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INTRODUCTION

The Chekanov theorem [8] generalizes the classical Lyusternik—-Shnirel’'man and Morse theorems
concerning critical points of a smooth function on a closed manifold. A Legendrian submanifold A
of the space of 1-jets of the functions on a manifold M defines a many-valued function whose graph
is the projection of A in J°M = M x R. The Chekanov theorem asserts that if A is homotopic to
the 1-graph of a smooth function in the class of embedded Legendrian manifolds, then such a graph
of a many-valued function must have a lot of points (their number is determined by the topology
of M) at which the tangent plane to the graph is parallel to M x 0. '

In the present paper a similar estimate is proved for a wider class of Legendrian manifolds.
We consider Legendrian manifolds which are homotopic (in the class of embedded Legendrian
manifolds) to Legendrian manifolds specified by generating families. Another generalization of the -
Chekanov theorem can be found in [13] (see also [10, 12, 17]).

As in [13], the proposed generalization of the Chekanov theorem is applied to investigating the
wave front geometry. An immersed manifold M in R™ determines a Legendrian submanifold in
the space ST*R™ of the spherization of the cotangent bundle of R™ which can be defined by a
generating family. The explicit form of the generating family makes it possible to obtain lower-
bound estimates for the number of diameters (the diameter of M is a segment connecting different
points of M and orthogonal to M at its endpoints) of the immersed manifolds M. The estimates
obtained are stronger than those in [16]. It is proved that the number of diameters (counted with
the multiplicities) is minorated by }(B? + (dim M — 1)B), where B = ¥ dim H.(M, Z,).

The problem of diameters (double normals) of a generic immersed submanifold in an Euclidean
space was considered by Takens and White in [16]. It was proved that the number of diameters of

a closed manifold M* of dimension k embedded in an Euclidean space is at least

s (4] [554] [2424).
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Here, d; = dim H;(M* x M*, A; K), A is the diagonal in M* x M*, K is the field of coefficients,
and [a] is the smallest integer no less than a. The Takens-White estimate satisfies the inequalities

% (Bk - Bx) + 2k > TW(M* K) > %(B% ~ Bxk).

Let us compare our estimate with that obtained by Takens and White. For an immersed
oriented surface of genus g we estimate the diameters by the number 2g% + 5g + 3, while the
Takens-White estimate (for embeddings) gives 2g% + 3g + 3. For example, for an immersion of
two-dimensional torus in an Euclidean space our formula guarantees at least 10 diameters counted
with their multiplicities, while the Takens—White estimate (for embeddings) guarantees no more
than 8. For two-dimensional torus our estimate is sharp and reached in the class of embeddings of
torus in three-dimensional space. For M = S* x S™ we guarantee 2(n + k) + 6 diameters, and this
estimate is sharp. For instance, for S7 x S7 our formula gives 34 diameters, while the Takens-White
estimate provides only 20.

The generalization of the Chekanov theorem makes it possible to extend the estimates to a
wider class of hypersurfaces in R™, namely, wave fronts obtained from a hypersurface M in R™ by
means of a deformation without (dangerous) selfcontacts.

In Sec. 1 the generalization of the Chekanov theorem is proved. In Sec. 2 the number of self-
intersection points of the projection in 7* M of a Legendrian submanifold (of the class considered)
of the space J!M is estimated. In Sec. 3 the number of diameters of an immersed submanifold is
estimated. In Sec. 4 the estimates obtained in Sec. 3 are extended to wave fronts. In Sec. 5 the
accuracy of the estimates in Sec. 3 and Sec. 4 is discussed.

In this paper the results announced in [14, 15] are proved.

1. GENERALIZATION OF THE CHEKANOV THEOREM.
CRITICAL POINTS OF QUASIFUNCTIONS

1.1. Formulation of the Basic Theorem. Let p: E — M be a bundle. The generic
function h on E determines a Legendrian manifold in the space J!M of 1-jets of the functions on
a manifold M. The manifold of critical points along the fiber can naturally be mapped into J! M
(the differential & “along the base” which is well-posed in the critical point of the restriction of the
function k along the fiber and the value of the function h are related to the critical point). The
pairs obtained form the Legendrian manifold A C J! M.

Definition 1.1. A Legendrian manifold homotopic to A in J'M in the class of Legendrian
embeddings is said to be an E—quasifunction.

Definition 1.2. Critical points of the Legendrian manifold A in J'M are such points of A
whose images belong to the zero section under the natural mapping pap : J'M — T*M. Critical
points correspond to the points of the front (graph of the F-quasifunction) at which the tangent

plane is parallel to M x 0. We will call a critical point nondegenerate if par(A) is transversal to the
zero section at the image of the critical point. We now formulate the basic theorem.

Theorem 1.1. Suppose A is a many-valued E-quasifunction on a closed manifold M and the
bundle fiber E — M is compact. Then the number of critical points of A is at least
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(a) dfig (b;(E) + 2¢i(E)), where b;(F) = dim H;(E,R) and ¢;(M) is the minimum number of
generators of the group Tors H;(E, Z), if the critical points of A are not degenerate;

(b) S b;(E, F), F is the field, if the critical points of A are not degenerate;

(c) cl(E, A)+ 1. Here cl(E, A) is the cohomology length of the manifold E with coefficients in
a commutative ring A (see [4]).

Global properties of manifolds and symplectomorphisms given by a generating family were

studied, for instance, in [10, 18].

1.2. Necessary Notation. We denote the canonical mapping 7*B — B by mp and the
projection J!B — T*B (forgetting the value) by pp.

Suppose p : E — M is a smooth bundle with the fiber W, Eq C T*FE is a subbundle of the
bundle 7 : T*E — E formed by covectors whose restriction to the tangent space of the fiber is
equal to zero, and =, is the projection of Ep in E. We denote the natural mapping of the bundle
Eq over T*M (Ey x R over J'M) by po (p1).

The described mappings can be naturally unified in the commutative diagram

T*ExR=J'E —5—T"E
/ R
EO X R PEq Eo - F
Pl\ Po l Pl
T"MxR=J'M PM "M TN M

1.3. Definition of the Generating Family. Suppose p : E — M is a bundle and F :
E — R is a smooth function such that the intersection of j'F and Ey x R is transversal. Then
A =p, ('F N (E, x R)) is an (immersed) Legendrian manifold. When the transversality condition
is satisfied, F is called a generating family of the Legendrian manifold A. We then say that a
generating family F: E - R is a stabilization of a generating family F : £ — R, if E=ExRVN
and F = F +’Q, where @ is a nondegenerate quadratic form on RY. A generating family F:
E x RN — R will be called quadratic at infinity if it is the sum of a quadratic form on each fiber
R" and a function with bounded differential. We will sometimes denote the generating family F
by F(z,q), where g is a point of M and z is a point of the fiber of the bundle p.

1.4. Proof of Theorem 1.1. A function defined on the space of a vector bundle will be
called quadratic at infinity if this function is the sum of a nondegenerate quadratic form along
the fiber and a function with bounded differential. Then Theorem 1.1 directly follows from the
following assertions.

Theorem 1.2. Suppose M is a closed manifold and p : E — M is a bundle with a compact
fiber. Then an E-quasifunction A on M can be defined by the generating family F : ExRN(A) 5 R
quadratic at infinity.
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Theorem 1.3. Suppose V is a vector bundle over a closed manifold E and f:V — R is a
function quadratic at infinity. Then the number of the critical points of the function f is at least

dim B
(a) X (b:(E)+ 2¢:(M)) if all the critical points are Morse;

1=

(b) X 0;(E, F) if all the critical points are Morse and F 1is a field of coefficients;

(c) cl(E,A)+ 1.

Theorem 1.3 can be deduced from the well-known result obtained by Conley and Zehnder [11]
(in [11] this theorem was proved for E = T, but the proof is valid in the general case). Theorem 1.2
can conveniently be proved in the following formulation.

Theorem 1.4. Suppose Ao C J'M is a Legendrian manifold defined by a generating family
F : E — R and the fiber of the bundle E is compact.. Let {Gt}te[O,l] be a smooth family of

contactomorphisms of the space J'M, G° = id. Then A; = G*(Ao) can be defined by the generating

family F:ExRV SR quadratic at infinity.

oG~

Proof. Suppose k; is the contact Hamiltonian of the field v, = %= . Let us consider

t=1

K; = pik: : Fo x R = R and extend K, to a function Iz : J'E = R. Then Ey x R is invariant

with respect to the flow Gt given by the contact Hamiltonian K,
P1(Gi(7'F)) N (Eo x R) = G*(Ao) = A, ()

and @‘(j‘F) intersects Ep x R transversally. The function K; can be improved so that it becomes
finite, and relation () and the transversality condition are satisfied.

We can apply the Chekanov theorem ([8], Theorem 3.1) to the manifold j!F and the flow
Gt determined by the contact Hamiltonian E,. The function E, should be improved since the
Chekanov theorem is valid for flows with compact support.

Consequently, the manifold Gt(j!F) is defined by a generating family F, : E x RN() 5 R
quadratic at infinity. Accordingly, G*(Ao) is also defined by the generating family F]. The proof is
completed.

Remark 1.1. We can choose the number N (t) to be independent of ¢ € [0,1].

A Legendrian manifold A; C J' M will be called a good E-quasifunction on M if A is homotopic
in the class of Legendrian embeddings to a Legendrian manifold A defined by a generating family
F: E x RY 5 R quadratic at infinity.

Remark 1.2. Theorems 1.1 and 1.2 can be extended to good E-quasifunctions.

Example 1.1. Let us consider a Legendrian manifold A of the space of 1-jets of the functions
on a circle whose projections im 7*S! and J°S! are shown in Fig. 1. This Legendrian manifold
can readily be defined by a generating family with a two-dimensional torus as the total space. All
the Legendrian manifolds homotopic to this manifold in the class of Legendrian embeddings have
at least four critical points with multiplicities. In the process of homotopy it is sufficient to have
a single selfintersection and we can obtain a Legendrian manifold A; homotopic (in the class of
Legendrian embeddings) to a manifold A; without critical points (projections of A, are shown in
Fig. 2).
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T*S!1 Jos!

S1 St

Fig. 1. Projections of $* x S!-quasifunction

T*51 Jos!

Fig. 2. Projections of a nonquasifunction

S1 St

2. LAGRANGIAN SELFINTERSECTIONS

Suppose A is a Legendrian submanifold of J'M, then pps(A) is an immersed Lagrangian sub-
manifold of T*M. If A is defined by a generating family F' : E - R (F is a bundle over M), then
the number of selfintersection points ppr(A) can be estimated in terms of the Betti numbers of A

and E.
We need the following modification of Theorem 1.3.

Theorem 2.1. Suppose V is the total space of a vector bundle over a closed manifold M,
g :V = R is a function quadratic at infinity, L is a Bott manifold of the function g lying at the
level g = C, and the other critical points of g are Morse points. Then the number of Morse critical
points of g is at least |3 b;(M, Z5) - 3 b;(L, Z2)|.

Proof. Without loss of generality, we can assume that all the critical values of g are different.
Let us consider the function

aft) = dim H.({g < C +e+t},{g < C - t}, Z)

for a sufficiently small € at ¢t > 0.

From the Morse theory (see, e.g., [5]) it follows that a(t) is changed by +1 only when C'+¢ + ¢
or C' — t pass through critical values. Consequently, the number of the critical points is no less
than [a(t;) — a(tp)], where positive numbers ¢; and tp are sufficiently large and sufficiently small,
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respectively. The bundle V' can be decomposed into the sum of the bundles V, and V_, and
the function g can be represented as the sum of a function on V, (a fiberwise positively defined
quadratic form), a function on V_ (a fiberwise negatively defined quadratic form), and a function
on V' with bounded differential. From the Morse theory it follows that a(t,) is equal to the
dimension of the space of Z;-homologies of the Thom space of the bundle V_. From the Thom
isomorphism we obtain that a(t;) = ¥ b:(M, Z2). From the Bott theorem (see [9]) it follows that
a(to) = ¥ bi(L, Z;). The theorem is proved.

Let us consider a bundle E? — M induced by the diagonal embedding M in M X M from the
bundle E x E — M x M. The bundle fiber E? is the pullback of the bundle fiber E.

Theorem 2.2. Suppose A C J'M is an E-quasifunction and E — M is a bundle with a
compact fiber. Then the number of selfintersection poinis (counted with the multiplicities) of the

projection pag(A) is at least 1 | b;(E?, Z3) — T bi(A, Z2)|.

Proof. Asfollows from Theorem 1.2, A can be defined by the generating family F': ExRYSR
quadratic at infinity. We consider the buhdle E — M induced by the diagonal embedding of M
in M x M from the bundle (E x R¥) x (E x R¥) - M x M. The fiber E is the pullback of
the bundle fiber E multiplied by RY. On E we define the function F’(z, ¥,9) = F(z,9) — F(y,9),
where z and y are points of the bundle fiber E x RY — M, ¢ € M. The selfintersection points of

the projection are in one-to-one correspondence with the critical points of the function F:ESR
with a positive critical value.

Lemma 2.1. Suppose F\(z,q) and F3(y, q) are generating families of a Legendrian manifold
A C J'M. Then critical points of the function F\(z,q) — Fa(y,q) with zero critical value form a
Bott manifold diffeomorphic to A.

Proof. The assertion that the manifold of critical points with zero critical value is diffeo-
morphic to the manifold A is obvious. The assertion that this manifold is a Bott one is local.
We will prove this assertion. Suppose g,(z, q) is a generating family of a germ of the Legendrian
manifold A. The generating family g.(z, z, ¢) = 91(z, ¢) + Q(z) will be called the stabilization of g
if Q is a nondegenerate quadratic form. Two generating families g,(z, ¢) and g2(z, q) of the germ
of the Legendrian manifold A are fiber equivalent if g1 (z, ¢) = g2(h(z, ¢), ), (2,9) = (h(z,q9),9) is
a diffeomorphism. Two generating families will be called stably fiber equivalent if these families
become equivalent after stabilization. The assertion that the generating families F; and F3 are
of the Bott type remains valid when F, and F, are replaced by stably fiber equivalent generating
families. According to [3], if g, and g, are generating families of the same germ of a Legendrian
manifold, then g, is stably fibered equivalently to g,. As F; or F; we take the following generating
family. Suppose that at a considered point y the dimension of the kernel of the projection par(A)
in M is equal to k. Then there exist such canonical coordinates qy,..., ¢n, P1,. ., Pn in T*M that

the kernel of the projection coincides with <(—9%, ey 3—;97——> and the manifold pps(A) at the point
1 k
pm(y) is tangent to <——3—, ey i, 9 yeeoy 9 > Then the germ of A can be defined by the
Op1 Opr’ Opr+1 Opn

k
generating family Y z;4:+S5(21,..., Tk, Gk+1, - - -, @n), Where S = C+o(|z, q|%). For this generating
i=1 =
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family we can readily show that the manifold is of the Bott type. The lemma is proved.

Let us continue the proof of Theorem 2.2. The points with zero critical value form a Bott
manifold which is diffeomorphic to A according to Lemma 2.1. In the general position all the
critical points of F with nonzero critical value are Morse points. The number of the selfintersection
points is half the number of the Morse critical points. By virtue of Theorem 2.1, we obtain the
estimate required. The proof is complete.

From Theorem 2.2 the following corollary is valid.

Corollary 2.1. Let E = M x W be a trivial bundle and A an E-quasifunction. Then the
number of selfintersection points of the projection A in T*M (in the general position) is at least

2
1 X 6:(M) (Zo:(W))* = T bi(A)). |

Example 2.1. Let us consider a Legendrian manifold A of the space of 1-jets of the functions
on a circle given as an example in the previous section. The projections of all the Legendrian knots
from a component containing A in T*S! have at least three selfintersection points counted with
their multiplicities. In the process of homotopy it is sufficient to have a single selfintersection and
we can obtain a Legendrian manifold A; homotopic (in the class of Legendrian embeddings) to a

manifold A; which has a single selfintersection point of the projection in T*S* (see Fig. 2).

3. MINORATION OF THE NUMBER OF DIAMETERS OF MANIFOLDS
IMMERSED IN RY

Suppose f is an immersion of a manifold M™ in R™*, A segment connecting two different
points f(2) and f(y) of the immersion and perpendicular to the tangent planes at these points is
said to be the diameter of an immersed manifold f(M™). We formulate the principal result.

Theorem 3.1. Suppose M™ is a closed manifold of dimension n and B = ) dimH.(M, Z,).

Then for a generic immersion the number of diameters of M™ in R™** is at least L(B?+(n—1)B).

In all particular examples our estimate is no worse than that in [16]. We give some corollaries
of Theorem 3.1.
Corollary 3.1. For generic immersion of a manifold M in R™ the number D of diameters is

at least
(@QM=S*",D>n+1;
(b) M =T", D> 2! } (n-1)2""}
(c) M= Sg (oriented surface of genus g), D > 2g% + 5g + 3;
(d) M =RP™, D >n?+n.
The proof is the substitution of Theorem 3.1 to the formula.

Remark 3.1. The condition of genericity in Theorem 3.1 and below means that all the critical
points of functions considered are Morse and (self)intersections are transversal. We can show that

this is actually the condition of the general position (cf. [16]).

Before proving Theorem 3.1 we formulate certain convenient assertions.
Consider a function F : S"t*~1 x M x M — R, F(z,£,&2) = (z, f(€1) — f(£2)). Here S7tF-1
is the sphere of radius 1 in R"** with its center at the origin, and (-, -) is a scalar product in Rk,
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Lemma 3.1. Suppose f is a generic immersion and the point (z’,£],£3) 18 critical for the
function F = (=, f(&1) — f(&2)). If f(&1) # f(&3), then the segment [f(£1), f(£3)] is a diameter and
F(z',£1,65) #0.

Proof. Differentiating F' with respect to &(i = 1,2) at the point (z/,£],£3), we obtain
2’ L fu(TeM™). Consequently, f(&1) # f(&3) since the selfintersection is transversal. On the other

hand, differentiating with respect to z, we obtain that z’ is proportional to f(£]) — f(£3). Hence,
[£(&1), F(&5)] is a diameter. Since z’ is proportional to f(£]) — f(&5), we have F(z',£1,£5) # 0.

Thus, we construct a mapping of the set of critical points of F into diameters. We can readily
verify that this is the mapping surjective and that each diameter corresponds to exactly four critical
points of F (in the case of generic immersion). Namely, the following assertion is valid.

Assertion 3.1. Suppose that [f(£1), f(£3)] is a diameter of the manifold f(M™). Then
(iﬂ—;{%;:_;g?ﬂ’ ’1,55) and (in%(%g—:j;%%r,fé,ﬂ) are critical points of the function F =
(2, £(§1) — f(£2))-

The following computation of homologies is the key result for establishing the estimate of
Theorem 3.1.

Lemma 3,2. Suppose M is a closed manifold and [ is an involution on § NxMxM, l(z,y,2z) =
(==,2,y). Then the sum of the Betti numbers of the factor space SN x M x M with respect to the
action | is equal to B2 + NB.

Proof. Suppose (') is a cell division of M, ¢°, 3°, o', 3',..., oV, 3V is the standard cell
division of SV invariant with respect to the antipodal involution, and o*, * are the cells of di-

mension i. Then S¥ x M x M is decomposed into the cells o* x o x &’ and * x a* x a?. The
involution [ transfers the cell o* x af x a? to the cell 3% x a? x a'. This cell division S¥ x M x M

induces a cell division in SV x M x M /z since it is invariant with respect to the involution /. We

denote the corresponding complex of cell chains (with Zj-coeficients) of the space S x M x M, /z

by C.(SN x M x M/l).

Suppose 0 is a boundary operator in C.(M), 8, is a boundary operator in C.(M x M), and
82 is a boundary operator in C,(S¥ x M x M /l ). We identify (formally) the cells SN x M x M /l
with the cells 0* x o x a/. Then 3:(c* x o' x a?) = ¥(8, (& x o)) + o* (& x & + &7 x &)
(we assume that o~ = 0).

Let us consider the case 8 = 0. Here the complex of the cell chains C.(SV x M x M /z y Z3)

is graded by the dimension of the cell in the sphere S¥, since from 8 = 0 there follows 8; = 0.
We denote homologies with respect to this graduation by Hi. We now calculate the dimension

of Hi. In this graduation the complex C.(S" x M x M/l) is as follows: for any k¥, 0 < k < N,

Ce(SN xMx M /l y Zy) is isomorphic to C.(M x M, Z;), and the boundary operator is the mapping
of symmetrization s, s(a* ® a‘) =a'®a’ + o’ ® a'. We have dimkers = 3(B% 4+ B), dimim s =
3(B*~B). Hy = kers, consequently dimHy = 1(B?+ B). Hi = kers/,, for 0 < k < N,
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consequently dimH, = Bfor0 < k < N. Hy = C.(M, Z;) ® C.(M, Z)/,, ,, consequently dim Hy =

L(B? + B). (From 8 = 0 it follows that dim C.(M, Z;) ® C.(M, Z,) ~ H.(M, Z;) ® H.(M, Z,).)
We now consider the case 8 # 0. We reduce it to the case § = 0. Using the given cell

division of M, we construct a cell space M’ such that the complexes C.(SY x M x M /l ,Z3) and

Cu(SY x M x M’/ ,25) are isomorphic and dim H.(SY x M’ x M’/ ,Z;) = B® + NB. This
suggests that if @ # 0, the lemma is valid. Any complex with the coefficients in a field can be
decomposed into the sum of a (trivial) complex of homologies and two-term exact complexes.

We now consider the space M” which is the union of spheres (wedge product) in which
the number of the spheres of dimension k is equal to dim Hx(M, Z;). M’ is the wedge of M”

and the disks corresponding to short exact complexes. Then the spaces SV x M’ x M,/z and
SN x M" x M"/l are homotopically equivalent since S¥ x M" x M”/l is the strong deformation re-

tract of (SN x M’ x M’)/-l, consequently, their homologies are identical. The case SV x M x M”/l

is considered for § = 0. The lemma is proved.

Lemma 3.3. Suppose p : E — B is a bundle with the fiber RP* (S*). Then Y. b;(E, Z;) <
(k+1) X bi(B, Z2) (L b:(E, Z2) < 2 6i(B, Z2)).

Proof. Let us consider the case k > 0. Here the bundle with the fiber RP* (S%) is Z,-
homologically simple (see [6]), since the homologies of fiber in any dimension are, at most, one-
dimensional. Consequently, the spectral sequence (with the coefficients from Z) calculates the
homologies of the total space E. The dimension of the term E of this spectral sequence is equal
to (k+1) Y b;(B,Z2) (2% b;(B,Z;)). The dimension of homologies of the total space E is not
greater than the dimension of the term E; of the spectral sequence.

For k = 0 (the fiber S°) the Smith theory (see [7]) gives the estimate required. The proof is
completed. -

Proof of Theorem 3.1. The function F(z,¢&,§?) is invariant with respect to the action
of the involution on S™*=1 x M™ x M™, (z,£,£2) = (—2,£2,€1). The involution acts without
fixed points, consequently, the quotient set of this involution is a smooth manifold (we denote

this manifold as S™tF—1 x M™ x M™ . On the quotient the function F determines a smooth

Zz)
function F.

Lemma 3.4. For a generic immersion the critical points of the function F (function F) with
zero critical value form a Bott manifold diffeomorphic to the projectivization (spherization) of the
normal bundle of a manifold.

Remark 3.2. Here, the genericity condition is the transversality of selfintersection.

Proof of Lemma 3.4. From Lemma 3.3 it follows that the critical points with zero
critical value of the function F are contained in S™%=1 x A ¢ §"Hk=1 x M™ x M™ (A is the
diagonal in M™ x M™). These points form a Bott manifold diffeomorphic to the spherization of
the normal bundle. A point (z,§,§) is critical if and only if 2 1 f.(T¢(M™)). The fact that this
manifold is a Bott one can be verified in the local coordinates. The lemma is proved.

We now continue the proof of the theorem.
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From 3.3 and 3.4, it follows that the number of diameters is not less than half the number of
critical points of the function F with nonzero critical value. The critical points of the function F
with zero critical value form a Bott manifold diffeomorphic to Pv(M™), which is the projectivization
of the normal bundle (see Lemma 3.4). Thus, from the Morse theory [4] it follows that for a Bott
function on a closed manifold the sum of the Betti numbers (with Z;-coefficients) of all Bott
manifolds is no less than the sum of the Betti numbers (with Zs-coefficients) of the manifold.

Accordingly,
2D+ b(Pr(M™),Z3) > > b; (s"+’°‘1 x M™ x M" Z, ,zz) ,

where D is the number of diameters.
We set B =3 b;(M™, Z,). From Lemma 3.2 it follows that

3 b <S"+'°-l X M™ x M™ ,zz) =B’ +(n+k-1)B.

Z,
Lemma 3.3 implies that Y b;(Pv(M™), Z,) < kB. Thus, D > %(B2 + (k — 1) B), which proves the

theorem.

4. DIAMETERS OF WAVE FRONTS

The aim of this section is to extend the domain of application of the estimates obtained in
Sec. 3. Our estimates of the number of diameters of smooth hypersurfaces are conserved under the
deformation of the hypersurfaces in the wave front class. For this it is necessary to require that the
tyi;e of the corresponding Legendrian knot do not change under deformation.

We recall some standard facts of contact geometry.

Suppose B is a smooth manifold. A (cooriented) hyperplane in the tangent space at a given’
point is called a (cooriented) contact element of the manifold B é.ppliéd at this point. All the
(cooriented) contact elements of B form the space PT*B (ST*B) of a projectivized cotangent
bundle (spherization of the cotangent bundle). The space PT*B (ST*B) has a contact structure .
defined canonically (see [2]).

An immersed submanifold X with transversal selfintersections in B defines a Legendrian sub-
manifold P(X) C PT*B (S(X) C ST*B) representing a set of (cooriented) contact elements
tangent to X (see [2]).

A (cooriented) wave front in B is the projection of a Legendrian submanifold PT*B (ST*B)
in B. For a generic Legendrian submanifold in PT*B (ST*B) its (cooriented) wave front in B is a
singular stratified (cooriented) hypersurface which at any point has a (cooriented) tangent plane.
A generic Legendrian submanifold in PT*B (ST*B) can be uniquely restored from its wave front
in B. We will identify a Legendrian submanifold PT*B (ST*B) with its wave front.

Consider a closed immersed submanifold L with transversal selfintersections in the Euclidean
space R™t1,

Definition 4.1. A wave front X is called a Chekanov wave front of type L if ¥ is a wave front
of a Legendrian submanifold W of the space PT*R™*!, where W is Legendrian isotopic to the

manifold P(L) C PT*R™!,
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A segment connecting two different points of the wave front and perpendicular to it at its

endpoints is said to be a diameter of the wave front in R™*!,

Theorem 4.1. The number of diameters of a Chekanov wave front of type L*, counted with

the multiplicities, is at least %(B2 - B) + %ﬂ.

Before proving Theorem 4.1 we formulate the following assertion (see [1]).

Proposition 4.1. The space ST*R™! is contactomorphic to J'S™.
Let us give an idea of the proof. We identify S™ with the standard unit sphere ||z]| = 1 in R™!

and the cotangent vector to S with a vector perpendicular to # (using the metric). Then to a
point (u,p, g) from J1'S™ = R x T*S™ we relate a (cooriented) contact element parallel to z at
the point ug + p. We obtain a mapping from J!S™ onto ST*R™!. We can verify that this is
a contactomorphism. In what follows, using the contactomorphism, we will identify J!S™ with
ST*R™! when necessary.

Lemma 4.1. Suppose X is an immersed submanifold with transversal selfintersections in
R™1, Then S(X) can be defined by the generating family F : S* x X = R, F(q,z) = (g, ).

Proof. This is an assertion of the support function theory. In the Lagrangian case it can be
found in [3]. .

Lemma 4.1 and Proposition 4.1 give many natural examples of Legendrian submanifolds in

J!S™ defined by generating families.

Proof of Theorem 4.1. A Chekanov wave front & C R™*! of type L* is the projection
in R™! of a Legendrian submanifold A of the space PT*R™*! which is Legendrian isotopic to
P(L*) ¢ PT*R™*'. Consider the natural mapping of “forgeting the coorientation of a contact
element” of the space ST*R™*! in the space PT*R™!. For this mapping the preimage of the
manifold A is a Legendrian submanifold A of space ST*R™*! which is Legendrian isotopic to
S(L*¥) ¢ ST*R™!. According to Theorem 1.2 and Lemma 4.1, the Legendrian manifold A C
ST*R™! = J'$™ can be given by the generating family F(q,¢,2) (g € S™,€ € L,z € RY) which
is quadratic at infinity. '

For a generic Chekanov wave front £ C R™*! of type L* the number of diameters T is equal
just to a quarter of the number of critical points of the function

Fi:S"xLxRY xLxRY 5 R,
FI(Q)£1a21)£2722) = F(Qvglyzl) + F(_’Q1€2122)1
geS®, &elL, zeRY, i=1,2

with nonzero critical value.
According to Lemma 2.1, the manifold of the critical points with zero critical value is a Bott

manifold since the generating family —F(—=z,§, z) = G(z,§, z) defines the same Legendrian sub-
manifold as the generating family F(z, &, 2).
The function F; determines the function F, on the factor S®x L x R¥ x Lx RV according to the

action of the involution [, : {;(q, &1, 21, &2, 22) = (—q, &2, 22,1, 21). Critical points of F form a Bott
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manifold diffeomorphic to L. S" x L x RV x L x RV /I is the vector bundle over S™ x L x Lj
1

and the function F, is quadratic at infinity.
Twice the number 2D of the diameters is equal to the number of the critical points with nonzero

critical value. From Theorem 2.1 it follows that in the generic case
1 n
D> (b (8™ x Lx L, Z2) = 3 bi(L, Za))

Using Lemma 3.2, we obtain the estimate required.

4.1. Passing and Counterpassing Diameters of Cooriented Wave Fronts. Consider
a closed submanifold L with transversal selfintersections in the Euclidean space R™*!.

Definition 4.2. A cooriented wave front ¥ is called a cooriented Chekanov wave front of
type L if ¥ is a cooriented wave front of a Legendrian submanifold which is Legendrian isotopic to
S(L) c ST*R™*1,

A diameter of a cooriented wave front with the coorientations at the endpoints of the same

(opposite) directions will be called a passing (counterpassing) diameter.

Theorem 4.2. The number of passing (resp. counterpassing) diameters of a cooriented Cheka-

nov wave front of type L, counted with the multiplicities, is no less than B? — B (resp. B? + nB).

Proof. A cooriented Chekanov wave front £ C R™*! of type L is the projection of a Leg-
endrian submanifold A C ST*R™! which is Legendrian isotopic to S(L) C ST*R™*!. Passing
diameters of ¥ are in one-to-one correspondence (for a generic wave front X) with the selfintersection
points of Lagrangian manifold ps»(A) C T*S". Legendrian manifold A is an S” x L-quasifunction.
Consequently, we can use the estimate obtained in Corollary 2.1. Thus, the number of passing
diameters of a cooriented Chekanov wave front of type L is at least (2B — 3 b;(S(L)). Applying
Lemma 3.3 to the bundle S(L) — L, we obtain the required estimate of the number of passing

diameters.
The Legendrian manifold A is an S™ x L-quasifunction. Consequently, according to Theorem 1.2,

A is given by generating family F : S™ x L x R¥ — R quadratic at infinity. The number of
counterpassing diameters (for a generic wave front ¥) is twice as large as that of critical points
of the function F; defined in the proof of Theorem 4.1. Generally, all the critical points are
nondegenerate (this is the distinction from Theorem 4.1) and their number can be estimated by
using Morse theory and Lemma 3.2.

Remark 4.1. Cooriented Chekanov wave fronts of type L are cooriented wave fronts obtained
from an equidistant L by homotopy in the wave front class without dangerous selfcontacts.

Remark 4.2. In [13], Ferrand independently considered a similar problem and obtained The-
orem 4.2 in the particular case of L being a point.

Example 4.1. Consider a circle embedded in R3. Its naturally cooriented equidistant is a

cooriented Chekanov wave front of type S!. According to Theorem 4.2, this front has at least
two passing and eight counterpassing diameters. This estimate is sharp, 10 diameters of a two-
dimensional torus are shown in Fig. 3. Note that the image of the cooriented Chekanov wave front

of type S! under the Gaussian mapping is the whole sphere S%, although the degree of the mapping
equals zero.
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z
y y
z z
Fig. 3. The ten diameters of a torus: two of them are vertical,
the other eight are in the plane section

5. SHARPNESS OF THE ESTIMATES OF THE NUMBER
OF WAVE FRONT DIAMETERS

The aim of this section is to discuss the estimates obtained in Secs 4 and 3.
The estimate in Sec. 4 is sharp for the n-dimensional sphere S™ realized by an ellipsoid with

different semiaxes in (n + 1)-dimensional space.
Let us consider the Euclidean space R"***! and the standard sphere S™ of unit radius in

R™! ¢ R™**!, Suppose L is the set of those points of R*t¥+!  the distance from which to S” is

equal to ;. Let L be arbitrarily cooriented.

Assertion 5.1. The manifold L is diffeomorphic to S™ x S* and we can slightly perturb L
and reduce it to the general position so thaththel number of diameters will be equal to 2(n + k) + 6.
Then the numbers of the passing and counterpassing diameters are equal to 2 and 2(n + k) + 4,
respectively.

In order to prove Assertion 5.1 we need the following simple lemma.

Lemma 5.1. Let M be a smooth manifold and F, : M x [0,1) = R be a smooth function on
M x [0,1] such that
(a) a compact submanifold N of the manifold M is the Bott manifold of the function Fy: M—R;

(b) the restriction of the function %I;l o ' M — R on the submanifold N is a function with
nondegenerate critical points whose number is equal to S.

Then there ezists a neighborhood of the submanifold N in the manifold M such that for fairly
small positive € all the critical points of the function F. in this neighborhood are nondegenerate and
their number is equal to S.

Proof of Assertion 5.1. In fact, L is diffeomorphic to S™ x S* since the normal bundle to
S™ is trivial. Consider the function f = ||£; —&:z||? on L x L\ A (A is the diagonal). We describe its
critical points. The critical points of the function f form Bott manifolds which are the manifolds
of oriented diameters.

The manifold of oriented diameters of length % denoted by D 1 is diffeomorphic to S™ x S*,
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The manifold of oriented diameters of length 3 (both ends of the diameter lie on the standard

sphere of radius § in R™*') is diffeomorphic to the sphere S™. We denote this manifold by D 3

The manifold of oriented diameters of length 3 (both ends of the diameter lie on the standard

sphere of radius % in R™*!) is diffeomorphic to the sphere S™. We denote this manifold by D 5

Finally, two manifolds of oriented diameters of length 2 (the first end lies on the standard sphere

of radius 3 (2) in R™! and the second end on the standard sphere of radius 3 (3) in R™*!) are

diffeomorphic to the sphere S™. We denote these manifolds by D, (]_:)2).

The function f has no other critical points. We begin to perturb L.

Step 1. Let ey,..., €ny1, v1,..., V& be an orthonormal basis in R**+1 ¢; ¢ R™! for any
i=1,...,n+1. Consider the map A4 : R™*+! | R 1 A(Y 06,4 T Bv5) = T avei + 3 X805,
where A; are different numbers close to unity. We will describe the Bott manifolds of the function
fF=1A) - A()lI> on Lx L\ A.

The manifolds D%, D%, Dy u D are the Bott ones and do not change. The manifold D% is
split off in k + 1 pairs of Bott manifolds of oriented diameters, each of which is diffeomorphic to
the sphere S™. The manifolds {(A(z + Lv;), A(z - Lv;)), z € S® C R™**1} and {(A(z - }vy),
A(z+3v)), z€S"C RrHEHLY 5 - 1,..., k, of the Bott manifolds of oriented diameters of length

1\21; will be denoted by d»; and Jﬁ, respectively. The manifolds {(3z, 2z), z € S* ¢ R™***1} and
2 2

{(3z,3z), z € S® C R"***+1} of the manifolds of oriented diameters of length } will be denoted

by & L and d 1 respectively. )
Thus, the critical points of the function ||A(&;) — A(£2)]|? form the Bott manifolds Ds, D3, D,
f=1,...,k.

D%, di, di, and 2k the manifolds a'%j_, :\21_ J

L,
2

o=

Step 2. Let us perturb A(L). We would like to construct the vector field v in R****! and find
out how many (oriented) diameters the manifold g*(A(L)) will have for small positive ¢ (here g is
a transformation of the phase flow of the field v in a time [0, t]). The difficulty lies in the fact that
up to now the ends of different diameters coincide.

Let us consider the function f, = ||g*(A(£1)) — 9*(A(£2))]|?. In order to find out the number of

the critical points of this function at small ¢ we must investigate the function %% on the Bott

manifolds of the function fy. We can readily verify that

0f:
8_); o (&1,&2) = 2(v(A(&1)) — v(A(£2)), A(&r)) — A(&2))- (+%)
Construction of the vector field v. Let (a1,...,an41,01,...,Bk) be coordinates in Rk

with the above-mentioned basis e;, v;, and S™ C R™*! is the standard sphere of radius 1 with
center at the point 0.
Let v be a vector field in R**+! guch that
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(a) on the spheres {z + 1\4-"10,,., z € S"} this field is equal to &; = 0, Bj =0, B =1,
i:L“.n+1j=1”.k—h

(b) on the spheres {z — 2mv,,, z € S™} this field is equal to zero;

(c) on the sphere {4—3, z € S™} this field is equal to &; = pic, ﬂj =0,i=1,...,n+1,
i=1,...,k;

(d) on the sphere {%:c, z € S™} this field is equal to &; = piay + ¢, BJ- =0,i=1,...,n+1,
i=1,...,k, cf—}—...—}—cﬁ“ =1.

the function %It—o has ezactly two nondegenerate

Lemma 5.2. On the manifold d»; (d o
2

)
2
critical points, i = 1,..., k.

Proof.  We identify each diameter of the manifold of oriented diameters d»; (d »;) with the
2

2

projection of its beginning in R™*!. For this map dy; (Jiz.) is diffeomorphically mapped onto

2 2

the sphere S™ and the function %—ft‘ —o will coincide with the function 2ay, ;. On the sphere the
nonzero linear function has two nondegenerate critical points. The proof is completed.

Lemma 5.3. If the numbers u; are different, then the function %{‘_Imo has ezactly 2n + 2
nondegenerate critical points on the manifold Di (D; ).

Proof. We will identify the point z of the sphere S™ with the point ( z, ——:c) of the man-
ifold Di (with the point (32, —2z) of the manifold Ds, respectively). By virtue of relation (%)

%ftilt_ (z) = 10(z, P,( ' = 6(z, P.(z)), respectively), where P, is an operator which

transfers (ay, ..., a,,+1) (,uloq, .. .,u,,+1a,,+1). Thus, in such an identification, on the manifold

Ds (Ds3) the function 94 is a restriction of a quadratic form to the sphere. On the sphere S™
2 2 9t |4=0

the quadratic form with different eigenvalues has exactly (2n + 2) nondegenerate critical points.

The proof is completed.

ofe

Lemma 5.4. If the numbers p; are fairly small, then the function o has ezactly two

nondegenerate critical points on each manifold Dy, D, d1, and d L
2

Proof. Let us consider the manifold D; = {(3z,3z,2 € S”}. Denote a vector with the

coordinates (¢y,...,¢nt1,0,...,0) by C (here, ¢y, ..., cnt1 are the numbers involved in constructing

%], (G2 32) = 232 - 32, 3Ru(z) ~ (3ule) + O)) =

the field v). According to relation (), Wlt—o
(=, %P,‘(:c) — C)). Consequently, for small g; the function _aélmo differs only slightly from the

restriction of the nonzero linear function to a sphere. The lemma is proved.

Thus, from Lemma 5.1 and Lemmas 5.2, 5.3, and 5.4 it follows that the manifold g*(A(L))
(at small positive t) has exactly 4(n + k) + 12 oriented diameters. It is easy to see that four of
them correspond to passing diameters, and the other 4(n + k) + 8 to counterpassing diameters.

Assertion 5.1 is proved.
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Our estimate of the number of diameters is sharp for an oriented surface of genus g embedded in
three-dimensional space. Let us construct an example. Consider the three-dimensional Euclidean
space R® with coordinates (z,y, z). In the plane R? with coordinates (z,y) we consider g noninter-
secting circles lying inside a (g +1)th circle so that none of the first g circles lies inside another. Let
the centers of these circles be different. We perturb each of these (g+1) circles a little, transforming
it in an ellipse. The curve obtained in R? will be denoted L,. L, is the boundary of a disc with
g holes D, C R%. There is a function f : R? — R such that f is positive inside D, and negative
in R?\ D,. Thus, the function f is equal to zero on L,. Moreover, we require that the function
f have exactly g + 1 Morse critical points each of which lies inside D,. It is easy to show that a
function satisfying these conditions does exist. Let ¢ be positive. Then the surface in R® given by

the equation 22 = ¢ f(z,y) is a smooth oriented embedded surface of genus g.

Assertion 5.2. For a fairly small positive € the surface 22 = ¢ f(z,y) has ezactly 2g* +5g +3
diameters. Ezactly g + 1 of them are parallel to the azis z and projected along the z azis to critical
points of the function f, while the other 2g+4g+ 2 diameters are diameters of the curve L,. For a

fairly small positive & the surface 2% = e f(z,y) is a generic surface (with respect to the diameters).

We do not prove Assertion 5.2 here.
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