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Abstract

We study the question when a ∗-autonomous Mix-category has a rep-
resentation as a ∗-autonomous Mix-subcategory of a compact one. We
define certain partial trace-like operation on morphisms of a Mix-category,
which we call a mixed trace, and show that any structure preserving em-
bedding of a Mix-category into a compact one induces a mixed trace on
the former. We also show that, conversely, if a Mix-category K has a
mixed trace, then we can construct a compact category and structure
preserving embedding of K into it, which induces the same mixed trace.

Finally, we find a specific condition expressed in terms of interaction
of Mix- and coevaluation maps on a Mix-category K, which is necessary
and sufficient for a structure preserving embedding of K into a compact
one to exist. When this condition is satisfied, we construct a “free” or
“minimal” mixed trace on K directly from the Mix-category structure,
which gives us also a “free” compactification of K.

1 Introduction

∗-Autonomous categories, monoidal categories with a particularly well-behaved
duality, introduced by Barr [3] are known in logic and computer science litera-
ture as models of linear logic, but, of course, they deserve interest on their own
as well.

Compact (or compact closed) categories, are a particular subclass of ∗-
autonomous categories, in which duality preserves monoidal structure. (The
archetypical example is the category of finite-dimensional vector spaces, with
monoidal structure given by the tensor product, and duality, the usual vector
spaces duality.) They are studied a lot for their own sake (i.e. without relation
to general ∗-autonomous ones) and appear in very different contexts, such as
categorical quantum mechanics, group representations, topology of manifolds
and knot theory, theoretical computer science etc.
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In logic and computer science literature, compact categories are particularly
known for the categorical trace, a natural operation on morphisms, sending the
map

f : A⊗ U → B ⊗ U

to its trace
Tr(f) : A→ B.

This operation satisfies a number of conditions and is modeled after the usual
linear operator trace in finite-dimensional vector spaces. In fact, existence of
categorical trace is a characteristic feature of compact categories [12]. In the-
oretical computer science, trace, in particular, is used to model computational
processes, feedback, cut-elimination etc. This is usually discussed in the context
of Girard’s Geometry of Interaction [9] and, especially, its various subsequent
ramifications such as [1], [10].

Partial trace, introduced in [10], is a generalization of ordinary (“total”)
trace, which satisfies basically the same properties, but is not necessarily defined
for all morphisms. Primary motivation for this generalization comes, again,
from Geometry of Interaction program. Partially traced categories are used
to formulate categorical multi-object geometry of interaction. As for relation
to compact categories, it is proven in [14, 2] that partially traced categories
are precisely monoidal subcategories of compact (i.e. totally traced) ones: a
symmetric monoidal category embeds into a compact one, if and only if it has
a partial trace. The compact envelope of a partially traced category K can be
constructed in a very transparent way [2]: it has the same objects as K, and its
morphisms between A and B are K-maps A⊗U → B⊗U , quotiented by certain
equivalence relation. The trace of a map A ⊗ U → B ⊗ U is then, modulo the
above equivalence, the same map, but considered as a map A→ B.

In this paper we study the question when a ∗-autonomous Mix-category has
a structure preserving embedding into a compact one. (Mix-categories [5] are a
wide subclass of ∗-autonomous categories, more pedantically, of ∗-autonomous
categories with an extra structure. This class seems sufficiently wide to capture
most of the “general” ∗-autonomous features, but is slightly easier to deal with.)
We see two (related) reasons why this question is interesting.

First, many important ∗-autonomous categories have representations as sub-
categories of compact ones. In particular, in linear logic, a usual construction
for building a non-degenerate model (compact categories, seen as models of lin-
ear logic, are degenerate) consists in some (often ad hoc) refinement of a given
compact closed structure, which yields a new ∗-autonomous category, a subcat-
egory of the initial compact one. The category of coherence spaces, which is
the “original” model of linear logic, can be described in this way. Many other
examples are considered in literature, see, say, [11]. So, at least from the aca-
demic point of view, it is reasonable to ask if we can characterize ∗-autonomous
categories of such a form.

Second, the above-mentioned Geometry of Interaction is closely tied to linear
logic, and ∗-autonomous categories are models of linear logic. Therefore it is de-
sirable to understand both, such categories and Geometry of Interaction, in one
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context. That is, it seems natural to consider ∗-autonomous categories which
model both linear logic and (some version of) Geometry of Interaction. Appar-
ently, such categories must be partially traced, with the trace somewhat nicely
interacting with the ∗-autonomous structure, and the corresponding embedding
into a compact category must be consistent with this structure as well.

And indeed, we define for a Mix-category a certain partial trace-like opera-
tion on morphisms, which we call a mixed trace. We show that any structure
preserving embedding into a compact category induces a mixed trace, pretty
much in the same way as a structure preserving embedding of a monoidal cat-
egory into a compact one induces a partial trace in the sese of [10]. Next we
show that, given a mixed trace, we can construct a compact envelope (com-
pactification w.r.t mixed trace), again very much like the case of a monoidal
category and partial trace. Our construction is very similar to that in [2]. Thus
we obtain first necessary and sufficient condition for a Mix-category to embed
into a compact one: the Mix-category should have a mixed trace.

However, we also find another, in some sense “more intrinsic” condition. It
comes from the following considerations.

Structure preserving embedding of a Mix-category into a compact one, es-
sentially consists in adding formal inverses to Mix-maps, i.e. constructing the
fraction category. Of course, in general, the functor to the fraction category
is not an embedding. And in a case like ours, if it is an embedding, we can
point out certain conditions that must be satisfied. (These conditions might be
well-known to experts, but the author did not encounter them in literature.)

Typically if we live in a monoidal category K and add inverses to maps f1,
f2, then, in the fraction category we have for all h, g1, g2 of corresponding types

h ◦ (id⊗ (f−11 ◦ g1)) ◦ ((f−12 ◦ g2)⊗ id) =

= h ◦ ((f−12 ◦ g2)⊗ id) ◦ (id⊗ (f−11 ◦ g1)).

But both the lefthand and the righthand sides of the above equation may be
defined already in K, and, if we have an embedding, they must be equal in K.
This means that, in K, any commutative diagram of the form

B1 ⊗B2

A1 ⊗B2

f1 ⊗ id

�
B1 ⊗A2

id⊗ f2
-

X1 ⊗B2

g1 ⊗ id
6

R

h

?�
-

B1 ⊗X2

id⊗ g2
6

X1 ⊗A2

id⊗ f2
?

-

A1 ⊗X2

f1 ⊗ id
?

�

X1 ⊗X2

id⊗ g2
6

X1 ⊗X2

g1 ⊗ id
6
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must remain commuting when the lower horizontal arrow is filled-in with the
identity morphism.

Generalizing the above condition to the case when there are more than two
morphisms f1, f2, . . ., we formulate what we call the contractible zig-zag condi-
tion for a Mix-category, which is necessary for an embedding into a compact
one to exist. It turns out that this condition, even some weaker form of it, is
also sufficient. When it is satisfied, we manage to define a “free” or “minimal”
mixed trace directly from the structure of the Mix-category. This gives us a
“free” compactification.

It remains an open question if the methods of this paper can be applied to
the more general case of a ∗-autonomous category without Mix, or, even, simply
to a monoidal closed one.

2 Basics

In our notation for natural morphisms we often omit sub- and superscripts,
when they are clear from the context.

We assume that the reader has some familiarity with symmetric monoidal
categories, see [13].

By default, monoidal structure is denoted as ⊗ and is called tensor product.
The monoidal unit is denoted as 1. Monoidal symmetry is denoted σA,B :
A⊗B → B ⊗A and is called tensor symmetry.

We recall here what is a monoidal functor, because this notion will be ex-
tensively used.

Definition 1 A monoidal functor F = (F,mA,B ,m1) between monoidal cate-
gories K and L is a functor F : K → L together with natural transformations
mA,B : F (A) ⊗ F (B) → F (A ⊗ B) and m1 : 1 → F (1), satisfying certain
coherence conditions, see [13].

The monoidal functor F = (F,mA,B ,m1) is strong when mA,B , m1 are
invertible. If the categories are symmetric monoidal, the functor is symmetric
monoidal when

mB,A ◦ σF (A),F (B) = F (σA,B) ◦mA,B .

In this paper, embedding of a symmetric monoidal category is a faithful
strong symmetric monoidal functor.

2.1 *-Autonomous categories

∗-Autonomous categories, introduced by Barr, see [3], are monoidal closed cate-
gories with involutive duality. There is a number of equivalent definitions, here
we adopt the following.

Definition 2 ∗-Autonomous category is a symmetric monoidal category K =
(K,⊗,1) equipped with a second monoidal structure ℘ (cotensor product) and a
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contravariant functor (.)⊥ (duality), together with a natural isomorphism

A⊥⊥ ∼= A,

and a natural and dinatural bijection

θA,CB : K(A⊗B,C) ∼= K(A,C℘B⊥). (1)

We will use naturality of θ, so let us recall what does it mean explicitly.
Naturality in C: for any φ : C → C ′ and f : A⊗B → C we have

θB(φ ◦ f) = (φ℘B⊥) ◦ θB(f).

Naturality in A: for any ψ : A′ → A and g : A→ C℘B⊥ we have

θ−1B (g ◦ ψ) = θ−1B (g) ◦ (ψ ⊗B).

Such a category has the special dualizing object ⊥ = 1⊥, and a number of
important maps and isomorphisms coming from bijection (1). Among them, we
have isomorphisms:

A ∼= A℘⊥,
De Morgan laws

(A⊗B)⊥ ∼= A⊥℘B⊥, (A℘B)⊥ ∼= A⊥ ⊗B⊥,

and the maps
coevA : 1→ A℘A⊥,

evA : A⊗A⊥ → ⊥,
respectively coevaluation and evaluation.

A strong ∗-autonomous functor of ∗-autonomous categories K and L is a
strong symmetric monoidal functor F : K → L together with the natural iso-
morphism nA : (F (A))⊥ → F (A⊥), such that the following diagram commutes.

(F (A⊥))⊥
nA⊥- F (A⊥⊥)

(F (A))⊥⊥

(nA)⊥
? ∼=- F (A)

∼=
?

Using De Morgan laws, observe that a strong ∗-autonomous functor is also
strong symmetric monoidal with respect to cotensor product, i.e. there is a nat-
ural isomorphism lA,B : F (A)℘F (B)→ F (A℘B), satisfying necessary coherence
conditions.

For simplifying computations, it is highly desirable to have strict equalities
A = A⊥⊥, rather than just isomorphisms. Fortunately, for the purposes of
this paper we can always assume that this is the case. We have the following
definition and theorem.
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Definition 3 A strict ∗-autonomous category is a ∗-autonomous category, whose
monoidal associativity and unit isomorphisms as well as the double duality iso-
morphisms A ∼= A⊥⊥ are identities:

A⊗ (B ⊗ C) = (A⊗B)⊗ C,

A⊗ 1 = 1⊗A = A,

A⊥⊥ = A.

Theorem 1 [6] Any ∗-autonomous category is strongly ∗-autonomously equiv-
alent to a strict one.�

When the category is strict, a particular instance of isomorphism (1) is

θA,C
B⊥

: K(A⊗B⊥, C) ∼= K(A,C℘B). (2)

We denote the tensor and cotensor symmetries as

σA,B : A⊗B → B ⊗A, τA,B : A℘B → B℘A,

and in a strict category we have the identities

evA⊥ = evA ◦ σA⊥,A, coevA⊥ = τA,A⊥ ◦ coevA. (3)

There is also the weak distributivity map

δ = δA,B,C : A⊗ (B℘C)→ (A⊗B)℘C,

connecting tensor and cotensor structures,

δA,B,C = θC⊥(A⊗ θ−1
C⊥

(idB℘C)). (4)

The above definition of δ implies the following.

Note 1 For any φ : A⊗B → C and object X the following diagram commutes.
�

X ⊗A

X ⊗ (C℘B⊥)

X ⊗ θφ
? δX,C,B⊥- (X ⊗ C)℘B⊥

θ(X ⊗ φ)

-
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The weak distributivity map has other versions as well, obtained by combina-
tions with tensor and cotensor symmetries, such as the right weak distributivity
map

δR = δRA,B,C : (A℘B)⊗ C → A℘(B ⊗ C),

Iterating distributivities, combined with symmetries, we further get a number
of important maps, such as:

(id℘τ) ◦ (δ℘id) ◦ τ ◦ δR ◦ (τ ⊗ id) : (A℘B)⊗ (C℘D)→ (A⊗ C)℘B℘D. (5)

Theorem 2 Any composition of distributivities and symmetries, resulting in a
map of the form (A℘B)⊗ (C℘D)→ (A⊗ C)℘B℘D, results in (5).

Proof This follows from the defining diagrams for symmetric weakly distributive
categories (∗-autonomous categories form a subclass of those), see [7]. �

Bijection θ in (1) is, in fact, defined in terms of composition with weak
distributivities and evaluations/coevaluations.

Note 2 In a ∗-autonomous category, for

φ : A⊗B → C

we have
θφ = (φ℘B⊥) ◦ δA,B,B⊥ ◦ (A⊗ coevB).

Respectively, for
ψ : A→ C℘B⊥

θ−1ψ = (C℘evB⊥) ◦ δRC,B⊥,B ◦ (ψ ⊗B). �

2.2 Mix-categories

Definition 4 [5] A Mix-category is a ∗-autonomous category, equipped with the
map

mix : ⊥ → 1,

such that the following diagram commutes.

⊥⊗⊥

1⊗⊥ ∼= ⊥
id
-

mix⊗ id

�
⊥ ∼= ⊥⊗ 1

id⊗mix

-

On a Mix-category there are natural mixed evaluation maps

ẽvB = mix ◦ ev : B ⊗B⊥ → 1, (6)

and Mix-maps
MixA,B : A⊗B → A℘B,
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defined as
MixA,B = θB⊥(A⊗ ẽvB). (7)

Observe that the map mix : ⊥ = ⊥ ⊗ 1 → ⊥℘1 = 1 is just a particular
instance of a mix-map.

The distributivity and Mix maps interact well.

Note 3 The diagrams below commute.

A⊗B ⊗ C
Mix- (A⊗B)℘C

A⊗ (B℘C)

id⊗Mix
? δ

-

A⊗ (B℘C)
Mix- A℘B℘C

(A⊗B)℘C

δ
? Mix℘C

-

Proof The first one commutes by Note 1, the second one is, modulo tensor
symmetry, the dual of the first. �

In a Mix-category we define the mixed symmetry

σ̃A,B : A⊗B → B℘A

as
σ̃ = τ ◦Mix = Mix ◦ σ.

It will play an important role in the sequel.
Finally, let us articulate what exactly is an embedding of a Mix-category. It

is a faithful strong ∗-autonomous functor F of Mix-categories, such that

lA,B ◦MixF (A),F (B) = F (MixA,B) ◦mA,B ,

where mA,B : F (A) ⊗ F (B) → F (A ⊗ B), lA,B : F (A)℘F (B) → F (A℘B) are
the corresponding natural transformations.

2.3 Compact categories and traces

The best known and, probably, best understood class of ∗-autonomous cate-
gories is that of compact (also called compact closed) ones, whose two monoidal
structures are isomorphic.

A canonical example is the category of finite-dimensional vector spaces and
linear maps. Basically, the compact closed structure is an abstraction of the
monoidal closed structure of this category.
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Definition 5 A compact category is a ∗-autonomous category in which

A⊗B ∼= A℘B

for all objects.

We can say that a compact category is a Mix-category where Mix-maps are
invertible.

An important feature of a compact category is the categorical trace. For any
morphism φ of the form

φ : A⊗ U → B ⊗ U

there exists the trace of φ over U , the morphism

TrA,BU (φ) : A→ B,

defined as
TrA,BU φ = θ−1

U⊥
(φ) ◦ (A⊗Mix−1

U,U⊥
) ◦ (A⊗ coevU ). (8)

(Note that, in our notation, we use the subscript rather than the superscript
for the traced object U . This seems to us more consistent with mathematical
practice; in concrete examples, the trace is often defined in terms of integration
or summation over the traced object, which appears in the subscript under the
summation or the integration sign. Also, in speech, we say that we trace the
morphism φ over, and not under U .)

The above-defined operation is natural and dinatural and satisfies a number
of conditions, which provide axioms for a categorical trace. The conditions
(including naturality and dinaturality) are:

Naturality For φ : A⊗ U → B ⊗ U , f : X → A, g : B → Y it holds that

g ◦ TrUφ ◦ f = TrU ((g ⊗ U) ◦ φ ◦ (f ⊗ U)).

Dinaturality w.r.t. symmetries For φ : A⊗U ⊗V → B⊗U ⊗V it holds
that

TrU⊗V (φ) = TrV⊗U (σU,V ◦ φ ◦ σV,U ).

Strength: For φ : A⊗ U → B ⊗ U f : X → Y , it holds that

f ⊗ TrUφ = TrU (f ⊗ φ).

Vanishing For φ : A⊗ U ⊗ V → B ⊗ U ⊗ V it holds that

TrU⊗V φ = TrU (TrV φ).

Yanking
TrUσU,U = idU .

(Of course, the above conditions imply that trace is dinatural with respect
to all morphisms, not just symmetries.)
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Definition 6 A trace on a symmetric monoidal category is a natural and di-
natural w.r.t to symmetries operation on hom-sets

TrA,BU : Hom(A⊗ U,B ⊗ U)→ Hom(A,B),

satisfying Strength, Vanishing and Yanking.

Remark In literature, the Vanishing axiom is usually supplemented with
the condition that for f : A → B it holds that Tr1(a−1B ◦ f ◦ aA) = f , where
aX : X ⊗ 1 ∼= X.

But this is, in fact redundant and follows from other axioms. First (a−1B ◦
f ◦ aA) = f ⊗ id1. Next Tr1id1⊗1 = Tr1σ1,1 = id1 by Yanking. Then,

TrA,B1 (f ⊗ id1) = TrA⊗1,B⊗11 (a−1B ◦ f ◦ aA)⊗ id1 = TrA⊗1,B⊗11 (f ⊗ id1⊗ id1) =
a−1B ◦ (f ⊗ id1) ◦ aA = f , using naturality and, in the end, Strength.

It is well known that existence of trace characterizes compact categories
completely, in the sense that any compact category has a trace, and any category
with a trace has canonical full embedding into a compact one [12].

Partial trace, introduced in [10], is a generalization of the ordinary (“total”)
trace satisfying basically the same properties, but not necessarily defined for
all morphisms. Typically, any monoidal subcategory K of a compact C has a
partial trace. It is defined simply by restricting the canonical total trace of the
ambient compact C to morphisms of K, whenever the result is also in K. It
has been proven [14],[2] that partially traced categories are precisely monoidal
subcategories of compact (i.e. totally traced) ones.

Our goal is to characterize Mix-categories which are Mix-subcategories of
compact ones. And, as we will see, similarly to the case of monoidal sub-
categories, one of the characteristics is existence of a certain partial trace-like
operation that we call mixed trace

3 Necessary conditions for compactification

In this section we are going to find necessary conditions for a Mix-category to
have a structure preserving embedding into a compact one, a compactification.
We know two such conditions. One of them is expressed in terms of a mixed
trace, which is going to be defined shortly. The other one will be discussed right
now.

3.1 Contractible zig-zag condition

Let K be a symmetric monoidal category.

Definition 7 Assume that we have 3 tuples of objects

A1, . . . , An, B1, . . . , Bn, X1, . . . , Xn,
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and tuples of morphisms

fi : Bi → Ai, gi : Xi → Ai, i = 1, . . . n.

The pair of tuples (f1, . . . , fn) and (g1, . . . , gn) satisfies contractible zig-zag con-
dition if the following holds.

For any object R, any permutation α ∈ Sn and any collection of morphisms⊗
j<k

Aj ⊗
⊗
i>k−1

Bi → R, k = 1, . . . , n+ 1,

⊗
j<k

Aα(j) ⊗
⊗
i>k−1

Bα(i)→ R, k = 1, . . . , n+ 1,
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if the following diagram commutes,⊗
i

Bi
∼= ⊗

i

Bα(i)

f1 ⊗ id

�

fα(1) ⊗ id

-

A1 ⊗
⊗
i>1

Bi Aα(1) ⊗
⊗
i>1

Bα(i)

X1 ⊗
⊗
i>1

Bi

g1 ⊗ id

6

Xα(1) ⊗
⊗
i>1

Bα(i)

gα(1) ⊗ id

6

?
...............................................- R �........................................................

�

-

�

- ?
....

....

⊗
j<n

Xj ⊗Bn

6 ⊗
j<n

Xα(j) ⊗Bα(n)

6

⊗
j<n

Xj ⊗An

id⊗ fn

?

-

⊗
j<n

Xα(j) ⊗Aα(n)

id⊗ fα(n)

?

�

-

id⊗ gn

�

�

id⊗ gα(n)

-

⊗
j

Xj

⊗
j

Xα(j)

then it remains commuting when the lower horizontal arrow is filled-in with the
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corresponding tensor symmetry, as below.⊗
i

Bi
∼= ⊗

i

Bα(i)

f1 ⊗ id

�

fα(1) ⊗ id

-

A1 ⊗
⊗
i>1

Bi Aα(1) ⊗
⊗
i>1

Bα(i)

X1 ⊗
⊗
i>1

Bi

g1 ⊗ id

6

Xα(1) ⊗
⊗
i>1

Bα(i)

gα(1) ⊗ id

6

?
.................................................- R �........................................................

�
-

�

- ?
....

....

⊗
j<n

Xj ⊗Bn

6 ⊗
j<n

Xα(j) ⊗Bα(n)

6

⊗
j<n

Xj ⊗An

id⊗ fn

?

-

⊗
j<n

Xα(j) ⊗Aα(n)

id⊗ fα(n)

?

�

-

id⊗ gn

�

�

id⊗ gα(n)

-

⊗
j

Xj

∼= ⊗
j

Xα(j)

Note 4 If f1, . . . , fn are morphisms in a symmetric monoidal category K and
F is a faithful strong symmetric monoidal functor from K into a symmetric
monoidal category K′, where images of f1, . . . , fn are invertible, then for any
collection (g1, . . . , gn) of K-morphisms the pair (f1, . . . , fn) and (g1, . . . , gn) sat-
isfies contractible zig-zag condition.

Proof Identifying all morphisms with their images under F , we compute mor-
phisms of the first diagram in Definition 7 in K′. The leftmost zig-zag path
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from
⊗

j Xj to
⊗

iBi reads as the morphism, (f−11 ◦ g1)⊗ . . .⊗ (f−1n ◦ gn), and

the rightmost zig-zag path from
⊗

j Xα(j) to
⊗

iBα(i) as (f−1α(1) ◦ gα(1))⊗ . . .⊗
(f−1α(n) ◦ gα(n)). The statement follows. �

Corollary 1 If a Mix-category K embeds as a Mix-category into a compact
one, then, for any tuples of objects A1, . . . , An, B1, . . . , Bn, X1, . . . , Xn and
morphisms gi : Xi → Ai℘Bi, the pair (MixA1,B1 , . . . ,MixAn,Bn) and (g1, . . . , gn)
satisfies contractible zig-zag condition. �

This gives us first necessary condition for existence of compactification of
a Mix-category, and we are going to show that it is sufficient. In fact, we will
need it in a considerably weaker form.

Corollary 2 If a Mix-category K embeds as a Mix-category into a compact one,
then, for any tuple of objects A1, . . . , An, the pair (MixA1,A⊥1

, . . . ,MixAn,A⊥n
) and

(coevA1 , . . . , coevAn) satisfies contractible zig-zag condition. �

We will call categories satisfying the conditions of Corollary 2 contractible
zig-zag Mix-categories.

In the next subsection we find another necessary condition, expressed in
terms of existence of a certain partial trace.

3.2 Mixed trace

A structure preserving embedding of a Mix-category into a compact one equips
the former not only with a partial trace in the sense of [10], but with a more
general trace-like operation that we call mixed trace. In order to describe it we
introduce some notation and terminology.

For objects A,B ∈ K we define a loop p : A# B as a tuple

p = (φ;U1, . . . , Uk),

where k ∈ N, Ui, i = 1, . . . k, the hidden part, are objects of K, and φ, the
carrier, is a K-map

φ : A⊗ U1 ⊗ . . .⊗ Uk → B℘U1℘ . . . ℘Uk.

The number k in the above definition can equal 0, in which case the hidden part
is empty, and the corresponding morphism is just a K-morphism from A to B.
Thus, a K-morphism is identified as a loop with the empty hidden part.

Clearly a structure preserving embedding into a compact category allows
tracing loops over their hidden parts (with the convention that tracing over the
empty tuple does nothing)

Let us use the following vector notation. We denote a tuple of objects as

~U = (U1, . . . , Un),
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with the conventions that

A℘~U = A℘U1℘ . . . ℘Un, A⊗ ~U = A⊗ U1 ⊗ . . .⊗ Un,

~U⊥ = (U⊥1 , . . . , U
⊥
n ),

τA,~U = τA,U1℘...℘Un
, σA,~U = σA,U1⊗...⊗Un

,

and MixA,~U is the obvious iteration of Mix-maps

MixA,~U : A⊗ U1 ⊗ . . .⊗ Un → A℘U1℘ . . . ℘Un.

Also, if ~V = (V1, . . . , Vk), then

~V ℘~U = V1℘ . . . ℘Vk℘U1℘ . . . ℘Un, ~V ⊗ ~U = V1 ⊗ . . .⊗ Vk ⊗ U1 ⊗ . . .⊗ Un,

and so on. If α ∈ Sn is a permutation, then α~U = (Uα(1), . . . , Uα(n)).
Now, If F is the embedding into a compact category, with the corresponding

natural transformations mA,B : FA ⊗ FB → F (A ⊗ B), lA,B : FA℘FB →
F (A℘B), and

p = (φ; ~U) : A# B

is a loop, then the mixed trace of p over ~U , is the map, which we, abusing
notation, still denote as Tr(p) : A→ B, defined by the equation

F (Tr(p)) = Tr
F (A),F (B)
F (U1)⊗...F (Un)

(Mix−1
F (B),F (~U)

◦ l−1
B,~U
◦ F (φ) ◦mA,~U ), (9)

whenever it has a solution.
The above defined partial operation enjoys certain conditions, which we read

from the conditions for trace. In order to write them concisely we introduce
certain operations on loops.

Composition with a morphism For the loop p = (φ; ~U) : A # B, and
morphisms f : X → A, g : B → Y the compositions

g ◦ p : A# Y, p ◦ f : X # B

are defined by g ◦ p = ((g℘~U) ◦ φ; ~U), p ◦ f = (φ ◦ (f℘~U); ~U).

Multiplication by a morphism: For a loop p = (φ; ~U) : A # B and
morphism f : C → D, the loop

f ⊗ p : C ⊗A# D ⊗B

is defined by f ⊗ p = (δ ◦ (f ⊗ φ); ~U).
Hidden symmetry For the loop p = (φ;U1, . . . , Uk) : A # B and a per-

mutation α ∈ Sn we define the loop

αp : A# B

by αp = ((id℘τα)◦φ◦ (id⊗σα−1);α~U), where σα, τα are the obvious tensor and
cotensor symmetry.

Dual of the loop p = (φ; ~U) : A# B is the loop p⊥ = (φ⊥; ~U⊥) : B⊥ # A⊥.
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Definition 8 A mixed trace is a partial operation on loops, mapping a loop
p = (φ, ~U) : A # B to a morphism TrA,B~U

p : A → B, satisfying the following
conditions:

Naturality For p = (φ; ~U) : A# B, f : X → A, g : B → Y it holds that

g ◦ Tr(p) ◦ f = Tr(g ◦ p ◦ f),

whenever the lefthand side is defined.
Dinaturality w.r.t. symmetries For the loop p with the hidden part

~U = (U1, . . . , Un) and a permutation α ∈ Sn it holds that

Tr(p) = Tr(αp),

whenever any side of the equation is defined.
Strength: For p : A# B, φ : X → Y , it holds that

φ⊗ Tr(p) = Tr(φ⊗ p),

whenever the lefthand side is defined.
Vanishing For p = (φ; ~U, ~V ) : A# B, q = (φ; ~V ) : A⊗ ~U # B℘~U , if Tr(q)

exists, then
Tr(p) = Tr(Tr(q)),

whenever any side of the equation is defined.
Adjointability

Tr(p)⊥ = Tr(p⊥),

whenever any side of the equation is defined.
Yanking For p = (σ̃A,A, A) : A# A it holds that

Tr(p) = idA.

Lemma 1 If a Mix-category has a structure preserving embedding into a com-
pact one, then it admits a mixed trace. �

Our next goal is to show that the converse statement also holds: if a Mix-
category K has a mixed trace, then it embeds into a compact one. This is proven
by constructing a compact envelope of K, whose objects are objects of K, and
morphisms are loops of K, quotiented by a certain equivalence relation. Basi-
cally, it is the smallest equivalence, compatible with the Mix-category structure
and the given mixed trace. The construction is very similar to the analogous
construction in [2].

4 Compactification from mixed trace

In this section we show that having a mixed trace is also a sufficient condition
for a Mix-category to have an embedding into a compact one.

We consider a Mix-category K and assume that a mixed trace is defined
on it. We are going to construct a larger category, the compactification of K
with respect to the given mixed trace, which is compact and contains K as a
subcategory. Morphisms in this new category are constructed from loops in K.
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4.1 Category of loops

We want to organize loops on K into a Mix-category, which later will be quo-
tiented by a certain equivalence relation and become compact.

For that purpose we define a number of operations on loops
Tensor product For loops p = (φ; ~U) : A# B, q = (ψ, ~V ) : C # D, their

tensor product
p⊗ q : A⊗ C # B ⊗D

is the loop with the hidden part (~U, ~V ) and the carrier φ̂⊗ ψ defined by the
composition

A⊗ ~U ⊗B ⊗ ~V
φ⊗ ψ- (A℘~U)⊗ (B℘~V )

A⊗B ⊗ ~U ⊗ ~V

id⊗ σ ⊗ id
6

φ̂⊗ ψ
- (A⊗B)℘~U℘~V ,

?

where the right vertical arrow is obtained as a composition of symmetries and
distributivity maps (there is no ambiguity in its definition by Theorem 2).

Note that it follows from the same theorem that tensor product of loops is
associative (remember that we work in a strict category)

Note that this operation extends tensor multiplication by morphisms, defined
it the preceding section.

Cotensor product is defined by tensor and duality (duality was defined in

the preceding section). For loops p = (φ; ~U) : A # B, q = (ψ, ~V ) : C # D,
their cotensor product

p℘q : A℘C # B℘D

is the loop
p℘q = (p⊥ ⊗ q⊥)⊥.

Note that for loops with empty hidden parts, i.e. usual K-morphisms the
above are the usual operations on morphisms.

Hiding For the loop p = (φ; ~U) : A⊗ V # B℘V we define the new loop

HidA,BV (p) = (φ;V, ~U) : A# B.

Hidden trace This is a partially defined operation. For the loop

p = (φ; ~U, ~V ) : A# B

let q = (φ; ~V ) : A ⊗ ~U # B℘~U . The hidden trace TrV (p) over V is defined as
the mixed trace followed by hiding

TrV p = HidA,BU Tr(q).

Composition For the loops p = (φ; ~U) : A# B, q = (ψ; ~V ) : B # C, their

composition is the loop q ◦p : A# C, with the hidden part ~U, ~V and the carrier
ξ defined by the diagram
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(B℘~U)⊗ ~V - (B ⊗ ~V )℘~U

C℘~V ℘~U

ψ℘id
?

A⊗ ~U ⊗ ~V

φ⊗ id

6

ξ
- C℘~U℘~V ,

id℘τ
?

where the upper horizontal arrow is obtained as a composition of symmetry and
distributivity maps (there is no ambiguity in its definition by Theorem 2).

Note that it follows from the same Theorem 2 and naturality of symmetries
and distributivities that compositions of loops is associative.

Note that this composition extends composition with morphisms, defined in
the preceding section. In particular the assignment f 7→ (f ; ), sending mor-
phisms to loops, is functorial.

It follows that the category, whose objects are objects of K, and morphisms
are loops, is well-defined, has monoidal structure and duality. The underlying
category K embeds into the category of loops as a symmetric monoidal category.
In fact, the category of loops is ∗-autonomous and Mix, and the embedding of
K preserves the structure.

Indeed, by Note 2, defining isomorphism (1) in a ∗-autonomous category is
realized by composition with the natural weak distributivity and evaluation or
coevaluation maps, and the category of loops inherits these maps from K. In
the same way it inherits Mix-maps.

4.2 Congruence and loop operations

We are going to define a certain equivalence relation on loops and see how it
interacts with loop operations.

For any two objects A,B and loops we define the one-step congruence rela-
tion ^ on loops A# B by

(i) a loop is one-step congruent to its hidden trace;
(ii) loops, related by a hidden symmetry are one-step congruent.
Loop congruence is the equivalence relation, generated by the one-step con-

gruence.

Note 5 If p1 ^ p2 then for any morphism φ it holds that φ⊗ p1 ^ φ⊗ p2.

Proof If p1 and p2 are related by a hidden symmetry, the claim follows from
naturality of the weak distributivity map. Otherwise it follows from the Strength
property of mixed trace. �

Note 6 For loops p1, p2 : A # B and morphisms f : B → Y , g : X → A, if
p1 ^ p2 then f ◦ p1 ◦ g ^ f ◦ p2 ◦ g.
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Proof If the loops are related by a hidden symmetry, the claim is obvious.
otherwise it follows from naturality of mixed trace. �

The two notes above imply

Lemma 2 Loop congruence is preserved by compositions and tensor products
with morphisms. �

The following is obvious.

Note 7 Loop congruence is preserved by hiding. �

Now, tensor product of loops p and q is, in fact, nothing else than the tensor
product of the carrier of p (considered as a loop with the empty hidden part, i.e.
an ordinary morphism) with q, followed by composition with a tensor symmetry
on the left and a weak distributivity on the right and then by hiding. Since all
these operations preserve loop congruence, it follows that tensor product with
a loop preserves loop congruence.

Lemma 3 Tensor product of loops preserves loop congruence. �

Hidden trace preserves duality by the Adjointability condition. Hidden sym-
metry preserves duality as well, i.e., for a loop p and any permutation α on its
hidden part, we immediately see that

(αp)⊥ = α−1p⊥.

This, together with the preceding Lemma yields us the following.

Lemma 4 Duality and cotensor product of loops preserve loop congruence. �

Finally, for loops p = (φ; ~U) : A # B and q = (ψ; ~V ) : B # C, their
composition is obtained from the loop ψ ◦σ~V ,B ◦ (id~V ⊗p), by composing it with

σA,~V on the left, then hiding ~V and applying hidden symmetry (i.e. permuting

~U and ~V ). Again, all operations involved preserve congruence, so composition
with a loop preserves congruence as well.

Lemma 5 Loop congruence is preserved by composition of loops. �

4.3 Compactification

From the above it follows that we can organise a well-defined Mix-category
CTr(K) with the same objects as in K and morphisms being equivalence classes
of loops with respect to the loop congruence. We call this category the com-
pactification of K with respect to the mixed trace.

The functor CTr : K→ CTr(K) is defined which is identity on objects and
sends a morphism φ to the equivalence class of (φ; ).

We now show that this functor is faithful. This follows from the two straight-
forward lemmas below.
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Lemma 6 If (φ; ) ^ p, then φ = Tr(p). �

Lemma 7 If Tr(p) = φ and q ^ p, then Tr(q) = φ, (here, φ is a K-morphism).

Proof If p and q are related by a hidden symmetry, this follows from dinaturality
of mixed trace w.r.t. symmetries. Otherwise it follows from Vanishing. �

Finally, let us show that in the compactification CTr(K) the two monoidal
structures become isomorphic, hence CTr(K) is compact.

Lemma 8 In CTr(K) the Mix-map has inverse.

Proof The inverse of Mix : A⊗B → A℘B is the loop

coMixA,B = (σ̃A℘B,A⊗B; A,B) : A℘B# A⊗ B.

It is sufficient to note that

coMixA,B ◦MixA,B = HidA(σ̃A,A)⊗HidB(σ̃B,B).

This is established by a routine diagram chasing, using repeated iteration of
Note 3 together with Theorem 2. But by Yanking,

HidX(σ̃X,X) ^ idX ,

and, since tensor product of loops preserves congruence, we conclude that in
CTr(K) it holds that coMix ◦Mix = id. Then by duality Mix ◦ coMix = id as
well. �

Combining the above with Lemma 1 we get the following

Theorem 3 A Mix-category embeds as a Mix-category into a compact one, if
and only if it admits a mixed trace. �

Remark The constructed compactification is free with respect to the given
mixed trace, i.e. any Mix-categories functor F from K to a compact C that
agrees with this mixed trace in the sense of equation (9) factors through CTr.

We define the functor F ′ : C(K)→ K sending the loop p = (φ; ~U) : A# B to

F ′(p) = Tr
F (A),F (B)
F (U1)⊗...F (Un)

(Mix−1
F (B),F (~U)

◦ l−1
B,~U
◦ F (φ) ◦mA,~U ),

(here m : F (X) ⊗ F (Y ) → F (X ⊗ Y ), l : F (X)℘F (Y ) → F (X℘Y ) are the
corresponding natural transformations), and then F = F ′ ◦ CTr.
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5 Mixed trace from contractible zig-zag condi-
tion

We have shown that having a mixed trace is both necessary and sufficient con-
dition for a Mix-category to admit a structure preserving embedding into a
compact one. Now we will show that contractible zig-zag condition is sufficient
as well. Using this condition we will define an intrinsic “free” mixed trace on a
Mix-category, which is equivalent to having a compactification.

Let K be a contractible zig-zag Mix-category.
Let

p = (φ; ~U) : A# B, ~U = (U1, . . . , Un),

be a loop in K.
We first define the provisional trace of p.
Consider the morphism

φ′ :
⊗
i

(Ui ⊗ U⊥i )→ B℘A⊥,

obtained from φ by iterated bijection (1) and tensor symmetries.

Definition 9 Provisional trace T̂ r(p) : A→ B of the loop p : A# B exists, if
there exists a morphism

ψ : 1→ B℘A⊥

and n morphisms

(Ui℘U
⊥
i )⊗

⊗
j>i

(Uj ⊗ U⊥j )→ B℘A⊥, i = 1, . . . , n,

which, together with φ′ fit into the following commutative diagram.
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⊗
i

(Ui ⊗ U⊥i )

(U1℘U
⊥
1 )⊗

⊗
i>1

(Ui ⊗ U⊥i )

Mix⊗ id

�

⊗
i>1

(Ui ⊗ U⊥i )

coev ⊗ id
6

?
....................................................................- B℘A⊥

φ′

-

...........................................................-
....

Un ⊗ U⊥n

6

Un℘U
⊥
n

Mix
? ......

......
......

......
......

......
......

......
......

......
......

......-

1

ψ

-

coev

�

In which case
T̂ r(p) = θ−1A (ψ).

Definition 10 Mixed trace Tr(p) : A → B of the loop p : A # B exists, if for

some permutation α ∈ Sn the provisional trace T̂ r(αp) exists. In which case

Tr(p) = T̂ r(αp)

for this α.

The contractible zig-zag condition guarantees that the mixed trace, whenever
defined, is defined unambiguously.

Obviously, we can give an alternative definition of provisional trace.

Note 8 For p : A # B the provisional trace T̂ r(p) can be equivalently defined
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using the following diagram,

℘
i

(U⊥i ℘Ui)

(U⊥1 ⊗ U1)℘ ℘
i>1

(U⊥i ℘Ui)

Mix℘id
-

℘
i>1

(U⊥i ℘Ui)

ev℘id
?

· · ·
6

�......................................................... B⊥ ⊗A

(φ′)⊥

�

�.........................................................

U⊥n ℘Un

?

U⊥n ⊗ Un

Mix
6

�....
......

......
......

......
......

......
......

......
......

......
...

⊥

ψ⊥
�ev -

by
T̂ r(p) = (θA(ψ⊥))⊥.�

We need to check that the above defined operation is indeed a mixed trace.
Indeed, naturality is immediate from definition. Dinaturality w.r.t. sym-

metries and Vanishing follow from the contractible zig-zag condition. Strength
follows from naturality of the weak distributivity map. Adjointability follows
from above Note 8. It remains to establish Yanking.

Lemma 9 The above defined mixed trace satisfies Yanking axiom.

Proof Let p = (σ̃U,U ;U).
Let

σ(1) = θ−1
U⊥

(σ̃U,U ) : U ⊗ U ⊗ U⊥ → U, (10)

σ(2) = σ(1) ◦ σU⊗U⊥,U : U ⊗ U⊥ ⊗ U → U, (11)

σ(3) = θU (σ(2)) : U ⊗ U⊥ → U℘U⊥. (12)

The last map σ(3) plays the role of φ′ in Definition 9 of provisional trace
(and σ̃ plays the role of φ).
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Now,
σ(1) = (U ⊗ ẽvU ) ◦ (σU,U ⊗ U⊥)

by naturality of θ,

σ(2) = (U ⊗ ẽvU ) ◦ (σU,U ⊗ U⊥) ◦ σU⊗U⊥,U =

= (U ⊗ ẽvU ) ◦ (U ⊗ σU⊥,U ) = U ⊗ ẽvU⊥

by (3), and
σ(3) = MixU,U⊥ ,

from defining equation (7).
Thus we get the commutative diagram

U ⊗ U⊥

(U℘U⊥)

Mix
?

....
id
- U℘U⊥

σ(3)

-

1,

coev6

coev

-

and by Definition 9 T̂ r(p) = θ−1(coev) = id. The statement follows. �

Thus, the above-defined operation is indeed a mixed trace. It follows then
from Theorem 3 that a Mix-category embeds, as a Mix-category, into a compact
one if and only if it is a contractible zig-zag Mix-category.

Remark The constructed mixed trace is free in the sense that any embed-
ding into a compact category will always induce a mixed trace extending this
one. This is clear from definition (8) of trace on a compact category. Con-
sequently, the compactification of a contractible zig-zag Mix-category defined
by this trace is free as well, in the sense that any Mix-category structure pre-
serving functor of the given category into a compact one factors through this
embedding.

We summarize with the following.

Theorem 4 For a Mix-category K the following are equivalent:
(i) K embeds as a Mix-category into a compact one;
(ii) in K, for any n-tuple of mix-maps MixAi,Bi

, i = 1, . . . , n and an n-tuple
of arbitrary maps fi with codomains Ai℘Bi, i = 1, . . . , n, this pair of tuples
satisfies contractible zig-zag condition;

(iii) in K any pair (MixA1,A⊥1
, . . . ,MixAn,A⊥n

) and (coevA1
, . . . , coevAn

) sat-
isfies contractible zig-zag condition;

(iv) K has a mixed trace. �
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6 Some concluding remark

We have found necessary and sufficient conditions for a Mix-category to have
a structure preserving embedding into a compact one and defined mixed trace,
a generalized partial trace suitable for this setting. We also constructed free
mixed trace and free compactification.

We did not solve, however, the question when does a ∗-autonomous cat-
egory have a ∗-autonomous embedding into a compact one, and what is the
corresponding generalized partial trace.

It is worth noting that one and the same ∗-autonomous category can have
different non-isomorphic Mix-structures, and different compactifications, cor-
responding to them. For example, on the compact category of free finitely
generated Z-modules, where tensor and cotensor product are equal, we can de-
fine natural Mix-maps as multiplications by a fixed integer n. When n = 0,
there is no compactification at all, otherwise, the free compactification is quite
obviously the same category localized away from n, i.e. the category of free
finitely generated modules over Z[ 1n ]. Thus, compactification determined by the
Mix- structure is not the same as compactification determined by ∗-autonomous
structure.

It seems that methods of this paper, with slight technical modifications, can
be applied to the general ∗-autonomous setting, but this has to be worked out.
So far, compactification of a ∗-autonomous category is an open question for us.

One can proceed further and see what happens when ∗-autonomous cate-
gories are replaced with general monoidal closed ones.

These topics are left for future work.
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