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Abstract

We call a graded connected algelieeffectively coherentf for every linear equation oveR
with homogeneous coefficients of degrees at nahsthe degrees of generators of its module of
solutions are bounded by some functidi{d). For commutative polynomial rings, this property
has been established by Hermann in 1926. We establish the same property for several classes of
noncommutative algebras, including the most common class of rings in noncommutative projective
geometry, that is, strongly Noetherian rings, which includes Noetherian PI algebras and Sklyanin
algebras. We extensively study so-calletdversally coherenalgebras, that is, such that the function
D(d) is bounded by & for d > 0. For example, finitely presented monomial algebras belong to this
class, as well as many algebras with finite Groebner basis of relations.
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1. Introduction
1.1. Overview

Let R be a finitely generated connected graded associative algebra over /a figéd
discuss the solutions of a linear equation

atxi -+ @ =0 (L.)

over R, whereay, ..., a, are homogeneous elementsiobr of a (free)R-moduleM, and
x1,...,Xx, are indeterminates. When and how can such an equation be solved, and how
does one describe the solutions?

For general finitely generate®), there is no algorithm even to check if a solution exists
(at least in the nonhomogeneous case for a free madylsee [38]). Also, the set of so-
lutions £2 may be infinitely generated as a submodule of the free magfulgor example,
over the algebr#& ® F, whereF is a free associative algebra with a large number of gener-
ators). That is why it seems reasonable to restrict the class of algebras under consideration
to algebrasR such that the module of solutions of Eq. (1.1) is finitely generated. Such
algebras are called (rightpheren{9,19]; this class includes all Noetherian algebras, free
associative algebras, and many other examples. However, the condition of coherence does
not in general give a way to find all the generatorsofwe can find the generators one by
one, but when we have to stop?

If R is a commutative affine algebra, there is an easy (but not the most effective) way
to find the generators @®. It was established by Hermann [24] in 1926 that there exists a
function Dg : N — N such that2 is generated in degrees at mas (d) provided that all
coefficientsy; have degrees at magt So, to find all the solutions, it is sufficient to find the
solutions in the finite-dimensional vector spagp, «): it is a standard exercise in linear
algebra.

The main object of this paper is to consider noncommutative algegbrakich admit
such a functionDg (d). We call these algebrafectively coherenfAn analogous concept
for commutative (non)graded algebras has been introduced by Soublin [36]. A commu-
tative ring R is called uniformly coherent if there is a functiaig : N — N such that
2 is generated by at mogtg (n) elements. It was shown in [21] that an affine or local
Noetherian commutative ring is uniformly coherent if and only if its dimension is at most
two.

Fortunately, our graded analogue of this concept is more common. We show that most
rings considered in noncommutative projective geometry, that is, strongly Noetherian al-
gebras [5] over algebraically closed fields, are effectively coherRnis (called (right)
strongly Noetheriarif R ® C is right Noetherian for every commutative Noetherian
algebraC). This class includes, in particular, Sklyanin algebras, Noetherian Pl algebras
(in particular, standard Noetherian semigroup algebras of polynomial growth [20, The-
orem 3.1]), Noetherian domains of Gelfand—Kirillov dimension two, and Artin—Shelter
regular algebras of dimension three [5]. Also, free associative algebras and finitely pre-
sented monomial algebras are effectively coherent as well. Every coherent algebra over a
finite field k is effectively coherent; however, if contains two algebraically independent
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elements or has zero characteristic, then there exist Noetherian but not effectively coherent
algebras.

The class of finitely generated effectively coherent algebras is closed under extensions
by finitely presented modules, free products, direct sums, and taking Veronese subalge-
bras (in the degree-one generated case). Every finitely presented graded modude
such an algebra is effectively coherent as well, that is, there is a similar funda@)
which bounds the degrees of generators in the case of Eq. (1.1VovEhis means that
homogeneous linear equations over such modules are effectively solvable as well.

The degree bound functiobz (d) for the commutative polynomial rin@ grows as a
double exponent. That is why we cannot hope that there is a wide class of noncommutative
algebrask with slow growth of Dg (d). However, there are interesting classes of algebras
with linear growth ofDy (d). We call an algebraniversally coherenit D(d) < 2d for all
d > 0. We investigate this class of algebras and more general classes, so-called algebras
with Koszul filtrations and with coherent families of ideals. In particular, it is shown that
every finitely presented module over a universally coherent algebra has rational Hilbert
series, including the algebm® itself, and R has finite Backelin's rate (that is, there is a
numberr such that every space ]’Hlk k) is concentrated in degrees at medt Free as-
sociative algebras are universally coherent, as well as finitely presented monomial algebras
andalgebras withr-processind30], that is, algebras with finite Groebner basis such that
the normal form of a product of two their elements can be calculated by the product of their
normal forms via a bounded number of reductions. The main property of such algebras is
that every right-sided idedl has finite Groebner basis: it consists of elements of degree
less thani + » [30, Theorem 5], wheré is generated in degrees at mdst

Note that the most effective modern method to solve an equation of type (1.1) is based
on the theory of Groebner bases [22,26,29,30].Lbe a submodule aff generated by
the coefficients, ..., a,. In this method, we can calculate the Groebner bases of relations
of R, of relations ofM, and of the submodulEup to degreeD (d), and then find a generat-
ing set of the relations of degrees at mfgt/) between these elements of Groebner basis
of I, again using standard Groebner theory methods. The calculation of the Groebner bases
above may be done in the same way as the usual calculation of Groebner bases of ideals in
algebras, sincé is an ideal in the trivial extension algebRi = M @ R; this calculation
is equivalent also to finding the two-sided Groebner basis of relations of the larger trivial
extensionR’/I @ R’ (a similar trick has been described in [25]).

1.2. Motivation

Despite of the famous recent progress in noncommutative projective geometry, no gen-
eral noncommutative version of computational methods of algebraic geometry is known.
In this paper, we try to show that a “computational noncommutative geometry” is possible.
Atleast, if R is a “ring of noncommutative projective geometry” [28], then there exist algo-
rithms to solve linear equations ovRr(sinceRr is usually strongly Noetherian), therefore,
to calculate the relations and the minimal projective resolution of a finite module (because
R has often finite global dimension).
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1.3. Notation and assumptions

We will deal with finitely generated | -graded connected associative algebras over a
fixed fieldk, that is, algebras of the forR = ; >oRi with Rg = k. Also, all algebras are
assumed to be finitely generated. All modules and ideals are graded and right-sided.

A solutionx = (x1, ..., x,) of Eq. (1.1) is callechomogeneouysf there isD > 0 (the
degreeof x) such that deg; + degx; = D for all nonzerax;.

If a sequence = {a1, ..., a,} of homogeneous elements in &AmoduleM generates
a submoduld, letb = {as, ..., a,} (m < n) be a minimal subsequence @fgenerating
the same submodule. L&x* be the module of solutions of Eq. (1.1), ¥’ be the module
of solutions of the corresponding equation for

aiyr+---+amym =0, (1.2)

and letD, and D, be the maximal degrees of homogeneous generataes aind 27 It
is easy to see thad, <maxDy, d}. Therefore, we may (and will) always assume that the
coefficients in Eq. (1.1ninimallygenerate some submodule=aiR+---+a,R C M.

For anR-module M, we will denote byH; M the graded vector space 'f((lM, k). By
H; R we will denote the graded vector space ﬁ'ﬁcr k) = H;kg. In particular, the vector
spaceH1 R is isomorphic to the linear-span of a minimal set of homogeneous generators
of R, andH>R is isomorphic to thé&-span of a minimal set of its homogeneous relations.
Analogously, the spacByM is the span of generators 8f, and H1 M is the span of its
relations.

Let m(M) = mo(M) denote the supremum of degrees of minimal homogeneous gener-
ators of M: if M is just a vector space with the trivial module structure, it is simply the
supremum of degrees of elementsidf Fori > 0, let us also putr; (M) := m(H;M) =
supj |TorlR(M, k); # 0}. Similarly, let us putn; (R) = m(H; R) = m;(kg). For example,
m(R) = m1(R) is the supremum of degrees of the generator® ocandm2(R) (respec-
tively m1(M)) is the supremum of degrees of the relationskofrespectively ofM). In
other words, if a modulé is minimally generated by the coefficients ..., a, of Eq. (1.1)
ands2 is the module of solutions of this equation, the(s2) = m1 (7).

Note that the symbol#/; R andm; (R) for an algebra have different meaning that the
respective symbol#l; Rz andm; (Rpg) for R considered as a module over itself; however,
the homologiedd; Ry are trivial, so that there is no place for confusion.

Definition 1.1. For a finitely generated modul#, let us define a functioD,; :N —
N U {oo} by taking D s (d) = sugm1(L) | L € M, mo(L) < d}.

This means that every submodulec M generated in degrees at madshas relations
in degrees at mosb = Dy, (d), and that the module of solutions of every linear equa-
tion (1.1) with coefficients of degrees at maektin M is generated in degrees at most
maxD(d),d}.

For a graded locally finite vector space (algebra, madu)eV, its Hilbert series is
defined as the formal power seriggz) =) ;. (dim Vi)z!. For example, the Euler char-
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acteristics of a minimal free resolution of the trivial modkjeleads to the formula

R =) (-D'H;R(). (1.3)

i=0

As usual, we writeZi>oa,»zi =o(z") iff ¢; =0 fori <n.

Let us introduce a lexicographical total order on the set of all power series with integer
coefficients, i.e., we pu[j,;oa,-zi >lex Zi>0b,~z" iff there is ¢ > 0 such thaty; = b;
for i < g anda, > b,. This order extends the coefficient-wise partial order given by
Zi}OaiZl = Zi>0bl~z‘ iff a; > b; foralli > 0.

1.4. Results

Our technique is based on the investigation of Hilbert series of algebras and mod-
ules. We begin with recalling a classical theorem of Anick on the Hilbert series of fi-
nitely presented algebras: the set of Hilbert series ofhalkenerated algebraR with
m1(R), m2(R) < Const satisfies the ascending chain condition with respect to the or-
der>ex. Then we improve this theorem for the algebras with additional conditigi®) <
Const: that is, we state

Theorem 1.2 (Theorem 2.2)Given four integers:, a, b, ¢, let D(n, a, b, ¢) denote the
set of all connected algebra® over a fixed fieldk with at most: generators such that
m1(R) < a, ma2(R) < b, andm3(R) < c. Then the set of Hilbert series of algebras from
D(n,a,b,c) is finite.

This additional restrictiom3(R) < Const (the weakest among all considered in this pa-
per) is discussed in Section 2.1. We give also a version of both these theorems for modules
(Section 2.3): in particular, ifz; (R) < Const fori = 1, 2, 3, then the set of Hilbert series
of ideals! C R with mq(I), m1(I) < Const is finite.

In Section 3, we introduce and study effectively coherent rings. First, we give several
criteria for a ring to be effectively coherent and show that finitely presented extensions,
free products, free sums, and Veronese subrings of effectively coherent rings are effec-
tively coherent as well, and give appropriate estimates for the funé&i@h. Further, we
introduce other effectivity properties of graded algebras, related to Hilbert series of their
finitely presented modules. L&1 be a finitely presented module, and ietun through the
set of all its finitely generated submodules. We say Mais effective for generatorge-
spectivelyeffective for serigs if, given the Hilbert seried.(z) (respectively givem: (L)),
there are only finite number of possibilities feX L) (respectively forL(z)). An algebrar
is said to be effective for generators (respectively for series), if every finitely presented
module satisfies this property. The relations of these properties to effective coherence are
the following: if a coherent algebrR is effective both for series and for generators, then it
is effectively coherent, and every effectively coherent algebra is effective for series. Also,
we show that the properties of Hilbert series of finitely generated modules over strongly
Noetherian algebras established in [5, Section E4] imply both effectivity for generators and
for series: in particular, we obtain
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Theorem 1.3 (Corollary 3.17) Every strongly Noetherian algebra over an algebraically
closed field is effectively coherent.

However, there are Noetherian algebras which do not satisfy any of our effectivity prop-
erties: for example, one of Noetherian but not strongly Noetherian algebras from [35]
(namely, the graded algebRg, , generated by two Eulerian derivatives introduced in [27]).

In Section 4, we study algebras, not necessary coherent, but having a lot of finitely
presented ideals. Such special families of ideals were first introduced for quadratic com-
mutative algebras akoszul filtrations[12,13]; then this notion has been generalized to
nonquadratic commutative [16] and to quadratic noncommutative [32] algebras. Here we
consider the most general version, which is cattetierent familyof ideals. A familyF
of finitely generated ideals iR is said to be coherent if 8 F, R»1 € F, and for every
0#1 eFthereareJ e Fandx eI suchthatl £ J,1=J +xR,m(J) <m(I), and the
ideal (x : J) :={a € R | xa € J} also belongs td-. A degreeof F is the supremum of
degrees of generators of idedls& F. Coherent families of degree one are called Koszul
filtrations; they do exist in many commutative quadratic rings (such as coordinate rings
of some common varieties), in algebras with generic relations, and in quadratic monomial
algebras. We show that if an algebra admits a coherent famdy finite degree, then it
has finite Backelin’s rate (generalizing an analogous result in the commutative case [16,
Proposition 1.2]), and its Hilbert series is a rational function (generalizing similar result
for the algebras with Koszul filtrations [32, Theorem 3.3]), and the same is true for every
ideall € F.

Every ideal in a Koszul filtration is a Koszul module, and an algebra is coherent if and
only if all its finitely generated ideals form a coherent family. If all ideals of an alg&hra
generated in degrees at mdstform a coherent family, we caR universallyd-coherent.

An algebraRr is calleduniversally coherenif it is universally d-coherent for alt/ > 0. In
fact, these properties are the properties of the fundtiQd):

Theorem 1.4 (Proposition 4.6, Corollary 4.7).et R be a finitely generated graded alge-
bra.

(&) R is universallyd-coherent iffDg(t) <t +d forall t <d.
(b) R is universally coherentifbg(d) < 2d for all d > 0.

In particular, any universally coherent algebra is effectively coherent.

Commutative 1-universally coherent algebras are callgigiersally Koszylthey has
been studied in [14,15]. We show that i Veronese subring of a generated in degree
one universally/-coherent algebr& is universally Koszul, therefore, such an algebra is
(up to a shift of grading) a Koszul module over a universally Koszul algebra.

Some noncommutative examples of universally coherent algebras are considered in
Section 4.4, that is, finitely presented monomial algebras and, more generally, a class of
algebras with a finite Groebner basis of relations (algebrasnapitocessing), which were
introduced in [30].
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2. Setsof Hilbert series
2.1. The conditiorlim Tor§ (k, k) < oo

In this section, we sometimes consider finitely presented algeBramuch that
m3(R) < oco. Before studying their Hilbert series, let us say a few words about this in-
equality.

First, all common finitely presented algebras (such as Noetherian, coherent, Koszul,
etc.) do satisfy this condition. In fact, it is the weakest restrictiorRoaimong all that are
considering in this paper. In a coherent ring, the module of solutions of any linear equation
over a free module is finitely generated; in general, there is a particular linear equation in
a free module which has finite basis of solutions if and onlg4f R) < oco.

Indeed, lelz = {ay, ..., a,} be a minimal set of homogeneous generatorR cdnd let
f={f1,..., fr} be a minimal set of its homogeneous relations. fet Zle a,-bi/. for
j=1,...,r.Inthe minimal free resolution dfz '

o> H3(R)® R— Ha(R)® R — HI(R)® R— R —k — 0

we see thaf{;(R) is the span ofi, and H>(R) is the span off. Let fj = Zf:l ai ® bj. €
ka ® R be the image off; ® 1 in the free modulé/ = ka ® R. Consider the following
equation with coefficients iV :

flxl—l—“-—{—ﬁxr =0.

Since the resolution above is minimal, every minimal space of generators of the solution
modules? of this equation is isomorphic tH3(R).
However, in general, given a presentati@n f) of an algebrar, there does not exist
an algorithm to decide if the conditions(R) < co holds. This has been shown in [2] for
Roos algebras, that is, universal enveloping algebras of quadratic graded Lie superalgebras.

2.2. Hilbert series of finitely presented algebras

The following well-known theorem describes an interesting property of Hilbert series
of finitely presented algebras.

Theorem 2.1 [3, Theorem 4.3]Given three integers, a, b, let C(n, a, b) be the set of all
n-generated connected algebr&swith m1(R) < a andm2(R) < b and letH(n, a, b) be
the set of Hilbert series of such algebras. Then the ordere(tset, a, b), >|ex) admits no
infinite ascending chains.

The example of an infinitelescendinghain of Hilbert series in the s&t(7, 1, 2) is
constructed in [3, Example 7.7]. All algebras in this chain have global dimension three, but
in the vector spaceH3R there are elements of arbitrary high degree.

The following theorem shows, in particular, that the last property is essential for such
examples.
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Theorem 2.2. Given four integers, a, b, ¢, let D(n, a, b, ¢) denote the set of all connected
algebrasA over a fixed field with at most: generators such that1(A) < a, m2(A) < b,
andms3(A) < c¢. Then the set of Hilbert series of algebras fréhw, a, b, ¢) is finite.

For the setD(n, 1, 2, 3), Theorem 2.2 was proved in [34, Section 4.2, Corollary 2 and
Remark 1] (in a different way, using a geometrical technique). In particular, given a num-
bern, the set of Hilbert series of-generated quadratic Koszul algebras is finite. For the
class of degree-one generated algebras of bounded Backelin’s rate (that is, when there is a
numberr such that for every the vector spacé/; R is concentrated in degrees at mogdt
a similar statement has been proved by L. Positselski (unpublished).

We need the following standard version of Koenig lemma.

Lemma 2.3. Let P be a totally ordered set satisfying both ACC and DCC. Thes finite.

Proof of Theorem 2.2. Consider a connected algebawith a minimal space of genera-
tors vV and a minimal space of relatio®sc 7 (V). Choose a homogeneous bagis- { f;}
in R. Let] be the ideal irf" (V) generated by, and letG be the graded algebra associated
to the I-adic filtration onT (V). By [31, Theorem 3.2], we havH;G = H;A @ H; 1A
for all j > 1; in particular, the space of generators@®fis isomorphic toV & R. Let
f = {f;} be the set of generators of the second summand, corresponding to the basis
f={fi}inR.

Note thatG is generated by its subsetsand f, and its grading extends the grading/of
if deg f; = degf;. Moreover, the algebré is the quotient of the free produgts k( f) by
the ideal generated by some elementd & f ® A [31, Section 3], so that we can consider
another ofG given by de§a = dega for a € A and de§f; = degf; — 1. Let us denote the
same algebr& with this new grading byC = C(A). It follows from the consideration
in [31, proof of Lemma 5.5] that its homology groups are given by the fornijl@ =
H;A® H;1A[1] for all j > 1. By the formula (1.3), we have

C@™t=) (-DHCGk) =

i>0
=Y (-1 H;AGR) + z—l(l ~ V() - Z(—l)"H,-A<z))
i>0 i>0
=A@ M1-z Y+ (1-V@).
Now suppose that two connected algeb#asB have the same graded vector space of

generatory/. SUpposei(z) >jex B(z), thatis,A(z) — B(z) = pz? +o0(z?) for somep > 0,
g > 1. We have

CAR) —CB) = (CBYD = CARD)H)CARCB)E)
=(B@-A@ ) (1-zH)(1+0)

_ B(z) —A(2)

= — _ .91 q-1
ADED (1+0D) =—pzft+0(z471),
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that is,C(A)(z) <iex C(B)(2).

Now, we are ready to prove the theorem. Assume (ad absurdum) that the set
D(n,a, b, ¢) is infinite for somen, a, b, c. By Lemma 2.3, there is an infinite descending
chainChg

AD (2) >lex A® (2) >lex -+

Since for algebras in the sé&l(n, a, b, ¢) there are only finite number of possibilities for
the number and degrees of generators, the afiagicontains an infinite subchaifizg

AY(2) >1ex A%(2) >lex -+

where all algebrad’ are generated by the same graded vector spadefollows that we
have an ascending chaii(Ch1):

C(Al) (2) <lex C(AZ)(Z) <lex -

For every algebraC(A?), its generators are concentrated in degrees at most
max(a, b — 1) and relations are concentrated in degrees at bestmax(b, c — 1). More-
over, for the number of its generators we have the following estimate:

dim H1C (A") = dim H1 A" + dim H2A' <n +n” =i,

We deduce that an infinite ascending ché&ltCh1) consists of algebras from the set
C(n’,d’,b"), in contradiction to Theorem 2.1.0

2.3. Modules and ideals
The following gives module versions of Theorems 2.1 and 2.2 for modules.
Proposition 2.4. Letn, a, b, ¢, m, p1, p2, q, r be9integers.

(a) LetR be an algebra fronC (n, a, b), and let CM= CM(m, p1, p2, q) denote the set of
all graded rightR-modulesM with at mostn generators such tha¥/; = 0fori < ps,
mo(M) < p2, andm1(M) < g. Then the ordered set of Hilbert series of modules from
CM satisfies ACC.

(b) Let DM =DM(n, a, b, c,m, p1, p2,q,r) denote the set of all graded right modules
over algebras fromD(n, a, b, ¢) with at mostm generators such thay; = 0 for
i < p1, mg(M) < p2, mi(M) < g, andma(M) < r. Then the set of Hilbert series
of modules from DM is finite.

Proof. If p1 <0, let us shift the grading of all modules by-1p1 and consider the sets
of Hilbert series of the modules fro@M(m, 1, p» — p1 + 1,9 — p1 + 1) (respectively
DM(n,a,b,c,m,1, pp — p1+1,q — p1+ 1,r — p1 + 1)). Since these new sets are in
bijections withCM andDM, we may assume that > 0, that is, that all our modules are
generated in strictly positive degrees.
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Let R be an algebra irC(n, a, b) (respectively inD(n, a, b, ¢)), and letM be anR-
module contained i€M (respectively irDM). Consider its trivial extensiofy, = M & R.
By the classical formula [23] for Poincaré series of trivial extensions, we have

Pr(s,t)

R Pr(s,)(L+ 5Py (s, 1) + 2Py (s, )2 + - -
T=sPuG.D R(s. ) (1+5Py(s. 1) + s Py(s,0)°+ )

Pcy, (s, 1) =

(where P_(s,1) = Zi>osiH,-(—)(t)), hence Cy; € C(N, A, B) (respectivelyCy €

D(N, A, B, C)) for someN, A, B(,C) depending om, a, b, m, p1, p2, q(, ¢, r). In

the case (a), we apply Theorem 2.1 and conclude that the set of Hilbert series of such
algebrasCy, satisfies ACC; in the case (b), we also apply Theorem 2.2 and find that there
is only a finite number of possibilities fary,(z). SinceM (z) = Cy(z) — R(z), the same

is true for the set of Hilbert serigl/ (7). O

Corollary 2.5. Let D > 0 be an integer.

(a) If R is a connected finitely presented algebra, then the set of Hilbert series of right-
sided ideals inR generated in degree at mobt satisfies DCC.

(b) If, in addition, m3(R) < oo, then the set of Hilbert series of right-sided idealsRn
having generators and relations in degrees at moss finite.

Proof. If I isanideal inR andM = R/I, then the exact sequence
0—-I—-R—->M—0

implies that/(z) = R(z) — M(z) andm;+1(M) = m;(I). It remains to apply Proposi-
tion 2.4 to the set of such modulas. O

There is a class of algebras for which the finiteness of the set of Hilbert series of right
ideals can be proved without the assumption on degrees of relations. Such algebras will be
considered in the next section.

3. Effective coherence
3.1. Effectively coherent rings

All algebras below are connected graded, all modules (and ideals) are right and graded,
as before.

Recall that a ringR is called ¢ight) coherentif every mapM — N of two finitely
generated (right) fre&-modules has finitely generated kernel, or, equivalently, if every
finitely generated right ideal iR is finitely presented. Other equivalent conditions may be
found in [9,10,19]. If the algebr& is graded, two versions of coherence can be considered,
“affine” (general) and “projective” (where all maps and modules are assumed to be graded):
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the author does not know whether these concepts are equivalent or not for connected al-
gebras. By coherent algebra we will mean here a projective coherent one. In particular,
every Noetherian ring is coherent, while the free associative algebras are coherent but not
Noetherian.

Let us give an effective version of this definition.

Definition 3.1. Let A be an algebra. A finitely generatéddmoduleM is calledeffectively
coherentf Dy, (d) is finite for everyd > 0.

The algebra is calledeffectively coherentf it satisfies either of the following equiv-
alent conditions:

(i) A is effectively coherent as a module over itself;
(i) every finitely presentedi-module is effectively coherent;
(iii) for every finitely presentedi-moduleM there is a sequence of functiofi3; : N — N}
such that, whenever a submodlle- M is generated in degrees at masthe graded
vector spaces T;ﬂr(L, k) are concentrated in degrees at mbstd) for all i > 0.

Proof of equivalence. We begin with
Lemma 3.2. Let A be an algebra. In an exact triple ef-modules
0—K—-M-—N—DOQ,

if any two of these three modules are effectively coherent, then the third is.
In this case

D (d) < Dy (d) < Dy (Dy(d))
and
Dy(d) < Dy (max{d, m(K)}),
whereD’_(n) = max{D_(n), n}.
This lemma can be shown in the same way as an analogous statement for coherent
modules, but involving appropriate estimates for the functibpgs, Dy, Dk . Following
N. Bourbaki [9, Exercise 10 to §3], we leave the proof to the reader.
Let us return to the proof of equivalence in Definition 3.1. Since every finite free module
of rank greater than one is a direct sum of free modules of smaller ranks, every such free

module is effectively coherent provided th&j and all its submodules are. In particular,
a finite presentation

F'——SF ->M-—0
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gives the following exact sequence
O0—kerp - F - M—0

with effectively coherent first two terms. This proves=§)(ii).

To prove (ii)= (iii), just show by induction thatth syzygy module is effectively co-
herent.

It remains to point out that the implication (i (i) is trivial. O

A Noetherian effectively coherent algebra is cak#fictively Noetheriarin such alge-
bras, all finite & finitely generated) modules are effectively coherent. Note that the same
property of commutative affine algebras is well known at least since 1926 [24] when the
first (double-exponential) bound f@r(d) for polynomial rings was found. It is a particular
case of effective Nullstellensatz and effective division problem, and there are many papers
(MathSciNet gives about 50) concerning syzygy degree bouh@ and Betti number
degree bound®; (d) for ideals in commutative affine algebras.

We will see in the last subsection that every finitely presented monomial algebra is
effectively coherent, as well as coherent algebras with finite Groebner bases introduced
in [30]. A class of effectively Noetherian algebras (over an algebraically closed field) in-
cludes so-called strongly Noetherian algebras (in particular, Noetherian PI algebras and
3-dimensional Sklyanin algebras), as we will show in the next subsection.

Several methods to construct coherent algebras work as well for effectively coherent
ones.

The next criterion is a variation of the classical criterion of coherence [9,10].

Proposition 3.3. An algebrar is effectively coherent if and only if there are two functions
D", DA"M:N — N such that for every € R we haven(Anng a) < DA"™(dega) and for
every two right-sided ideals, J withm(I) < d, m(J) <d we haven(I N J) < D"(d).
In this case we have
DAM(d) < D(d), D"(d) <max{d, D(d)}, and D(d) < max{D*"™d), D"(d)}.
We begin with

Lemma 3.4. Let M be a graded module, and I&t, L be two its submodules generated in
degrees at most. Then

m(K N L) <max{d, Dy (d)}.
Proof. Consider the following exact triple
0-KNL—->K&®&L—->K+L—-0.
The exact sequence of Tor’s gives:

o> TorR(K + L, k) — Tor§ (KN L, k) — Torf(K® L, k) — - -
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Thus

m(K N L) <max{mi(K + L), m(K),m(L)} <max{d, Dy(d)}. O
Proof of Proposition 3.3. The “only if” part follows from Lemma 3.4. To show the “if”
part, we will show thatD (d) < max{ D" (d), DA"(d)}. Let us proceed by induction in the
number of generatorsof an idealK C R with m(K) <d. Fort =1, we haveni(K) <
DAM(d). Fort > 1, we may assume that = I + J, wherel andJ are generated by at
most(¢ — 1) elements. By exact triple

O—->INJ—>I®J—>I1+J—0,

we have

m1(K) < max{m1(I), m1(J),m(I N J)}.

Herem(I N J) < D"(d) by definition andn1(I), m1(J) < max{D"(d), DA"M(d)} by in-
duction hypothesis, so the claim followsn

The following claim is standard for coherent algebras (see [1, Proposition 10], [33,
Proposition 1.3] for two its generalizations).

Proposition 3.5. Let A — B be a map of connected algebras. Suppose thé (effec-
tively) coherent and the modulR, is finitely presented. TheR is (effectively coherent.

Proof. Let b = m(B,), let J be a right-sided ideal iB with m(J) = d, and let 0—
K — F — J — 0 be its minimal presentation with a fre&module F. Herem(F4) <
m(Fp)+m(Ba) =d + b andm(J4) <d + b, hencen1(J4) < Dp,(d + b).
From the exact sequence of Tor's we have
Tor} (J, k) — Torg (K, k) — Tory (F, k).
Therefore,

m1(J) =m(Kp) <m(Ka) <max{m(Fa),mi(Ja)} <max{d +b, Dg,(d+b)}. O

Corollary 3.6. A singular extension of afeffectively coherent algebra along a finitely
presented module {gffectively coherent.

Proposition 3.7. Let A and B be two(effectively coherent algebras. Then their direct sum
with common unitA @ B and their free producti x B are (effectively coherent as well.

The coherence of the free product of two coherent algebras has been proved in [11,
Theorem 2.1] (and, in more general settings, in [1, Theorem 12]).
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Proof. LetC =A@ B andE = A x B. Let X4 andX g be minimal homogeneous sets of
generators off andB.

Let/ =)";_, yiC be afinitely generated ideal &, wherey; = a; +b;,a; € A,b; € B
with degy; < d. Then I is the factor module of the free modulé with generators
¥1,...,¥s by a syzygy submodul&. Then an elementy = >";_; Ji(a; + B;) € F be-
longs toK if and only if Y7, aie; =0 and) ;_; b;p; =0. Let K4, Kp be the syzygy
modules of the ideals iM and B generated by, ...,a, andb, ..., b, respectively,
and letR4, Rp be minimal sets of generators of these syzygy modules. Ehéngen-
erated byR4 U Rg, thusm1(I) = max{m(K),m(Kp)} <maxDu(d), Dg(d)}. So,C is
(effectively) coherent if and only if botd and B are.

Now, let J be a right-sided ideal i with m(J) =d, and letM = E/J. The Mayer—
Vietoris long sequence [17, Theorem 6]

-+« — Tort (M, k) — Tory (M, k) & Torh (M, k) — Torb (M, k) — Toty,_y (M, k) — -
gives an isomorphism
0— Torj (M, k) ® Tor5 (M, k) — Tor5 (M, k) — 0.

So,m1(J) =ma(M) = max{ma(Ma), ma(Mp)} = maxmi(Ja), m1(Jp)}.

For instance, let us estimatei(J4). The setR of generators ot/ lies in E¢,4. Let
J4 be the span of all elements of the foim, whereu € J, x € X4, and deg < d but
degux > d. The subset/? is defined in the same way by replacidgby B. Then we
have a direct sum decompositidn=J' & J”, whereJ' = J<, ® JAA = Jc4A andJ” =
JAEXBE & JBE. Here both summands aremodules, moreover, the second summand
J" is a freeA-module. That is why the relations between the element® af J' are the
same as the relations of the submodileBut J' is a submodule of a finitely generated
free A-module P = E4A, so thatm1(J4) = m1(J’) < Dp(d). Involving the analogous
estimate forn1(Jp), we have finally

ml(J) < max{ DEgdA(d)v DEgdB(d)}' O

The following corollary will be generalized later in Section 4.4.

Corollary 3.8. Any free algebra with finitely many generators is effectively coherent.

The following criterion of coherence of Veronese subrings has been proved by Pol-
ishchuk [33, Proposition 2.6]. Here we give its effective version. Notice thatthy
Veronese subring of a graded algebrave mean the subalgebr™ = @i>0Ai,, with
the induced grading (the degrees are not divided by
Proposition 3.9. Let A be a connected finitely presented algebra generated in degree one.

For everyn > 2, the Veronese subring™ is (effectively coherent if and only ifA is
(effectively coherent.
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In the notation of Propositio.3, we have

DO (@) <D d)+n—1, DN < DY™(d)+n—1.
Proof. By [33, Proposition 2.6]A is a finitely presented module ovaf™. By Proposi-
tion 3.5, it follows that ifA®™ is (effectively) coherent then so is.

Assume thatA is effectively coherent. To show that™ is also effectively coherent,
we are going to apply Proposition 3.3.

Letx € A™ be an element of degrele If Ann 4 (x) = >"!_; y; A with degy; = ng; —r;,
where 0< r; < n, then Annyw (x) = Y i_; yi A, A®™, hencemy(xA™) < DAM(d) +
n — 1. Therefore,

DAnn d < DAnn d _
A(n)( )< Dy (d)+n—1<o0.

Now, let7 =Y¥ ;@A™ andJ = Y!_; b;A™ be two ideals inA™ generated in
degrees at most, and let

K= (zA) : (ZM) ca

Let K =)' 1¢iA, where deg; = ng/ — r/ < D)(d) with 0<r/ <n. ThenInJ =
KW =% cA.,A™, hencen(INJ)< DY (d)+n—1. Thus

3.2. Strongly Noetherian algebras are effectively Noetherian

Effective coherence implies some properties of Hilbert series. For example, we will see
in Section 4 below that iD 4 (d) < 2d for d > 0, then the Hilbert seried(z) is a rational
function. Let us introduce three other properties of Hilbert series which are closely related
to effective coherence: the first two are dual to each other, but the third is stronger.

Definition 3.10. Let A be an algebra)! be a finite module, and runs through the set of
its finitely generated submodules.

(1) M is said to beeffective for seriesf, given m(L), there are only finite number of
possibilities for Hilbert serie&.(z).

(2) M is said to beeffective for generators, given a Hilbert seried.(z), there are only
finite number of possibilities fom (L).

(3) M is said to beArtin—Zhangif for every formal power series(z) there isd > 0 with
the following property: for every. with L(z) = h(z) we haven(L) < d, and for every
L with m(L) < d andL(z) = h(z) + o(z¢) we haveL(z) = h(z).

A finitely presented algebra is said to be effective for series (respectively effective for
generators, Artin—Zhang), if every finitely presenteanodule satisfies such a property.
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For commutative algebras, the effectivity for series follows from the fact that every
ideal (or submodule)} has a Groebner basis of bounded degree. Similar property has been
established also for several classes of ideals in noncommutative rings (for example, for
torsion free finite modules over 3-dimensional quadratic Artin—Shelter regular algebras
[18, Theorem A]). The “effective for generators” property is an obvious part of the Artin—
Zhang condition; the property of being effective for series is naturally dual to effectivity
for generators.

The Artin—Zhang property itself first appeared in [6] in the following context. A con-
nected algebra is said to be (righttrongly Noetheriaiif A ® R is (right) Noetherian for
every Noetherian commutatikealgebrar [5]. In particular, Noetherian affine Pl algebras,
Sklyanin algebras, Noetherian domains of Gelfand—Kirillov dimension 2, Artin—Shelter
regular algebras of global dimension three, and some twisted homogeneous coordinate
rings are strongly Noetherian [5].

Theorem 3.11 [6, Corollary E4.5] Let A be a strongly Noetherian algebra over an alge-
braically closed fieldk. ThenA is Artin—Zhang.

A partial converse is given by

Proposition 3.12. Every finitely generated Artin—-Zhang module is Noetherian. In particu-
lar, every Artin—Zhang algebra is Noetherian.

The proof consists of the following two lemmas.

Lemma 3.13. Let M be a finitely generated Artin—Zhang module. Then theHset HM
of Hilbert series of finitely generated submodulesvbkatisfies ACC with respect to the
order “ <jex”.

Notice that for the partial order<”, the same is proved in [6, Corollary E4.13].
Proof. Assume the converse, that is, that there is an infinite sequence
LY(2) <iex L?(2) <lex -

of Hilber; series of finite submodules oM. Since Li(z) < M(z), there exists
lim; oo L' (z) = h(z). Letd be the same as 'in the definition of Artin—Zhang module.
Fori >0 we haveL!(z) = h(z) + o(z%). Let N' be a submodule of! generated by all
elements ofl.' having degree at most i.e.,

N'=L,A.
By Artin—Zhang condition, for >> 0 we haveN’ (z) = h(z) becauseV' (z) = h(z) +o(z%).
Then we havéi(z) = N'(z) <lex Li (z) <jlex h(z) for i > 0, a contradiction. O

Lemma 3.14. Let M be a finitely generated module such thiit" | <|ey) satisfies ACC.
ThenM is Noetherian.
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Proof. Assume thal. C M is minimally generated by an infinite sequengex, ..., and
let L' denote its finitely generated submodujet + - - - + x; A. Then we obtain an infinite
chain inHM:

Ll(z) < Lz(z) < ee. O

Question 3.15. Is every Artin—Zhang algebra over an algebraically closed field strongly
Noetherian?

Our next purpose is to prove that every strongly Noetherian algebra over an algebraically
closed field is also effectively Noetherian. To do this, we establish the following relations
between our effectivity properties.

Theorem 3.16. Let A be a coherent algebra. Consider the following properties

(AZ) A is Artin—Zhang

(ES + EG) A is both effective for series and effective for generators
(EC) A is effectively coherent

(ES) A is effective for series.

Then there are implications
(AZ) = (ES + EG) = (EC) = (ES).

Note that the assumption that is coherent is actually used only in the implication
(ES + EG) = (EC).

Proof. Fix a finitely presentedi-moduleP. Ford € Z, letH; be the set of Hilbert series
of its submodules generated in degrees at nipand letH =, Hg.

(AZ) = (ES + EG). Assume thatP is Artin—Zhang, and leti(z) be a formal power
series. Letl = d(h) be as in Definition 3.10(3).

If L(z) =h(z), thenL¢4A(z) = L(z), hencem(L) < d. So, P is effective for genera-
tors.

For anym > 0, the subsetl,, c H satisfies ACC by Lemma 3.13. By Proposition 2.4(a),
the sef{ P(z) — h(z) | h(z) € H,,} of Hilbert series of quotient modulg?/ L satisfies ACC,
so,H,, satisfies DCC. By Koenig Lemma 2.3, this means that everlgeis finite.

(ES + EG) = (EC). Ford > 0, let P4 be the set of all submodules mgenerated in de-
grees at most. Let p(z) denote the polynomiiigd z? dim P;. Every submodulé& e P4
is isomorphic to a quotient module of a free modide = X; ® A, whereX; (z) < p(2),
by a submodul&X; generated by a minimal set of relationsof Since P is coherentL
is finitely presented, that i ;. is finitely generated. The conditioXi; (z) < p(z) implies
that there are only finite number of possibilities #r (z), so, there are only finite number
of isomorphism classes df;. Since P is effective for series, there are also only finite
number of possibilities for Hilbert serids(z). Finite free moduleV is effective for gen-
erators, so, given a Hilbert seri&g (z) = M (z) — L(z), there are only finite number of



D. Piontkovski / Journal of Algebra 294 (2005) 346-372 363

possibilities form (L) = mo(Kr). The set of such Hilbert seriés; (z) is finite, therefore,
P is effectively coherent.

(EC) = (ES). Since A is effectively coherent, it is coherent, and we have
dim Tor{‘(k, k) < oo for all i > 0, hence we can apply to the set of Hilbert series of the
guotient modules? /M (which has the same cardinality &;) Proposition 2.4(b) with
m=dimHgP, pp=min{i | P, #0}, po=m(P),q =d,andr = Dp(d). O

Corollary 3.17. Every strongly Noetherian algebra over an algebraically closed field is
effectively Noetherian.

We do not know, in what (geometrical?) terms the functid@) could be estimated for
general strongly Noetherian algebras.

Question 3.18. For a Noetherian Pl algebr& over an algebraically closed field, are there
estimates for the syzygy degree functibn (d) in terms of its generators, relations, and
identities?

A partial converse to the implicatiofC) = (ES) of Theorem 3.16 is given by

Proposition 3.19. Let A be a coherent algebra of global dimensi@anThenA is effective
for series if and only if it is effectively coherent.

Proof. The “if” part is proved in Theorem 3.16; let us proof the “only if” part.
Let 7 be a right ideal ofA with m(I) < d. Sincel has projective dimension at most
one, its minimal free resolution has the form

0OV A—->VI®A—T—0,

whereVs, V, are finite-dimensional vector spaces. Givethere are only finite number of
possibilities for the Hilbert serie®; (z) of the space of generators bfSinceA is effective
for series, there is also only a finite number of possibilities for

V2(2) = AR HVi)AR) — 1(2)).
Thus, there exists a constabt= D(d) such thain1(I) =m(V2) < D. O

However, in general an effective for series algebra of global dimension two may not be
effectively coherent, e.g., every finitely generated algebra over a finite field is effective for
series, but is not necessarily coherent (for example, the algebra, z,z | zy — tz, zx)
has global dimension two but is not coherent [30, Proposition 10]).

Examples of Noetherian but not strongly Noetherian algebras has been found by Rogal-
ski in [35]. The simplest example is the riR), , generated by two Eulerian derivatives
with two parameterp, g € k* [27].
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Proposition 3.20. Assume that is an algebraically closed field with eithehark = 0 or
trdegk > 2. Then for somg, g € k* the algebrar,, , is Noetherian but neither effective
for generators nor effective for seriga particular, R, , is not effectively coherent.

Proof. By [35, Example 12.8], there ape ¢ such that the algebta = R, , is Noetherian.
To show thatR, , is not effective in any sense, we will use some properties of its point
modules [27, Section 7]. Recall thatpaint moduleis a cyclic moduleM = R/I with
Hilbert seriesM (z) = (1 — z)~%; the ideall is called apoint ideal It is shown in [27,
Section 7] that for every > 0 there are two nonisomorphic point modules such that their
truncationsM /M ., are isomorphic. In particular, a point idealcan have generators of
arbitrary high degree. Since the Hilbert setlés) = (z) := R(z) — (1—z) "L is the same
for all point ideals, it follows thaR is not effective for generators.

More precisely, there is a family of point modulés(n, c) = R/I (n, ¢) (wheren > 0
is an integerc e P1(k)), such that forn > 2 they have several relations of degree at
most 3 and one relation of degrée + 1) [27, Section 7]. Let!’'(n,c) = I (n,c)<3R.
Then I'(n, ¢)(z) = h(z) + o(z") while I'(n, c)(z) # h(z) + o(z**1), therefore, the set
of Hilbert series of the ideal$’(n, ¢) is infinite. Since all these ideals are generated in
degrees at most R is not effective for series, whence is not effectively coherent by The-
orem 3.16. O

4. Coherent familiesand universally coherent algebras
4.1. Algebras with coherent families

Definition 4.1. Let R be a finitely generated graded algebra, andrlbe a set of finitely
generated right ideals iR. The familyF is said to be coherent if:

(1) the zero ideal and the maximal homogeneous i@elatlong toF, and

(2) forevery O£ I € Fthereisanideal # J € F and a homogeneous element 7 such
that! = J+xR,m(J) <m(l),andtheideaN = (x : J) :={a € R | xa € J} belongs
toF.

A coherent familyF is said to be of degreé, if m(I) <d forall I € F, i.e., all its
members are generated in degrees at rmiost

If R is commutative and standard (i.e., degree-one generated), coherent families are
calledgeneralized Koszul filtrationgl6]. In particular, it is shown in [16, Theorem 2.1]
that coordinate rings of certain sets of points of the projective spacadmit general-
ized Koszul filtrations of finite degrees. In the noncommutative setting | cannot imagine a
coherent family as a filtration, so this new notion is introduced.

A coherent family of degree one is call&bszul filtration in this case, every ideal
I € F is generated by linear forms. This concept has been introduced for commutative al-
gebras and investigated in several papers [8,12—15]. In particular, every coordinate ring of
an algebraic curve admits a Koszul filtration provided that it is quadratic. The noncommu-
tative version of Koszul filtrations has been considered in [32]; for example, every generic
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n-generated quadratic algebhRaadmits a Koszul filtration if either it has less thamela-
tions or is such that dims < n.

One of equivalent definitions of a coherent ring is as follows [10, Theorem 2.2]: a ring
R is coherent iff, for every finitely generated ideak= J R and every element € R, the
ideal N = (x : J) is finitely generated. The similar criterion holds for projective coherence.
This definition is similar to our definition of coherent family, as shows the following

Proposition 4.2. For a connected graded algebrR, the following two statements are
equivalent

(i) Ris coherent
(ii) all finitely generated homogeneous idealskifiorm a coherent family.

Proof. The implication (i)= (ii) follows from the criterion above. The dual implication
(i) = (i) follows from Proposition 4.3(a). O

Note that the existence of a coherent family (even a Koszul filtration) is not sufficient for
an algebrato be coherent. Indeed, the algebsak(x, y, z,t | zy —tz, zx) admits a Koszul
filtration (it is initially Koszul with the Groebner flag, v, 1, z), see [32, Section 5]), but it
is not coherent, since the annihilator Annis not finitely generated [30, Proposition 10].

The following property of coherent families gives linear bounds for degrees of solutions
of some linear equations.

Let us recall some notations. By definition, trae [7] of a (degree-one generated)
algebrar is the number

(R)—1
rateR =sup{u}.
2

ol i—1

For commutative standard algebras [4,7] as well as for noncommutative algebras with finite
Groebner basis of relations [4] the rate is always finite. The rate is equal to 1 if and only
if R is Koszul. If an algebra has finite rate, then its Veronese subring of sufficiently high
order is Koszul [7].

The following proposition (part (b)) was originally proved for commutative algebras in
[16, Proposition 1.2]. In fact, it holds for noncommutative ones as well.

Proposition 4.3.

(a) LetF be a coherent family in an algebr&. Then the trivialR-modulek s and every
ideal I € F have free resolutions of finite type.
(b) Assume in addition, that the coherent fankiyias degree at mogt Then

m;(I) <m(I)+di
foralli > 1andI €F. In particular, if R is generated in degree one, then

rateR <d.
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Proof. Following the arguments of [16, Proposition 1.2], we proceed by inductivaid

in I (by inclusion). First, note that the degreef x in Definition 4.1 cannot be greater than
m(I), and so, in the case (b) it does not excéedlaking/ andN as in Definition 4.1, we
get the exact sequence

0—-J—>I— R/N[-c]—0,
which gives to the following fragments of the exact sequence of Tor’s:
Ho(J); — Ho(l)j — kj_¢
and
Hi(J); — Hi(I); > Hi—1(N)j—¢

fori > 1 (sinceN is the first syzygy module foR /N, we have isomorphism&; (R/N) =
H;_1(N) foralli >1).

By induction, the first and the last terms in these triples are finite-dimensional
k-modules, so the middle one is. This proves (a). Also, in the case (b), the first term
vanishes forj > m(J) + di, and the third term vanishes fgr— ¢ > m(N) + d(i — 1).
Sincem(J) < m(I) andm(N) < d, they both vanish for alfj > m(I) + di, so that the
middle term vanishes too.0O

4.2. Hilbert series and coherent families

Proposition 4.4. Let F be a coherent family of degrekin an algebraR. Then the set of
all Hilbert series of ideald € F is finite.

Proof. By Proposition 4.3, for every ideal € F we havem(/) < d andm1(I) < 2d.
SinceR € F, we have alsa1(R) < d, m2(R) < 2d, andm3(R) < 3d. Thus, we can apply
Corollary 2.5. O

The following property of algebras with coherent families seems to be the most inter-
esting. Its analogue for Koszul filtrations has been proved in [32, Theorem 3.3].

Theorem 4.5. Suppose that an algebm@ has a coherent famillf of degreed. ThenR has
rational Hilbert series, as well as every ideBk F.

If the setHilb of all Hilbert series of ideald € F contains at most nonzero elements,
then the degrees of numerators and denominators of these rational functions are not greater
thands.

Proof. Let Hilb = {Io(z) =0, I1(2), ..., I;(z)}, wherel, ..., I, are some nonzero ideals
in F. By definition, for every nonzero ideél= I; there areidealg = J(I), N=N({) e F
such that/ C I, J # I, and for some positive = ¢() the following triple is exact:

0—J—1I1— R/N[—c]—0.
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Taking the Euler characteristics, we deduce
1(z) =J( () +z°(R(z) = N()(2)). (4.1)

Let us putJ® := (1) and J*+D := J(J™). Since all ideals/™ are generated by
subspaces of a finite-dimensional sp#&cg;, the chain

15JP57@5...

contains only a finite number of nonzero terms. Applying the formula (4.1) to the ideals
J™ we obtain a finite sum presentation

1@ =D(R@ ~ N(D@) + 2V (R@) - N(IP) @)
+ ZC(‘I(Z))(R(Z) _ N(J(Z))(Z)) 4,
Thus
i(z)=Y_aij(R:) = I;(2) + aioR(2).
j=1

whereq;; € zZ[z] (the last term corresponds to the caskd ') = 0).

Let H = H(z) be the column vectofl1(z), ..., I;(2)]", let A be the matrix(a;;) €
M;(zZ[z]), let Hp = Hp(z) be the column vectofas o, ..., as 0]’, and lete be the unit
s-dimensional column vector. Then we have

H = A(R(z)e — H) + R(2) Ho,
or
(A+ E)H = R(z)(Ae + Hyp),

whereE is the unit matrix.

The determinanD(z) = det(A + E) € Z[z] is a polynomial of degree at most. It is
invertible inQ[[z]. Then(A + E)~1 = D(z)~1B with B € M,(Z[z]). The elements oB
are(s — 1) x (s — 1) minors of(A + E), so, their degrees do not excatd — 1). We have

H=R(z)D(z)"cC,
whereC = B(Ae + Hp) € zZ[z]°. So, for every K i < s we have
I;(zx) = R@)Ci(z)D() %

Assume thai® = I,. Then

R(z) =R(z) — 1= R()Cs(2) D(2) 7L,
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therefore,

D(z)

RO=p0-c@

S0, R(z) is a quotient of two polynomials of degrees at maétBy the above,

o | a_ Gl
1) =R@C@DE) ™= F—c

so, the same is true for the Hilbert serig&). O
4.3. Universally coherent algebras

An algebrar is calleduniversallyd-coherentif all ideals in R generated in degrees
at mostd form a coherent family. Universally 1-coherent algebras are caifedersally
Koszul(because all their ideals generated by linear forms are Koszul modules). Commuta-
tive universally Koszul algebras have been considered in [14,15]. In particular, commuta-
tive monomial universally Koszul algebras are completely classified in [15].

The following criterion is a consequence of Proposition 4.3.

Proposition 4.6. The following two conditions for a connected algel®are equivalernt

(i) R is universallyd-coherent
(i) Dr(t) <t+dforallr<d.

Proof. (i) = (ii). By Proposition 4.3(b), we have1(I) <m(I)+d if t =m(I) < d.

(i) = (i). By (ii), we havem1(I) <m(I) +d if t =m(I) <d.Letx ={x1,...,x,} be
a minimal system of generators férwith degx1 =1, let J/ = xR + --- + x, R, and let
N =N() = (x1:J). Obviously,N is the (shifted by) projection of the syzygy module
2 = 2(x1, ..., x,) onto the first component, so thaiN) +t <m(2) =m1(I) <t +d.
Thus,m(N (1)) < d for everyl with m(I) < d. By Definition 4.1, this means that all such
ideals! form a coherent family. O

Corollary 4.7. The following two conditions for a connected alge®are equivalent

(i) R is universallyd-coherent for alld > 0;
(i) Dr(d) < 2dforalld> 0.

In particular, in this caser is effectively coherent.

We call an algebr& satisfying either of the equivalent conditions of this Corollary 4.7
simply universally coherent

Every generated in degree one universalgoherent algebra is a finite Koszul module
over a universally Koszul algebra, namely, over its Veronese subalgebra. This follows from



D. Piontkovski / Journal of Algebra 294 (2005) 346-372 369

Proposition 4.8. Let R be a universally/-coherent algebra generated in degree one. Then
its Veronese subalgebm(@ (with grading divided by) is universally Koszul.

Proof. Let B be the algebr& @ with grading divided byi. By Proposition 4.6, we have
to check thatDg (1) < 2. By Propositions 3.9 and 3.3, we have

DR <d'DY () <d H(DR(d)+d —1)<3—d 1,
and, analogously,
DMy <3—d L.
By Proposition 3.3, we have
Dp() <ma{Dy(1), D™D} <2, O

In particular, in a universally coherent algebra all Veronese subrings of sufficiently high
order are universally Koszul, thus the algebra itself is a finite direct sum of Koszul modules
over every such Veronese subalgebra.

Proposition 4.9. Every finitely presented module over a universally coherent algebra has
rational Hilbert series.

Proof. Let R be a universally coherent algebra. Since every finitely generated id&al in
is a member of a coherent family, it has rational Hilbert series by Theorem 4.5, as well as
the algebrar itself.

Let M be a finitely presentet-module, and let

O-K—-F—->M-—>0

be its finite presentation with freE. SinceM (z) = F(z) — K (z), it is sufficient to show
that the finitely generated submodweof a free moduler” has rational Hilbert series.

Letd =m(K), and letKk = L 4+ xR, where deg = d. By the induction in the number
of generators ok, we can assume thét(z) is rational.

LetJ = (x : L). SinceRr is coherent, this ideal is finitely generated, therefore, its Hilbert
series is rational. The exact triple

O0—-L—-K—R/J[-d]—0

gives the formulaK (z) = L(z) + z%(R(z) — J(z)). ThusK (z) is rational. O
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4.4, Examples: monomial algebras and their generalizations

Universal coherence is the strongest property among all considered above. It is a fortu-
nate surprise that some interesting classes of noncommutative algebras are indeed univer-
sally coherent.

All finitely presented algebras whose relations m@nomialon generators are univer-
sally coherent (see below). It is an important point in noncommutative computer algebra
that many properties of finitely presented monomial algebras are inherited by the alge-
bras with finite Groebner bases (for example, they have finite rate, and quadratic ones are
necessary Koszul). However, the latter are not in general coherent, see examples in [30];
the reason is that while the algebra itself has finite Groebner basis, a finitely generated
one-sided ideal in it sometimes can have only an infinite one (in contrast to the monomial
case [29, Theorem 1]). That is why a new class of algebras between these two has been
introduced [30], so-calledlgebras with--processing

In general, these algebras are not assumed to be graded but still finitely generated. Let
A be a quotient algebra of a free algelitdy a two-sided ideal with a Groebner basis
G ={g1,...,gs}. For every elemenf € F, there is a well-defined normal fori( f) of
f with respect taG [37, Section 2.3].

The algebra is calledalgebra ofr-processingor somer > 0, if for any pairp,q € F
of normal monomials, wherg = g1¢2, degq1 < r, we have

N(pg) = N(pq1)qz.

The simplest example is an algebawhose relations are monomials of degree at most
r+1.

A simple sufficient condition for an algebra to have this property is as follows. Consider
a graphI” with s vertices marked by, ..., g such that an arrovg; — g; exists iff
there is an overlap between angnleadingterm of g; andleadingterm of g;. If I" is
acyclic, thenA is an algebra withr-processing for some. The simplest case is when the
monomials in the decompositions of the relations of the algebra do not overlap each other.
See [30] for other sufficient conditions and for a way how to calculate the numfmer
givenr.

The main property of algebras with-processing is that every finitely generated
right ideal in such algebra has finite Groebner basis. In the case of standard degree-
lexicographical order on monomials, the degrees of its elements do not exc¢éed r.
Moreover, the degrees of relations bflo not exceed the number(7) + 2r — 1; in par-
ticular, they are coherent. Therefore, we have

Proposition 4.10. Let R be a connected algebra with-processing(with a degree-
lexicorgaphical order on monomiglsThenD (d) < d + 2r. In particular, it is universally
coherent.

For example, any algebra with 1-processing is universally Koszul (algebras with 1-
processing were separately considered in [26]). So, all quadratic monomial algebras are
universally Koszul (unlike the commutative case, see [15]).
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