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METRIC-VALUED MAPPINGS OF BOUNDED VARIATION

V. V. Chistyakov UDC 517.518.24; 515.124

1. Introduction

In the present paper, we construct a general theory of mappings of bounded variation that are defined
on an arbitrary subset of the real line and take values in metric or linear normed spaces. Then this theory
is applied to the proof of the existence of regular selections of multivalued mappings of bounded variation
with compact graphs without the condition of convexity of their values. Below, we briefly outline the
structure of the paper and the results obtained (see Sec. 2.1 for main definitions and notation).

First of all, in Sec. 2.2 we outline such characteristic properties of a functional of Φ-variation VΦ(·, ·) as

the monotonicity, minimality, additivity, sequential lower semicontinuity, regularity, and connection with
a limit, and in Sec. 2.3, we prove the main relations between function spaces of Lipschitzian mappings,
absolutely continuous mappings, and mappings of bounded Φ-variation, where Φ : [0,∞) → [0,∞) is a
continuous convex function such that Φ(ρ) = 0 only for ρ = 0.

In Sec. 3, we prove a new structural theorem for all mappings of bounded Φ-variation f : E → X
from E into X, where E is a nonempty subset of the real line R and X is a metric space. In the case
where E = [a, b] is a closed interval in R and X = R, the following two criteria for functions f : E → X to
be of bounded variation are well known: if Φ(ρ) = ρ, which corresponds to the classical variation in the
sense of C. Jordan, then f is a function of bounded variation if and only if f can be represented as the
difference of two nondecreasing bounded functions (the Jordan decomposition); if Φ(ρ) = ρq for q > 1,
which defines the “nonlinear” q-variation in the sense of F. Riesz, then f has a bounded q-variation if and
only if f is absolutely continuous and the qth power of its derivative, which is defined almost everywhere
on [a, b], is Lebesgue integrable (the Riesz criterion). However, it is clear that none of these criteria is
applicable if X is a metric space. In the most general case, our structural theorem (Theorem 3.1) asserts
that f : E → X is a mapping of bounded Φ-variation if and only if it can be represented in the form of the
composition f = g ◦ϕ, where ϕ : E → R is a nondecreasing bounded function of bounded Φ-variation and
g is a mapping acting from the image of ϕ into the metric space X and satisfying the Lipschitz condition
with constant ≤1. The structural theorem of such a form was first proved in [6, 3.19] for continuous
mappings of Jordan bounded variation, and then it was extended to various special classes of mappings
in [7–11]. In addition, in Theorem 6.6(b), we generalize the Riesz criterion to the case where Φ ∈ N and
the mapping of bounded Φ-variation takes values in an arbitrary reflexive Banach space.

In the classical theory of real functions of Jordan bounded variation, an important role is played
by the so-called E. Helly selection principle (see [28, Chapter 8, Sec. 4]), which is proved via the Jordan
decomposition. On the basis of the structural theorem mentioned above, this principle was recently
extended to the case of metric- and Banach-space-valued mappings [7–9, 11] of bounded variation from
special classes. Here we present this theorem in a full generality (Theorem 4.2): an infinite family of
continuous mappings on a closed interval of a real line of uniformly bounded Φ-variation with values in
the compact subset of a metric space X contains a pointwise convergent sequence whose limit is a mapping
of bounded Φ-variation. If X is a Banach space, then the condition of continuity of the family of mappings
is superfluous, and if Φ ∈ N , then this principle can be strengthened up to the uniform convergence of a
sequence that is chosen from the family (Theorem 4.1). The version of the selection principle presented
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above is substantially used in the proof of the existence of regular selections of multivalued mappings of
bounded Φ-variation in Sec. 7.

In Sec. 5, we study the continuity properties of mappings of bounded Φ-variation on an arbitrary set
E ⊂ R (Theorem 5.3), and we also prove the formulas for jumps of the functional of Φ-variation as well as
the formulas for the Φ-variation of the mapping f on the set with a removed limit point (Theorem 5.6).
Special cases of these formulas for mappings f : E → X of Jordan bounded variation are given in [6, 2.23]
for E = [a, b], where X is a Banach space, and in [8, Sec. 4] for E ⊂ R and for an arbitrary metric
space X.

The case where the values of mappings of bounded Φ-variation lie in a linear normed or Banach
space X is considered in Sec. 6. On the space of all such mappings, the norm (of Luxemburg type from
the theory of Orlicz spaces [24, Chapter 2]) is introduced, its properties are studied, and it is proved that
the space of mappings of bounded Φ-variation is a Banach space with this norm if X is a Banach space
and Φ is a function that is moderately increasing at infinity (Sec. 6.1). In Sec. 6.2, we find an explicit
formula (6.6) for the Φ-variation of continuously differentiable mappings without the assumption that
the space X is complete (this formula is used in Sec. 7 for the proof of the existence of selections). In
Sec. 6.3, we show that any mapping of bounded Φ-variation with values in a reflexive Banach space is
weakly differentiable almost everywhere on E = [a, b], and if Φ ∈ N , then it is almost everywhere strongly
differentiable (Theorem 6.6). This circumstance allows one to generalize the Riesz criterion mentioned
above. As a consequence of the structural theorem and the theorem of differentiation, we obtain that
any absolutely continuous mapping on E = [a, b] with values in an arbitrary metric space X is, in fact,
a mapping of bounded Φ-variation with an appropriately chosen function Φ such that lim

ρ→∞
Φ(ρ)/ρ = ∞

(Theorem 6.7).
In Sec. 7, the problem of the existence of selections with prescribed properties (in particular, contin-

uous selections) of multivalued mappings of bounded Φ-variation with respect to the Hausdorff metric is
solved. By the Michael theorem [26], any lower semicontinuous multivalued mapping from a metric space
into the space of closed convex subsets of a Banach space possesses a continuous selection. However, in
the absence of the condition of convexity of values of a multivalued mapping, even Lipschitz-continuous
mappings ([19, 29]) cannot have continuous selections if the domain of this multivalued mapping lies in
a space of dimension greater than 1. The main result on the existence of selections in our case is The-
orem 7.1: any multivalued mapping F from a connected interval E ⊂ R into the set of subspaces of
the Banach space X with compact graph having the Φ-variation, which is bounded with respect to the
Hausdorff metric, possesses a selection of bounded Φ-variation. In particular, if F is continuous or Φ ∈ N ,
then the selection is also continuous, and if Φ ∈ N and X is reflexive, then the selection is a mapping
that is almost everywhere strongly differentiable on E.

In Sec. 8, we propose a further generalization of the theory that is constructed up to the present,
and, in particular, we present a generalization of Theorem 7.1 (Theorem 8.1).

Finally, in the Appendix, we cite the statements of auxiliary propositions in the form in which they
are used in the main part of the paper; we also indicate the sources where the proofs of these propositions
can be found.

The main results of the present paper were reported at the International Conference dedicated to the
90th anniversary of the birth of Academician L. S. Pontryagin, which was held in Moscow in 1998 from
August 31 to September 6 [12].

2. Elementary Properties of the Variation

2.1. Notation and Definitions. The following notation is used in this paper:

• N = {1, 2, 3, . . . } is the set of positive integers;
• Z = N ∪ {0} ∪ (−N) is the set of integers;
• E ⊂ R is a nonempty subset of the set of real numbers R;
• E−t = {s ∈ E | s ≤ t} and E+t = {s ∈ E | t ≤ s} if t ∈ E;
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• Eba = {s ∈ E | a ≤ s ≤ b} if a, b ∈ E, a ≤ b;
• [a, b] = Rba is a closed interval of the real line R with endpoints −∞ < a < b <∞;
• R+ = R+0 = {s ∈ R | s ≥ 0} is the set of nonnegative numbers;
• X is a fixed metric space with the metric d(·, ·) or a linear normed space (over the field K = R or C)
with the norm ‖ · ‖;
• XE is the set of all mappings f : E → X from E into the space X;
• f(E) = {f(t) | t ∈ E} ⊂ X is the image of the mapping f ∈ XE ;
• g ◦ ϕ is the composition of two mappings g : E → X and ϕ : E1 → E, which acts from E1 into X
and is defined by the rule (g ◦ ϕ)(τ) = g(ϕ(τ)) for all τ ∈ E1;
• C(E;X) is the set of all continuous mappings from E into X;
• F0 is the set of all continuous strictly increasing functions Φ from R+ into R+ such that Φ(0) = 0
and lim

ρ→∞
Φ(ρ) =∞ (note that if Φ, Ψ ∈ F0 and c > 0, then the functions Φ + Ψ, Φ ·Ψ, cΦ, Φ ◦Ψ,

Φ−1, min{Φ,Ψ}, and max{Φ,Ψ} belong to F0, where Φ−1 stands for the inverse function to Φ);
• M is the set of all continuous convex functions Φ : R+ → R+ such that Φ(ρ) = 0 only for ρ = 0
(note that M ⊂ F0, and if Φ, Ψ ∈ M and c > 0, then Φ + Ψ, cΦ, and Φ ◦ Ψ ∈ M); sometimes,
functions Φ fromM are calledM-functions;
• N is the set of all functions Φ ∈M such that lim

ρ→∞
Φ(ρ)/ρ =∞ (note that N ⊂M, and if Φ, Ψ ∈ N

and c > 0, then Φ +Ψ, cΦ, and Φ ◦Ψ ∈ N ); functions Φ from the class N are called N -functions;
• P := Q or Q =: P ; this notation means that the expression P is defined via the expression Q.

Everywhere in what follows in this section, unless otherwise stated, (X,d) is a fixed metric space.
A mapping f : E → X is said to be Lipschitz continuous (or, in abbreviated form, Lipschitzian) if

the following quantity is finite:

Lip(f) = sup

{
d(f(t), f(s))

|t− s|

∣∣∣∣ t, s ∈ E, t �= s

}
;

this quantity is called the Lipschitz constant of the mapping f . The set of all Lipschitzian mappings
from E into X is denoted by

C0,1(E;X) = {f : E → X | Lip(f) <∞}.

A mapping f : E → X is called absolutely continuous if there exists a function δ : (0,∞) → (0,∞)
such that for any ε > 0 and any finite tuple {ai, bi}ni=1 ⊂ E of points such that a1 < b1 ≤ a2 < b2 ≤ . . . ≤
an < bn, the condition

n∑
i=1

(bi − ai) ≤ δ(ε) implies
n∑
i=1

d(f(bi), f(ai)) ≤ ε

holds. More precisely, such mappings f are called δ(·)-absolutely continuous, and since the function δ(·)
depends on f in general, we write δ(·) = δf (·). The set of all absolutely continuous mappings from E
into X is denoted by AC(E;X).

Let

T (E) = {T = {ti}
m
i=0 ⊂ E|m ∈ N, ti−1 < ti, i = 1, . . . ,m} (2.1)

be the set of all partitions of E into finite ordered tuples of points from E. For a function Φ ∈ F0, a
mapping f : E → X, and a partition T = {ti}mi=0 of the set E, we define

VΦ[f ;T ] ≡ VΦ,d[f ;T ] :=
m∑
i=1

Φ

(
d(f(ti), f(ti−1))

ti − ti−1

)
· (ti − ti−1), (2.2)

which is called the Φ-prevariation of the mapping f corresponding to the partition T , and set

VΦ(f,E) := sup{VΦ[f ;T ] | T ∈ T (E)}. (2.3)
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Formally, any partition from T (E) consists of at least two points; therefore, for the set E, which is empty
or consists of one point, we explicitly set the following: VΦ(f,E) = VΦ[f ;E] = 0 (and also T (∅) := ∅).

The functional VΦ(·, ·) : XE × 2E → [0,∞] is thus defined; it is called the functional of Φ-variation or

simply the Φ-variation. The quantity VΦ(f,E) itself, finite or infinite, is called the (total) Φ-variation of

the mapping f on the set E. If this quantity is finite, then f is called a mapping of bounded (or finite)
Φ-variation on E (we also say that f has bounded Φ-variation on E). The set of all mappings from E
into X of bounded Φ-variation is denoted by

BVΦ(E;X) = {f : E → X | VΦ(f,E) <∞}.

If A is a nonempty subset of E, then we set VΦ(f,A) = VΦ(f |A, A), where f |A is the restriction of

the mapping f to the set A, and the value VΦ(f,A) is called the Φ-variation of the mapping f on the

subset A. In what follows, we assume that the set E is infinite.
If Φ(ρ) = ρ, ρ ∈ R+ (so that Φ ∈M), then definitions (2.1)–(2.3) give the classical notion of variation

in the sense of C. Jordan [21] (see also [34, Chapter 4, Sec. 9]). Recently, this notion was studied in the
authors’s works [6–8] from the standpoint of describing the general properties of the variation and its
application to the search for selections of multivalued mappings. We denote by BV1(E;X) the set of
all mappings from E into X of Jordan bounded variation; the corresponding Φ-variation of a mapping
f : E → X is denoted by V1(f ;E) and is simply called the variation of the mapping f or 1-variation of f

on E.
If Φ(ρ) = ρq, ρ ∈ R+, and q > 1 (so that Φ ∈ N ), then (2.1)–(2.3) define the notion of the q-

variation in the sense of F. Riesz [32] (or [33, Chapter 2, Sec. 3.36]). In [9,10], the author proved that any
multivalued mapping of bounded q-variation with a compact graph has selections of bounded q-variation.
The set of all mappings of Riesz bounded q-variation is denoted by BVq(E;X), and the corresponding

Φ-variation of the mapping f , which is called the q-variation, is denoted by Vq(f ;E). The case where

the function Φ ∈ N and E = [a, b] is a closed interval was studied by the author in [11]. In the present
paper, we construct a general theory of mappings of bounded Φ-variation for functions Φ ∈M and then
apply it to the search for selections of multivalued mappings of bounded Φ-variation (with respect to the
Hausdorff metric). Note that, in contrast to the N -functions introduced by Krasnosel’skii and Rutitskii
[24, Chapter 1], functions Φ from the class N do not satisfy the condition Φ′(0) = lim

ρ→0
Φ(ρ)/ρ = 0.

Nevertheless, functions from the class N resemble N -functions, which play an important role in the
construction of Orlicz spaces [24, Chapter 2]; therefore, the Φ-variation defined in (2.1)–(2.3) can be
called the Φ-variation in the sense of Jordan–Riesz–Orlicz.

2.2. Main properties of Φ-variations. We begin with some elementary properties of mappings of
bounded Φ-variation.

Proposition 2.1. Let Φ ∈M, and let f : E → X. Then

(a) if T ∈ T (E) and t ∈ E \ T , we have VΦ[f ;T ] ≤ VΦ[f ;T ∪ {t}];
(b) if T1, T2 ∈ T (E) and T1 ⊂ T2, we have VΦ[f ;T1] ≤ VΦ[f ;T2];
(c) if T ∈ T (E), we have VΦ(f, T ) = VΦ[f ;T ] (i.e., VΦ(f, · ) is a continuation of VΦ[f ; ·] from the set

T (E) to the set 2E of all subsets of the set E);
(d) the quantity VΦ(f,E) remains unchanged if when calculating the supremum in it, instead of all

partitions of the set E, one restricts oneself to the consideration of only the {ti}mi=0 ∈ T (E) that
have a finite number of points that are fixed in advance among the points {ti}mi=0; in other words, if
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a partition T0 ∈ T (E) is fixed and TT0(E) = {T0 ∪ T | T ∈ T (E)}, then

VΦ(f,E) = sup{VΦ(f, T ) | T ∈ TT0(E)}. (2.4)

Proof. (a) Let T = {ti}mi=0. For i ∈ {1, . . . ,m}, we set

Vi = Φ

(
d(f(ti), f(ti−1))

ti − ti−1

)
· (ti − ti−1).

Since t /∈ T , we have either t < t0 or t > tm, or otherwise, tk−1 < t < tk for some k ∈ {1, . . . ,m}. If t < t0
or t > tm, then inequality (a) is obvious. Now let tk−1 < t < tk. Then we have

VΦ[f ;T ] =

( k−1∑
i=1

Vi

)
+ Vk +

( m∑
i=k+1

Vi

)
; (2.5)

moreover, if k = 1, then the first sum does not appear in this relation, and if k = m, then the last sum
does not appear in it. Using the triangle inequality for d and the fact that Φ is increasing and then
applying the Jensen inequality for sums (A.1) for

α1 = t− tk−1, α2 = tk − t, x1 =
d(f(t), f(tk−1))

t− tk−1
, x2 =

d(f(tk), f(t))

tk − t
,

and observing that α1 + α2 = tk − tk−1, we find that

Vk ≤ Φ

(
d(f(t), f(tk−1)) + d(f(tk), f(t))

(t− tk−1) + (tk − t)

)
·(tk − tk−1)

≤ Φ

(
d(f(t), f(tk−1))

t− tk−1

)
·(t− tk−1) + Φ

(
d(f(tk), f(t))

tk − t

)
·(tk − t).

(2.6)

Therefore, VΦ[f ;T ] ≤ VΦ[f ;T ∪ {t}], which was required.
(b) follows from (a) by induction.
(c) By virtue of (2.3), we have VΦ(f, T ) ≥ VΦ[f ;T ]. On the other hand, if S is an arbitrary partition

of the set T , then S ⊂ T ; therefore, by (b), VΦ[f ;S] ≤ VΦ[f ;T ], and, taking the supremum over all
partitions S, we obtain VΦ(f, T ) ≤ VΦ[f ;T ], which implies the assertion.

(d) Since TT0(E) ⊂ T (E), the left-hand side of (2.4) is not less than its right-hand side. On the other
hand, if T ∈ T (E) is arbitrary, then T ⊂ T0 ∪ T ∈ TT0(E); therefore,

VΦ(f, T ) = VΦ[f ;T ] ≤ VΦ[f ;T0 ∪ T ] ≤ sup{VΦ[f ;T ] | T ∈ TT0(E)};

hence, the left-hand side of (2.4) is not more than its right-hand side and the equality is established. �
Proposition 2.1(c) implies that if Φ ∈ M and f ∈ XE , then, for any finite set T ⊂ E, we have

VΦ(f, T ) = VΦ[f ;T ]; therefore, in what follows, instead of VΦ[f ;T ], we will write VΦ(f, T ) in (2.2) and (2.3)

(for uniformity).
Proposition 2.1(d) implies, in particular, that if Φ ∈ M, E = [a, b] is a closed interval, f : E → X,

and

T ba :=
{
T = {ti}

m
i=0 ⊂ [a, b] | m ∈ N, a = t0 < t1 < · · · < tm−1 < tm = b

}
is the set of all partitions of the closed interval [a, b] containing two fixed points a and b, then

b

V
a
Φ(f) := sup

{
VΦ(f, T ) | T ∈ T

b
a

}
= VΦ(f, [a, b]). (2.7)

Proposition 2.2. Let Φ ∈M and f : E → X. We have

(a) if A ⊂ B ⊂ E, then VΦ(f,A) ≤ VΦ(f,B) (monotonicity);
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(b) if t, s ∈ E, and s < t, then Φ
(
d(f(t),f(s))

t−s

)
≤ 1
t−s VΦ(f,E

t
s) (equicontinuity and minimality);

(c) if t ∈ E, then VΦ(f,E
−
t ) + VΦ(f,E

+
t ) = VΦ(f,E) (additivity);

(d) if a sequence of mappings {fn}∞n=1 ⊂ X
E pointwise converges on E to f (i.e., if lim

n→∞
d(fn(t), f(t)) =

0 for all t ∈ E), then VΦ(f,E) ≤ lim inf
n→∞

VΦ(fn, E) (sequential lower semicontinuity);

(e) VΦ(f,E) = sup{VΦ(f,Eba) | a, b ∈ E, a < b} (regularity);

(f) if s = supE ∈ R ∪ {∞} and s /∈ E, then VΦ(f,E) = lim
E�t→s

VΦ(f,E
−
t );

(g) if i = inf E ∈ R ∪ {−∞} and i /∈ E, then VΦ(f,E) = lim
E�t→i

VΦ(f,E
+
t );

(h) if s and i are such as in (f) and (g), and s /∈ E and i /∈ E, then, in addition to (limit properties)
(f) and (g), we have

VΦ(f,E) = lim
E�a→i
E�b→s

VΦ(f,E
b
a) = lim

E�b→s
lim

E�a→i
VΦ(f,E

b
a) = lim

E�a→i
lim

E�b→s
VΦ(f,E

b
a).

Proof. (a) If T ∈ T (A), then T ∈ T (B), and, therefore, VΦ(f, T ) ≤ VΦ(f,B); it remains to take the

supremum over all T ∈ T (A).
(b) Here it suffices to note that {s, t} forms a partition of the set Ets and then use the definition of

VΦ(f,E
t
s) from (2.3).

(c) For arbitrary partitions T1 ∈ T (E
−
t ) and T2 ∈ T (E

+
t ), we set

T̃i =

{
Ti if t ∈ Ti,

Ti ∪ {t} if t /∈ Ti,
i = 1, 2.

Then T̃1 ∪ T̃2 ∈ T (E), and we have

VΦ(f, T1) + VΦ(f, T2) ≤ VΦ(f, T̃1) + VΦ(f, T̃2) = VΦ(f, T̃1 ∪ T̃2) ≤ VΦ(f,E).

Taking the supremum over T1 and T2 indicated above, we find

VΦ(f,E
−
t ) + VΦ(f,E

+
t ) ≤ VΦ(f,E). (2.8)

We now prove the inequality converse to the last one (here we essentially use the convexity of Φ).
Let T = {ti}mi=0 ∈ T (E). If t ∈ T , then t = tk for some k ∈ {0, 1, . . . ,m}, and, therefore, we have

VΦ(f, T ) = VΦ(f, {ti}
k
i=0) + VΦ(f, {ti}

m
i=k)

≤ VΦ(f,E
−
t ) + VΦ(f,E

+
t ).

(2.9)

On the other hand, if t /∈ T , then t < t0, or t > tm, or otherwise, tk−1 < t < tk for some k ∈ {1, . . . ,m}.
In the case where t < t0 or t > tm, it is obvious that

VΦ(f, T ) ≤ VΦ(f, T ∪ {t}) ≤ VΦ(f,E
−
t ) + VΦ(f,E

+
t ). (2.10)

Now, if tk−1 < t < tk, then, by (2.5) and (2.6), we have

VΦ(f, T ) ≤ VΦ(f, {ti}
k−1
i=0 ∪ {t}) + VΦ(f, {t} ∪ {ti}

m
i=k) ≤ VΦ(f,E

−
t ) + VΦ(f,E

+
t ).

Together with (2.9) and (2.10), this inequality means that

VΦ(f, T ) ≤ VΦ(f,E
−
t ) + VΦ(f,E

+
t ) ∀T ∈ T (E),

which just implies the inequality converse to (2.8), and, therefore, it implies (c) as well.

3392



(d) Let T = {ti}mi=0 be an arbitrary partition of E. By the definition of VΦ(fn, E), we have

VΦ(fn, T ) ≤ VΦ(fn, E) ∀n ∈ N. (2.11)

We set ∆ti = ti − ti−1, ρi,n= d(fn(ti), fn(ti−1))/∆ti, and ρi = d(f(ti), f(ti−1))/∆ti. Then we find from
(2.2) that

VΦ(fn, T )− VΦ(f, T ) =
m∑
i=1

(
Φ(ρi,n)−Φ(ρi)

)
∆ti.

The continuity of the metric d(·, ·) and the pointwise convergence of fn to f imply ρi,n → ρi as n → ∞
for all i = 1, . . . ,m; therefore, by the continuity of the function Φ, we conclude that Φ(ρi,n) → Φ(ρi) as
n→∞. Hence

VΦ(fn, T )→ VΦ(f, T ) as n→∞.

Taking the lower limit in both parts of inequality (2.11), we obtain the inequality

VΦ(f, T ) ≤ lim inf
n→∞

VΦ(fn, E) ∀T ∈ T (E),

which just implies (d).
(e) By virtue of item (a), it is clear that the left-hand side in (e) is not less than the right-hand side.

Conversely, for any number α < VΦ(f,E), by (2.3), there exists a decomposition T = {ti}mi=0 ∈ T (E) such

that VΦ(f, T ) ≥ α, but T ∈ T (E
tm
t0
); therefore, VΦ(f,E

tm
t0
) ≥ VΦ(f, T ) ≥ α, which is what was required.

(f) Since s /∈ E, s is a limit point of the set E. The function E � t �→ VΦ(f,E
−
t ) ∈ [0,∞] is

nondecreasing by virtue of (a); therefore, the limit written in (f) exists in [0,∞]; moreover, it is clear that
this limit ≤VΦ(f,E). On the other hand, by (e), for any α < VΦ(f,E), there exist a, b ∈ E, a < b < s,

such that VΦ(f,E
b
a) ≥ α; this implies that for any t ∈ E ∩ [b, s) �= ∅, VΦ(f,E

−
t ) ≥ VΦ(f,E

b
a) ≥ α by

virtue of (a), and the relation in (f) follows.
(g) is proved similarly to (f).
(h) The first relation is proved similarly to (f). We prove the second relation in (h) in the following

way:

VΦ(f,E) = lim
E�b→s

VΦ(f,E
−
b ) = lim

E�b→s
lim

E�a→i
VΦ(f, (E

−
b )
+
a ) = lim

E�b→s
lim

E�a→i
VΦ(f,E

b
a).

The last inequality in (h) can be proved in a similar way. �
The mapping VΦ(·, ·) is minimal in the following sense.

Proposition 2.3. Let Φ ∈M, and let a mapping W : XE × 2E → [0,∞] satisfy the following conditions
for all f : E → X and ∅ �= A ⊂ E (we assume that W (f,∅) := 0):

(a) Φ
(
d(f(t),f(s))

t−s

)
≤ 1
t−sW (f,A) for all t, s ∈ A, s < t;

(b) W (f,A) ≤W (f,B) for all A ⊂ B ⊂ E;
(c) W (f,A−t ) +W (f,A+t ) =W (f,A) for all t ∈ A.

Then VΦ(f,A) ≤W (f,A) for all f : E → X and A ⊂ E.

Proof. The mapping (f,A) �→ VΦ(f,A) satisfies all the conditions listed above by Proposition 2.2(a,b,c).

Now, if f : E → X, ∅ �= A ⊂ E and T = {ti}mi=0 ∈ T (A), then we have

VΦ(f, T ) =
m∑
i=1

Φ

(
d(f(ti), f(ti−1))

ti − ti−1

)
· (ti − ti−1)

(a)

≤
m∑
i=1

W (f,Atiti−1)
(c)
= W (f,Atmt0 )

(b)

≤ W (f,A),

from which the assertion follows if we take the supremum over all T ∈ T (A). �
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2.3. Relations between function spaces.

Proposition 2.4. (a) If f ∈ C0,1(E;X), then f ∈ AC(E;X).
(b) If E is a bounded set and f ∈ C0,1(E;X), then f ∈ BVΦ(E;X) for any function Φ ∈ M and the

following inequality holds:

VΦ(f,E) ≤ Φ(Lip(f)) · (supE − inf E).

(c) If E is a compact set, Φ ∈M, and f ∈ BVΦ(E;X), then f ∈ BV1(E;X) and the following inequality
holds:

V1(f,E) ≤ Φ−1
(

1

maxE −minE
VΦ(f,E)

)
· (maxE −minE). (2.12)

(d) If Φ ∈ N and f ∈ BVΦ(E;X), then f ∈ AC(E;X).
(e) If E is a compact set and f ∈ AC(E;X), then f ∈ BV1(E;X).

Proof. (a) For ε > 0, we set δ(ε) = ε/max{1,Lip(f)} > 0. Then, if points {ai, bi}ni=1 ⊂ E are such that

a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn and
n∑
i=1

(bi − ai) ≤ δ(ε), we have

n∑
i=1

d(f(bi), f(ai)) ≤ Lip(f) ·
n∑
i=1

(bi − ai) ≤ Lip(f) · δ(ε) ≤ ε.

(b) It suffices to note that for any partition T = {ti}mi=0 ∈ T (E), we have

VΦ(f, T ) =
m∑
i=1

Φ

(
d(f(ti), f(ti−1))

ti − ti−1

)
· (ti − ti−1)

≤ Φ(Lip(f)) ·
m∑
i=1

(ti − ti−1) = Φ(Lip(f)) · (tm − t0).

(d) We first prove (d) and then (c). Let {ai, bi}ni=1 ⊂ E be such that a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an <
bn. Applying the Jensen inequality (A.1) for sums with

αi = bi − ai and xi =
d(f(bi), f(ai))

bi − ai

for i ∈ {1, . . . , n}, we obtain

Φ


n∑
i=1
d(f(bi), f(ai))

n∑
i=1

(bi − ai)

 ≤ 1
n∑
i=1

(bi − ai)
·
n∑
i=1

Φ

(
d(f(bi), f(ai))

bi − ai

)
· (bi − ai) ≤

1
n∑
i=1

(bi − ai)
· VΦ(f,E).

Since Φ ∈M, it is strictly increasing; therefore, taking the inverse function Φ−1 of both parts of the last
inequality, we obtain

n∑
i=1

d(f(bi), f(ai)) ≤

[
n∑
i=1

(bi − ai)

]
·Φ−1

 1
n∑
i=1

(bi − ai)
· VΦ(f,E)

 . (2.13)

Setting v := VΦ(f,E) and taking into account that lim
ρ→∞

Φ(ρ)/ρ =∞, we have

lim
t→0

tΦ−1(v/t) = v lim
ρ→∞

ρ/Φ(ρ) = 0. (2.14)
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Therefore, for any ε > 0, there exists δ(ε) > 0 such that if 0 < t ≤ δ(ε), then tΦ−1(v/t) ≤ ε. This and
(2.13) imply the property

if
n∑
i=1

(bi − ai) ≤ δ(ε), then
n∑
i=1

d(f(bi), f(ai)) ≤ ε.

Thus, f ∈ AC(E;X).
(c) Let T = {ti}ni=0 ∈ T (E) be an arbitrary partition. By Proposition 2.1(d), we fix two points

t0 = minE ∈ E and tn = maxE ∈ E. Now, inequality (2.12) and assertion (c) follows from (2.13) if we set

a1 = t0 and bi = ai+1 = ti for i = 1, . . . , n−1, bn = tn, and note that
n∑
i=1

(bi−ai) = tn−t0 = maxE−minE.

(e) Let the mapping f be δ(·)-absolutely continuous. For t ∈ E, we set ϕ(t) := V1(f,E
−
t ) (the

function ϕ a priori can take infinite values) and show that the function ϕ is also δ(·)-absolutely continuous
on E. Let ε > 0, and let the tuple of points {ai, bi}ni=1 ⊂ E be such that a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn

and
n∑
i=1

(bi−ai) ≤ δ(ε). For any i ∈ {1, . . . , n} and any αi < V1(f,Ebiai), by the definition of the 1-variation

V1(f,E
bi
ai
) (2.3), we find a partition Ti = {ti,j}

mi
j=0 of the set E

bi
ai
such that ai = ti,0 < ti,1 < · · · < ti,mi−1 <

ti,mi = bi and V1(f, Ti) ≥ αi. Since
n∑
i=1

mi∑
j=1

(ti,j − ti,j−1) =
n∑
i=1

(bi − ai) ≤ δ(ε),

the initial assumption on the mapping f implies
n∑
i=1

αi ≤
n∑
i=1

V1(f, Ti) =
n∑
i=1

mi∑
j=1

d(f(ti,j), f(ti,j−1)) ≤ ε.

Letting αi tend to V1(f,E
bi
ai) and applying Proposition 2.2(c), we obtain

n∑
i=1

|ϕ(bi)− ϕ(ai)| =
n∑
i=1

(
V1(f,E

−
bi
)− V1(f,E

−
ai)
)
=

n∑
i=1

V1(f,E
bi
ai) ≤ ε;

this implies the δ(·)-absolute continuity of the function ϕ.
Since ϕ is absolutely continuous on the set E, this function is (uniformly) continuous on E, and since

E is compact, ϕ is bounded on E, and, in particular, V1(f,E) = ϕ(maxE) <∞. �

Corollary 2.5. Let E be a compact set, and let Φ ∈M. Then

(a) C0,1(E;X) ⊂ BVΦ(E;X) ⊂ BV1(E;X) and C0,1(E;X) ⊂ AC(E;X) ⊂ BV1(E;X);
(b) if Φ ∈ N , then C0,1(E;X) ⊂ BVΦ(E;X) ⊂ AC(E;X) ⊂ BV1(E;X).

Corollary 2.6. Let E be a compact set, Φ ∈M, and f ∈ BVΦ(E;X). Then

(a) the image f(E) of the mapping f is a completely bounded and separable subset of X, and if it is
known in addition that X is a complete metric space, then f(E) is precompact (i.e., the closure of
f(E) in X is compact);

(b) f is continuous on E possibly outside the subset of E that is no more than countable.

Proof. It is sufficient to take into account the embedding BVΦ(E;X) ⊂ BV1(E;X) and use Theorem A.2
given in the Appendix (see also Theorem 5.3(b)). �

The following proposition is a generalization of Proposition 2.4(c).

Proposition 2.7. Let Φ, Ψ ∈M.
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(a) If E is a bounded set, X is a metric space, and the condition

∃ ρ0 ≥ 0 and C > 0 such that Ψ(ρ) ≤ CΦ(ρ) ∀ ρ ≥ ρ0 (2.15)

holds, then BVΦ(E;X) ⊂ BVΨ(E;X).
(b) Conversely, if E = [a, b], X is a Banach space with the norm ‖ · ‖, and BVΦ([a, b];X) ⊂

BVΨ([a, b];X), then condition (2.15) holds.

Proof. (a) Suppose that (2.15) holds. If T = {ti}mi=0 is a partition of E, then, for any mapping f ∈
BVΦ(E;X), we have

VΨ(f, T ) ≤ Ψ(ρ0) · (supE − inf E) + C VΦ(f,E),

i.e., f ∈ BVΨ(E;X).
(b) Now, let BVΦ([a, b];X) ⊂ BVΨ([a, b];X), where X is a Banach space. Suppose the contrary, i.e.,

let condition (2.15) be violated. Then there exists an increasing sequence of positive numbers {ρn}∞n=1 for
which lim

n→∞
ρn =∞ and Ψ(ρn) > 2nΦ(ρn) for all n ∈ N. Consider an increasing sequence {an}∞n=0 ⊂ [a, b]

such that a0 = a and

an − an−1 =
(b− a)Φ(ρ1)

2nΦ(ρn)
, n ∈ N.

For t ∈ [a, b], we set

g(t) =

{
ρn if an−1 ≤ t < an, n ∈ N,

0 if lim
n→∞

an ≤ t ≤ b,

and define the mapping f : [a, b]→ X by

f(t) = x0

∫ t

a

g(τ) dτ, t ∈ [a, b], where x0 ∈ X, ‖x0‖ = 1.

We show that f ∈ BVΦ([a, b];X), but f /∈ BVΨ([a, b];X), which contradicts the assumption. In fact, for
any T = {ti}mi=0 ∈ T

b
a , we have

VΦ(f, T ) ≤
∞∑
n=1

Φ

(
‖f(an)− f(an−1)‖

an − an−1

)
· (an − an−1)

=
∞∑
n=1

Φ(ρn) · (an − an−1) = (b− a)Φ(ρ1) <∞.

On the other hand, if m ∈ N and Tm = {an}mn=0, then

b

V
a
Ψ(f) ≥ VΨ(f, Tm) =

m∑
n=1

Ψ

(
‖f(an)− f(an−1)‖

an − an−1

)
· (an − an−1)

=
m∑
n=1

Ψ(ρn)
(b− a)Φ(ρ1)

2nΦ(ρn)
≥

m∑
n=1

(b− a)Φ(ρ1) = m(b− a)Φ(ρ1),

which, by virtue of the arbitrariness of m ∈ N, yields
b

V
a
Ψ(f) =∞. �

Remark 2.1. Since the function Φ ∈ M is convex, it has the right derivative Φ′+(ρ) for any ρ ∈ R
+,

Φ′+(ρ) > 0 for ρ > 0, which is nondecreasing and right continuous. Therefore, there exist ρ0 ≥ 0 and
c0 > 0 such that c0ρ ≤ Φ(ρ) for ρ ≥ ρ0 since

Φ(ρ) =

∫ ρ

0
Φ′+(τ) dτ >

∫ ρ

ρ/2
Φ′+(τ) dτ >

ρ

2
Φ′+

(ρ
2

)
≥

1

2
Φ′+

(ρ0
2

)
· ρ, ρ ≥ ρ0 > 0.

Then this fact and Proposition 2.7(a) imply the embedding from Proposition 2.4(c).
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In concluding of this section, we prove an auxiliary lemma, which will be needed below (in Theo-
rems 6.4 and 6.6).

Lemma 2.8. Let Φ ∈M and f ∈ BVΦ([a, b];X). Then, for any h ∈ (0, b− a), we have the inequality∫ b−h

a

Φ

(
d(f(t+ h), f(t))

h

)
dt =

∫ b

a+h
Φ

(
d(f(t), f(t− h))

h

)
dt ≤

b

V
a
Φ(f).

In particular, if X is a linear normed space (over R or C) with the norm ‖ · ‖, then∫ b−h

a

Φ

(∥∥∥f(t+ h)− f(t)
h

∥∥∥) dt ≤ b

V
a
Φ(f) ∀ 0 < h < b− a. (2.16)

Proof. By Proposition 2.2(a), the function t �→
t

V
a
Φ(f) is nondecreasing on the closed interval [a, b];

therefore, it is Riemann integrable on [a, b]. Let 0 < h < b − a. Since the mapping f is continuous
everywhere on [a, b], possibly except for a finite set of points (Corollary 2.6(b)), the mapping [a, b− h] �
t �→ d(f(t+ h), f(t)) also has this property on [a, b− h]. Applying Proposition 2.2(b,c), we obtain

Φ

(
d(f(t+ h), f(t))

h

)
≤

1

h

t+h
V
t
Φ(f) ≤

1

h

( t+h
V
a
Φ(f)−

t

V
a
Φ(f)

)
for all t ∈ [a, b−h]. Now, the inequality of the lemma follows if we integrate the last equation with respect
to t on the closed interval [a, b− h]:

b−h∫
a

Φ

(
d(f(t+ h), f(t))

h

)
dt ≤

1

h

( b−h∫
a

t+h
V
a
Φ(f) dt−

b−h∫
a

t

V
a
Φ(f) dt

)

=
1

h

( b∫
b−h

t

V
a
Φ(f) dt−

a+h∫
a

t

V
a
Φ(f) dt

)
≤

1

h

b∫
b−h

t

V
a
Φ(f) dt ≤

b

V
a
Φ(f).

�

3. Structural Theorem

Let E ⊂ R, and let (X,d) be a metric space. A mapping g : E → X is called natural if V1(g,E
b
a) = b−a

for all a, b ∈ E, a ≤ b. The natural mapping g : E → X is Lipschitzian with Lipschitz constant Lip(g) ≤ 1,
since, by Proposition 2.2(b), for Φ(ρ) = ρ, we have

d(g(b), g(a)) ≤ V1(g,E
b
a) = b− a, a, b ∈ E, a ≤ b.

The main result of this section is the following structural theorem.

Theorem 3.1. Let E ⊂ R be a compact set, and let X be a metric space. Denote by F(E;X) one of
the classes of sets C0,1(E;X), BVΦ(E;X) for Φ ∈ M, or AC(E;X). The mapping f : E → X belongs
to the class F(E;X) if and only if there exist a nondecreasing bounded function ϕ ∈ F(E;R+) and a
natural mapping g : E1 → X with E1 = ϕ(E) such that f = g ◦ ϕ E. In addition, one can explicitly
set ϕ(t) = V1(f,E

−
t ) for t ∈ E; in this case, the function ϕ preserves the main characteristics of the

mapping f (i.e., the Lipschitz constant, the total Φ-variation, or the function δ(·) from the definition of
absolute continuity).

The proof of this theorem is carried out in two steps and is contained in Lemmas 3.2 and 3.3. All
examples of mappings of bounded variation are described in the following lemma, which gives the sufficient
condition of Theorem 3.1.
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Lemma 3.2. Let ϕ : E → R, E1 = ϕ(E), g ∈ C0,1(E1;X), Lip(g) ≤ 1, and f = g ◦ ϕ.

(a) If ϕ ∈ C0,1(E;R), then f ∈ C0,1(E;X) and Lip(f) ≤ Lip(ϕ).
(b) If Φ ∈M and ϕ ∈ BVΦ(E;R), then f ∈ BVΦ(E;X) and VΦ(f,E) ≤ VΦ(ϕ,E).

(c) If ϕ ∈ AC(E;R), then f ∈ AC(E;X); moreover, for the mapping f , the function δ(·) from the
definition of absolute continuity can be taken the same as for the function ϕ (which is written in the
form δf (·) = δϕ(·)).

Proof. (a) For t, s ∈ E, we have

d(f(t), f(s)) = d
(
g(ϕ(t)), g(ϕ(s))

)
≤ Lip(g) · |ϕ(t) − ϕ(s)|

≤ Lip(g) · Lip(ϕ) · |t− s| ≤ Lip(ϕ) · |t− s|.

(b) If T = {ti}mi=0 is an arbitrary partition of E, then

VΦ(f, T ) =
m∑
i=1

Φ

(
d
(
g(ϕ(ti)), g(ϕ(ti−1))

)
ti − ti−1

)
· (ti − ti−1)

≤
m∑
i=1

Φ

(
Lip(g) ·

|ϕ(ti)− ϕ(ti−1)|

ti − ti−1

)
· (ti − ti−1)

≤ VΦ(Lip(g) · ϕ,E) ≤ VΦ(ϕ,E).

(c) Let ε > 0, {ai, bi}ni=1 ⊂ E, a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn, and
n∑
i=1

(bi − ai) ≤ δϕ(ε). Then

n∑
i=1

d(f(bi), f(ai)) =
n∑
i=1

d
(
g(ϕ(bi)), g(ϕ(ai))

)
≤ Lip(g) ·

n∑
i=1

|ϕ(bi)− ϕ(ai)| ≤ Lip(g) · ε ≤ ε.

�

Remark 3.1. Generally speaking, the fact that ϕ ∈ BVΦ(E;R) and α > 1 does not imply that αϕ ∈
BVΦ(E;R) (cf. the proof of Lemma 3.2(b)).

The second lemma, which gives the necessary condition of Theorem 3.1, presents the canonical
decomposition of mappings of bounded variation.

Lemma 3.3. Let f ∈ BV1(E;X); for t ∈ E, we set ϕ(t) = V1(f,E
−
t ) and let E1 = ϕ(E). Then

ϕ : E → R+ is a nondecreasing bounded function; moreover, there exists a natural mapping g : E1 → X
(and, therefore, g ∈ C0,1(E1;X) and Lip(g) ≤ 1) such that

(i) f = g ◦ ϕ on E;
(ii) g(E1) = f(E) in X;
(iii) V1(g,E1) = V1(f,E).

Moreover, for the case of a compact set E ⊂ R, we have

(a) if f ∈ C0,1(E;X), then ϕ ∈ C0,1(E;R) and Lip(ϕ) = Lip(f);
(b) if Φ ∈M and f ∈ BVΦ(E;X), then ϕ ∈ BVΦ(E;R) and VΦ(ϕ,E) = VΦ(f,E);

(c) if f ∈ AC(E;X), then ϕ ∈ AC(E;R) and δϕ(·) = δf (·).
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Proof. 1. In the first part of this proof (up to item (iii)) we follow [8, Lemma 3.3]. The function
ϕ : E → R is well defined, bounded (ϕ(t) ≤ V1(f,E) for t ∈ E), nonnegative, and nondecreasing on E

due to Proposition 2.2(a). For τ ∈ E1, we denote by ϕ−1({τ}) = {t ∈ E | ϕ(t) = τ} the inverse image of
the singleton {τ} under the mapping ϕ. We define the desired mapping g : E1 → X as follows: if τ ∈ E1,
we set

g(τ) = f(t) for any t ∈ ϕ−1({τ}). (3.1)

Such a definition is correct since
⋃
τ∈E1

ϕ−1({τ}) = E and the value of f(t) ∈ X does not depend on

t ∈ ϕ−1({τ}) since, in view of Proposition 2.2(b,c) for t, s ∈ E, s ≤ t, we have

d(f(t), f(s)) ≤ V1(f,E
t
s) = ϕ(t)− ϕ(s),

or, in abbreviated form,

d(f(t), f(s)) ≤ |ϕ(t)− ϕ(s)| ∀ t, s ∈ E; (3.2)

therefore, if t, s ∈ ϕ−1({τ}), then ϕ(t) = τ = ϕ(s), and hence f(t) = f(s).
The representation of f in the form of the composition from (i) is implied by (3.1) since for t ∈ E

we have t ∈ ϕ−1({ϕ(t)}); therefore, f(t) = g(ϕ(t)) = (g ◦ ϕ)(t).
Assertion (ii) is readily implied by (i). Assertion (iii) is implied by the formula of the change of the

variable in the variation (Proposition A.3) and from (i):

V1(g,E1) = V1(g, ϕ(E)) = V1(g ◦ ϕ,E) = V1(f,E).

We find from inequality (3.2) that g is Lipschitzian with Lip(g) ≤ 1 since for τ1, τ2 ∈ E1 we have τ1 = ϕ(t1)
and τ2 = ϕ(t2) for certain t1, t2 ∈ E, whence

d(g(τ1), g(τ2)) = d
(
g(ϕ(t1)), g(ϕ(t2))

)
= d(f(t1), f(t2)) ≤ |ϕ(t1)− ϕ(t2)| = |τ1 − τ2|.

We show that g is actually a natural mapping on E1. Observing that (E1)
−
τ = ϕ(E−t ) for any τ ∈ E1 and

t ∈ ϕ−1({τ}) and applying Proposition A.3, we have

V1(g, (E1)
−
τ ) = V1(g, ϕ(E

−
t )) = V1(g ◦ ϕ,E

−
t ) = V1(f,E

−
t ) = ϕ(t) = τ,

for such τ and t. For any α, β ∈ E1, α ≤ β, by virtue of Proposition 2.2(c), this implies

V1(g, (E1)
β
α) = V1(g, (E1)

−
β )− V1(g, (E1)

−
α ) = β − α,

which is what was required.
2. In the second part of the proof, we will prove (a)–(c). Here we take into account the embeddings

that are mentioned in Corollary 2.5.
(a) Let t, s ∈ E, s ≤ t. If T = {ti}mi=0 ∈ T (E

t
s), then

V1(f, T ) =
m∑
i=1

d(f(ti), f(ti−1)) ≤ Lip(f) · (tm − t0) ≤ Lip(f) · (t− s);

therefore, V1(f,E
t
s) ≤ Lip(f) · (t− s), and from Proposition 2.2(c) we obtain

|ϕ(t) − ϕ(s)| = V1(f,E
−
t )− V1(f,E

−
s ) = V1(f,E

t
s) ≤ Lip(f) · (t− s).

Therefore, ϕ ∈ C0,1(E;R) and Lip(ϕ) ≤ Lip(f). Taking into account the decomposition f = g ◦ϕ, where
Lip(g) ≤ 1, and Lemma 3.2(a), we conclude that Lip(ϕ) = Lip(f).

(b) We show that ϕ ∈ BVΦ(E;R). If T = {ti}mi=0 ∈ T (E), then, using inequality (2.12), for
i ∈ {1, . . . ,m}, we find that

ϕ(ti)− ϕ(ti−1) = V1(f,E
−
ti
)− V1(f,E

−
ti−1

) = V1(f,E
ti
ti−1

)

3399



≤ Φ−1
(

1

ti − ti−1
VΦ(f,E

ti
ti−1

)

)
· (ti − ti−1),

from which, by virtue of the monotonicity of Φ and the additivity of the Φ-variation, we obtain

VΦ(ϕ, T ) =
m∑
i=1

Φ

(
|ϕ(ti)− ϕ(ti−1)|

ti − ti−1

)
· (ti − ti−1)

≤
m∑
i=1

VΦ(f,E
ti
ti−1

) = VΦ(f,E
tm
t0
) ≤ VΦ(f,E).

Therefore, VΦ(ϕ,E) ≤ VΦ(f,E). The decomposition f = g ◦ ϕ and Lemma 3.2(b) imply the relation

VΦ(ϕ,E) = VΦ(f,E).

(c) This assertion was proved in the proof of Proposition 2.4(e); see also Lemma 3.2(c). �

Remark 3.2. Theorem 3.1 generalizes the results of the structure of mappings of bounded variation that
were obtained by the author earlier in [6–11]. In addition, the version of Theorem 3.1 is valid for mappings
of bounded variation in the sense of Wiener [13] and Yang [14]; however, mappings of this kind do not
have the additivity property of the variation, which does not allow one to prove the fact that multivalued
mappings of bounded variation have selections in this case. In the case under consideration, the existence
of regular selections of multivalued mappings of bounded variation in the sense of Jordan–Riesz–Orlicz
will be proved in Theorem 7.1 below. Note that the algebraic aspects of the construction of the natural
mapping g in Lemma 3.3, which dates back to the concept of factorization of a mapping, is described in
detail at the end of Sec. 3 of [8].

4. The Generalized Selection Principle

In this section, we prove the following two theorems: the strong selection principle (Theorem 4.1)
and the weak selection principle (Theorem 4.2). These theorems generalize the classical Helly selection
principle (Theorem A.4 in the Appendix) to metric- and Banach-space-valued mappings. Theorem 4.1 is
a consequence of the well-known Arzela–Ascoli theorem on the compactness of continuous mappings in a
space (Theorem A.5 given in the Appendix), whereas the method for proving Theorem 4.2 is essentially
different from the classical one (given, e.g., in [28]); it is based primarily on the representation of a mapping
in the form of a composition from Theorem 3.1, which allows us to apply the Arzela–Ascoli theorem and
the classical Helly section principle. The theorems considered in this section generalize and strengthen
the author’s results obtained in [7–9,11]. Note that some analogs of the weak selection principle are valid
for mappings of bounded variation in the sense of Wiener [13] and Yang [14].

Theorem 4.1 (strong selection principle). Let E be a compact set in R, let (X,d) be a complete metric
space, and let F ⊂ XE be an infinite family of mappings from E into X such that for any t ∈ E, the set
{f(t) | f ∈ F} =: F(t) is precompact in X.

(a) If Φ ∈ N and the family F ⊂ BVΦ(E;X) has a uniformly bounded Φ-variation, i.e., if

v := sup
f∈F
VΦ(f,E) <∞, (4.1)

then the family F contains a sequence of mappings that converges uniformly on E to some mapping
f ∈ BVΦ(E;X) such that VΦ(f,E) ≤ v.

(b) If the family F ⊂ AC(E;X) is absolutely equicontinuous, i.e., if

δ(ε) := inf
f∈F
δf (ε) > 0 ∀ ε > 0, (4.2)

then in F, there is a sequence that converges uniformly on E to some δ(·)-absolutely continuous
mapping from E into X.
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Proof. (a) We show that the family F is equicontinuous. By Proposition 2.2(a,b) and condition (4.1),
for all f ∈ F and t, s ∈ E, s < t, we have

d(f(t), f(s)) ≤ (t− s)Φ−1
( 1

t− s
VΦ(f,E)

)
≤ (t− s)Φ−1

( v

t− s

)
. (4.3)

Since Φ ∈ N , it follows from (2.14) that for any ε > 0, there exists δ(ε) = δ(ε, v) such that ρΦ−1(v/ρ) ≤ ε
for all 0 < ρ ≤ δ(ε). We obtain from (4.3) that if t, s ∈ E and 0 < t− s ≤ δ(ε), then sup

f∈F
d(f(t), f(s)) ≤ ε.

Taking into account that X is complete and the sets F(t) are precompact and applying the Arzela–
Ascoli theorem (Theorem A.5), we conclude that the family F is precompact in C(E;X); therefore, there
exists a sequence {fk}

∞
k=1 ⊂ F that converges uniformly on E to some mapping f ∈ C(E;X). It remains

to note that, by (4.1) and Proposition 2.2(d), we have

VΦ(f,E) ≤ lim inf
k→∞

VΦ(fk, E) ≤ v <∞.

(b) Condition (4.2) implies that F is equicontinuous: if f ∈ F, ε > 0, and t, s ∈ E are such that
|t − s| ≤ δf (ε), then, since f is absolutely continuous, we have d(f(t), f(s)) ≤ ε, so that for any ε > 0,
the condition |t − s| ≤ δ(ε) implies sup

f∈F
d(f(t), f(s)) ≤ ε. Taking into account the assumptions made

above, we see that by the Arzela–Ascoli theorem, there exists a sequence {fk}
∞
k=1 from F that converges

uniformly on E to some mapping f ∈ C(E;X). The limit mapping f is δ(·)-absolutely continuous: if

ε > 0 and {ai, bi}ni=1 ⊂ E are such that a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn and
n∑
i=1

(bi − ai) ≤ δ(ε), then

n∑
i=1
d(fk(bi), fk(ai)) ≤ ε (since δfk(·) ≥ δ(·)) for any k ∈ N, and it remains to pass to the limit in the last

inequality as k →∞. �

Theorem 4.2 (weak selection principle). Let E = [a, b] be a closed interval in R, K be a subset of a
metric space (X,d), Φ ∈M, and F ⊂ C([a, b];K) be an infinite family

v := sup
f∈F

b

V
a
Φ(f) <∞ (4.4)

of mappings of uniformly bounded Φ-variation. Then the family F contains a sequence of mappings that

converges pointwise on [a, b] to a certain mapping f ∈ BVΦ([a, b];X) for which
b

V
a
Φ(f) ≤ v.

If, in addition, X is a Banach space (over R or C), then the theorem is valid also without the
assumption of continuity of mappings from the family F.

Proof. The proof of this theorem is divided into three steps. At the first (preparatory) step, we summarize
the general information that is then used at the main steps 2 and 3.

1. By Lemma 3.3, any mapping f ∈ F can be represented as the composition f = gf ◦ ϕf on [a, b],
where the nondecreasing, nonnegative function ϕf ∈ BVΦ([a, b];R) is defined by the relation ϕf (t) =
t

V
a
1(f) for t ∈ [a, b] (and, therefore, ϕf (a) = 0), E1,f := ϕf ([a, b]), and gf ∈ C

0,1(E1,f ;K); moreover,

b

V
a
Φ(ϕf ) =

b

V
a
Φ(f) (by Lemma 3.3(b)) and Lip(gf ) ≤ 1. The family F1 := {ϕf | f ∈ F} of nondecreasing

functions on [a, b] is infinite and uniformly bounded since, by virtue of Proposition 2.2(b) for Φ(ρ) = ρ,
inequality (2.12), the monotonicity of Φ, and (4.4), we have the following for all t ∈ [a, b]:

0 ≤ ϕf (t) ≤
b

V
a
1(ϕf ) ≤ (b− a)Φ−1

( 1

b− a

b

V
a
Φ(ϕf )

)
≤ (b− a)Φ−1

( v

b− a

)
=: L. (4.5)

Therefore, applying Theorem A.4(a), we find that the family F1 contains a sequence of functions {ϕn}∞n=1
corresponding to the decompositions fn = gn ◦ ϕn (i.e., we set ϕn = ϕfn and gn = gfn) for all n ∈ N
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that converges pointwise on [a, b] to a certain nondecreasing bounded function ϕ : [a, b] → R such that
0 ≤ ϕ(t) ≤ L for t ∈ [a, b]. Then it follows from Proposition 2.2(d) that ϕ ∈ BVΦ([a, b];R) since

b

V
a
Φ(ϕ) ≤ lim inf

n→∞

b

V
a
Φ(ϕn) = lim inf

n→∞

b

V
a
Φ(fn) ≤ v <∞.

Therefore, , :=
b

V
a
1(ϕ) = ϕ(b) is finite (here we take into account (2.12) and the fact that ϕ is nonde-

creasing) and ,n :=
b

V
a
1(ϕn) = ϕn(b)→ ϕ(b) = , for n→∞ by virtue of the pointwise convergence of the

sequence {ϕn}∞n=1.
2. Suppose that the conditions of the first part of the theorem are fulfilled. Since the mapping fn ∈ F

is continuous, the function ϕn is also continuous on [a, b] (by Theorem 4.3(a) in [8] or by Theorem 5.3(a)
below); therefore, the natural mapping gn is defined on the closed interval E1,fn = ϕn([a, b]) = [0, ,n].
If ,n ≥ ,, then we consider gn only on the closed interval [0, ,], and if ,n < ,, then we extend gn to
the semiopen interval (,n, ,] by a “constant”: gn(τ) = gn(,n) for all τ ∈ (,n, ,]. By the Arzela–Ascoli
theorem, the sequence of mappings {gn}∞n=1 ⊂ C

0,1([0, ,];K) with Lipschitz constants Lip(gn) ≤ 1, n ∈ N,
is precompact in C([0, ,];K); therefore, it contains a subsequence {gnk}

∞
k=1 that converges uniformly on

[0, ,]; we denote by g the limit of this subsequence. It is clear that g ∈ C0,1([0, ,];K) and Lip(g) ≤ 1;
therefore, using Lemma 3.2(b) and the fact that ϕ([a, b]) ⊂ [0, ,] and ϕ ∈ BVΦ([a, b];R), we find that

there exists (and is well defined) the composition f := g ◦ ϕ ∈ BVΦ([a, b];K) and
b

V
a
Φ(f) ≤

b

V
a
Φ(ϕ) ≤ v.

Now, observing that for all t ∈ [a, b],

d(fnk(t), f(t)) = d
(
(gnk ◦ ϕnk)(t), (g ◦ ϕ)(t)

)
≤ d
(
gnk(ϕnk(t)), gnk(ϕ(t))

)
+ d
(
gnk(ϕ(t)), g(ϕ(t))

)
≤ |ϕnk(t)− ϕ(t)|+ sup

τ∈[0,�]
d(gnk(τ), g(τ)),

and taking into account the kinds of convergence of ϕnk and gnk indicated earlier, we conclude that the
sequence {fnk}

∞
k=1 ⊂ F converges pointwise to f on [a, b].

3. Now let X be a Banach space and let condition (4.4) be fulfilled for the family F from K [a,b].
Initially, we argue as in Step 1. Note that in our case, E1,fn = ϕn([a, b]) ⊂ [0, L], where L is the constant
from (4.5), so that , ≤ L. By Lemma A.6, for any n ∈ N, there exists a Lipschitzian mapping g̃n from R
into X that is an extension of gn to R such that Lip(g̃n) ≤ Lip(gn) ≤ 1. Denote by gn the restriction
of g̃n to the closed interval [0, L]. By the Arzela–Ascoli theorem, The sequence of Lipschitzian mappings
{gn}∞n=1, which act from [0, L] into a fixed compact subset of X and are such that Lip(gn) ≤ 1, has a
uniformly convergent subsequence {gnk}

∞
k=1 with the uniform limit, which is denoted by g. It is clear

that g ∈ C0,1([0, L];X) and Lip(g) ≤ 1. By Lemma 3.2(b), for f := g ◦ ϕ (as in step 2), we have

f ∈ BVΦ([a, b];X) and
b

V
a
Φ(f) ≤ v. Finally, for t ∈ [a, b] (again as in Step 2), we obtain that

d(fnk(t), f(t)) = d
(
gnk(ϕnk(t)), g(ϕ(t))

)
≤ |ϕnk(t)− ϕ(t)|+ d

(
gnk(ϕ(t)), g(ϕ(t))

)
,

which completes the proof. �

Remark 4.1. The author does not know whether the condition E = [a, b] and the condition F ⊂ K [a,b],
whereK ⊂ X is a compact set, in Theorem 4.2 can be replaced by the following weaker conditions: E ⊂ R
is a compact subset and the sets F(t) = {f(t) | f ∈ F} are precompact in a complete metric space X for
any t ∈ E.

Remark 4.2. In the framework of Theorem 4.2, for Φ ∈M (in particular, for Φ(ρ) = ρ), even a contin-
uous sequence of mappings F can converge pointwise to a discontinuous mapping from BVΦ([a, b];X).
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Theorems 4.1 and 4.2 are extended to mappings with unbounded domains in a standard way. As an
example, we present the corresponding version for Theorem 4.2.

Corollary 4.3. Suppose that in the statement of Theorem 4.2, the set E = R and the closed interval [a, b]
is everywhere replaced by R. Then the pointwise convergence in this theorem takes place on R.

Proof. The proof is based on the construction of a Cantor diagonal sequence. Consider the exhaustion
of R by closed intervals [−n, n], n ∈ N, and note that

sup
f∈F

n

V
−n
Φ(f) ≤ sup

f∈F
VΦ(f,R) =: v <∞ ∀n ∈ N.

By Theorem 4.2, the family F contains a sequence {f1n}
∞
n=1 that is pointwise convergent on the closed

interval [−1, 1]. On the basis of the same considerations, one extracts from {f1n}
∞
n=1 a subsequence {f

2
n}
∞
n=1

that is pointwise convergent on [−2, 2]. From the latter, one isolates the subsequence {f3n}
∞
n=1 for the

closed interval [−3, 3], and so on. Then the diagonal sequence {fnn }
∞
n=1 has all the properties that are

required (see Proposition 2.2(d)). �
Similar assertions can be obtained for (bounded or unbounded) intervals or semiopen intervals.
Another consequence of the (strong) selection principle (Theorem 4.1(a)) is the following assertion

on existence of the geodesic path of bounded Φ-variation between two points of a compact metric space
([11, Corollary 2.3]):

Corollary 4.4. Let Φ ∈ N , X be a compact metric space, and x, y ∈ X, x �= y. If there exists
f0 ∈ BVΦ([a, b];X) such that f0(a) = x and f0(b) = y, then there exists a mapping g ∈ BVΦ([a, b];X)
such that g(a) = x, g(b) = y, and

b

V
a
Φ(g) = min

{ b
V
a
Φ(f)

∣∣∣ f ∈ BVΦ([a, b];X), f(a) = x, f(b) = y
}
.

Note that in the case where Φ(ρ) = ρ, a geodesic path between two points is always Lipschitzian
([7, Theorem 6.1]):

Theorem 4.5. If X is a compact metric space, x, y ∈ X, and there exists a continuous mapping f0 ∈
BV1([a, b];X) such that f0(a) = x and f0(b) = y, then there exists the mapping g ∈ C0,1([a, b];X) such
that g(a) = x, g(b) = y, and

b

V
a
1(g) = min

{ b
V
a
1(f)
∣∣∣ f ∈ C([a, b];X), f(a) = x, f(b) = y

}
.

5. Formulas for Jumps of the Functions of Φ-Variation

Everywhere in this section, we assume that the following objects are fixed: E is a subset of R,
(X,d) is a metric space, Φ ∈ M, and f ∈ BVΦ(E;X). We define the nondecreasing bounded function
φ : E → R+ by the relation φ(t) = VΦ(f,E

−
t ), t ∈ E; this function is called the function of Φ-variation

of the mapping f . In this section, the continuity properties of the mapping f are studied; it is shown
that discontinuity points of f exactly coincide with discontinuity points of φ, the relation between the
jumps of the mapping f and the jumps of its function of Φ-variation φ is found, and the formulas for the
Φ-variation of f on a set with a removed limit point are obtained (of course, the case where Φ /∈ N is of
primary interest; see Proposition 2.4(d)).

We denote the set of all limit points of the set E by E′, and for t ∈ E, we set E−′t := (E−t )
′ and

E+′t := (E+t )
′. If t ∈ E−′t , α ∈ E, α < t, and α tends to t, then we say that α tends on the left along

the set E to the point t and write α→ t− 0 (instead of the more cumbersome notation E � α→ t− 0);
the concept of the left limit at a point t, which is denoted by lim

α→t−0
, is defined in this case. A similar

convention is accepted for the right limit, lim
α→t+0

, at a point t ∈ E+′t .
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The following notation is useful for us (Φ, f and d are fixed):

U(t, s) ≡ UΦ,f,d(t, s) := Φ

(
d(f(t), f(s))

t− s

)
· (t− s), t, s ∈ E, s < t. (5.1)

We rewrite the Jensen inequality (2.6), which was written above for the points tk−1, t, tk ∈ E such
that tk−1 < t < tk, in the following more convenient form:

Φ

(
d(f(tk), f(tk−1))

tk − tk−1

)
· (tk − tk−1) ≤ Φ

(
d(f(t), f(tk−1))

t− tk−1

)
· (t− tk−1) + Φ

(
d(f(tk), f(t))

tk − t

)
· (tk − t).

Replacing tk−1 by α, t by β, and tk by γ here and taking (5.1) into account, we obtain the following
(so-called) “ordered triangle inequality”:

U(γ, α) ≤ U(γ, β) + U(β, α), α, β, γ ∈ E, α < β < γ. (5.2)

Lemma 5.1. Let t ∈ E. We have:

(a) if t ∈ E−′t , then there exists the limit U(t, t− 0) := lim
α→t−0

U(t, α) ∈ R+;

(b) if t ∈ E+′t , then there exists the limit U(t+ 0, t) := lim
β→t+0

U(β, t) ∈ R+;

(c) if t ∈ E−′t ∩E
+′
t , then there exists the limit U(t+ 0, t− 0) := lim

α→t−0
β→t+0

U(β, α) ∈ R+.

Proof. (a) Since the function φ is nondecreasing and bounded on E, it has a finite one-sided left limit,

φ(t− 0) := lim
α→t−0

φ(α) = sup{φ(α) | α ∈ E−t , α �= t},

at the point t. On the other hand, using inequality (5.2) and Proposition 2.2(b,c), for any α, β ∈ E,
α < β < t, we have

U(t, α) − U(t, β) ≤ U(β, α) = Φ

(
d(f(β), f(α))

β − α

)
· (β − α) ≤ VΦ(f,E

β
α) = φ(β)− φ(α);

this implies

U(t, α) + φ(α) ≤ U(t, β) + φ(β) ∀α, β ∈ E, α < β < t.

This means that the function α �→ U(t, α) + φ(α) is not decreasing on E−t \ {t}; moreover, this function
is bounded from above, i.e.,

U(t, α) + φ(α) ≤ VΦ(f,E
t
α) + VΦ(f,E

−
α ) = VΦ(f,E

−
t ) = φ(t), α ∈ E, α < t;

therefore, it has a finite limit as α→ t− 0, which implies (a).
(b) is proved similarly to (a); it is only worth noting that in this case, for β ∈ E+t and β > t,

the function φ(β) is not decreasing and is bounded from below by the number φ(t), the function β �→
U(β, t)− φ(β) is not increasing and is bounded from above by the number −φ(t).

(c) By (5.2) and Proposition 2.2(b,c), for any points α2, α1, β1, and β2 from the set E such that
α2 < α1 < t < β1 < β2, we find that

U(β2, α2) ≤ U(β2, β1) + U(β1, α1) + U(α1, α2)

≤ φ(β2)− φ(β1) + U(β1, α1) + φ(α1)− φ(α2),

i.e., the function (β, α) �→ U(β, α) − φ(β) + φ(α) is “monotone” in the following sense:

U(β2, α2)− φ(β2) + φ(α2) ≤ U(β1, α1)− φ(β1) + φ(α1), α2 < α1 < t < β1 < β2. (5.3)

We set

s := sup{U(β, α) − φ(β) + φ(α) | α, β ∈ E, α < t < β}. (5.4)
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This quantity exists and is finite because, for α and β as in (5.4), we have

U(β, α) − φ(β) + φ(α) ≤ VΦ(f,E
β
α)− VΦ(f,E

−
β ) + VΦ(f,E

−
α ) = 0.

Let us show that

lim
α→t−0
β→t+0

(
U(β, α) − φ(β) + φ(α)

)
= s. (5.5)

From the definition of supremum in (5.4), we obtain that for any ε > 0, there exist α0, β0 ∈ E, α0 < t < β0,
such that s ≤ U(β0, α0) − φ(β0) + φ(α0) + ε; by virtue of (5.3) and (5.4), for any α, β ∈ E such that
α0 ≤ α < t < β ≤ β0, this implies

U(β, α) − φ(β) + φ(α) ≤ s ≤ U(β, α) − φ(β) + φ(α) + ε,

i.e., ∣∣(U(β, α) − φ(β) + φ(α))− s∣∣ ≤ ε ∀α ∈ Etα0 \ {t}, ∀β ∈ E
β0
t \ {t}.

Assertion (c) now follows from the relation

U(β, α) =
(
U(β, α) − φ(β) + φ(α)

)
+ φ(β) − φ(α), α, β ∈ E, α < t < β.

�

Lemma 5.2. For t ∈ E, the following relations hold:

(a) if t ∈ E−′t , then φ(t)− φ(t− 0) = U(t, t− 0);
(b) if t ∈ E+′t , then φ(t+ 0)− φ(t) = U(t+ 0, t);

(c) if t ∈ E−′t ∩E
+′
t , then lim

α→t−0
β→t+0

VΦ(f,E
β
α \ {t}) = U(t+ 0, t− 0).

Proof. (a) Passing to the limit as α→ t− 0 in the inequality

U(t, α) ≤ φ(t)− φ(α), α ∈ E, α < t,

we find that U(t, t − 0) ≤ φ(t) − φ(t − 0). To prove the converse inequality, it is sufficient to show that
for any ε > 0, there exists t′ = t′(ε) ∈ E, t′ < t, such that

φ(t)− φ(α) ≤ U(t, α) + ε ∀α ∈ Ett′ \ {t}; (5.6)

indeed, passing to the limit as α→ t− 0 in inequality (5.6), we find that φ(t)−φ(t− 0) ≤ U(t, t− 0) + ε,
and it only remains to take into account the arbitrariness of ε > 0.

We now prove (5.6). Since φ(t) = VΦ(f,E
−
t ) ≤ VΦ(f,E) <∞, for any ε > 0 there exists a partition

T = {ti}mi=0 ∪ {t} ∈ T (E
−
t ) depending on ε with tm < t such that

φ(t) ≤ U(t, tm) + VΦ(f, T ) + ε.

Observing that T ∈ T (E−tm) in reality and applying (5.2) and Proposition 2.2(b,c), for all α ∈ E (tm <
α < t) we obtain

φ(t) ≤ U(t, α) + U(α, tm) + VΦ(f,E
−
tm) + ε

≤ U(t, α) + VΦ(f,E
α
tm) + VΦ(f,E

−
tm) + ε

= U(t, α) + φ(α) + ε,

which yields (5.6) if one sets t′ = t′(ε) = tm.
The proof of (b) is somewhat different from that of (a); therefore, we present its main points.

The inequality U(t + 0, t) ≤ φ(t + 0) − φ(t) is obtained in the limit as β → t + 0 from the inequality
U(β, t) ≤ φ(β) − φ(t), β ∈ E, β > t. For the converse inequality, it is sufficient to show that ∀ ε > 0,
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∃ t0 = t0(ε) ∈ E, t0 > t, such that ∀β ∈ Et0t \ {t}, φ(β) − φ(t) ≤ U(β, t) + ε. Since VΦ(f,E
+
t ) < ∞, for

ε > 0, ∃T = {ti}mi=0 ∪ {t} ∈ T (E
+
t ), t0 > t, such that

VΦ(f,E
+
t ) ≤ U(t0, t) + VΦ(f, T ) + ε,

and since T ∈ T (E+t0), for β ∈ E, t < β < t0, we find that

VΦ(f,E
+
t ) ≤ U(t0, β) + U(β, t) + VΦ(f,E

+
t0
) + ε

≤ VΦ(f,E
t0
β ) + U(β, t) + VΦ(f,E

+
t0
) + ε

= VΦ(f,E
+
β ) + U(β, t) + ε;

by Proposition 2.2(c), this implies

φ(β) − φ(t) = VΦ(f,E
−
β )− VΦ(f,E

−
t ) = VΦ(f,E

+
t )− VΦ(f,E

+
β ) ≤ U(β, t) + ε.

The proof of (c) is carried out in two steps.
1. From (2.3), we readily obtain the inequality

U(β, α) ≤ VΦ(f,E
β
α \ {t}) ∀α ∈ E−t , ∀β ∈ E

+
t , α < t < β, (5.7)

since the set {α, β} is a partition of the set Eβα \ {t}.
We now show that ∀ ε > 0, ∃α0 = α0(ε), β0 = β0(ε) ∈ E, α0 < t < β0, such that

VΦ(f,E
β
α \ {t}) ≤ U(β, α) + ε ∀α ∈ Etα0 \ {t}, ∀β ∈ E

β0
t \ {t}. (5.8)

We fix ε > 0. Using the definition of the Φ-variation VΦ(f,E \{t}), which does not exceed VΦ(f,E) <∞,

we find a partition T = {ti}mi=0 ∈ T (E \ {t}) depending on ε such that

t0 < t1 < · · · < tk−1 < t < tk < · · · < tm−1 < tm for a certain 1 ≤ k ≤ m

and

VΦ(f,E \ {t}) ≤ VΦ(f, T ) + ε =
m∑
i=1

U(ti, ti−1) + ε.

We set T1 = {ti}
k−1
i=0 , T2 = {ti}

m
i=k, α0 = tk−1, and β0 = tk. Now, if α, β ∈ E are such that α0 < α < t <

β < β0, then, taking into account that T1 ∪ {α} ∈ T (E−α ) and T2 ∪ {β} ∈ T (E
+
β ), we obtain the following

by (5.2):

VΦ(f,E \ {t}) ≤ VΦ(f, T1) + U(tk, tk−1) + VΦ(f, T2) + ε

≤ VΦ(f, T1) + U(α, tk−1) + U(β, α) + U(tk, β) + VΦ(f, T2) + ε

≤ VΦ(f,E
−
α ) + U(β, α) + VΦ(f,E

+
β ) + ε.

(5.9)

Since the Φ-variation is additive, we find that

VΦ(f,E \ {t}) = VΦ(f,E
−
α ) + VΦ(f,E

β
α \ {t}) + VΦ(f,E

+
β ), (5.10)

and this relation, taken together with (5.9), yields (5.8).
2. Now we note that the limit on the left-hand side of the relation in (c) exists, is finite, and equals

lim
α→t−0
β→t+0

VΦ(f,E
β
α \ {t}) = inf {VΦ(f,E

β
α \ {t}) | α ∈ E

−
t , β ∈ E

+
t , α < t < β} ∈ R

+, (5.11)
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by virtue of considerations that are similar to those with the help of which (5.5) was obtained from (5.4)
In (5.7) and (5.8), we let α→ t− 0 and β → t+ 0, and, taking Lemma 5.1(c) into account, we arrive at
the following inequalities:

lim
α→t−0
β→t+0

U(β, α) ≤ lim
α→t−0
β→t+0

VΦ(f,E
β
α \ {t}) ≤ lim

α→t−0
β→t+0

U(β, α) + ε.

Since ε > 0 is arbitrary, (c) is proved. �

Theorem 5.3. (a) A mapping f of bounded Φ-variation is right continuous at a point t ∈ E \ {supE}
(respectively, left continuous at the point t ∈ E \ {inf E}) if and only if its function of Φ-variation φ
has the same property at the point t.

(b) A mapping f of bounded Φ-variation is continuous on E, except for possibly the set of points from E
which is no more than countable.

Proof. Item (b) follows from (a), since the nondecreasing bounded function φ has the set of discontinuity
points (of the first kind) onE which is no more than countable, and, by virtue of (a), the set of discontinuity
points of the mapping f and that of the function φ coincide.

We prove (a). If t is an isolated point (i.e., if it is not a limit point) of E, then the statement is
obvious. If t ∈ E′, then t ∈ E−′t or t ∈ E+′t . For definiteness, we carry out the proof in the case where
t ∈ E−′t .

1. We show that the limit lim
α→t−0

d(f(t), f(α)) =: ω exists in R+. Let ϕ : E → R+ be a nondecreasing

bounded function from Theorem 3.1. For α, β ∈ E, α < β < t, we have

|d(f(t), f(α)) − d(f(t), f(β))| ≤ d(f(α), f(β)) ≤ V1(f,E
β
α)

= V1(f,E
−
β )− V1(f,E

−
α ) = ϕ(β)− ϕ(α).

The existence of the limit ϕ(t − 0) = lim
α→t−0

ϕ(α) implies that the Cauchy criterion for its existence is

fulfilled. Then it follows from the obtained inequality that the Cauchy criterion for the existence of the
limit ω is fulfilled for the function E−t � α �→ d(f(t), f(α)) ∈ R+.

2. We prove that if φ is left continuous at the point t, i.e., if U(t, t− 0) = 0 by Lemma 5.2(a), then f
is also left continuous at this point, i.e., ω = 0. We suppose the contrary, i.e., let ω > 0. Using properties
of the limit, we find t0 ∈ E, t0 < t, such that d(f(t), f(α)) ≥ ω/2 for all α ∈ E, t0 < α < t, and, therefore,
by the monotonicity of Φ, we have

Φ

(
d(f(t), f(α))

t− α

)
· (t− α) ≥ Φ

(
ω/2

t− α

)
· (t− α).

Letting α → t − 0 in this inequality and taking into account Lemma 5.1(a) and notation (5.1), we find
that

U(t, t− 0) = lim
α→t−0

Φ

(
d(f(t), f(α))

t− α

)
· (t− α)

≥ lim
α→t−0

Φ

(
ω/2

t− α

)
· (t− α) =

ω

2
· lim
ρ→∞

Φ(ρ)

ρ
.

(5.12)

It is known from the theory of convex functions that this last limit always exists in R+ ∪ {∞}. It cannot
be equal to zero (otherwise Φ is constant and Φ /∈ M) and it cannot be equal to ∞ (otherwise, Φ ∈ N ,
and then f is absolutely continuous and ω = 0). It then follows from (5.12) that U(t, t− 0) > 0, and this
leads to a contradiction.

Remark. We showed simultaneously that if a mapping of bounded Φ-variation is discontinuous at least
at one point, then 0 < lim

ρ→∞
Φ(ρ)/ρ <∞.
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3. Conversely, we now prove that if ω = 0, then ϑ := U(t, t − 0) = 0. If ϑ > 0, then there exists
t0 ∈ E, t0 < t, such that for all α ∈ E, t0 < α < t, we have

Φ

(
d(f(t), f(α))

t− α

)
· (t− α) ≥

ϑ

2
or d(f(t), f(α)) ≥ Φ−1

(
ϑ/2

t− α

)
· (t− α).

In the limit, as α→ t− 0, we obtain from the last inequality that

ω = lim
α→t−0

d(f(t), f(α)) ≥ lim
α→t−0

Φ−1
(
ϑ/2

t− α

)
· (t− α) =

ϑ

2
· lim
ρ→∞

ρ

Φ(ρ)
.

Therefore, ω > 0, and we arrive at a contradiction. �

Lemma 5.4. For the point t ∈ E, we have

(a) if t ∈ E−′t , then VΦ(f,E
−
t )− VΦ(f,E

−
t \ {t}) = φ(t)− φ(t− 0) = lim

α→t−0
VΦ(f,E

t
α);

(b) if t ∈ E+′t , then VΦ(f,E
+
t )− VΦ(f,E

+
t \ {t}) = φ(t+ 0)− φ(t) = lim

β→t+0
VΦ(f,E

β
t );

(c) f is left continuous at the point t ∈ E−′t (respectively, right continuous at the point t ∈ E+′t ) if and
only if VΦ(f,E

−
t ) = VΦ(f,E

−
t \ {t}) (respectively, if VΦ(f,E

+
t ) = VΦ(f,E

+
t \ {t})).

Proof. (a) Applying Proposition 2.2(f), where E is replaced by the set E−t \ {t}, we find that

VΦ(f,E
−
t \ {t}) = lim

α→t−0
VΦ(f, (E

−
t \ {t})

−
α ) = lim

α→t−0
VΦ(f,E

−
α ) = φ(t− 0);

therefore, by Proposition 2.2(c) we obtain

φ(t)− φ(t− 0) = lim
α→t−0

(
VΦ(f,E

−
t )− VΦ(f,E

−
α )
)
= lim
α→t−0

VΦ(f,E
t
α).

(b) By Proposition 2.2(g), in which E is replaced by E+t \ {t}, and Proposition 2.2(c), we find that

VΦ(f,E
+
t \ {t}) = lim

β→t+0
VΦ(f, (E

+
t \ {t})

+
β ) = lim

β→t+0
VΦ(f,E

+
β )

= VΦ(f,E)− lim
β→t+0

VΦ(f,E
−
β ) = VΦ(f,E

+
t ) + φ(t)− φ(t+ 0).

Applying Proposition 2.2(c) once again, we obtain

φ(t+ 0)− φ(t) = lim
β→t+0

(
VΦ(f,E

+
t )− VΦ(f,E

+
β )
)
= lim
β→t+0

VΦ(f,E
β
t ).

(c) follows from items (a) and (b) and from Theorem 5.3(a). �

Lemma 5.5. Let a point t ∈ E be such that t ∈ E−′t ∩E
+′
t . Then

(a) VΦ(f,E) = VΦ(f,E
−
t \ {t}) + VΦ(f,E

+
t \ {t}) + φ(t+ 0)− φ(t− 0);

(b) f is continuous at the point t if and only if

VΦ(f,E) = VΦ(f,E
−
t \ {t}) + VΦ(f,E

+
t \ {t});

(c) VΦ(f,E) = VΦ(f,E \ {t}) + φ(t+ 0)− φ(t− 0)− lim
α→t−0
β→t+0

VΦ(f,E
β
α \ {t});

(d) if f is continuous at the point t, then VΦ(f,E) = VΦ(f,E \ {t}); the converse statement is not true

in general.
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Proof. Relation (a) follows if we add relations (a) and (b) from Lemma 5.4 and then apply Proposi-
tion 2.2(c).

Assertion (b) follows from Lemma 5.4(c), Lemma 5.5(a), and the inequalities
φ(t− 0) ≤ φ(t) ≤ φ(t+ 0).

(c) Taking into account Proposition 2.2(c) and relation (5.10), we have the following for the points
α, β ∈ E such that α < t < β:

VΦ(f,E)− VΦ(f,E \ {t}) = VΦ(f,E
−
α ) + VΦ(f,E

β
α) + VΦ(f,E

+
β )

−
(
VΦ(f,E

−
α ) + VΦ(f,E

β
α \ {t}) + VΦ(f,E

+
β )
)

= φ(β)− φ(α)− VΦ(f,E
β
α \ {t}).

Letting α→ t− 0 and β → t+ 0 and taking into account Lemma 5.2(c), we arrive at relation (c).
(d) Let f be continuous at the point t. Then, by Theorem 5.3(a), we have that φ(t − 0) = φ(t) =

φ(t+ 0). Passing to the limit as α→ t− 0 and β → t+ 0 in the inequality

U(β, α) ≤ U(β, t) + U(t, α), α, β ∈ E, α < t < β,

and taking Lemma 5.2(a,b) into account, we find that

0 ≤ U(t+ 0, t− 0) ≤ U(t+ 0, t) + U(t, t− 0) =
(
φ(t+ 0)− φ(t)

)
+
(
φ(t)− φ(t− 0)

)
= 0.

Therefore, U(t+ 0, t− 0) = 0. It remains to use Lemmas 5.5(c) and 5.2(c).
We present an example showing that the converse statement is not true. Suppose that Φ(ρ) = ρ,

E = [−1, 1], and f : [−1, 1] → R is such that f(t) = −1 for −1 ≤ t < 0, f(0) = 0, and f(t) = 1 for
0 < t ≤ 1 (the signum function). Then, by relation (5.14) given below, we have

1
V
−1
1(f) = V1(f, [−1, 1] \ {0}) = 2.

�
Finally, Lemmas 5.1, 5.2, 5.4, and 5.5 and notation (5.1) readily imply the following theorem (which

is of special interest in the case where the function Φ ∈M\N , so that there exists the limit lim
ρ→∞

Φ(ρ)/ρ ∈

(0,∞)).

Theorem 5.6. Let f : E → X be a mapping of bounded Φ-variation, and let t ∈ E. We set [Φ] =
lim
ρ→∞

Φ(ρ)/ρ and assume that ∞ · 0 := 0. Then

(a) if t ∈ E−′t , we have VΦ(f,E
−
t ) = VΦ(f,E

−
t \ {t}) + [Φ] · lim

α→t−0
d(f(t), f(α));

(b) if t ∈ E+′t , we have VΦ(f,E
+
t ) = VΦ(f,E

+
t \ {t}) + [Φ] · lim

β→t+0
d(f(β), f(t));

(c) if t ∈ E−′t ∩E
+′
t , then, in addition to (a) and (b), we have

VΦ(f,E) = VΦ(f,E
−
t \ {t}) + VΦ(f,E

+
t \ {t}) + [Φ] ·

(
lim
α→t−0

d(f(t), f(α)) + lim
β→t+0

d(f(β), f(t))
)
;

VΦ(f,E) = VΦ(f,E \ {t}) + [Φ] ·
(

lim
α→t−0

d(f(t), f(α)) + lim
β→t+0

d(f(β), f(t)) − lim
α→t−0
β→t+0

d(f(β), f(α))
)
;

VΦ(f,E \ {t}) = VΦ(f,E
−
t \ {t}) + VΦ(f,E

+
t \ {t}) + [Φ] · lim

α→t−0
β→t+0

d(f(β), f(α)).

(5.13)

If, in Theorem 5.6, the metric space X is complete, then, as can be easily seen from step 1 of the
proof of Theorem 5.3, there exists the one-sided left limit f(t − 0) = lim

α→t−0
f(α) ∈ X at points t ∈ E−′t
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and at points t ∈ E+′t , there exists the right limit f(t+ 0) = lim
β→t+0

f(β) ∈ X. In this case, the relations

given above are modified in a natural way if the limit sign is “pulled” under the sign of the metric d; thus,
for example, relation (5.13) becomes

VΦ(f,E) = VΦ(f,E\{t}) + [Φ] ·
(
d(f(t), f(t− 0))

+ d(f(t+ 0), f(t))− d(f(t+ 0), f(t− 0))
)
.

(5.14)

The relations from Theorem 5.6 for the closed interval E = [a, b] are also new and are easily rewritten for
this case.

Remark 5.1. The formulas from Theorem 5.6 were first found by the author in [6, 2.23] in the case
where E = [a, b], Φ(ρ) = ρ, and X is a Banach space. For the case where E is arbitrary and Φ(ρ) =
ρ, these formulas were generalized in [7] (for a complete metric space X) and in [8] (for an arbitrary
metric space X). The method of proof in the general case (Φ ∈ M) is much like (with corresponding
modifications) the method used in [8, Sec. 4].

For continuous mappings f ∈ BVΦ([a, b];X), where Φ ∈ M and X is a metric space, the concept

of the Φ-variation
b

V
a
Φ(f) coincides with the concept of an integral of an interval function in the sense

of [33, Chapter 1, Sec. 3]. Indeed, an interval function U(β, α), a ≤ α < β ≤ b, from (5.1) is semiadditive
(inequality (5.2)) and continuous at any point a < t < b (at the points t = a and t = b, the unilateral
continuity is meant), i.e., for any ε > 0, there exists δ = δ(ε) > 0 such that |U(β, α)| ≤ ε for all α,
β ∈ [a, b], α < β, such that α < t < β and β − α ≤ δ. The last assertion is implied by the continuity of f
since U(t+ 0, t− 0) = 0, as is shown in the proof of Lemma 5.5(d). For a partition T = {ti}mi=0 ∈ T

b
a , we

set λ(T ) := max
1≤i≤m

(ti− ti−1), define the oscillation of the mapping f on the closed interval [ti−1, ti] by the

formula

ω(f, [ti−1, ti]) := sup{d(f(t), f(s)) | t, s ∈ [ti−1, ti]}, i = 1, . . . ,m,

and set

ΩΦ(f, T ) :=
m∑
i=1

Φ

(
ω(f, [ti−1, ti])

ti − ti−1

)
· (ti − ti−1).

Then we have

Corollary 5.7. Let X be a metric space, Φ ∈ M, and f be a continuous mapping from BVΦ([a, b];X).
Then the following relations hold:

(a)
b

V
a
Φ(f) = lim

λ(T )→0
VΦ(f, T ), i.e., for any ε > 0, there exists δ = δ(ε) > 0 such that

∣∣VΦ(f, T )− b

V
a
Φ(f)
∣∣ ≤

ε for all T ∈ T ba and λ(T ) ≤ δ;

(b)
b

V
a
Φ(f) = limλ(T )→0ΩΦ(f, T ).

Proof. With the remarks presented above being taken into account, item (a) is directly implied by
[33, Chapter 1, Sec. 3.14, Theorem], and item (b) is implied by the inequalities

VΦ(f, T ) ≤ ΩΦ(f, T ) ≤
b

V
a
Φ(f) ∀T ∈ T ba .

�
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6. Mappings with Values in a Normed Space

In this section, we assume that X is a linear normed space over K = R or C with the norm ‖ · ‖. The
set XE of all mappings from E ⊂ R into X in a natural way becomes a linear space over K with respect
to pointwise operations of addition and multiplication by a scalar value: if f , g ∈ XE and c ∈ K, then

(f + g)(t) := f(t) + g(t), (cf)(t) := cf(t), t ∈ E.

6.1. The norm in the space BVΦ(E;X). Let Φ be an M-function. Since E is a fixed set in this
section, we omit it in the notation of the Φ-variation and write VΦ(f) instead of VΦ(f,E). First of all,

we note that the convexity of Φ implies that the set BVΦ(E;X) is convex and f �→ VΦ(f) is a convex

functional on this set, i.e.,

VΦ(θf + (1− θ)g) ≤ θVΦ(f) + (1− θ)VΦ(g), f, g ∈ BVΦ(E;X), 0 ≤ θ ≤ 1, (6.1)

and, in particular,

VΦ(θf) ≤ θVΦ(f), f ∈ BVΦ(E;X), 0 ≤ θ ≤ 1. (6.2)

AnM-function Φ is called tempered if

∃C ∈ (0,∞), ρ0 ≥ 0 such that Φ(2ρ) ≤ CΦ(ρ) ∀ ρ ≥ ρ0. (6.3)

(Condition (6.3) in [24, Chapter 1, Sec. 4] is called the ∆2-condition.) Note that always C ≥ 2 since,
by (6.2), for ρ ≥ 0, we have Φ(2ρ) ≥ 2Φ(ρ). Note that the condition that the function Φ ∈M is tempered
is equivalent to the condition

∀ s > 1 ∃C(s) > 0, and ρ0(s) ≥ 0 such that Φ(sρ) ≤ C(s)Φ(ρ) ∀ ρ ≥ ρ0(s). (6.4)

Proposition 6.1. (a) If Φ is a temperedM-function, then the set BVΦ(E;X) is a linear space over K.
(b) If E = [a, b], X is a Banach space, Φ is an M-function, and BVΦ(E;X) is a linear space, then the

function Φ is tempered.

Proof. (a) Let f , g ∈ BVΦ(E;X), and let c ∈ K. We note that VΦ(cf) = VΦ(|c|f). If |c| ≤ 1, then

from (6.2), we find that cf ∈ BVΦ(E;X). On the other hand, if |c| > 1, then, by condition (6.4), we
find C > 0 and ρ0 ≥ 0 such that Φ(|c|ρ) ≤ CΦ(ρ) for ρ ≥ ρ0. Setting Ψ(ρ) = Φ(|c|ρ), ρ ≥ 0, from
Proposition 2.7(a), we obtain that BVΦ(E;X) ⊂ BVΨ(E;X), and, in particular, VΦ(|c|f) = VΨ(f) <∞,

whence cf ∈ BVΦ(E;X). From this and (6.1), it follows that f + g ∈ BVΦ(E;X):

VΦ(f + g) = VΦ(
1
22f +

1
22g) ≤

1
2 VΦ(2f) +

1
2 VΦ(2g) <∞.

(b) If L := BVΦ([a, b];X) is a linear space, then this means, in particular, that the fact that f ∈ L
implies 2f ∈ L, i.e., L ⊂ BVΨ([a, b];X), where Ψ(ρ) := Φ(2ρ), ρ ≥ 0. From Proposition 2.7(b), for certain
C > 0 and ρ0 ≥ 0, we then obtain that Φ(2ρ) = Ψ(ρ) ≤ CΦ(ρ) for ρ ≥ ρ0, i.e., Φ satisfies (6.3). �

On the space BVΦ(E;X), we define the following nonnegative functional (of Luxemburg’s type [24,
Chapter 2, Sec. 9.7]):

p(f) ≡ pΦ(f) := inf
{
r > 0

∣∣VΦ(f/r) ≤ 1
}
, f ∈ BVΦ(E;X). (6.5)

The quantity p(f) is always finite (∈ R+) since VΦ(f/r) ≤ VΦ(f)/r for r ≥ 1 by (6.2); therefore,

lim
r→∞

VΦ(f/r) = 0. The main properties of the functional p(·) are summarized in the following propo-

sition (everywhere in it Φ is a certainM-function).

3411



Proposition 6.2. (a) For any f ∈ BVΦ(E;X), the following inequality holds:

‖f(t)− f(s)‖ ≤ p(f)|t− s|Φ−1(1/|t − s|) ∀ t, s ∈ E, t �= s.

(b) If the mapping f ∈ BVΦ(E;X) is such that p(f) > 0, then VΦ(f/p(f)) ≤ 1 (and thus the infimum

in (6.5) is reached for such mappings f).
(c) If f ∈ BVΦ(E;X), r0 > 0, and VΦ(f/r0) = 1, then p(f) = r0.

(d) If Φ is a tempered M-function, then the functional p = pΦ is a seminorm on the linear
space BVΦ(E;X).

(e) If the sequence of mappings fn ∈ BVΦ(E;X), n ∈ N, converges pointwise on E to f ∈ XE as
n→∞, then p(f) ≤ lim sup

n→∞
p(fn).

Proof. (a) For t, s ∈ E, s < t, by Proposition 2.2(b) and definition (6.5), we have

Φ

(
‖f(t)− f(s)‖

r(t− s)

)
· (t− s) ≤ VΦ(f/r) ≤ 1 ∀ r > p(f),

from which, applying the inverse function Φ−1 to both parts of this inequality, we obtain

‖f(t)− f(s)‖ ≤ r(t− s)Φ−1(1/(t − s)), r > p(f).

It remains to pass to the limit in this expression as r → p(f) and take into account the “symmetry” of
the occurence of variables t and s.

(b) It follows from the definition of p(f) > 0 that VΦ(f/r) ≤ 1 for all r > p(f). Considering the

sequence rn > p(f), n ∈ N, such that rn → p(f) as n → ∞, observing that f/rn → f/p(f) pointwise
on E as n→∞, and applying Proposition 2.2(d), we find that

VΦ(f/p(f)) ≤ lim inf
n→∞

VΦ(f/rn) ≤ 1,

whence p(f) ∈ Λ := {r > 0 | VΦ(f/r) ≤ 1} and p(f) = minΛ.

(c) Definition (6.5) yields p(f) ≤ r0. Note that p(f) > 0 (otherwise, if p(f) = 0, then, by virtue
of (a), f is a constant mapping, so that VΦ(f/r0)=0 �=1). If p(f) < r0, then, by (6.2) and (b), we have

1 = VΦ
( f
r0

)
= VΦ

(p(f)
r0
·
f

p(f)

)
≤
p(f)

r0
· VΦ
( f

p(f)

)
≤
p(f)

r0
< 1,

which is impossible. Therefore, p(f) = r0.
(d) If f = 0, then VΦ(f/r) = 0 for all r > 0; therefore, p(f) = 0. Conversely, if p(f) = 0, then from

the inequality in (a) we find that f(t) = f(s) for all t, s ∈ E.
For f ∈ BVΦ(E;X) and c ∈ K, we have

p(cf) = inf{r > 0 | VΦ(cf/r) ≤ 1} = |c| inf{ρ > 0 | VΦ(f/ρ) ≤ 1} = |c|p(f).

We now prove the triangle inequality p(f + g) ≤ p(f) + p(g) for the mappings f , g ∈ BVΦ(E;X).
If p(f) = 0 or p(g) = 0, then this inequality is obvious. Let p(f) > 0 and p(g) > 0. Then, from (6.1)
and (b), we obtain

VΦ
( f + g

p(f) + p(g)

)
≤

p(f)

p(f) + p(g)
VΦ
( f

p(f)

)
+

p(g)

p(f) + p(g)
VΦ
( g

p(g)

)
≤ 1,

and the triangle inequality now follows from definition (6.5).
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(e) If the limit mentioned above is infinite, then the inequality in (e) is obvious. Now, let this limit
be finite. Then there exists a number n0 ∈ N such that the value of sup

k≥n
p(fk) is finite for all n ≥ n0. We

fix ε > 0. Since ε+ sup
k≥n

p(fk) > p(fn), we have the following from the definition of p(fn):

VΦ

(
fn

ε+ supk≥n p(fk)

)
≤ 1, n ≥ n0.

Since fn → f pointwise on E as n→∞, we also have

fn
ε+ supk≥n p(fk)

−→
f

ε+ lim supν→∞ p(fν)
pointwise on E as n→∞;

therefore, it follows from Proposition 2.2(d) that

VΦ

(
f

ε+ lim supν→∞ p(fν)

)
≤ lim inf

n→∞
VΦ

(
fn

ε+ supk≥n p(fk)

)
≤ 1.

Then, from the definition of p(f), we obtain p(f) ≤ ε+ lim sup
ν→∞

p(fν), and it remains to take into account

the arbitrariness of ε > 0. �

For a fixed a ∈ E and a temperedM-function Φ, we define the norm on the linear space BVΦ(E;X)
as

‖f‖Φ := ‖f(a)‖+ p(f), f ∈ BVΦ(E;X).

We have the following theorem.

Theorem 6.3. If Φ is a temperedM-function and X is a Banach space, then the space BVΦ(E;X) with
the norm ‖ · ‖Φ is also a Banach space.

Proof. It suffices to prove that BVΦ(E;X) is a complete space. Let {fn}∞n=1 be a Cauchy sequence in
BVΦ(E;X):

‖fn − fm‖Φ = ‖fn(a)− fm(a)‖ + p(fn − fm)→ 0 as n, m→∞.

This fact and Proposition 6.2(a) imply that the sequence {fn(t)}∞n=1 is a Cauchy sequence in X for any
t ∈ E, and since X is complete, there exists a mapping f ∈ XE such that fn pointwise converges to f
on E as n→∞. Since fn − fm → fn − f pointwise on E as m→∞, then, using Proposition 6.2(e), we
obtain

‖fn − f‖Φ ≤ lim sup
m→∞

‖fn − fm‖Φ = lim
m→∞

‖fn − fm‖Φ ∈ R
+ ∀n ∈ N,

from which, taking into account that {fn}∞n=1 is the Cauchy sequence, we have

lim sup
n→∞

‖fn − f‖Φ ≤ lim
n→∞

lim
m→∞

‖fn − fm‖Φ = 0.

Therefore, ‖fn − f‖Φ → 0 as n → ∞. Hence there exists a number N ∈ N such that ‖fN − f‖Φ ≤ 1,
whence

‖f‖Φ ≤ ‖f − fN‖Φ + ‖fN‖Φ ≤ 1 + ‖fN‖Φ <∞.

Thus, f ∈ BVΦ(E;X), and the theorem is proved. �
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6.2. The Φ-variation of smooth mappings. Let C1([a, b];X) denote the linear space of all mappings
f ∈ C([a, b];X) whose strong derivative f ′ (i.e., the derivative in the norm of the space X) exists and
belongs to C([a, b];X). In this section, assuming that X is a not necessarily complete linear normed space,
we will prove the explicit formula (6.6) for the Φ-variation of smooth mappings f ∈ C1([a, b];X). For some
special cases, this formula was earlier proved in [7, Theorem 8.7(b)] (for Φ(ρ) = ρ), in [9, Theorem 4.2]
(for Φ(ρ) = ρq, q > 1), and also in [11, Corollary 3.2(c)] (if Φ ∈ N ).

Theorem 6.4. If f ∈ C1([a, b];X), then f ∈ BVΦ([a, b];X) for all Φ ∈M and

b

V
a
Φ(f) =

∫ b

a

Φ
(
‖f ′(t)‖

)
dt. (6.6)

Proof. By the Lagrange mean value theorem A.7 (inequality (A.3)), we have an embeddingC1([a, b];X) ⊂
C0,1([a, b];X); therefore, the first assertion of the theorem is implied by Proposition 2.4(b). Formula (6.6)
is proved in two steps.

1. Initially, suppose that X is complete, i.e., a Banach space. Let T = {ti}mi=0 ∈ T
b
a . Taking into

account that Φ increases and applying the Jensen integral inequality (A.2) in the case α(t) ≡ 1, we obtain

VΦ(f, T ) =
m∑
i=1

Φ

(
‖f(ti)− f(ti−1)‖

ti − ti−1

)
· (ti − ti−1)

=
m∑
i=1

Φ

(∥∥∫ ti
ti−1

f ′(t) dt
∥∥

ti − ti−1

)
· (ti − ti−1)

≤
m∑
i=1

Φ

(∫ ti
ti−1
‖f ′(t)‖ dt

ti − ti−1

)
· (ti − ti−1)

≤
m∑
i=1

∫ ti

ti−1

Φ
(
‖f ′(t)‖

)
dt =

∫ b

a

Φ
(
‖f ′(t)‖

)
dt.

Thus, we have

b

V
a
Φ(f) ≤

∫ b

a

Φ
(
‖f ′(t)‖

)
dt. (6.7)

The completeness of X is required for the existence of theX-valued Riemannian integral
∫ ti
ti−1

f ′(t) dt.

If X is not complete, then, embedding X in its completion and observing that on the elements of the
space X, the norm in the completion coincides with the norm in X, we obtain inequality (6.7) without
the assumption on the completeness of X.

2. For the inequality converse to (6.7), the completeness of X is not needed. This inequality is
immediately implied by inequality (2.16) if we show that

lim
h→+0

∫ b−h

a

Φ

(∥∥∥f(t+ h)− f(t)
h

∥∥∥) dt = ∫ b

a

Φ
(
‖f ′(t)‖

)
dt. (6.8)

Fixing 0 < h < b− a and applying Theorem A.7 (Lagrange mean-value theorem) to the mapping [0, h] �
s �→ f(t+ s) ∈ X, for arbitrary t ∈ [a, b− h], we find that

‖f(t+ h)− f(t)‖ ≤ h sup
t∈[a,b]

‖f ′(t)‖ = hLip(f), (6.9)

‖f(t+ h)− f(t)− f ′(t)h‖ ≤ h sup
s∈(0,h)

‖f ′(t+ s)− f ′(t)‖. (6.10)
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Denoting by Φ′+(ρ) the right derivative of Φ at the point ρ ∈ R+ (see Remark 2.1), by the Lagrange
mean-value theorem we obtain the inequality

|Φ(ρ1)− Φ(ρ2)| ≤ |ρ1 − ρ2| ·
(
Φ′+(ρ1) + Φ′+(ρ2)

)
, ρ1 ≥ 0, ρ2 ≥ 0. (6.11)

The difference between the left- and right-hand sides of relation (6.8) is estimated as∣∣∣∣ ∫ b−h

a

Φ

(∥∥∥f(t+ h)− f(t)
h

∥∥∥) dt− ∫ b

a

Φ
(
‖f ′(t)‖

)
dt

∣∣∣∣
≤

∫ b−h

a

∣∣∣∣Φ(∥∥∥f(t+ h)− f(t)h

∥∥∥)− Φ
(
‖f ′(t)‖

) ∣∣∣∣ dt+ ∫ b

b−h
Φ
(
‖f ′(t)‖

)
dt.

As h → +0, the second integral on the right-hand side tends to zero. By (6.11), (6.9), and (6.10), the
first integral does not exceed the following expression:∫ b−h

a

∣∣∣∣∥∥∥f(t+ h)− f(t)h

∥∥∥− ‖f ′(t)‖∣∣∣∣ ·(Φ′+(∥∥∥f(t+ h)− f(t)h

∥∥∥)+Φ′+
(
‖f ′(t)‖

))
dt

≤ 2Φ′+(Lip(f))

∫ b−h

a

∥∥∥f(t+ h)− f(t)
h

− f ′(t)
∥∥∥ dt ≤ 2Φ′+(Lip(f))

∫ b−h

a

sup
s∈(0,h)

‖f ′(t+ s)− f ′(t)‖ dt.

Here the integrand tends to zero as h → +0 due to the uniform continuity of the derivative f ′ on [a, b].
This completes the proof of relation (6.8); therefore, (6.6) is also proved. �

Corollary 6.5. For f ∈ C1([a, b];X) and Φ ∈M, the following estimates hold:

r1 :=

∫ b
a ‖f

′(t)‖ dt

(b− a)Φ−1
(
1
b−a

) ≤ p(f) = pΦ(f) ≤ maxt∈[a,b] ‖f
′(t)‖

Φ−1
(
1
b−a

) =: r2. (6.12)

Proof. The inequality on the right-hand side is implied by the fact that if r ≥ r2, then, by (6.6) and the
monotonicity of Φ, we have

b

V
a
Φ(f/r) =

∫ b

a

Φ
(
‖f ′(t)‖/r

)
dt ≤

∫ b

a

Φ
(
‖f ′(t)‖/r2

)
dt ≤ 1.

The inequality on the left-hand side is implied by the fact that for r ≤ r1, by the Jensen inequality (A.2)
we have

b

V
a
Φ(f/r) ≥

∫ b

a

Φ
(
‖f ′(t)‖/r1

)
dt ≥ Φ

(∫ b
a ‖f

′(t)‖ dt

r1(b− a)

)
(b− a) = 1.

We now show that estimates (6.12) are sharp. Let Φ(ρ) = ρq and let q > 1. Then

b

V
a
q(f/r0) =

1

rq0

∫ b

a

‖f ′(t)‖qdt = 1, r0 =

(∫ b

a

‖f ′(t)‖qdt

)1/q
;

therefore, p(f) = r0 by Proposition 6.2(c). Inequalities (6.12) in this case take the form

(b− a)
q
q−1

∫ b

a

‖f ′(t)‖ dt ≤

(∫ b

a

‖f ′(t)‖qdt

)1/q
≤ (b− a)1/q max

t∈[a,b]
‖f ′(t)‖. (6.13)

Now let X = R, and let [a, b] = [0, 1]. If f(t) = t, then both inequalities in (6.13) turns into equalities. If

f(t) = t2, then inequalities in (6.13) become strict: 1 < 2
(
1
q+1

)1/q
< 2 for q > 1. �
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6.3. Differentiation of mappings of bounded Φ-variation. In this subsection, we additionally as-
sume that X is a Banach space. Let X∗ denote the space that is strongly dual to X (i.e., a Banach space
of all linear continuous functionals on X). The value of a functional x∗ ∈ X∗ on an element x ∈ X is
written as (x∗, x) or (x, x∗). The norm in the space X∗ is denoted by ‖ · ‖∗, and if it does not lead to
confusion, then we denote it by ‖ · ‖.

The weak derivative of a mapping f : [a, b] → X at a point t0 ∈ (a, b) is the element f •(t0) ∈ X
satisfying the condition(f(t0 + h)− f(t0)

h
− f •(t0), x

∗
)
→ 0 as R � h→ 0 ∀x∗ ∈ X∗.

In this case, the mapping f is said to be weakly differentiable at the point t0. Any mapping f that is
strongly differentiable at the point t0 is also weakly differentiable at this point, and f •(t0) = f

′(t0).
It is well known that any scalar-valued absolutely continuous function on a closed interval [a, b] is

differentiable almost everywhere on (a, b) and can be represented in the form of the Lebesgue integral of
its derivative. However, in the absence of additional constraints imposed on the Banach space X, even a
Lipschitzian mapping f : [a, b] → X can be neither strongly nor weakly differentiable on (a, b) (see [23],
[2, Chapter 1, Sec. 2.1], or [3, Chapter 1, Sec. 3.2]). In the same works, it is shown that if X is a reflexive
Banach space, then the mapping f ∈ AC([a, b];X) is strongly differentiable almost everywhere on (a, b)
and can be represented in the form of the Bochner indefinite integral of its strong derivative.

For Φ ∈ M, let LΦ([a, b];X) denote the space of all (equivalence classes) of strongly measurable

mappings f : [a, b]→ X for which the Lebesgue integral
∫ b
a Φ
(
‖f(t)‖

)
dt is finite (this space can be not a

linear one). By A1Φ([a, b];X) we denote the space of all mappings f ∈ AC([a, b];X) that have the strong
derivative f ′ (defined almost everywhere with respect to the Lebesgue measure on [a, b]), which belongs
to the space LΦ([a, b];X).

Theorem 6.6. Let Φ ∈M, let X be a reflexive Banach space, and let f ∈ BVΦ([a, b];X). Then we have

(a) the mapping f is weakly differentiable almost everywhere on (a, b), its weak derivative f • is strongly
measurable, f • ∈ LΦ([a, b];X), and∫ b

a

Φ
(
‖f •(t)‖

)
dt ≤

b

V
a
Φ(f); (6.14)

(b) moreover, if Φ ∈ N , then f ∈ A1Φ([a, b];X), f can be represented in the form

f(t) = f(a) +

∫ t

a

f ′(τ) dτ for all a ≤ t ≤ b (6.15)

(where the integral on the right-hand side is understood in the sense of Bochner), and

b

V
a
Φ(f) =

∫ b

a

Φ
(
‖f ′(t)‖

)
dt. (6.16)

Conversely, if Φ ∈ N and f ∈ A1Φ([a, b];X), then f ∈ BVΦ([a, b];X).

Proof. (a) By Corollaries 2.5 and 2.6(a), we have f ∈ BV1([a, b];X), and the image of f([a, b]) is a
precompact (and, in particular, separable) set in X. Therefore, the strong closure of the linear hull of
f([a, b]) is a separable Banach space. Thus, we assume without loss of generality that X is a separable
reflexive Banach space.

Using the inequality ‖f(t) − f(s)‖ ≤
t

V
a
1(f)−

s

V
a
1(f), a ≤ s ≤ t ≤ b, the fact that the function

t �→
t

V
a
1(f) is not decreasing on [a, b], and the Lebesgue theorem on differentiation of monotone scalar-

valued functions, we find that the Lebesgue measure of the set

A0 :=
{
t ∈ [a, b]Bigl| lim sup

h→0

∥∥∥f(t+ h)− f(t)
h

∥∥∥ =∞}
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is equal to zero. Since X is reflexive and separable, its dual X∗ is also separable [20, Chapter 5, Sec. 2,
Lemma]. Let {x∗n}

∞
n=1 be a strongly dense sequence in X∗. For any n ∈ N, the scalar-valued function

t �→ (f(t), x∗n) is of bounded 1-variation on [a, b]; therefore, it is almost everywhere differentiable on the
interval (a, b): there exists a set An ⊂ [a, b] of zero Lebesgue measure such that the derivative d

dt(f(t), x
∗
n)

exists at every point t ∈ [a, b] \An. The Lebesgue measure of the set A := A0 ∪
⋃∞
n=1An is also equal to

zero, and, for all n ∈ N and all t ∈ [a, b] \A, there exists the limit

lim
h→0

(f(t+ h)− f(t)
h

, x∗n

)
=
d

dt
(f(t), x∗n).

The fact that any reflexive Banach space is weakly sequentially dense ([20, Chapter 5, Sec. 1, Theorem 7])
implies that for any t ∈ [a, b] \A, there exists an element f •(t) ∈ X such that

lim
h→0

(f(t+ h)− f(t)
h

, x∗
)
= (f •(t), x∗) ∀x∗ ∈ X∗. (6.17)

Therefore, the mapping f has the weak derivative almost everywhere on (a, b), which is weakly measurable
on (a, b). Since f has values in a separable space, f • is almost separable space-valued; therefore, by the
Pettis theorem, f • is strongly measurable. Choosing (by virtue of the Hahn–Banach theorem) the element
x∗ ∈ X∗ in relation (6.17) such that (f •(t), x∗) = ‖f •(t)‖ and ‖x∗‖ = 1, we find that

‖f •(t)‖ ≤ lim inf
h→0

∥∥∥f(t+ h)− f(t)
h

∥∥∥ ∀ t ∈ (a, b) \A. (6.18)

Using the Fatou lemma and inequality (2.16), we obtain∫ b

a

Φ
(
‖f •(t)‖

)
dt ≤ lim inf

h→0

∫ b−h

a

Φ

(∥∥∥f(t+ h)− f(t)
h

∥∥∥) dt ≤ b

V
a
Φ(f). (6.19)

Therefore, f • ∈ LΦ([a, b];X).
(b) Now, let Φ ∈ N . Then f ∈ AC([a, b];X) by Proposition 2.4(d); therefore, the scalar-valued

function t �→ (f(t), x∗) is absolutely continuous on [a, b] for any x∗ ∈ X∗. Using (a), for all t ∈ [a, b], we
have

(f(t)− f(a), x∗) =

∫ t

a

(f •(τ), x∗) dτ =

(∫ t

a

f •(τ) dτ, x∗
)

∀x∗ ∈ X∗,

and, therefore,

f(t) = f(a) +

∫ t

a

f •(τ) dτ ∀ t ∈ [a, b]. (6.20)

This implies that the strong limit lim
h→0

1
h(f(t+h)− f(t)) = f

•(t) coincides with the strong derivative f ′(t)

for almost all t ∈ (a, b). Therefore, the strong derivative f ′ exists almost everywhere on (a, b), f ′ ∈
LΦ([a, b];X), relation (6.15) holds by virtue of (6.20), and relation (6.16) is implied by inequality (6.19),
where f • is replaced by f ′, and inequality (6.7), which holds with (6.15) taken into account by the same
arguments as in the first step of the proof of Theorem 6.4.

Finally, the last assertion of the theorem holds (without the assumption that X is reflexive) due
to the fact that, proceeding from relation (6.15), we can apply the arguments of step 1 of the proof of
Theorem 6.4 and obtain inequality (6.7), which just means that f ∈ BVΦ([a, b];X). The theorem is
proved. �

Remark 6.1. (a) If Φ ∈ M and ϕ ∈ BVΦ([a, b];R), then, by Theorem 6.6(a), the derivative ϕ′ ∈
LΦ([a, b];R) exists almost everywhere on [a, b]; moreover,∫ b

a

Φ
(
|ϕ′(t)|

)
dt ≤

b

V
a
Φ(ϕ). (6.21)
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(If Φ(ρ) = ρ, then the example in which ϕ is a “Cantor ladder” [28, Chapter 8, Sec. 2, Example] shows
that we cannot assert anything more than this inequality in (6.21).) Thus, if f ∈ BVΦ([a, b];X), where

X is an arbitrary metric space and ϕ(t) =
t

V
a
1(f) for a ≤ t ≤ b, then, by Theorem 3.1, we have∫ b

a

Φ
(∣∣ d
dt

t

V
a
1(f)
∣∣) dt = ∫ ba Φ(|ϕ′(t)|) dt ≤ b

V
a
Φ(ϕ) =

b

V
a
Φ(f). (6.22)

(b) Let Φ ∈ N . If X is a reflexive Banach space, then it follows from Theorem 6.6(b) that
BVΦ([a, b];X) = A1Φ([a, b];X), or, in other words,

f ∈ BVΦ([a, b];X) ⇐⇒ f ∈ AC([a, b];X) and f ′ ∈ LΦ([a, b];X). (6.23)

For X = R, criterion (6.23) is nothing other than the well-known criterion of F. Riesz [32] (see also
[33, Chapter 2, Sec. 3.36, Lemma]), if Φ(ρ) = ρq, q > 1; it is Yu. T. Medvedev’s criterion [25] if Φ ∈ N .
From (6.16), we also obtain

b

V
a
Φ(ϕ) =

∫ b

a

Φ
(
|ϕ′(t)|

)
dt, Φ ∈ N , ϕ ∈ BVΦ([a, b];R). (6.24)

Now, if X is an arbitrary metric space, f : [a, b] → X, and ϕ(t) =
t

V
a
1(f) for a ≤ t ≤ b, then, by

Lemmas 3.2(b,c) and 3.3(b,c), Theorem 6.6(b), and relation (6.24), we have the following generalization
of criterion (6.23):

f ∈ BVΦ([a, b];X) ⇐⇒ ϕ ∈ BVΦ([a, b];R)

⇐⇒ ϕ ∈ AC([a, b];R) and ϕ′ ∈ LΦ([a, b];R),
(6.25)

and we also obtain the equality in (6.22):

b

V
a
Φ(f) =

b

V
a
Φ(ϕ) =

∫ b

a

Φ
(
|ϕ′(t)|

)
dt =

∫ b

a

(∣∣ d
dt

t

V
a
1(f)
∣∣) dt.

Theorem 6.7. If X is a metric space, then

AC([a, b];X) =
⋃
Φ∈N

BVΦ([a, b];X).

Proof. The inclusion ⊃ is proved in Proposition 2.4(d). Conversely, we show that for any mapping
f ∈ AC([a, b];X), there exists a function Φ ∈ N , depending on f such that f ∈ BVΦ([a, b];X). Let

ϕ(t) =
t

V
a
1(f), and let t ∈ [a, b]. Then we have ϕ ∈ AC([a, b];R) by Lemma 3.3(c) and ϕ′ ∈ L1([a, b];R).

By virtue of (6.25), it is sufficient to prove that ϕ′ ∈ LΦ([a, b];R) (in the proof of this assertion, we
follow [24, Chapter 2, Sec. 8.1]). The sets

Jn = {t ∈ [a, b] | n− 1 ≤ |ϕ′(t)| < n}, n ∈ N,

are pairwise disjoint,
∞⋃
n=1

Jn = [a, b], and

∞∑
n=1

nµ(Jn) ≤

∫ b

a

|ϕ′(t)| dt + (b− a) <∞,

where µ(Jn) stands for the Lebesgue measure of the set Jn. Let an increasing sequence {ρn}∞n=1, ρ1 ≥ 1,
lim
n→∞

ρn =∞, be such that

∞∑
n=1

ρnnµ(Jn) <∞. (6.26)
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Setting

Φ̃(τ) =

{
τ if 0 ≤ τ < 1,

ρn if n ≤ τ < n+ 1, n ∈ N,
τ ∈ R+,

and

Φ(ρ) =

∫ ρ

0
Φ̃(τ) dτ, ρ ∈ R+,

we find that Φ ∈ N (and even that lim
ρ→0

Φ(ρ)/ρ = 0). Since

Φ(n) =

∫ n

0
Φ̃(τ) dτ ≤ ρnn,

we have by (6.26) that∫ b

a

Φ
(
|ϕ′(t)|

)
dt =

∞∑
n=1

∫
Jn

Φ
(
|ϕ′(t)|

)
dt ≤

∞∑
n=1

Φ(n)µ(Jn) ≤
∞∑
n=1

ρnnµ(Jn) <∞.

Therefore, ϕ′ ∈ LΦ([a, b];R), and the theorem is proved. �

7. Existence of Selections of Multivalued Mappings

In order to state and prove the main result of this section (Theorem 7.1), we first give some definitions
and facts from the theory of multivalued mappings (for more detailed information, see [1, Chapter 1, Secs. 1
and 5] and [5, Chapter 2, Sec. 1]).

Let A and B be two nonempty subsets of a metric space (X,d). The quantity

e(A,B) := sup
x∈A

dist(x,B) ∈ [0,∞], where dist(x,B) := inf
y∈B

d(x, y), (7.1)

is called the access of the set A to the set B. The Hausdorff distance D(A,B) between the sets A and B
is defined by the relation

D(A,B) = max
{
e(A,B), e(B,A)

}
. (7.2)

Since e(A,B) = 0 if and only if A is contained in the closure of B and e(A,B) ≤ e(A,C) + e(C,B) for
the nonempty set C ⊂ X, we have that D(·, ·) is the pseudometric on the set of all nonempty subsets
of X, i.e., it satisfies all the metric axioms, and, possibly, takes infinite values. The mapping D is a metric
(called the Hausdorff metric) on the set cb(X) of all nonempty closed bounded subsets of the space X
and, in particular, on the set c(X) of all nonempty compact subsets in X.

A multivalued mapping from a metric space (E, dE) into a metric space (X,d) is a mapping F : E →
2X , where 2X stands for the set of all subsets of X, so that the set F (t) ⊂ X is associated with every
point t ∈ E. The graph of a mapping F is the set Gr(F ) := {(t, x) ∈ E ×X | x ∈ F (t)}, and the range
of the mapping F is the set R(F ) :=

⋃
t∈E
F (t) ⊂ X.

We set 2̇X = 2X \ {∅}. A multivalued mapping F : E → 2̇X is said to be

(a) upper semicontinuous at a point t0 ∈ E if, for any neighborhood O(F (t0)) of the set F (t0), there
exists a neighborhood O(t0) of the point t0 such that F (t) ⊂ O(F (t0)) for all t ∈ O(t0);

(b) lower semicontinuous at a point t0 ∈ E if, for any x0 ∈ F (t0) and any neighborhood O(x0) of the
point x0, there exists a neighborhood O(t0) of the point t0 such that F (t) ∩ O(x0) �= ∅ for all
t ∈ O(t0);

(c) continuous at a point t0 ∈ E if it is simultaneously upper semicontinuous and lower semicontinuous
at this point;

(d) Hausdorff continuous at a point t0 ∈ E if, for any ε > 0, there exists δ(ε) > 0 such that
D(F (t), F (t0)) ≤ ε for all t ∈ E such that dE(t, t0) ≤ δ(ε);

3419



(e) (e) upper semicontinuous on E (lower semicontinuous on E, continuous on E, and Hausdorff con-
tinuous on E), if this property holds at any point t0 ∈ E;

(f) compact-valued if F (t) is a compact subset of X, i.e., if F (t) ∈ c(X), for any t ∈ E (for instance,
if the graph Gr(F ) is compact in E ×X, then F is compact space-valued, but the converse is not
true).

It is known (see [1, Chapter 1, Sec. 5, Corollary 1]) that a compact-valued multivalued mapping
F : E → 2̇X from the metric space E into the metric space X is continuous on E in the sense of item (c)
if and only if it is Hausdorff continuous on E in the sense of item (d).

We say that a multivalued mapping F : E → 2̇X has a (regular) selection if there exists a mapping
f : E → X such that f(t) ∈ F (t) for all t ∈ E.

By Michael’s theorem [26] (see also [1, Chapter 1, Sec. 11]), any lower semicontinuous multivalued
mapping from the metric space E into the set of closed convex subsets of a Banach space X has a continu-
ous selection. As is shown in [19,29], in the absence of the convexity condition for values of a multivalued
mapping, continuous selections may not exist even for a compact-valued Lipschitzian mapping (e.g., when
E ⊂ Rn, n ≥ 2). We are interested in the question of existence of regular selections of multivalued
mappings F with compact graphs without the convexity condition for values of these mappings, and a
key role is played by the fact that the domain of F is a connected subset of the real line R.

If E ⊂ R, then we say that a multivalued mapping F : E → cb(X) is

(g) Lipschitz continuous (or a Lipschitzian mapping) if

Lip(F ) := sup

{
D(F (t), F (s))

|t− s|

∣∣∣∣ t, s ∈ E, t �= s

}
<∞;

(h) absolutely continuous (more precisely, δ(·)-absolutely continuous) if, for a certain function δ :
(0,∞)→ (0,∞), any ε > 0, and any finite tuple of points {ai, bi}ni=1 ⊂ E with a1 < b1 ≤ a2 < b2 ≤

· · · ≤ an < bn, the condition
n∑
i=1

(bi − ai) ≤ δ(ε) implies
n∑
i=1
D(F (bi), F (ai)) ≤ ε;

(i) a mapping of bounded Φ-variation for Φ ∈M if

VΦ(F,E) := sup
{
VΦ,D(F, T ) | T ∈ T (E)

}
<∞,

where, similarly to (2.2), we set

VΦ,D(F, T ) :=
m∑
i=1

Φ

(
D(F (ti), F (ti−1))

ti − ti−1

)
· (ti − ti−1), T = {ti}

m
i=0 ∈ T (E).

Let C(E; c(X)), C0,1(E; c(X)), AC(E; c(X)), and BVΦ(E; c(X)) with Φ ∈ M denote, respective-
ly, the spaces of all (Hausdorff) continuous, Lipschitz continuous, absolutely continuous mappings, and
mappings of bounded Φ-variation with respect to the Hausdorff metric D acting from E into the metric
space c(X) of nonempty compact subsets of X.

Now we are able to state the main result of this section, Theorem 7.1, which generalizes the results on
the existence of selections of nonconvex-valued multivalued mappings of bounded 1-variation (in the sense
of Jordan) presented in [19,22,35] for the finite-dimensional spaceX and in [7–9,11] and [27, Theorem D1.8]
for an infinite-dimensional Banach space X.

Theorem 7.1. Let X be a Banach space (over R or C) with the norm ‖ · ‖, E = [a, b] be a closed interval
in R, and let a multivalued mapping F : E → c(X) have the compact graph Gr(F ). If Φ ∈ M and
F ∈ BVΦ(E; c(X)), then, for any t0 ∈ E and x0 ∈ F (t0), there exists a selection f ∈ BVΦ(E;X) of the
mapping F such that f(t) ∈ F (t) at all points of continuity t ∈ E of the mapping F and

f(t0) = x0, VΦ(f,E) ≤ VΦ(F,E), V1(f,E) ≤ V1(F,E).
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If, in addition, it is known that F is continuous or Φ ∈ N , then the selection f is also continuous and
f(t) ∈ F (t) for all t ∈ E.

Proof. The proof is carried out in six steps. In the first three steps, Theorem 7.1 is proved for the case
where Φ ∈ N .

1. For every n ∈ N, let Tn = {tni }
n
i=0 ∈ T

b
a be a partition of a closed interval [a, b] with the following

properties:

(1) t0 ∈ Tn, i.e., t0 = tnk(n) for a certain k(n) ∈ {0, 1, . . . , n};

(2) if λ(Tn) := max
1≤i≤n

(tni − t
n
i−1), then λ(Tn)→ 0 as n→∞.

By induction, we define elements xni ∈ F (t
n
i ) in the following way. Let n ∈ N, and let initially

a < t0 < b.

(a) We set xnk(n) = x0.

(b) If i ∈ {1, . . . , k(n)} and the element xni ∈ F (t
n
i ) is already defined, we choose an element xni−1 ∈

F (tni−1) such that ‖xni − x
n
i−1‖ = dist(xni , F (t

n
i−1)).

(c) If i ∈ {k(n) + 1, . . . , n} and the element xni−1 ∈ F (t
n
i−1) is already defined, we choose an element

xni ∈ F (t
n
i ) such that ‖xni−1 − x

n
i ‖ = dist(xni−1, F (t

n
i )).

Now, if t0 = a, i.e., if k(n) = 0, then we find xni according to (a) and (c), and if t0 = b, so that k(n) = n,
we find xni following (a) and (b).

We now define the sequence of mappings fn : [a, b]→ X, n ∈ N, in the following way:

fn(t) = x
n
i−1 +

t− tni−1
tni − t

n
i−1

(xni − x
n
i−1), t ∈ [tni−1, t

n
i ], i = 1, . . . , n. (7.3)

We note at once that fn(t
n
i ) = x

n
i , fn(t

n
i−1) = x

n
i−1, and, therefore, fn(t0) = x0 for all n ∈ N, and also

‖xni − x
n
i−1‖ ≤ D(F (t

n
i ), F (t

n
i−1)), n ∈ N, i = 1, . . . , n, (7.4)

by virtue of definitions (b), (c), (7.1), and (7.2).
All the mappings fn : [a, b] → X are continuous, and the restriction of fn to every closed interval

[tni−1, t
n
i ] is continuously differentiable. Taking into account that

f ′n(t) =
xni − x

n
i−1

tni − t
n
i−1

for tni−1 ≤ t ≤ t
n
i ,

and applying Proposition 2.2(c), formula (6.6), and inequality (7.4), we find that

b

V
a
Φ(fn) =

n∑
i=1

tni
V
tni−1
Φ(fn) =

n∑
i=1

∫ tni

tni−1

Φ
(
‖f ′n(t)‖

)
dt

=
n∑
i=1

∫ tni

tni−1

Φ

(
‖xni − x

n
i−1‖

tni − t
n
i−1

)
dt

=
n∑
i=1

Φ

(
‖xni − x

n
i−1‖

tni − t
n
i−1

)
· (tni − t

n
i−1)

≤
n∑
i=1

Φ

(
D(F (tni ), F (t

n
i−1))

tni − t
n
i−1

)
· (tni − t

n
i−1)

= VΦ,D(F, Tn) ≤
b

V
a
Φ(F ) <∞, ∀n ∈ N.

(7.5)
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By Proposition 2.4(d,e), F has the Jordan bounded variation; therefore, the calculations performed for
Φ(ρ) = ρ in (7.5) also give the estimate

b

V
a
1(fn) ≤

b

V
a
1(F ) for all n ∈ N. (7.6)

2. We show that the sequence {fn(t)}∞n=1 is precompact in X for any t ∈ [a, b]. We fix t ∈ [a, b].
For any n ∈ N, there exists a number i(n) ∈ {1, . . . , n} also depending on t such that tni(n)−1 ≤ t ≤ t

n
i(n);

therefore, it follows from the condition lim
n→∞

λ(Tn) = 0 that, as n → ∞, the sequences tni(n)−1 and t
n
i(n)

tend to the point t. It follows from (7.3), (7.4), and the (absolute) continuity of the mapping F that

‖fn(t)− x
n
i(n)‖ =

tni(n) − t

tn
i(n) − t

n
i(n)−1

‖xni(n) − x
n
i(n)−1‖

≤ D(F (tni(n)), F (t
n
i(n)−1))→ 0 as n→∞.

(7.7)

Since F has a compact graph and xni(n) ∈ F (t
n
i(n)), i.e., (t

n
i(n), x

n
i(n)) ∈ Gr(F ), there exists a subse-

quence of {(tni(n), x
n
i(n))}

∞
n=1 (which is denoted in the same way as the sequence itself) that converges in

[a, b]×X as n→∞ to a certain point (τ, x) ∈ Gr(F ). But tni(n) → t as n→∞; therefore, τ = t, so that

(t, x) ∈ Gr(F ) or x ∈ F (t). At the same time, xni(n) → x in X as n → ∞. From (7.7), we then obtain

that as n→∞, the subsequence fn(t) converges in X to the element x ∈ F (t), and this means that the
sequence {fn(t)}∞n=1 is precompact.

3. Applying the strong selection principle (Theorem 4.1(a)) to the family F = {fn}∞n=1, by virtue
of (7.5) and step 2, we find a subsequence of {fn}∞n=1 (denoted by the same symbol) that converges
uniformly on [a, b] to a certain mapping f ∈ BVΦ([a, b];X). It is clear here that f(t0) = x0, and, by
Proposition 2.2(d) and inequalities (7.5) and (7.6), we have

b

V
a
Φ(f) ≤ lim inf

n→∞

b

V
a
Φ(fn) ≤

b

V
a
Φ(F ), (7.8)

b

V
a
1(f) ≤ lim inf

n→∞

b

V
a
1(fn) ≤

b

V
a
1(F ). (7.9)

It remains to show that f(t) ∈ F (t) for any t ∈ [a, b]. We fix such t. By the arguments from step 2,
we have that fn(t) converges in X to a certain element x ∈ F (t) as n→∞, and from the definition of f ,
we find that fn(t) → f(t) in X as n →∞; therefore, f(t) = x ∈ F (t), so that in the case where Φ ∈ N ,
Theorem 7.1 is proved.

4. In this auxiliary step, we show that the proof presented above can easily be adopted in order to
obtain the following statement: if, under the hypotheses of Theorem 7.1, we have F ∈ C0,1([a, b]; c(X)),
then there exists a selection f ∈ C0,1([a, b];X) of the mapping F such that f(t) ∈ F (t) for all t ∈ [a, b],
f(t0) = x0, and Lip(f) ≤ Lip(F ).

Initially, we argue as in step 1 up to inequality (7.4) and observe that the sequence {fn}∞n=1 is
uniformly Lipschitzian on the closed interval [a, b], i.e., Lip(fn) ≤ Lip(F ) for all n ∈ N; in fact, if
t, s ∈ [tni−1, t

n
i ], then, from (7.3) and (7.4), we obtain

‖fn(t)− fn(s)‖ ≤
xni − x

n
i−1

tni − t
n
i−1

|t− s| ≤ Lip(F ) · |t− s|.

Since {fn}∞n=1 is equicontinuous, by virtue of step 2 we can apply the Arzela–Ascoli theorem and find
a subsequence of {fn}∞n=1 that converges uniformly on [a, b] to a certain mapping f ∈ C([a, b];X). It is
clear that actually f ∈ C0,1([a, b];X), Lip(f) ≤ Lip(F ), f(t0) = x0, and the inclusion f(t) ∈ F (t) follows
from step 2 in the same way as in step 3.

5. Suppose that Φ ∈ M and F ∈ BVΦ([a, b]; c(X)) ∩ C([a, b]; c(X)). By Lemma 3.3(b), we have the

composition F = G ◦ ϕ, where the function ϕ(t) =
t

V
a
1(F ), t ∈ [a, b], belongs to the space BVΦ([a, b];R)
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(and to the space BV1([a, b];R)) and the multivalued mapping G : [0, ,] = ϕ([a, b]) → c(X) is Lipschitz

continuous; moreover, , =
b

V
a
1(F ) =

b

V
a
1(ϕ), Lip(G) ≤ 1, and

b

V
a
Φ(ϕ) =

b

V
a
Φ(F ). Since F is continuous, the

function ϕ is also continuous on [a, b].
We now show that G has a compact graph. Consider a sequence {(τn, yn)}∞n=1 from the graph Gr(G).

Then τn = ϕ(tn) for a certain point tn ∈ [a, b], and yn ∈ G(ϕ(tn)) = F (tn), so that {(tn, yn)}∞n=1 ⊂
Gr(F ). The compactness of the graph of F implies that there exists a subsequence of {(tn, yn)}∞n=1 (this
subsequence is denoted by the same symbol) such that tn → t and yn → y as n → ∞, where y ∈ F (t).
We set τ = ϕ(t). Since ϕ is continuous, (τn, yn) converges to (τ, y) ∈ Gr(G); this is the required result.

Observing that x0 ∈ F (t0) = G(τ0), where τ0 = ϕ(t0), by virtue of step 4 we find a mapping
g ∈ C0,1([0, ,];X) such that g(τ0) = x0, g(τ) ∈ G(τ) for all τ ∈ [0, ,] and Lip(g) ≤ Lip(G) ≤ 1. We set
f = g ◦ ϕ. By Lemma 3.2(b), the mapping f ∈ BVΦ([a, b];X) is continuous and

b

V
a
Φ(f) =

b

V
a
Φ(g ◦ ϕ) ≤

b

V
a
Φ(ϕ) =

b

V
a
Φ(F ),

b

V
a
1(f) =

b

V
a
1(g ◦ ϕ) ≤

b

V
a
1(ϕ) =

b

V
a
1(F ).

Finally, f(t0) = g(ϕ(t0)) = g(τ0) = x0 and f(t) = g(ϕ(t)) ∈ G(ϕ(t)) = F (t) for all points t ∈ [a, b].
6. We now consider the general case where Φ ∈M and F ∈ BVΦ([a, b]; c(X)). We argue as in Step 1

up to inequality (7.6). By (7.3), the image of each mapping fn is contained in the closed convex hull
coR(F ) of the range R(F ) of the mapping F , but Gr(F ) is a compact set in [a, b] ×X; therefore, R(F )
is also compact (in X), and hence, coR(F ) is compact (the last assertion follows from Lemma A.8).

Applying the weak selection principle (Theorem 4.2) to the family F = {fn}∞n=1 in the space
BVΦ([a, b];X), we find that there exists a subsequence (denoted by the same symbol) of {fn}∞n=1 that
converges pointwise to a certain mapping f ∈ BVΦ([a, b];X) on [a, b]. Moreover, it is clear that f(t0) = x0,
and that inequalities (7.8) and (7.9) hold.

Let t ∈ [a, b] be a point of continuity of F (see Corollary 2.6(b)). We show that f(t) ∈ F (t) in this
case. Since (7.7) holds at the point t, we have fn(t) → x ∈ F (t) as n → ∞ by virtue of step 2, and
fn(t)→ f(t) by construction, from which we conclude that f(t) = x ∈ F (t). This completes the proof. �

Remark 7.1. In Theorem 7.1, one could fix finitely many points ti ∈ [a, b] and xi ∈ F (ti), i = 1, . . . ,m,
m ∈ N, and then we would additionally have the following for a selection f : f(ti) = xi, i = 1, . . . ,m.

Corollary 7.2. Theorem 7.1 is valid if one sets E = R in it.

Proof. Let {rk}k∈Z ⊂ R be a strictly increasing sequence of points of continuity of the mapping F
such that r0 < t0 < r1, lim

k→∞
rk = ∞, and lim

k→∞
r−k = −∞. We set Ik = [rk, rk+1], k ∈ Z, so that

R =
⋃
k∈Z
Ik. Applying Theorem 7.1 on the closed interval E = I0, we find a selection f0 ∈ BVΦ(I0;X) of the

mapping F (more precisely, that of the restriction F |I0 of the mapping F to the closed interval I0) such that
f0(t0) = x0, VΦ(f0, I0) ≤ VΦ(F, I0), and V1(f0, I0) ≤ V1(F, I0). “Moving along the closed intervals Ik to the

right” from the point r1, we sequentially apply Theorem 7.1: first on the closed interval I1 with the initial
condition x0 = f0(r1) ∈ F (r1), then on the closed interval I2 with the initial condition x0 = f1(r2) ∈ F (r2),
. . . , on the closed interval Ik with the initial condition x0 = fk−1(rk) ∈ F (rk), and so on for k ∈ N. As
a result, for any k ∈ N, we find a selection fk ∈ BVΦ(Ik;X) of the mapping F on the closed interval Ik
such that

fk(rk) = fk−1(rk), VΦ(fk, Ik) ≤ VΦ(F, Ik), V1(fk, Ik) ≤ V1(F, Ik). (7.10)

We carry out a similar construction “moving along the closed intervals Ik to the left” from the point r0.
Then, for any k ∈ Z, on the closed interval Ik, there exists a selection fk ∈ BVΦ(Ik;X) of the mapping F
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such that relations (7.10) hold. If t ∈ R, so that t ∈ Ik for a certain k ∈ Z, we set f(t) := fk(t). It is clear
that the mapping f : R→ X thus defined is a selection of F on R, f(t0) = f0(t0) = x0, and, by virtue of
the limit property and additivity (Proposition 2.2(h,c)), we have

VΦ(f,R) = lim
k→∞

VΦ(f, [r−k, rk]) = lim
k→∞

k−1∑
i=−k

VΦ(fi, Ii)

≤ lim
k→∞

k−1∑
i=−k

VΦ(F, Ii) = lim
k→∞

VΦ(F, [r−k, rk]) = VΦ(F,R),

and, similarly, V1(f,R) ≤ V1(F,R). �

An assertion that is similar to Corollary 7.2 holds also for (bounded or unbounded) intervals and
semiopen intervals.

8. Certain Generalizations

In this section, we propose certain generalizations of the results presented above. We are especially
interested in further strengthening Theorem 7.1. For simplicity, we restrict ourselves to the consideration
of mappings on the closed interval E = [a, b]. Let, as usual, (X,d) be a metric space, let Φ ∈ M, and
let σ : R→ R be a continuously differentiable function with the derivative σ′(t) > 0 for all t ∈ E. For a
partition T = {ti}mi=0 ∈ T

b
a of our closed interval and for a mapping f : E → X, we set

VΦ,σ(f, T ) :=
m∑
i=1

Φ

(
d(f(ti), f(ti−1))

σ(ti)− σ(ti−1)

)
·
(
σ(ti)− σ(ti−1)

)
, (8.1)

b

V
a
Φ,σ(f) := sup

{
VΦ,σ(f, T )

∣∣T ∈ T ba }, (8.2)

and also

BVΦ,σ(E;X) :=
{
f : E → X

∣∣ bV
a
Φ,σ(f) <∞

}
.

The functional f �→
b

V
a
Φ,σ(f) will be called the (Φ, σ)-variation. Note that for X = R and Φ(ρ) = ρq,

q > 1, the concept of the (Φ, σ)-variation (8.1), (8.2) considered as the integral of a (continuous) interval
function (see the end of Sec. 5 after Remark 5.1) dates back to [18] and [30], where it was applied for
problems of the theory of quadratic forms with an infinite number of variables.

First of all, we note that Propositions 2.1–2.3 are valid (with corresponding modifications in Propo-
sition 2.2(b)) for the (Φ, σ)-variation as well. In Proposition 2.4(b), the inequality becomes

b

V
a
Φ,σ(f) ≤ Φ

(
Lip(f)

/
min
t∈[a,b]

σ′(t)
)
·
(
σ(b)− σ(a)

)
,

and the inequality (2.12) in Proposition 2.4(c) is modified as

b

V
a
1(f) ≤

(
σ(b) − σ(a)

)
Φ−1
(

1

σ(b)− σ(a)
·
b

V
a
Φ,σ(f)

)
, f ∈ BVΦ,σ(E;X). (8.3)

Proposition 2.4(d) is preserved with obvious changes in its proof for the (Φ, σ)-variation as well since
the function σ is Lipschitzian on [a, b], and, therefore, it is absolutely continuous. Inequality (2.16) in
Lemma 2.8 is replaced by∫ b−h

a

Φ

(
‖f(t+ h)− f(t)‖

σ(t+ h)− σ(t)

)
·
σ(t+ h)− σ(t)

h
dt ≤

b

V
a
Φ,σ(f), 0 < h < b− a. (8.4)
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Theorem 3.1 is also carried over to the case of the (Φ, σ)-variation, but in the proof of necessity (in
Lemma 3.3), one should use inequality (8.3) instead of (2.12). The same can be said about the weak
and strong selection principles presented in Sec. 4. The formulas for jumps of the (Φ, σ)-variation are
accordingly modified, if, instead of (5.1), we set

U(t, s) = Φ

(
d(f(t), f(s))

σ(t)− σ(s)

)
·
(
σ(t)− σ(s)

)
, t, s ∈ E, s < t.

The norm in BVΦ,σ(E;X) is introduced as in Sec. 6.1, and formula (6.6) for the variation of a smooth
mapping f ∈ C1(E;X) becomes

b

V
a
Φ,σ(f) =

∫ b

a

Φ

(
‖f ′(t)‖

σ′(t)

)
· σ′(t) dt. (8.5)

As an example, we present the calculations that prove the inequality ≤ in (8.5) (i.e., an analog of inequal-
ity (6.7)) using the complete version of the Jensen inequality (A.2): if T = {ti}mi=0 ∈ T

b
a , then

VΦ,σ(f, T ) =
m∑
i=1

Φ

(∥∥∫ ti
ti−1

f ′(t) dt
∥∥

σ(ti)− σ(ti−1)

)
·
(
σ(ti)− σ(ti−1)

)
≤

m∑
i=1

Φ

(∫ ti
ti−1

(
‖f ′(t)‖/σ′(t)

)
σ′(t) dt∫ ti

ti−1
σ′(t) dt

)
·
∫ ti
ti−1

σ′(t) dt

(A.2)

≤
m∑
i=1

∫ ti

ti−1

Φ

(
‖f ′(t)‖

σ′(t)

)
σ′(t) dt =

∫ b

a

Φ

(
‖f ′(t)‖

σ′(t)

)
σ′(t) dt.

In order to prove the converse inequality, we use inequality (8.4).
It is easy to see that the corresponding analog of Theorem 6.6 holds for the (Φ, σ)-variation.
We now consider the question on the existence of selections for multivalued mappings of bounded

(Φ, σ)-variation. The definition of the subsequence {fn}∞n=1 in (7.3) is modified in the following way: for
i = 1, . . . , n, we set

fn(t) = x
n
i−1 +

σ(t)− σ(tni−1)

σ(tni )− σ(t
n
i−1)

(xni − x
n
i−1), tni−1 ≤ t ≤ t

n
i ;

therefore, under the same constraints, we have

f ′n(t) =
σ′(t)

σ(tni )− σ(t
n
i−1)

(xni − x
n
i−1).

Instead of (7.5), we have

b

V
a
Φ,σ(fn) =

n∑
i=1

tni
V
tni−1
Φ,σ(fn) =

n∑
i=1

∫ tni

tni−1

Φ

(
‖f ′n(t)‖

σ′(t)

)
σ′(t) dt

=
n∑
i=1

∫ tni

tni−1

Φ

(
‖xni − x

n
i−1‖

σ(tni )− σ(t
n
i−1)

)
σ′(t) dt

=
n∑
i=1

Φ

(
‖xni − x

n
i−1‖

σ(tni )− σ(t
n
i−1)

)(
σ(tni )− σ(t

n
i−1)
)

(7.4)

≤
n∑
i=1

Φ

(
D(F (tni ), F (t

n
i−1))

σ(tni )− σ(t
n
i−1)

)(
σ(tni )− σ(t

n
i−1)
)

= VΦ,σ,D(F, Tn) ≤
b

V
a
Φ,σ(F ) <∞ ∀n ∈ N,

3425



in which (8.5) is used. Thus, we have the following generalization of Theorem 7.1:

Theorem 8.1. Let E ⊂ R be a closed interval, an interval, or a semiopen interval, X be a Banach space,
Φ ∈ M, and σ ∈ C1(R;R), σ′(t) > 0 for all t ∈ E. If a multivalued mapping F ∈ BVΦ,σ(E; c(X)) has
a compact graph, then, for any m ∈ N and any ti ∈ E xi ∈ F (ti), i = 1, . . . ,m, there exists a selection
f ∈ BVΦ,σ(E;X) of the mapping F such that f(t) ∈ F (t) at all points t ∈ E at which F is continuous,

f(ti) = xi, i = 1, . . . ,m, VΦ,σ(f,E) ≤ VΦ,σ(F,E), and V1(f,E) ≤ V1(F,E).

If, in addition, F is continuous or Φ ∈ N , then the selection f is also continuous and f(t) ∈ F (t)
for all t ∈ E.

We briefly touch upon yet another generalization using the previous notation. Let Y be a metric
space with metric dY , and let σ : R → Y be an injective mapping (i.e., σ(t) �= σ(s) for t, s ∈ E, t �= s).
Setting

VΦ,σ(f, T ) =
m∑
i=1

Φ

(
d(f(ti), f(ti−1))

dY (σ(ti), σ(ti−1))

)
· dY (σ(ti), σ(ti−1)),

we define the (Φ, σ)-variation of the mapping f :E→X as in (8.2) (if E = [a, b]). The definition of such
a kind for a measure variation can be found in [31, Chapter 5]. Note, for example, that property (d) in
Proposition 2.4 in the case where Φ ∈ N means that the mapping f is absolutely continuous with respect
to the mapping σ in a sense that for any ε > 0, there exists δ = δ(ε) > 0 such that if a1 < b1 ≤ a2 < b2 ≤

· · · ≤ an < bn and
n∑
i=1
dY (σ(bi), σ(ai)) ≤ δ, then

n∑
i=1
d(f(bi), f(ai)) ≤ ε. However, such a generalization

of the (Φ, σ)-variation does not introduce any changes in Theorem 8.1. Indeed, if Y is a Banach space
with norm ‖ · ‖Y , σ ∈ C1(R;Y ), and σ′(t) �= 0 when t ∈ E, then we additionally assume that σ has the
following property:

‖σ(t)− σ(s)‖Y =

∥∥∥∥∫ t

s

σ′(τ) dτ

∥∥∥∥
Y

=

∫ t

s

‖σ′(τ)‖Y dτ, t, s ∈ R, s < t,

and then the substitution σ1(t) =
∫ t
0 ‖σ

′(τ)‖Y dτ reduces the considerations to the case of Theorem 8.1.
One can read in more detail about the generalizations of this section in [15].

A. Appendix. Auxiliary Statements

In the present Appendix, we have collected certain auxiliary statements (in the order in which they
are cited) that are used in the main text of the paper.

Theorem A.1 (Jensen’s inequalities). If a function Φ ∈ M is convex and continuous, the following
Jensen inequalities hold:

(a) Jensen’s inequality for sums: if αi ≥ 0, xi ≥ 0, i = 1, . . . , n, and
n∑
i=1
αi > 0, then

Φ

( n∑
i=1
αixi

n∑
i=1
αi

)
≤

n∑
i=1
αiΦ(xi)

n∑
i=1
αi

; (A.1)

(b) the integral Jensen inequality: if functions α, x : [a, b] → R+ are Lebesgue integrable on [a, b] and∫ b
a α(t) dt > 0, then we have (provided that all the integrals written do exist)

Φ

(∫ b
a α(t)x(t) dt∫ b
a α(t) dt

)
≤

∫ b
a α(t)Φ(x(t)) dt∫ b

a α(t) dt
. (A.2)

For the proof, see [28], Chapter 10, Sec. 5, Corollary of Theorem 4, and Theorem 6.
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Theorem A.2. Let E ⊂ R, X be a metric space, and f ∈ BV1(E;X). Then

(a) the set f(E) is completely bounded and separable in X, and if, in addition, X is complete, then f(E)
is precompact in X;

(b) f is continuous on E, except for (possibly) a set of points from E that is no more than countable.

The proof is contained in [7], Proposition 2.1 and Theorem 4.1.

Proposition A.3 (change of a variable in a Jordan variation). If E1, E ⊂ R, g : E1 → X (X is a metric
space), and ϕ : E → E1 is a (not necessarily strictly) monotone function, then V1(g, ϕ(E)) = V1(g ◦ϕ,E).

See [8], Proposition 2.1(V4) for the proof.

Theorem A.4 (classical selection principle of E. Helly). (a) Let F be an infinite family of nondecreas-
ing functions from the closed interval [a, b] in R. If the family F is uniformly bounded (i.e., if there
exists a constant C ≥ 0 such that |f(t)| ≤ C for all t ∈ [a, b] and f ∈ F), then it contains a sequence
of functions that converges pointwise on [a, b] to a certain nondecreasing bounded function from [a, b]
in R.

(b) Let F be an infinite uniformly bounded family of functions from [a, b] in R. If F is a family of

bounded 1-variation (i.e., if there exists C ≥ 0 such that
b

V
a
1(f) ≤ C for all f ∈ F), then it contains

a sequence of functions that converges pointwise on [a, b] to a certain function from [a, b] in R of
bounded 1-variation.

The proof can be found in [28], Chapter 8, Sec. 4, Lemma 2 and the theorem (E. Helly’s).

Theorem A.5 (Arzela–Ascoli). Let (E, dE) be a compact metric space, and let (X,d) be a complete
metric space. (Recall that the set C(E;X) of all continuous mappings from E into X is the complete metric
space with respect to the uniform metric du on C(E;X), which is defined in the usual way: du(f, g) =
supt∈E d(f(t), g(t)) for f , g ∈ C(E;X).) The family F ⊂ C(E;X) is precompact in the uniform metric du
if and only if the following two conditions hold:

(a) the family F is equicontinuous, i.e., for any ε > 0, there exists δ(ε) > 0 such that sup
f∈F

d(f(t), f(s)) ≤

ε for all t, s ∈ E, dE(t, s) ≤ δ(ε);
(b) the family F is pointwise precompact in X, i.e., for any t ∈ E, the set {f(t) | f ∈ F} is precompact

in X.

The proof of this theorem can be found, for example, in [16, Theorem 0.4.13] or in [17, Chapter 4,
Sec. 6, Theorem (4.44)].

Lemma A.6. Let E ⊂ R, and let X be a Banach space. If g ∈ C0,1(E;X), then there exists the mapping
g̃ ∈ C0,1(R;X) such that the restriction of g̃ to the set E coincides with the mapping g; moreover,
Lip(g̃) = Lip(g).

The proof is contained in [8], Step 3 of the proof of Theorem 5.1.

Theorem A.7 (Lagrange mean-value theorem). Let X be a linear normed space with norm ‖ · ‖, I be a
closed interval, an interval, or a semiopen interval in R, f ∈ C(I;X), and the right derivative f ′+(t) ∈ X
exist for any t ∈ I \Q, where Q ⊂ I is a no more than countable set. Then, for any a, b ∈ I, a < b, and
t0 ∈ I \Q, the following inequalities hold:

‖f(b)− f(a)‖ ≤ (b− a) sup{‖f ′+(t)‖ : t ∈ ]a, b[ \Q}, (A.3)

‖f(b)− f(a)− (b− a)f ′+(t0)‖ ≤ (b− a) sup{‖f ′+(t)− f
′
+(t0)‖ : t ∈ ]a, b[ \Q}. (A.4)

(A similar statement is valid also in the case where the mapping f is differentiable from the left.)

For the proof, see [4, Chapter 1, Sec. 2.3].
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Lemma A.8. If R is a completely bounded subset of a linear normed space X, then its convex hull co(R)
is also completely bounded.

For the proof, see [8], Lemma 6.2.
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