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On the macroscopic quantization in mesoscopic rings and single-electron devices
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In this letter the phenomenon of macroscopic quantization is investigated using the particle on the
ring interacting with the dissipative environment as an example. It is shown that the phenomenon
of macroscopic quantization has the clear physical origin in that case. It follows from the angular
momentum conservation combined with momentum quantization for bare particle on the ring . The
existence an observable which can take only integer values in the zero temperature limit is rigorously
proved. With the aid of the mapping between particle on the ring and Ambegaokar-Eckern-Schon
model, which can be used to describe single-electron devices, it is demonstrated that this observable
is analogous to the “effective charge” introduced by Burmistrov and Pruisken for the single-electron
box problem. Different consequences of the revealed physics are discussed, as well as a generalization
of the obtained results to the case of more complicated systems.

PACS numbers: 73.23.Hk, 05.30.-d

Introduction. The phenomenon of Coulomb blockade
[1H6] in different meso- and nanostructures is one of the
most striking manifestation of charge quantization. For
example it can be observed in the so called single-electron
box. This system consists of metallic island coupled by
the tunnel junction to the electrode and capacitively
coupled to the gate voltage. Varying the gate voltage one
can change the number of electrons on the island and if
the temperature much lower than the Coulomb energy of
the grain, its average charge will be the integer number
of elementary electron charges e . Theoretically such a
system can be described by well-known Ambegaokar-
Eckern-Schon (AES) approach [1, [7, 8] employing the
smallness of tunnel barrier transparency. It is well
known, that one can interpret AES action as an effective
action for the particle on the ring interacting with the
dissipative environment [9-H13]. From the form of the
action it follows that the environment is of Caldeira-
Leggett (CL) type [1, [14], but in principle other types
of linear dissipative environments possible. If we put
the ring into the magnetic field, persistent current will
flow around it, so such a system can be used for
the investigation of the influence of interactions on
the coherent phenomena such as persistent current, its
fluctuations and so on. Also this mapping has been
extensively used by various authors in the numerical
computations of the single-electron box properties (see
for example |11, [15] and references therein).

As we mention above the average charge on the island
is quantized but strictly speaking this statement is true
only in the limit of zero temperature and vanishing
tunnel coupling between the island and electrode. In
general case the average charge is continuous. Recently
it was argued by Burmistrov and Pruisken |16, [17]
(see also Ref. [18]) that in such a system there is
another quantity, “effective charge” which is nevertheless
quantized in the limit of zero temperature. They relate
such a quantity to the sensitivity of the single-electron
device to the changing of boundary conditions and

employ the similarity between AES theory and the
theory of quantum Hall effect to introduce the unifying
scaling diagram of a problem. Also it was supported
by explicit calculations in the cases of the small and
large coupling constant. Note, that intimate connection
between the quantum Hall effect and Coulomb blockade
was previously revealed and investigated in the works
[18-20]. But what is the counterpart of the Burmistrov
and Pruisken “effective charge” in the problem of the
particle on the ring and does the phenomenon of
macroscopic quantization present in the case of other
dissipative environments different from the CL one. The
aim of the present letter is to prove rigorously the
existence of macroscopically quantizing observable in
presence of different linear environments and to show
that on the language of particle on the ring it is deeply
related to the total angular momentum conservation for
the combined system particle plus the environment.

The paper organized as followed. At the beginning we
introduce the partition function for the particle on the
ring interacting with the environment and its relation to
the single-electron box problem. After that we rewrite it
in the operator formalism and introduce fictitious many-
particle system. On the next step we present a conserving
quantity which commutes with Hamiltonian and has
integer eigenvalues. At the and of the letter we relate it
to the total angular momentum of the whole system and
show, that it has nontrivial form in the original single-
particle variables.

Model and basic definitions. Let us consider particle
on the ring interacting with the linear dissipative
environment at temperature 7. It is well known that
partition function can be represented through the path
integral as |9-111]
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Here m and R are the mass of the particle and ring
radius, g is the coupling constant between particle and
environment, § = 1/T is inverse temperature, and
kernel a(r — 7') is governed by statistical and dynamical
properties of the environment. Integration is performed
over trajectories with a given winding number n, which
is periodic up to constant 6(3) = 6(0) + 2mn. ¢, = ®/Pg
is the flux piercing the ring in the units of flux quanta
& = 27r/e (here and below we set the Planck’s constant
and the speed of light equal to unity i=1, ¢ = 1). Due
to bosonic nature of the environment, kernel a(7) is the
periodic function of imaginary time 7 with period equals
to 8 means that it can be represented in the form
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where w,, = 27nT is Matsubara frequency and function
F(z) is symmetric F(z) = F(—z) and equals to zero
at zero frequency F'(0) = 0. Usually, the last condition
might be achieved by substraction of some unimportant
constant from the initial action. The CL environment
|U, 14] corresponds to F(z) = |z|. This case is very
important from the practical point of view, since it
is equivalent to the AES model describing the single-
electron box. In order to relate these two problems one
should identify 1/(2mR?) with charging energy E. of the
island, g with dimensionless conductance g; of the tunnel
junction between island and reservoir, and flux ¢, with
the external charge ¢, induced by gate voltage.
Decoupling of the action. The key idea of our
calculations is to transform initial problem with partition
function given by equation () back to operator
formalism and to introduce fictitious many-particle
system interacting with the particle on the ring. We
consider the following many-particle Hamiltonian
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Here 6 is the angle variable corresponded to the position
of the particle on the ring, and p is the angular
momentum operator which is conjugate to the position
operator [p,f] = —i. In the position representation it

acts as derivative p = —i%. Also fictitious system
contains two sets of bosonic modes. It creation apd

annihilation operators are denoted by a! bl and Qmy b
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correspondingly. Commutation relations are standard
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where 0y ; is the Kroenecker symbol. Let us connect
our fictitious system to the initial problem. This can
be done by standard transformation of the partition
function Z = tre #s into path integral representation
and subsequent integration over bosonic variables. This
procedure leads to the effective action as in equation (2))
with
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Here averaging is performed with density matrix of bath
decoupled from particle (...}, , = tr(...e AHv) / tr(e=FHv),
where bath Hamiltonian is
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T is the time ordering symbol, and
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are operators in Matsubara representation. By averaging
over bath variables one can obtain the desired relation
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where we have introduced the spectral density of bath
J(z) = 2w, 0(2 — ex), and C is some unimportant
constant choosen from the condition F(0) = 0. CL
environment corresponds to Jor(z) = z/(27).

Operator  of  angular  momentum. Many-body
representation of the initial problem, introduced
above, allow clear and wuseful interpretation. From
the commutation relations it is evident that operator
L = e increases and operator LT = ¢¥ decreases
the angular momentum of particle by 1. On the same
time in Appendix A it is shown that operators a; and
Ek can be associated with two-dimensional oscillator
having frequency ei. In addition, it is demonstrated,
that operators S’,i = d;‘c + l;k (S’k =ai + I;L) changes the
angular momentum of given two-dimensional oscillator



by 1(—1). In terms of new operators Hamiltonian has
the form
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One can see that interaction term is simply the angular
momentum exchange between the particle and the
environment. It means that angular momentum of the
whole system conserves and operator of total angular
momentum

k

commutes with Hamiltonian [Hy, M] = 0. From the fact
that eigenvalues of p are integers, as well as eigenvalues
of &L&k and BLZA);C, it follows that eigenvalues of M are
also integers. Therefore any non-degenerate eigenstate of
Hamiltonian has definite integer angular momentum, i.e.
it is also the eigenstate of M with integer eigenvalue.
Among others it is true for the ground state of the
system means that the expectation value of the total
angular momentum in the limit of zero temperature is
integer, S0 pers = <M>T_,0 is quantized and equals
to 0,£1,42,.... Note, that in the non-interacting limit
(g = 0) pesy is simply the angular momentum of the
particle. Below we will show that quantization of p.y; is
precisely the same thing as in the work of Burmistrov
and Pruisken |16, [17]. But we’ve proved not only the
existence of macroscopically quantized observable, but
the presence of the additional conservation law in the
system. It generates a lot of new relations. For example
it leads to the absence of the fluctuations of M in the
zero temperature limit despite the fact that fluctuations
of particle’s angular momentum are finite |13, [21]].

Observables and generating function. Let us show
that peyry is the same observable, as an “effective charge”
of Burmistrov and Pruisken. In order to calculate the
average of the total angular momentum, as well as its
fluctuations it is useful to introduce generation function
by the relation
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This function is 27 - periodic and its derivatives are
related to the cumulants of M.

G'(0) = —i(M) G"(0) = (M?) - (M)?, (15)
where averaging (...) = tr(...e‘BHf)/tr(.e_ﬂﬁf) is
performed over equilibrium thermal state of the whole
system. Note, that the combination Hy +iT'xM has the

same form as flf but with slightly modified parameters.

It means that one can perform calculations along the
same line as before. The result is

G = G0 + e (£ ). (16)

where
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is the contribution from the environment, Z is given by
equation (Il), and Z, is given by the same expression, but
with modified action
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The modified kernel o, (1) =
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These expressions are general. Let us derive expression
for (M) by taking the derivative over x. The result is
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where pu(7) = L3 F'(w,)e™™"7 and by (...)g we denote
averaging over all particle trajectories as in equation ().
Introducing correlator
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and using the fact that (e=**0(")+#0(0)), is purely real,
which is followed from the § — —6 invariance, one can
rewrite the average total angular momentum as

(M) = ¢ +imR2(0(7))o

— % Z F'(wp)ImD1 (wy).  (22)

This is nothing but the “effective charge” introduced by
Burmistrov and Pruisken [16, [17], because in the case



of CL bath F'(w,) = 1 for n > 0. As we have shown
above this quantity is quantized in the zero temperature
limit T' — 0. Note, that in this limit generating function
can be calculated exactly. It is linear G(x) = iMox for
—m < x < 7 and Mj is an integer number equals to
angular momentum in the ground state. Therefore in the
zero temperature limit all cuamulants except first one tend
to zero.

As the another example, let us consider the generating
function in the case of CL environment. Evaluating
integral in equation (I7)) one can obtain
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where Li,(2) is a Polylogarithm function, and {(xz) is a
Riemann Zeta function. At the same time for this case
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where by [...] and {...} we denote integer and fractional

parts. From these expressions one can see that G () is
singular for Y — 0 means that the dispersion of M is
infinite at the any nonzero temperature. This nontrivial
fact follows from the property of CL environment. It
contains a large number of low-lying eigenstates, so one
can easily excite bath to the state with any large angular
momentum.

Discussion. In this letter we considered only the
particle on the ring interacting with the dissipative
environment, but this system is equivalent to the well-
known AES description of single-electron devices and
therefore all results can be directly applied to that case.
In particular we have rigorously proved the existence
of the macroscopically quantized observable and shed
the light on its physical nature. It emerged that the
phenomenon of quantization in the considered system is
based on the two key points. First one is the existence of
rotational symmetry and correspondingly the existence
of the conserving quantity which we represented by
operator M commuting with Hamiltonian H t. The
another ingredient for quantization is the topological
structure of the particle configuration space, or, in other
words, discreteness of the bare particle angular momenta.
In the case of AES model the last condition means
the discreteness of charge. This two points is rather
general and therefore the phenomenon of macroscopic
quantization not only the property of AES model, but can
be observed in a variety of other systems. For example,
one can consider particle interacting with more general
dissipative environment represented by action
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and derive the corresponding total angular momentum
which is
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Here by definition a4(r) = I3 F(w,)e ™7,
Precisely the same arguments as we used in letter can
be employed for demonstration of <M) quantization
in the zero temperature limit. One of the important
physical examples is the particle interacting with the
dirty electron gas environment which was previously
used for the investigation of the interplay between
quantum coherence and electron-electron interactions
in dirty electronic systems (see |11, [13] and references
therein). In that case ¢ = 3n/(2kpl.)?, Fy(w,) =
2l.log(R/(qle))|wn|/R, and 1 < g < R/l.. Here kp and
le are the Fermi wavelength and mean free path of the
electrons in the bath.

Among the issue with macroscopic quantization there
is another interesting question which originates from
the existence of conserving momentum. How does this
conservation law influence on the dynamics of the
system? Up to now we don’t have the complete answer
to this question but what we can say is that during
the evolution system not necessary reaches the true
thermal equilibrium with density matrix p = e ##s. For
example, if in the initial state system has the definite
total angular momentum then the system will satisfy
this condition at the any subsequent time moment.
This statement is rather simple and intuitive for the
particle on the ring, but is nontrivial for the single-
electron devices. It means that there are long-lived non-
equilibrium states in that case, which can in principle
influence the observables. Beyond the physical questions
for that case there are some pure technical problems.
Commonly used approaches employ real-time evolution
in order to calculate observables at equilibrium. They
assume that during the time evolution system reaches its
thermal equilibrium state independent from the initial
one, but in some cases this is not true. This fact restricts
the validity of real-time approach. From our point of view
it is necessary to investigate this question and it will be
a subject of our future work.

In summary, we have demonstrated that the
phenomenon of macroscopic quantization has the clear
physical meaning in the system of the particle on
the ring interacting with dissipative bath. In that
case the quantizing observable is simply the total
angular momentum of the whole system. We related this
phenomenon with angular momentum conservation due
to rotational symmetry of the system and rigorously
proved that in the ground state total angular momentum
can take only integer values. With the aid of the



mapping between considered system and the AES model
describing single-electron devices we have showed that
the macroscopically quantizing angular momentum is
an equivalent of the “effective charge” introduced by
Burmistrov and Pruisken for the single-electron box
problem. Also we have generalized the obtained results
to other systems.

The author is grateful to V. Losyakov, G. Starkov and
especially to S. Apenko for valuable discussions.

Appendix A: Two-dimensional harmonic oscillator.

Aim of this appendix is to rewrite Hamiltonian of two-
dimensional harmonic oscillator

A P2 +]5§ N mw?(22% + 9?)

H o > (27)

through creation and annihilation operators. Here zZ,
9 are position operators and p,, p, are corresponding
momenta operators. The desired representation is given
by the following relations

1
a= NG (Pz + iDy — iMwi + mwy) , (28)
b= 5o (e — iy — imsi — ). (29)
= — r — 1 — 1MMwWTr — mw .
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One can check that introduced operators satisfy
bosonic commutation relations and in this representation
Hamiltonian simplifies to H = w(ala + bTh + 1). On the
same time angular momentum operator J = Pz — TDy
might be rewritten as J = a'a — bth. From the bosonic
commutation relation one can show that operator S =
a -+ b' has the following property

St(J+1)=Jst (30)

means that operator S (S1) decreases (increases) angular
momentum of oscillator by one.
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