letL run through the
set of all its finitely generated submodules. We say thatM is effective for generators(re-
spectivelyeffective for series), if, given the Hilbert seriesL(z) (respectively givenm(L)),
there are only finite number of possibilities form(L) (respectively forL(z)). An algebraR
is said to be effective for generators (respectively for series), if every finitely presentR-
module satisfies this property. The relations of these properties to effective coheren
the following: if a coherent algebraR is effective both for series and for generators, the
is effectively coherent, and every effectively coherent algebra is effective for series.
we show that the properties of Hilbert series of finitely generated modules over str
Noetherian algebras established in [5, Section E4] imply both effectivity for generato
for series: in particular, we obtain
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Theorem 1.3 (Corollary 3.17). Every strongly Noetherian algebra over an algebraica
closed field is effectively coherent.

However, there are Noetherian algebras which do not satisfy any of our effectivity
erties: for example, one of Noetherian but not strongly Noetherian algebras from
(namely, the graded algebraRp,q generated by two Eulerian derivatives introduced in [2

In Section 4, we study algebras, not necessary coherent, but having a lot of fi
presented ideals. Such special families of ideals were first introduced for quadratic
mutative algebras asKoszul filtrations[12,13]; then this notion has been generalized
nonquadratic commutative [16] and to quadratic noncommutative [32] algebras. He
consider the most general version, which is calledcoherent familyof ideals. A familyF
of finitely generated ideals inR is said to be coherent if 0∈ F,R�1 ∈ F, and for every
0 �= I ∈ F there areJ ∈ F andx ∈ I such thatI �= J, I = J + xR,m(J ) � m(I), and the
ideal (x : J ) := {a ∈ R | xa ∈ J } also belongs toF. A degreeof F is the supremum o
degrees of generators of idealsI ∈ F. Coherent families of degree one are called Kos
filtrations; they do exist in many commutative quadratic rings (such as coordinate
of some common varieties), in algebras with generic relations, and in quadratic mon
algebras. We show that if an algebra admits a coherent familyF of finite degree, then i
has finite Backelin’s rate (generalizing an analogous result in the commutative cas
Proposition 1.2]), and its Hilbert series is a rational function (generalizing similar r
for the algebras with Koszul filtrations [32, Theorem 3.3]), and the same is true for
idealI ∈ F.

Every ideal in a Koszul filtration is a Koszul module, and an algebra is coherent
only if all its finitely generated ideals form a coherent family. If all ideals of an algebrR,
generated in degrees at mostd , form a coherent family, we callR universallyd-coherent.
An algebraR is calleduniversally coherentif it is universallyd-coherent for alld � 0. In
fact, these properties are the properties of the functionDR(d):

Theorem 1.4 (Proposition 4.6, Corollary 4.7). Let R be a finitely generated graded alg
bra.

(a) R is universallyd-coherent iffDR(t) � t + d for all t � d .
(b) R is universally coherent iffDR(d) � 2d for all d � 0.

In particular, any universally coherent algebra is effectively coherent.

Commutative 1-universally coherent algebras are calleduniversally Koszul; they has
been studied in [14,15]. We show that thed th Veronese subring of a generated in deg
one universallyd-coherent algebraR is universally Koszul, therefore, such an algebra
(up to a shift of grading) a Koszul module over a universally Koszul algebra.

Some noncommutative examples of universally coherent algebras are consid
Section 4.4, that is, finitely presented monomial algebras and, more generally, a c
algebras with a finite Groebner basis of relations (algebras withr-processing), which wer
introduced in [30].
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2. Sets of Hilbert series

2.1. The conditiondimTorR3 (k, k) < ∞

In this section, we sometimes consider finitely presented algebrasR such that
m3(R) < ∞. Before studying their Hilbert series, let us say a few words about thi
equality.

First, all common finitely presented algebras (such as Noetherian, coherent, K
etc.) do satisfy this condition. In fact, it is the weakest restriction onR among all that are
considering in this paper. In a coherent ring, the module of solutions of any linear eq
over a free module is finitely generated; in general, there is a particular linear equa
a free module which has finite basis of solutions if and only ifm3(R) < ∞.

Indeed, leta = {a1, . . . , ag} be a minimal set of homogeneous generators ofR, and let
f = {f1, . . . , fr} be a minimal set of its homogeneous relations. Letfj = ∑g

i=1 aib
i
j for

j = 1, . . . , r . In the minimal free resolution ofkR

· · · → H3(R) ⊗ R → H2(R) ⊗ R → H1(R) ⊗ R → R → k → 0

we see thatH1(R) is the span ofa, andH2(R) is the span off . Let f̃j = ∑g

i=1 ai ⊗ bi
j ∈

ka ⊗ R be the image offj ⊗ 1 in the free moduleM = ka ⊗ R. Consider the following
equation with coefficients inM :

f̃1x1 + · · · + f̃rxr = 0.

Since the resolution above is minimal, every minimal space of generators of the so
moduleΩ of this equation is isomorphic toH3(R).

However, in general, given a presentation(a, f ) of an algebraR, there does not exis
an algorithm to decide if the conditionm3(R) < ∞ holds. This has been shown in [2] f
Roos algebras, that is, universal enveloping algebras of quadratic graded Lie supera

2.2. Hilbert series of finitely presented algebras

The following well-known theorem describes an interesting property of Hilbert s
of finitely presented algebras.

Theorem 2.1 [3, Theorem 4.3]. Given three integersn, a, b, let C(n,a, b) be the set of al
n-generated connected algebrasR with m1(R) � a andm2(R) � b and letH(n, a, b) be
the set of Hilbert series of such algebras. Then the ordered set(H(n, a, b),>lex) admits no
infinite ascending chains.

The example of an infinitedescendingchain of Hilbert series in the setC(7,1,2) is
constructed in [3, Example 7.7]. All algebras in this chain have global dimension thre
in the vector spacesH3R there are elements of arbitrary high degree.

The following theorem shows, in particular, that the last property is essential for
examples.
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Theorem 2.2. Given four integersn, a, b, c, letD(n,a, b, c) denote the set of all connecte
algebrasA over a fixed fieldk with at mostn generators such thatm1(A) � a, m2(A) � b,
andm3(A) � c. Then the set of Hilbert series of algebras fromD(n,a, b, c) is finite.

For the setD(n,1,2,3), Theorem 2.2 was proved in [34, Section 4.2, Corollary 2
Remark 1] (in a different way, using a geometrical technique). In particular, given a
bern, the set of Hilbert series ofn-generated quadratic Koszul algebras is finite. For
class of degree-one generated algebras of bounded Backelin’s rate (that is, when th
numberr such that for everyi the vector spaceHiR is concentrated in degrees at mostri),
a similar statement has been proved by L. Positselski (unpublished).

We need the following standard version of Koenig lemma.

Lemma 2.3. LetP be a totally ordered set satisfying both ACC and DCC. ThenP is finite.

Proof of Theorem 2.2. Consider a connected algebraA with a minimal space of genera
torsV and a minimal space of relationsR ⊂ T (V ). Choose a homogeneous basisf = {fi}
in R. Let I be the ideal inT (V ) generated byR, and letG be the graded algebra associa
to theI -adic filtration onT (V ). By [31, Theorem 3.2], we haveHjG = HjA ⊕ Hj+1A

for all j � 1; in particular, the space of generators ofG is isomorphic toV ⊕ R. Let
f̃ = {f̃i} be the set of generators of the second summand, corresponding to the
f = {fi} in R.

Note thatG is generated by its subsetsA andf̃ , and its grading extends the grading ofA

if degf̃i = degfi . Moreover, the algebraG is the quotient of the free productA ∗ k〈f̃ 〉 by
the ideal generated by some elements ofA⊗ f̃ ⊗A [31, Section 3], so that we can consid
another ofG given by deg′ a = dega for a ∈ A and deg′ f̃i = degfi − 1. Let us denote th
same algebraG with this new grading byC = C(A). It follows from the consideration
in [31, proof of Lemma 5.5] that its homology groups are given by the formulaHjC =
HjA ⊕ Hj+1A[1] for all j � 1. By the formula (1.3), we have

C(z)−1 =
∑
i�0

(−1)iHiC(z) =

=
∑
i�0

(−1)iHiA(z) + z−1
(

1− V (z) −
∑
i�0

(−1)iHiA(z)

)

= A(z)−1(1− z−1) + z−1(1− V (z)
)
.

Now suppose that two connected algebrasA,B have the same graded vector space
generatorsV . SupposeA(z) >lex B(z), that is,A(z)−B(z) = pzq +o(zq) for somep > 0,
q > 1. We have

C(A)(z) − C(B)(z) = (
C(B)(z)−1 − C(A)(z)−1)C(A)(z)C(B)(z)

= (
B(z)−1 − A(z)−1)(1− z−1)(1+ o(1)

)
= B(z) − A(z) (

1+ o(1)
) = −pzq−1 + o

(
zq−1),
zA(z)B(z)



354 D. Piontkovski / Journal of Algebra 294 (2005) 346–372

e set
ing

or

et

f

rom

es

s

ts

in
re
that is,C(A)(z) <lex C(B)(z).
Now, we are ready to prove the theorem. Assume (ad absurdum) that th

D(n,a, b, c) is infinite for somen, a, b, c. By Lemma 2.3, there is an infinite descend
chainCh0

A(1)(z) >lex A(2)(z) >lex · · · .
Since for algebras in the setD(n,a, b, c) there are only finite number of possibilities f
the number and degrees of generators, the chainCh0 contains an infinite subchainCh1

A1(z) >lex A2(z) >lex · · · ,
where all algebrasAi are generated by the same graded vector spaceV . It follows that we
have an ascending chainC(Ch1):

C
(
A1)(z) <lex C

(
A2)(z) <lex · · · .

For every algebraC(Ai), its generators are concentrated in degrees at mosta′ =
max(a, b − 1) and relations are concentrated in degrees at mostb′ = max(b, c − 1). More-
over, for the number of its generators we have the following estimate:

dimH1C
(
Ai

) = dimH1A
i + dimH2A

i � n + nb =: n′.

We deduce that an infinite ascending chainC(Ch1) consists of algebras from the s
C(n′, a′, b′), in contradiction to Theorem 2.1.�
2.3. Modules and ideals

The following gives module versions of Theorems 2.1 and 2.2 for modules.

Proposition 2.4. Letn, a, b, c, m, p1, p2, q, r be9 integers.

(a) LetR be an algebra fromC(n,a, b), and let CM= CM(m,p1,p2, q) denote the set o
all graded rightR-modulesM with at mostm generators such thatMi = 0 for i < p1,
m0(M) � p2, andm1(M) � q. Then the ordered set of Hilbert series of modules f
CM satisfies ACC.

(b) Let DM = DM(n, a, b, c,m,p1,p2, q, r) denote the set of all graded right modul
over algebras fromD(n,a, b, c) with at mostm generators such thatMi = 0 for
i < p1, m0(M) � p2, m1(M) � q, and m2(M) � r . Then the set of Hilbert serie
of modules from DM is finite.

Proof. If p1 < 0, let us shift the grading of all modules by 1− p1 and consider the se
of Hilbert series of the modules fromCM(m,1,p2 − p1 + 1, q − p1 + 1) (respectively
DM(n, a, b, c,m,1,p2 − p1 + 1, q − p1 + 1, r − p1 + 1)). Since these new sets are
bijections withCM andDM, we may assume thatp1 > 0, that is, that all our modules a
generated in strictly positive degrees.



D. Piontkovski / Journal of Algebra 294 (2005) 346–372 355

f such
there

right-

i-

f right
will be

raded,

ery
be
red,

aded):
Let R be an algebra inC(n,a, b) (respectively inD(n,a, b, c)), and letM be anR-
module contained inCM (respectively inDM). Consider its trivial extensionCM = M ⊕R.
By the classical formula [23] for Poincaré series of trivial extensions, we have

PCM
(s, t) = PR(s, t)

1− sPM(s, t)
= PR(s, t)

(
1+ sPM(s, t) + s2PM(s, t)2 + · · ·)

(where P−(s, t) = ∑
i�0 siHi(−)(t)), hence CM ∈ C(N,A,B) (respectivelyCM ∈

D(N,A,B,C)) for someN,A,B(,C) depending onn, a, b, m, p1, p2, q(, c, r). In
the case (a), we apply Theorem 2.1 and conclude that the set of Hilbert series o
algebrasCM satisfies ACC; in the case (b), we also apply Theorem 2.2 and find that
is only a finite number of possibilities forCM(z). SinceM(z) = CM(z) − R(z), the same
is true for the set of Hilbert seriesM(z). �
Corollary 2.5. LetD > 0 be an integer.

(a) If R is a connected finitely presented algebra, then the set of Hilbert series of
sided ideals inR generated in degree at mostD satisfies DCC.

(b) If, in addition, m3(R) < ∞, then the set of Hilbert series of right-sided ideals inR

having generators and relations in degrees at mostD is finite.

Proof. If I is an ideal inR andM = R/I , then the exact sequence

0→ I → R → M → 0

implies thatI (z) = R(z) − M(z) and mi+1(M) = mi(I). It remains to apply Propos
tion 2.4 to the set of such modulesM . �

There is a class of algebras for which the finiteness of the set of Hilbert series o
ideals can be proved without the assumption on degrees of relations. Such algebras
considered in the next section.

3. Effective coherence

3.1. Effectively coherent rings

All algebras below are connected graded, all modules (and ideals) are right and g
as before.

Recall that a ringR is called (right) coherentif every mapM → N of two finitely
generated (right) freeR-modules has finitely generated kernel, or, equivalently, if ev
finitely generated right ideal inR is finitely presented. Other equivalent conditions may
found in [9,10,19]. If the algebraR is graded, two versions of coherence can be conside
“affine” (general) and “projective” (where all maps and modules are assumed to be gr
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the author does not know whether these concepts are equivalent or not for conne
gebras. By coherent algebra we will mean here a projective coherent one. In par
every Noetherian ring is coherent, while the free associative algebras are coherent
Noetherian.

Let us give an effective version of this definition.

Definition 3.1. Let A be an algebra. A finitely generatedA-moduleM is calledeffectively
coherentif DM(d) is finite for everyd > 0.

The algebraA is calledeffectively coherent, if it satisfies either of the following equiv
alent conditions:

(i) A is effectively coherent as a module over itself;
(ii) every finitely presentedA-module is effectively coherent;

(iii) for every finitely presentedA-moduleM there is a sequence of functions{Di : N → N}
such that, whenever a submoduleL ⊂ M is generated in degrees at mostd , the graded
vector spaces TorA

i (L, k) are concentrated in degrees at mostDi(d) for all i � 0.

Proof of equivalence. We begin with

Lemma 3.2. LetA be an algebra. In an exact triple ofA-modules

0→ K → M → N → 0,

if any two of these three modules are effectively coherent, then the third is.
In this case

DK(d) � DM(d) � D′
K

(
D′

N(d)
)

and

DN(d) � D′
M

(
max

{
d,m(K)

})
,

whereD′−(n) = max{D−(n), n}.

This lemma can be shown in the same way as an analogous statement for c
modules, but involving appropriate estimates for the functionsDM,DN,DK . Following
N. Bourbaki [9, Exercise 10 to §3], we leave the proof to the reader.

Let us return to the proof of equivalence in Definition 3.1. Since every finite free mo
of rank greater than one is a direct sum of free modules of smaller ranks, every su
module is effectively coherent provided thatAA and all its submodules are. In particul
a finite presentation

F ′′ φ−→ F ′ → M → 0
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gives the following exact sequence

0→ kerφ → F ′ → M → 0

with effectively coherent first two terms. This proves (i)⇒ (ii).
To prove (ii)⇒ (iii), just show by induction thatith syzygy module is effectively co

herent.
It remains to point out that the implication (iii)⇒ (i) is trivial. �
A Noetherian effectively coherent algebra is calledeffectively Noetherian: in such alge-

bras, all finite (= finitely generated) modules are effectively coherent. Note that the
property of commutative affine algebras is well known at least since 1926 [24] whe
first (double-exponential) bound forD(d) for polynomial rings was found. It is a particul
case of effective Nullstellensatz and effective division problem, and there are many
(MathSciNet gives about 50) concerning syzygy degree boundsD(d) and Betti numbe
degree boundsDi(d) for ideals in commutative affine algebras.

We will see in the last subsection that every finitely presented monomial alge
effectively coherent, as well as coherent algebras with finite Groebner bases intro
in [30]. A class of effectively Noetherian algebras (over an algebraically closed field
cludes so-called strongly Noetherian algebras (in particular, Noetherian PI algebr
3-dimensional Sklyanin algebras), as we will show in the next subsection.

Several methods to construct coherent algebras work as well for effectively co
ones.

The next criterion is a variation of the classical criterion of coherence [9,10].

Proposition 3.3. An algebraR is effectively coherent if and only if there are two functio
D∩,DAnn : N → N such that for everya ∈ R we havem(AnnR a) � DAnn(dega) and for
every two right-sided idealsI , J with m(I) � d , m(J ) � d we havem(I ∩ J ) � D∩(d).

In this case we have

DAnn(d) � D(d), D∩(d) � max
{
d,D(d)

}
, and D(d) � max

{
DAnn(d),D∩(d)

}
.

We begin with

Lemma 3.4. LetM be a graded module, and letK , L be two its submodules generated
degrees at mostd . Then

m(K ∩ L) � max
{
d,DM(d)

}
.

Proof. Consider the following exact triple

0→ K ∩ L → K ⊕ L → K + L → 0.

The exact sequence of Tor’s gives:

· · · → TorR(K + L,k) → TorR(K ∩ L,k) → TorR(K ⊕ L,k) → ·· · .
1 0 0
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Thus

m(K ∩ L) � max
{
m1(K + L),m(K),m(L)

}
� max

{
d,DM(d)

}
. �

Proof of Proposition 3.3. The “only if” part follows from Lemma 3.4. To show the “if
part, we will show thatD(d) � max{D∩(d),DAnn(d)}. Let us proceed by induction in th
number of generatorst of an idealK ⊂ R with m(K) � d . For t = 1, we havem1(K) �
DAnn(d). For t > 1, we may assume thatK = I + J , whereI andJ are generated by a
most(t − 1) elements. By exact triple

0 → I ∩ J → I ⊕ J → I + J → 0,

we have

m1(K) � max
{
m1(I ),m1(J ),m(I ∩ J )

}
.

Herem(I ∩ J ) � D∩(d) by definition andm1(I ),m1(J ) � max{D∩(d),DAnn(d)} by in-
duction hypothesis, so the claim follows.�

The following claim is standard for coherent algebras (see [1, Proposition 10]
Proposition 1.3] for two its generalizations).

Proposition 3.5. Let A → B be a map of connected algebras. Suppose thatA is (effec-
tively) coherent and the moduleBA is finitely presented. ThenB is (effectively) coherent.

Proof. Let b = m(BA), let J be a right-sided ideal inB with m(J ) = d , and let 0→
K → F → J → 0 be its minimal presentation with a freeB-moduleF . Herem(FA) �
m(FB) + m(BA) = d + b andm(JA) � d + b, hencem1(JA) � DBA

(d + b).
From the exact sequence of Tor’s we have

TorA1 (J, k) → TorA0 (K, k) → TorA0 (F, k).

Therefore,

m1(J ) = m(KB) � m(KA) � max
{
m(FA),m1(JA)

}
� max

{
d + b,DBA

(d + b)
}
. �

Corollary 3.6. A singular extension of an(effectively) coherent algebra along a finitel
presented module is(effectively) coherent.

Proposition 3.7. LetA andB be two(effectively) coherent algebras. Then their direct su
with common unitA ⊕ B and their free productA ∗ B are (effectively) coherent as well.

The coherence of the free product of two coherent algebras has been proved
Theorem 2.1] (and, in more general settings, in [1, Theorem 12]).
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Proof. Let C = A ⊕ B andE = A ∗ B. Let XA andXB be minimal homogeneous sets
generators ofA andB.

Let I = ∑s
i=1 yiC be a finitely generated ideal inC, whereyi = ai + bi, ai ∈ A,bi ∈ B

with degyi � d . Then I is the factor module of the free moduleF with generators
ỹ1, . . . , ỹs by a syzygy submoduleK . Then an elementw = ∑s

i=1 ỹi (αi + βi) ∈ F be-
longs toK if and only if

∑s
i=1 aiαi = 0 and

∑s
i=1 biβi = 0. Let KA,KB be the syzygy

modules of the ideals inA and B generated bya1, . . . , as and b1, . . . , bs , respectively,
and letRA,RB be minimal sets of generators of these syzygy modules. ThenK is gen-
erated byRA ∪ RB , thusm1(I ) = max{m(KA),m(KB)} � max{DA(d),DB(d)}. So,C is
(effectively) coherent if and only if bothA andB are.

Now, letJ be a right-sided ideal inE with m(J ) = d , and letM = E/J . The Mayer–
Vietoris long sequence [17, Theorem 6]

· · · → Torkp(M,k) → TorAp (M,k) ⊕ TorBp (M,k) → TorEp (M,k) → Torkp−1(M,k) → ·· ·

gives an isomorphism

0→ TorA2 (M,k) ⊕ TorB2 (M,k) → TorE2 (M,k) → 0.

So,m1(J ) = m2(M) = max{m2(MA),m2(MB)} = max{m1(JA),m1(JB)}.
For instance, let us estimatem1(JA). The setR of generators ofJ lies in E�d . Let

JA be the span of all elements of the formux, whereu ∈ J , x ∈ XA, and degu � d but
degux > d . The subsetJB is defined in the same way by replacingA by B. Then we
have a direct sum decompositionJ = J ′ ⊕ J ′′, whereJ ′ = J�d ⊕ JAA = J�dA andJ ′′ =
JAEXBE ⊕ JBE. Here both summands areA-modules, moreover, the second summ
J ′′ is a freeA-module. That is why the relations between the elements ofR ⊂ J ′ are the
same as the relations of the submoduleJ ′. But J ′ is a submodule of a finitely generat
freeA-moduleP = E�dA, so thatm1(JA) = m1(J

′) � DP (d). Involving the analogou
estimate form1(JB), we have finally

m1(J ) � max
{
DE�dA(d),DE�dB(d)

}
. �

The following corollary will be generalized later in Section 4.4.

Corollary 3.8. Any free algebra with finitely many generators is effectively coherent.

The following criterion of coherence of Veronese subrings has been proved by
ishchuk [33, Proposition 2.6]. Here we give its effective version. Notice that bynth
Veronese subring of a graded algebraA we mean the subalgebraA(n) = ⊕

i�0 Ain with
the induced grading (the degrees are not divided byd).

Proposition 3.9. LetA be a connected finitely presented algebra generated in degree
For everyn � 2, the Veronese subringA(n) is (effectively) coherent if and only ifA is
(effectively) coherent.
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In the notation of Proposition3.3, we have

D∩
A(n)(d) � D∩

A(d) + n − 1, DAnn
A(n)(d) � DAnn

A (d) + n − 1.

Proof. By [33, Proposition 2.6],A is a finitely presented module overA(n). By Proposi-
tion 3.5, it follows that ifA(n) is (effectively) coherent then so isA.

Assume thatA is effectively coherent. To show thatA(n) is also effectively coheren
we are going to apply Proposition 3.3.

Let x ∈ A(n) be an element of degreed . If AnnA(x) = ∑s
i=1 yiA with degyi = nqi − ri ,

where 0� ri < n, then AnnA(n)(x) = ∑s
i=1 yiAri A

(n), hencem1(xA(n)) � DAnn
A (d) +

n − 1. Therefore,

DAnn
A(n)(d) � DAnn

A (d) + n − 1< ∞.

Now, let I = ∑u
i=1 aiA

(n) and J = ∑v
i=1 biA

(n) be two ideals inA(n) generated in
degrees at mostd , and let

K =
(

u∑
i=1

aiA

)
∩

(
v∑

i=1

biA

)
⊂ A.

Let K = ∑w
i=1 ciA, where degci = nq ′

i − r ′
i � D∩

A(d) with 0 � r ′
i < n. Then I ∩ J =

K(n) = ∑w
i=1 ciAr ′

i
A(n), hencem(I ∩ J ) � D∩

A(d) + n − 1. Thus

D∩
A(n)(d) � D∩

A(d) + n − 1< ∞. �
3.2. Strongly Noetherian algebras are effectively Noetherian

Effective coherence implies some properties of Hilbert series. For example, we w
in Section 4 below that ifDA(d) � 2d for d � 0, then the Hilbert seriesA(z) is a rational
function. Let us introduce three other properties of Hilbert series which are closely r
to effective coherence: the first two are dual to each other, but the third is stronger.

Definition 3.10. Let A be an algebra,M be a finite module, andL runs through the set o
its finitely generated submodules.

(1) M is said to beeffective for seriesif, given m(L), there are only finite number o
possibilities for Hilbert seriesL(z).

(2) M is said to beeffective for generatorsif, given a Hilbert seriesL(z), there are only
finite number of possibilities form(L).

(3) M is said to beArtin–Zhangif for every formal power seriesh(z) there isd > 0 with
the following property: for everyL with L(z) = h(z) we havem(L) � d , and for every
L with m(L) � d andL(z) = h(z) + o(zd) we haveL(z) = h(z).

A finitely presented algebraA is said to be effective for series (respectively effective
generators, Artin–Zhang), if every finitely presentedA-module satisfies such a property
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For commutative algebras, the effectivity for series follows from the fact that e
ideal (or submodule)I has a Groebner basis of bounded degree. Similar property has
established also for several classes of ideals in noncommutative rings (for examp
torsion free finite modules over 3-dimensional quadratic Artin–Shelter regular alg
[18, Theorem A]). The “effective for generators” property is an obvious part of the A
Zhang condition; the property of being effective for series is naturally dual to effec
for generators.

The Artin–Zhang property itself first appeared in [6] in the following context. A c
nected algebraA is said to be (right)strongly Noetherianif A⊗R is (right) Noetherian for
every Noetherian commutativek-algebraR [5]. In particular, Noetherian affine PI algebra
Sklyanin algebras, Noetherian domains of Gelfand–Kirillov dimension 2, Artin–Sh
regular algebras of global dimension three, and some twisted homogeneous coo
rings are strongly Noetherian [5].

Theorem 3.11 [6, Corollary E4.5]. LetA be a strongly Noetherian algebra over an alg
braically closed fieldk. ThenA is Artin–Zhang.

A partial converse is given by

Proposition 3.12. Every finitely generated Artin–Zhang module is Noetherian. In part
lar, every Artin–Zhang algebra is Noetherian.

The proof consists of the following two lemmas.

Lemma 3.13. Let M be a finitely generated Artin–Zhang module. Then the setH = HM

of Hilbert series of finitely generated submodules ofM satisfies ACC with respect to th
order “<lex”.

Notice that for the partial order “<”, the same is proved in [6, Corollary E4.13].

Proof. Assume the converse, that is, that there is an infinite sequence

L1(z) <lex L2(z) <lex · · ·
of Hilbert series of finite submodules ofM . Since Li(z) < M(z), there exists
limi→∞ Li(z) = h(z). Let d be the same as in the definition of Artin–Zhang mod
For i � 0 we haveLi(z) = h(z) + o(zd). Let Ni be a submodule ofLi generated by al
elements ofLi having degree at mostd , i.e.,

Ni = Li
�dA.

By Artin–Zhang condition, fori � 0 we haveNi(z) = h(z) becauseNi(z) = h(z)+o(zd).
Then we haveh(z) = Ni(z) �lex Li(z) <lex h(z) for i � 0, a contradiction. �
Lemma 3.14. Let M be a finitely generated module such that(HM,<lex) satisfies ACC
ThenM is Noetherian.
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Proof. Assume thatL ⊂ M is minimally generated by an infinite sequencex1, x2, . . . , and
let Li denote its finitely generated submodulex1A + · · · + xiA. Then we obtain an infinite
chain inHM :

L1(z) < L2(z) < · · · . �
Question 3.15. Is every Artin–Zhang algebra over an algebraically closed field stro
Noetherian?

Our next purpose is to prove that every strongly Noetherian algebra over an algebr
closed field is also effectively Noetherian. To do this, we establish the following rela
between our effectivity properties.

Theorem 3.16. LetA be a coherent algebra. Consider the following properties:

(AZ) A is Artin–Zhang;
(ES + EG) A is both effective for series and effective for generators;
(EC) A is effectively coherent;
(ES) A is effective for series.

Then there are implications:

(AZ) ⇒ (ES + EG) ⇒ (EC) ⇒ (ES).

Note that the assumption thatA is coherent is actually used only in the implicati
(ES + EG) ⇒ (EC).

Proof. Fix a finitely presentedA-moduleP . Ford ∈ Z, let Hd be the set of Hilbert serie
of its submodules generated in degrees at mostd , and letH = ⋃

d Hd .
(AZ) ⇒ (ES + EG). Assume thatP is Artin–Zhang, and leth(z) be a formal power

series. Letd = d(h) be as in Definition 3.10(3).
If L(z) = h(z), thenL�dA(z) = L(z), hencem(L) � d . So,P is effective for genera

tors.
For anym � 0, the subsetHm ⊂ H satisfies ACC by Lemma 3.13. By Proposition 2.4(

the set{P(z)−h(z) | h(z) ∈ Hm} of Hilbert series of quotient modulesP/L satisfies ACC,
so,Hm satisfies DCC. By Koenig Lemma 2.3, this means that every setHm is finite.

(ES + EG) ⇒ (EC). Ford > 0, letP d be the set of all submodules inP generated in de
grees at mostd . Letp(z) denote the polynomial

∑
i�d zd dimPi . Every submoduleL ∈ P d

is isomorphic to a quotient module of a free moduleML = XL ⊗ A, whereXL(z) � p(z),
by a submoduleKL generated by a minimal set of relations ofL. SinceP is coherent,L
is finitely presented, that is,KL is finitely generated. The conditionXL(z) � p(z) implies
that there are only finite number of possibilities forXL(z), so, there are only finite numbe
of isomorphism classes ofML. SinceP is effective for series, there are also only fin
number of possibilities for Hilbert seriesL(z). Finite free moduleML is effective for gen-
erators, so, given a Hilbert seriesKL(z) = ML(z) − L(z), there are only finite number o
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possibilities form1(L) = m0(KL). The set of such Hilbert seriesKL(z) is finite, therefore
P is effectively coherent.

(EC) ⇒ (ES). Since A is effectively coherent, it is coherent, and we ha
dimTorAi (k, k) < ∞ for all i � 0, hence we can apply to the set of Hilbert series of
quotient modulesP/M (which has the same cardinality asHd ) Proposition 2.4(b) with
m = dimH0P , p1 = min{i | Pi �= 0}, p2 = m(P ), q = d , andr = DP (d). �
Corollary 3.17. Every strongly Noetherian algebra over an algebraically closed fiel
effectively Noetherian.

We do not know, in what (geometrical?) terms the functionD(d) could be estimated fo
general strongly Noetherian algebras.

Question 3.18. For a Noetherian PI algebraA over an algebraically closed field, are the
estimates for the syzygy degree functionDA(d) in terms of its generators, relations, a
identities?

A partial converse to the implication(EC) ⇒ (ES) of Theorem 3.16 is given by

Proposition 3.19. Let A be a coherent algebra of global dimension2. ThenA is effective
for series if and only if it is effectively coherent.

Proof. The “if” part is proved in Theorem 3.16; let us proof the “only if” part.
Let I be a right ideal ofA with m(I) � d . SinceI has projective dimension at mo

one, its minimal free resolution has the form

0→ V2 ⊗ A → V1 ⊗ A → I → 0,

whereV1,V2 are finite-dimensional vector spaces. Givend , there are only finite number o
possibilities for the Hilbert seriesV1(z) of the space of generators ofI . SinceA is effective
for series, there is also only a finite number of possibilities for

V2(z) = A(z)−1(V1(z)A(z) − I (z)
)
.

Thus, there exists a constantD = D(d) such thatm1(I ) = m(V2) � D. �
However, in general an effective for series algebra of global dimension two may n

effectively coherent, e.g., every finitely generated algebra over a finite field is effecti
series, but is not necessarily coherent (for example, the algebrak〈x, y, z, t | zy − tz, zx〉
has global dimension two but is not coherent [30, Proposition 10]).

Examples of Noetherian but not strongly Noetherian algebras has been found by
ski in [35]. The simplest example is the ringRp,q generated by two Eulerian derivativ
with two parametersp,q ∈ k∗ [27].
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Proposition 3.20. Assume thatk is an algebraically closed field with eitherchark = 0 or
tr degk � 2. Then for somep,q ∈ k∗ the algebraRp,q is Noetherian but neither effectiv
for generators nor effective for series; in particular, Rp,q is not effectively coherent.

Proof. By [35, Example 12.8], there arep,q such that the algebraR = Rp,q is Noetherian.
To show thatRp,q is not effective in any sense, we will use some properties of its p
modules [27, Section 7]. Recall that apoint moduleis a cyclic moduleM = R/I with
Hilbert seriesM(z) = (1 − z)−1; the idealI is called apoint ideal. It is shown in [27,
Section 7] that for everyd > 0 there are two nonisomorphic point modules such that t
truncationsM/M<d are isomorphic. In particular, a point idealI can have generators o
arbitrary high degree. Since the Hilbert seriesI (z) = h(z) := R(z)− (1− z)−1 is the same
for all point ideals, it follows thatR is not effective for generators.

More precisely, there is a family of point modulesM(n, c) = R/I (n, c) (wheren � 0
is an integer,c ∈ P

1(k)), such that forn � 2 they have several relations of degree
most 3 and one relation of degree(n + 1) [27, Section 7]. LetI ′(n, c) = I (n, c)�3R.
Then I ′(n, c)(z) = h(z) + o(zn) while I ′(n, c)(z) �= h(z) + o(zn+1), therefore, the se
of Hilbert series of the idealsI ′(n, c) is infinite. Since all these ideals are generated
degrees at most 3,R is not effective for series, whence is not effectively coherent by T
orem 3.16. �

4. Coherent families and universally coherent algebras

4.1. Algebras with coherent families

Definition 4.1. Let R be a finitely generated graded algebra, and letF be a set of finitely
generated right ideals inR. The familyF is said to be coherent if:

(1) the zero ideal and the maximal homogeneous idealR̄ belong toF, and
(2) for every 0�= I ∈ F there is an idealI �= J ∈ F and a homogeneous elementx ∈ I such

thatI = J +xR, m(J ) � m(I), and the idealN = (x : J ) := {a ∈ R | xa ∈ J } belongs
to F.

A coherent familyF is said to be of degreed , if m(I) � d for all I ∈ F, i.e., all its
members are generated in degrees at mostd .

If R is commutative and standard (i.e., degree-one generated), coherent famil
calledgeneralized Koszul filtrations[16]. In particular, it is shown in [16, Theorem 2.
that coordinate rings of certain sets of points of the projective spacePn admit general-
ized Koszul filtrations of finite degrees. In the noncommutative setting I cannot imag
coherent family as a filtration, so this new notion is introduced.

A coherent family of degree one is calledKoszul filtration: in this case, every idea
I ∈ F is generated by linear forms. This concept has been introduced for commutat
gebras and investigated in several papers [8,12–15]. In particular, every coordinate
an algebraic curve admits a Koszul filtration provided that it is quadratic. The nonco
tative version of Koszul filtrations has been considered in [32]; for example, every ge
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n-generated quadratic algebraR admits a Koszul filtration if either it has less thann rela-
tions or is such that dimR2 < n.

One of equivalent definitions of a coherent ring is as follows [10, Theorem 2.2]: a
R is coherent iff, for every finitely generated idealJ = JR and every elementx ∈ R, the
idealN = (x : J ) is finitely generated. The similar criterion holds for projective cohere
This definition is similar to our definition of coherent family, as shows the following

Proposition 4.2. For a connected graded algebraR, the following two statements a
equivalent:

(i) R is coherent;
(ii) all finitely generated homogeneous ideals inR form a coherent family.

Proof. The implication (i)⇒ (ii) follows from the criterion above. The dual implicatio
(ii) ⇒ (i) follows from Proposition 4.3(a). �

Note that the existence of a coherent family (even a Koszul filtration) is not sufficie
an algebra to be coherent. Indeed, the algebraA = k〈x, y, z, t | zy− tz, zx〉 admits a Koszu
filtration (it is initially Koszul with the Groebner flag(x, y, t, z), see [32, Section 5]), but
is not coherent, since the annihilator AnnA z is not finitely generated [30, Proposition 10

The following property of coherent families gives linear bounds for degrees of solu
of some linear equations.

Let us recall some notations. By definition, therate [7] of a (degree-one generate
algebraR is the number

rateR = sup
i�2

{
mi(R) − 1

i − 1

}
.

For commutative standard algebras [4,7] as well as for noncommutative algebras wit
Groebner basis of relations [4] the rate is always finite. The rate is equal to 1 if and
if R is Koszul. If an algebra has finite rate, then its Veronese subring of sufficiently
order is Koszul [7].

The following proposition (part (b)) was originally proved for commutative algebra
[16, Proposition 1.2]. In fact, it holds for noncommutative ones as well.

Proposition 4.3.

(a) Let F be a coherent family in an algebraR. Then the trivialR-modulekA and every
ideal I ∈ F have free resolutions of finite type.

(b) Assume in addition, that the coherent familyF has degree at mostd . Then

mi(I) � m(I) + di

for all i � 1 andI ∈ F. In particular, if R is generated in degree one, then

rateR � d.
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Proof. Following the arguments of [16, Proposition 1.2], we proceed by induction ini and
in I (by inclusion). First, note that the degreec of x in Definition 4.1 cannot be greater tha
m(I), and so, in the case (b) it does not exceedd . TakingJ andN as in Definition 4.1, we
get the exact sequence

0→ J → I → R/N[−c] → 0,

which gives to the following fragments of the exact sequence of Tor’s:

H0(J )j → H0(I )j → kj−c

and

Hi(J )j → Hi(I)j → Hi−1(N)j−c

for i � 1 (sinceN is the first syzygy module forR/N , we have isomorphismsHi(R/N) =
Hi−1(N) for all i � 1).

By induction, the first and the last terms in these triples are finite-dimens
k-modules, so the middle one is. This proves (a). Also, in the case (b), the first
vanishes forj � m(J ) + di, and the third term vanishes forj − c � m(N) + d(i − 1).
Sincem(J ) � m(I) andm(N) � d , they both vanish for allj � m(I) + di, so that the
middle term vanishes too.�
4.2. Hilbert series and coherent families

Proposition 4.4. Let F be a coherent family of degreed in an algebraR. Then the set o
all Hilbert series of idealsI ∈ F is finite.

Proof. By Proposition 4.3, for every idealI ∈ F we havem(I) � d and m1(I ) � 2d .
SinceR̄ ∈ F, we have alsom1(R) � d , m2(R) � 2d , andm3(R) � 3d . Thus, we can apply
Corollary 2.5. �

The following property of algebras with coherent families seems to be the most
esting. Its analogue for Koszul filtrations has been proved in [32, Theorem 3.3].

Theorem 4.5. Suppose that an algebraR has a coherent familyF of degreed . ThenR has
rational Hilbert series, as well as every idealI ∈ F.

If the setHilb of all Hilbert series of idealsI ∈ F contains at mosts nonzero elements
then the degrees of numerators and denominators of these rational functions are not g
thands.

Proof. Let Hilb = {I0(z) = 0, I1(z), . . . , Is(z)}, whereI1, . . . , Is are some nonzero idea
in F. By definition, for every nonzero idealI = Ii there are idealsJ = J (I),N = N(I) ∈ F
such thatJ ⊂ I , J �= I , and for some positivec = c(I ) the following triple is exact:

0→ J → I → R/N[−c] → 0.
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Taking the Euler characteristics, we deduce

I (z) = J (I)(z) + zc
(
R(z) − N(I)(z)

)
. (4.1)

Let us putJ (1) := J (I) and J (n+1) := J (J (n)). Since all idealsJ (n) are generated b
subspaces of a finite-dimensional spaceR�d , the chain

I ⊃ J (1) ⊃ J (2) ⊃ · · ·
contains only a finite number of nonzero terms. Applying the formula (4.1) to the i
J (n), we obtain a finite sum presentation

I (z) = zc(I)
(
R(z) − N(I)(z)

) + zc(J (1))
(
R(z) − N

(
J (1)

)
(z)

)
+ zc(J (2))

(
R(z) − N

(
J (2)

)
(z)

) + · · · .
Thus

Ii(z) =
s∑

j=1

aij

(
R(z) − Ij (z)

) + ai0R(z),

whereaij ∈ zZ[z] (the last term corresponds to the casesN(J (t)) = 0).
Let H = H(z) be the column vector[I1(z), . . . , Is(z)]t , let A be the matrix(aij ) ∈

Ms(zZ[z]), let H0 = H0(z) be the column vector[a1,0, . . . , as,0]t , and lete be the unit
s-dimensional column vector. Then we have

H = A
(
R(z)e − H

) + R(z)H0,

or

(A + E)H = R(z)(Ae + H0),

whereE is the unit matrix.
The determinantD(z) = det(A + E) ∈ Z[z] is a polynomial of degree at mostsd . It is

invertible inQ[[z]]. Then(A + E)−1 = D(z)−1B with B ∈ Ms(Z[z]). The elements ofB
are(s − 1)× (s − 1) minors of(A+E), so, their degrees do not exceedd(s − 1). We have

H = R(z)D(z)−1C,

whereC = B(Ae + H0) ∈ zZ[z]s . So, for every 1� i � s we have

Ii(z) = R(z)Ci(z)D(z)−1.

Assume thatR̄ = Is . Then

R̄(z) = R(z) − 1= R(z)Cs(z)D(z)−1,
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R(z) = D(z)

D(z) − Cs(z)
,

so,R(z) is a quotient of two polynomials of degrees at mostsd . By the above,

Ii(z) = R(z)Ci(z)D(z)−1 = Ci(z)

D(z) − Cs(z)
,

so, the same is true for the Hilbert seriesIi(z). �
4.3. Universally coherent algebras

An algebraR is calleduniversallyd-coherentif all ideals in R generated in degree
at mostd form a coherent family. Universally 1-coherent algebras are calleduniversally
Koszul(because all their ideals generated by linear forms are Koszul modules). Com
tive universally Koszul algebras have been considered in [14,15]. In particular, com
tive monomial universally Koszul algebras are completely classified in [15].

The following criterion is a consequence of Proposition 4.3.

Proposition 4.6. The following two conditions for a connected algebraR are equivalent:

(i) R is universallyd-coherent;
(ii) DR(t) � t + d for all t � d .

Proof. (i) ⇒ (ii). By Proposition 4.3(b), we havem1(I ) � m(I) + d if t = m(I) � d .
(ii) ⇒ (i). By (ii), we havem1(I ) � m(I) + d if t = m(I) � d . Let x = {x1, . . . , xr} be

a minimal system of generators forI with degx1 = t , let J = x2R + · · · + xrR, and let
N = N(I) = (x1 : J ). Obviously,N is the (shifted byt) projection of the syzygy modul
Ω = Ω(x1, . . . , xr ) onto the first component, so thatm(N) + t � m(Ω) = m1(I ) � t + d .
Thus,m(N(I)) � d for everyI with m(I) � d . By Definition 4.1, this means that all suc
idealsI form a coherent family. �
Corollary 4.7. The following two conditions for a connected algebraR are equivalent:

(i) R is universallyd-coherent for alld � 0;
(ii) DR(d) � 2d for all d � 0.

In particular, in this caseR is effectively coherent.

We call an algebraR satisfying either of the equivalent conditions of this Corollary
simply universally coherent.

Every generated in degree one universallyd-coherent algebra is a finite Koszul modu
over a universally Koszul algebra, namely, over its Veronese subalgebra. This follow
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Proposition 4.8. LetR be a universallyd-coherent algebra generated in degree one. T
its Veronese subalgebraR(d) (with grading divided byd) is universally Koszul.

Proof. Let B be the algebraR(d) with grading divided byd . By Proposition 4.6, we hav
to check thatDB(1) � 2. By Propositions 3.9 and 3.3, we have

D∩
B(1) � d−1D∩

R(d)(d) � d−1(D∩
R(d) + d − 1

)
� 3− d−1,

and, analogously,

DAnn
B (t) � 3− d−1.

By Proposition 3.3, we have

DB(1) � max
{
D∩

B(1),DAnn
B (1)

}
� 2. �

In particular, in a universally coherent algebra all Veronese subrings of sufficiently
order are universally Koszul, thus the algebra itself is a finite direct sum of Koszul mo
over every such Veronese subalgebra.

Proposition 4.9. Every finitely presented module over a universally coherent algebra
rational Hilbert series.

Proof. Let R be a universally coherent algebra. Since every finitely generated ideaR

is a member of a coherent family, it has rational Hilbert series by Theorem 4.5, as w
the algebraR itself.

Let M be a finitely presentedR-module, and let

0→ K → F → M → 0

be its finite presentation with freeF . SinceM(z) = F(z) − K(z), it is sufficient to show
that the finitely generated submoduleK of a free moduleF has rational Hilbert series.

Let d = m(K), and letK = L + xR, where degx = d . By the induction in the numbe
of generators ofK , we can assume thatL(z) is rational.

Let J = (x : L). SinceR is coherent, this ideal is finitely generated, therefore, its Hil
series is rational. The exact triple

0→ L → K → R/J [−d] → 0

gives the formulaK(z) = L(z) + zd(R(z) − J (z)). ThusK(z) is rational. �
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4.4. Examples: monomial algebras and their generalizations

Universal coherence is the strongest property among all considered above. It is a
nate surprise that some interesting classes of noncommutative algebras are indeed
sally coherent.

All finitely presented algebras whose relations aremonomialson generators are unive
sally coherent (see below). It is an important point in noncommutative computer al
that many properties of finitely presented monomial algebras are inherited by the
bras with finite Groebner bases (for example, they have finite rate, and quadratic o
necessary Koszul). However, the latter are not in general coherent, see examples
the reason is that while the algebra itself has finite Groebner basis, a finitely gen
one-sided ideal in it sometimes can have only an infinite one (in contrast to the mon
case [29, Theorem 1]). That is why a new class of algebras between these two ha
introduced [30], so-calledalgebras withr-processing.

In general, these algebras are not assumed to be graded but still finitely genera
A be a quotient algebra of a free algebraF by a two-sided idealI with a Groebner basi
G = {g1, . . . , gs}. For every elementf ∈ F , there is a well-defined normal formN(f ) of
f with respect toG [37, Section 2.3].

The algebraA is calledalgebra ofr-processingfor somer � 0, if for any pairp,q ∈ F

of normal monomials, whereq = q1q2,degq1 � r , we have

N(pq) = N(pq1)q2.

The simplest example is an algebraA whose relations are monomials of degree at m
r + 1.

A simple sufficient condition for an algebra to have this property is as follows. Con
a graphΓ with s vertices marked byg1, . . . , gs such that an arrowgi → gj exists iff
there is an overlap between anynonleadingterm of gi and leading term of gj . If Γ is
acyclic, thenA is an algebra withr-processing for somer . The simplest case is when th
monomials in the decompositions of the relations of the algebra do not overlap each
See [30] for other sufficient conditions and for a way how to calculate the numberr for
givenΓ .

The main property of algebras withr-processing is that every finitely generat
right ideal in such algebra has finite Groebner basis. In the case of standard d
lexicographical order on monomials, the degrees of its elements do not exceedm(I) + r .
Moreover, the degrees of relations ofI do not exceed the numberm(I) + 2r − 1; in par-
ticular, they are coherent. Therefore, we have

Proposition 4.10. Let R be a connected algebra withr-processing(with a degree-
lexicorgaphical order on monomials). ThenDR(d) < d +2r . In particular, it is universally
coherent.

For example, any algebra with 1-processing is universally Koszul (algebras w
processing were separately considered in [26]). So, all quadratic monomial algeb
universally Koszul (unlike the commutative case, see [15]).
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