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Abstract—We prove that a foliation (M,F ) of codimension q on a n-dimensional pseudo-
Riemannian manifold with induced metrics on leaves is pseudo-Riemannian if and only if any
geodesic that is orthogonal at one point to a leaf is orthogonal to every leaf it intersects. We
show that on the graph G = G(F ) of a pseudo-Riemannian foliation there exists a unique pseudo-
Riemannian metric such that canonical projections are pseudo-Riemannian submersions and the
fibers of different projections are orthogonal at common points. Relatively this metric the induced
foliation (G,F) on the graph is pseudo-Riemannian and the structure of the leaves of (G,F) is
described. Special attention is given to the structure of graphs of transversally (geodesically)
complete pseudo-Riemannian foliations which are totally geodesic pseudo-Riemannian ones.
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1. INTRODUCTION

Let (M,F ) be a smooth foliation. Recall that a pseudo-Riemannian metric g on the manifold M is
transversally projectable if the Lie derivative LXg along X is zero for any vector field X tangent to this
foliation.

Definition 1. A foliation (M,F ) on a pseudo-Riemannian manifold (M,g) is referred to as
a pseudo-Riemannian foliation if every leaf L with induced metric g|L is a pseudo-Riemannian
manifold and g is transversally projectable.

A pseudo-Riemannian submersion (see [1]) is a smooth map p : M → B which is onto and satisfies
the following three axioms:

(a) the differential p∗x : TxM → Tp(x)B is onto for all x ∈ M ;

(b) the fibers p−1(b), b ∈ B, are pseudo-Riemannian submanifolds of M ;
(c) the differential p∗ preserves scalar products of vectors normal to fibers.
Definition 1 is equivalent to the fact that a foliation (M,F ) is given locally by pseudo-Riemannian

submersions, i.e. it is equivalent to the following definition.
Definition 2. A foliation (M,F ) on a pseudo-Riemannian manifold (M,g) is said to be a

pseudo-Riemannian foliation if at any point there exists an adapted neighborhood U and a
Riemannian metric gV on the leaf space V = U/FU such that the canonical projection f : U → V

is a pseudo-Riemannian submersion of (U, g|U ) onto (V, gV ).
Further a pseudo-Riemannian manifold (M,g) is considered with the Levi-Civita connection ∇.
Definition 3. Let (M,∇) be a manifold M with a linear connection ∇. A smooth distribution D

on the manifold M is called geodesically invariant if for any point x ∈ M and each vectorX ∈ Dx
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the geodesic γ = γ(s) of (M,∇) such that γ(0) = x and γ̇(0) = X has the property γ̇(s) ∈ Dγ(s) for
every s of the domain of γ. A foliation (M,F ) on (M,∇) is called geodesically invariant or totally
geodesic if its tangent distribution TF is geodesically invariant.

First we prove the following criterion of a pseudo-Riemannian nature for a foliation of a pseudo-
Riemannian manifold.

Theorem 1. Let (M,F ) be a foliation of codimension q on an n-dimensional pseudo-Rieman-
nian manifold (M,g), 0 < q < n. Then (M,F ) is a pseudo-Riemannian foliation if and only if the
q-dimensional distribution D, orthogonal to TF , is geodesically invariant and the metric on the
leaves is non-degenerate.

Corollary 1. Let M and B be pseudo-Riemannian manifolds and p : M → B be surjective sub-
mersion. Then this submersion is pseudo-Riemannian iff there are induced pseudo-Riemannian
metrics on the fibers and any geodesic orthogonal to the fiber at one point also is orthogonal to
every fiber it intersects.

For Riemannian foliations a similar result was proposed by B. Reinhardt [2], and it was proven by
P. Molino ([3], Propositions 3.5 and 6.1). We emphasize that Molino’s proof bears on the property of
a geodesic to be a local extremum of the length functional that does not have an analogue in pseudo-
Riemannian geometry.

In the proof of Theorem 1 we essentially use the result of A. D. Lewis [4] on geodesical invariance of
distributions on manifolds with affine connection.

Let Fol be the category of foliations where morphisms are smooth maps transforming leaves into
leaves. Since a pseudo-Riemannian foliation may be considered as a foliation with transverse linear
connection, according to ([5], Theorem 1.1) the group of all automorphisms in the category Fol of a
pseudo-Riemannian foliation admits a structure of an infinite dimensional Lie group modelled on LF-
spaces .

By a holonomy group Γ(L) of a leaf L of a foliation (M,F ) we mean a germinal holonomy group of L
usually used in the foliation theory. If Γ(L) = 0 the leaf L is said to be a leaf without holonomy.

Construction of the holonomy groupoid of a foliation was presented by S. Ehresmann. Another
equivalent construction was given by H. Winkelnkemper [6] and named by him the graph of a foliation.
The graph G(F ) contains all information about the foliation (M,F ) and its holonomy groups. C∗-
algebras of complex valued functions of foliations (M,F ) are determined on G(F ) and are one of the
fundamental concepts in K-theory of foliations.

In the general case the graph of a smooth foliation (M,F ) of codimension q on an n-dimensional
smooth manifold M is a non-Hausdorff smooth (2n− q)-manifold (the precise definition is given in
Subsection 3.3.1).

For the graph G(F ) of a pseudo-Riemannian foliation (M,F ) we prove the following statement.
Theorem 2. Let (M,F ) be a smooth pseudo-Riemannian foliation of codimension q on an

n-dimensional pseudo-Riemannian manifold (M,g). Let G(F ) be its graph with the canonical
projections pi : G(F ) → M , i = 1, 2. Then:

1. The graph G(F ) of a foliation (M,F ) is a Hausdorff (2n− q)-dimensional manifold with
the induced foliation F =

{
Lα = p−1

i (Lα)|Lα ∈ F
}

, i = 1, 2. Moreover, the germinal holonomy
groups Γ(Lα) and Γ(Lα) of the appropriate leaves Lα and Lα are isomorphic.

2. On the graph G(F ) there exists a unique pseudo-Riemannian metric d with respect to which
(G(F ),F) is a pseudo-Riemannian foliation and pi are pseudo-Riemannian submersions. In this
case fibers of p1 are orthogonal to the fibers of p2 at common points.

3. Every leaf Lα = p−1
i (Lα) ∈ F is a reducible pseudo-Riemannian manifold that is isometric

to the quotient manifold (Lα × Lα)/Ψα of the pseudo-Riemannian product Lα × Lα of the
pseudo-Riemannian holonomy covering space Lα of Lα by the isometry group Ψα, and Ψα

∼=
Γ(Lα) ∼= Γ(Lα).

Definition 4. A pseudo-Riemannian metric d on the graph G(F ) satisfying Theorem 2 is called
the induced metric.

Corollary 2. There exists a dense saturated Gδ-subset of G(F ) any leaf (Lα, d) of which is
isometric to the direct product Lα × Lα of pseudo-Riemannian manifolds (Lα, g).
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Remark 1. We prove property 3 in Theorem 2 without the application of the well known
Wu’s theorem [7]. This theorem is not applicable here because the completeness of the pseudo-
Riemannian metric d is not assumed.

By a geodesic we mean a piecewise geodesic.

Definition 5. A pseudo-Riemannian foliation (M,F ) is called transversally complete if the
canonical parameter on every maximal orthogonal geodesic is defined on the whole real line.

Under the additional assumption of the transversal completeness of a pseudo-Riemannian foliation
we prove the following statement.

Theorem 3. Let (M,F ) be a transversally complete pseudo-Riemannian foliation on a pseudo-
Riemannian manifold (M,g) and d be the induced pseudo-Riemannian metric on its graph G(F ).
Then I:

1. The induced foliation (G(F ),F) is a transversally complete pseudo-Riemannian foliation.

2. The orthogonal q-dimensional distributions M and N are Ehresmann connections for the
foliations (M,F ) and (G(F ),F) respectively, and, for any Lα ∈ F , Lα = p−1

i (Lα), the following
holonomy groups Γ(Lα), HM(Lα), Γ(Lα) and HN(Lα) are isomorphic.

3. The canonical projections pi : G(F ) → M , i = 1, 2, form locally trivial fibrations with the
same standard fiber L0, and L0 is diffeomorphic to any leaf without holonomy of (M,F ).

4. Every leaf Lα = p−1
i (Lα) ∈ F is a reducible pseudo-Riemannian manifold that is isometric

to the quotient manifold (Lα × Lα)/Ψα of the pseudo-Riemannian product Lα × Lα of the
pseudo-Riemannian holonomy covering space Lα for Lα by an isometry group Ψα, where Ψα

∼=
Γ(Lα) ∼= HM(Lα) ∼= Γ(Lα) ∼= HN(Lα), and every Lα is diffeomorphic to L0.

II. If, moreover, the foliation (M,F ) is also geodesically invariant, then:

(i) Each foliation F, F (i) :=
{
p−1
i (x)|x ∈ M

}
, i = 1, 2, is geodesically invariant and pseudo-

Riemannian.

(ii) Any leaf without holonomy of (M,F ) is isometric to any fibers of submersions p1 and p2
with respect to corresponding induced metrics.

(iii) Every leaf L without holonomy of the foliation (G(F ),F) is isometric to the pseudo-
Riemannian product L0 × L0 and any other leaf Lα is isometric to the pseudo-Riemannian
quotient manifold (L0 × L0)/Ψα, where Ψα

∼= Γ(Lα).

We emphasize that the notion of an Ehresmann connection of a foliation proposed by R.A. Blu-
menthal and J.J. Hebda [8] essentially are used in the proofs of Theorems 2 and 3. The results of the
second author on graphs of foliations with Ehresmann connection [9, 10] and some other statements
(see Sections 4–5) are also applied.

As example we describe the structure of the graphs of suspended algebraic Lorentzian foliations of
codimension 2 on closed 3-manifolds in the Subsection 6.6.2.

Notations. Further smoothness is understood to mean C∞. We denote by X(N) the set of all
smooth vector fields on a manifold N . Put XM(M) := {X ∈ X(M) | Xu ∈ Mu ∀u ∈ M} for a smooth
distribution M on M . For a foliation (M,F ) we denote XTF (M) also by XF (M). Let us denote the leaf
of foliation (M,F ) passing through a point x ∈ M by L(x).

Let ∼= be the symbol of a group isomorphism and of a manifold diffeomorphism as well.
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2. A CRITERION OF PSEUDO-RIEMANNIANCE OF A FOLIATION

2.1. Foliate and Transversal Vector Fields

Let (M,F ) be a smooth foliation of codimension q of a smooth n-dimensional manifoldM . A function
f ∈ F(M) is called basic if it is constant on every leaf L of this foliation. A vector field X ∈ X(M) is
called foliate if for any Y ∈ XF (M) the vector field [X,Y ] belongs to XF (M). Following Molino [3]
we denote by L(M,F ) the set of all foliate vector fields. In this case L(M,F ) is a normalizer of the Lie
subalgebra XF (M) in the Lie algebra of vector fields X(M). Therefore L(M,F ) is a Lie subalgebra of
X(M).

A q-dimensional smooth distribution M on the manifold M is called transversal to the foliation
(M,F ) if the equality TxM = TxF ⊕Mx holds for any x ∈ M , where ⊕ stands for the direct sum
of vector spaces. Let us identify the vector quotient bundle TM/TF with a transversal distribution
M. Every X ∈ X(M) may be uniquely represented in the form X = XF +XM where XF ∈ XF (M)

and XM ∈ XM(M). In particular, if X is a foliate vector field, then XM is called the transverse
vector field associated to X. Let l(M,F ) be the set of transverse vector fields. The projection
L(M,F ) → l(M,F ) : X �→ XM is well defined, with kernel is equal to XF (M). Therefore, there exists
for the foliation (M,F ) an exact sequence of vector spaces

0 → XF (M) → L(M,F ) → l(M,F ) → 0. (1)

2.2. Lewis’s Criterion

Further we use the following criterion.
Lewis’s Theorem [4]. A smooth distribution M on a manifold of an affine connection (M,∇) is

geodesically invariant if and only if ∇XY +∇YX ∈ XM(M) for any vector fields X,Y belonging
to XM(M).

2.3. Proof of Theorem 1

Let (M,F ) be a smooth foliation of codimension q on a pseudo-Riemannian manifold (M,g) such
that the induced metrics on leaves are non-degenerate. Suppose now that the q-dimensional distribution
M orthogonal to (M,F ) is geodesically invariant. Let us consider any foliate vector fields XM, Y M ∈
l(M,F ) and an arbitrary vector field ZF ∈ XF (M). Observe that the metric g is transversally projectable
with respect to the foliation (M,F ) if and only if ZF · g(XM, Y M) = 0. Recall that the equality ∇Xg = 0
is equivalent to

Z · g(X,Y ) = g(∇ZX,Y ) + g(X,∇ZY ) ∀X,Y,Z ∈ X(M). (2)

According to (2) for Z = ZF ∈ XF (M) and X = XM, Y = Y M ∈ l(M,F ) using the identity g(XM,

ZF ) = 0 we have

Y M · g(XM, ZF ) = g(∇Y MXM, ZF ) + g(XM,∇Y MZF ) = 0. (3)

By analogy, changing Y M and XM we get

XM · g(Y M, ZF ) = g(∇XMY M, ZF ) + g(Y M,∇XMZF ) = 0. (4)

Add (3) to (4), then apply the bilinearity of the pseudo-Riemannian metric g and obtain

g(∇Y MXM +∇XMY M, ZF ) + g(XM,∇Y MZF ) + g(Y M,∇XMZF ) = 0. (5)

Due to the geodesical invariance of the distribution M the Lewis’s criterion implies ∇XMY M +
∇Y MXM ∈ XM(M). Therefore the first term in (5) was equal to zero. Since ∇ is the Levi-Civita
connection, it is torsion free and

∇Y MZF = ∇ZFY M + [Y M, ZF ], ∇XMZF = ∇ZFXM + [XM, ZF ]. (6)

Putting (6) into (5) we obtain

g(XM,∇ZFY M) + g(Y M,∇ZFXM) + g(XM, [Y M, ZF ]) + g(Y M, [XM, ZF ]) = 0.
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In concordance with the choice, the vector fields XM and YM are foliate, so [ZM, Y F ] and [XM, Y F ]
belong to XF (M). Hence the third and fourth terms in the previous equation vanish. Therefore

g(XM,∇ZFY M) + g(Y M,∇ZFXM) = 0. (7)

Let in (2) Z = ZF ∈ XF (M), X = XM, Y = Y M ∈ l(M,F ) and using the relation (7) we have the
following

ZF · g(XM, Y M) = g(∇ZFXM, Y M) + g(XM,∇ZF Y M) = 0. (8)

The equality (8) implies the pseudo-Riemanniance of the foliation (M,F ).
Converse. Let (M,F ) be a pseudo-Riemannian foliation of codimension q on a pseudo-Riemannian

manifold (M,g), hence by Definition 1 the restriction of this metric on leaves is non-degenerate. Denote
by M the orthogonal q-dimensional distribution to this foliation. The pseudo-Riemanniance of the
foliation (M,F ) implies that equalities (8) and (7) hold for an arbitrary vector field ZF ∈ XF (M) and
any foliate vector fields XM, Y M ∈ l(M,F ). From (6) we find

∇ZF Y M = ∇Y MZF − [Y M, ZF ], ∇ZFXM = ∇XMZF − [XM, ZF ]. (9)

Putting (9) in (7) and taking into account that [ZM, Y F ] and [XM, Y F ] belong to XF (M) we get

g(XM,∇Y MZF ) + g(Y M,∇XMZF ) = 0. (10)

Recall that (5) is obtained using only the condition ∇g = 0 and the orthogonality of the distributions M
and TF . Therefore we may apply (5). Thus we have g(∇Y MXM +∇XMY M, ZF ) = 0 for any vector field
ZF tangent to the foliation (M,F ). Non-degeneracy of the restriction of g to the leaves of (M,F ) implies
∇Y MXM +∇XMY M ∈ XM(M) for every XM, Y M ∈ l(M,F ). It is easy to check that this implies

∇YX +∇XY ∈ XM(M) ∀X,Y ∈ XM(M). (11)

According to Lewis’s theorem mentioned above the relation (11) guarantees that the distribution M is
geodesically invariant.

3. GRAPHS OF PSEUDO-RIEMANNIAN FOLIATIONS

3.1. The Graph of a Smooth Foliation

Let (M,F ) be a smooth foliation of codimension q of an n-dimensional manifold M and M be
transversal q-dimension distribution on M . Denote by A(x, y) the set of all piecewise smooth paths from
x to y on the same leaf L. Two paths h1, h2 ∈ A(x, y) are called equivalent and are denoted by h1 ∼ h2 if
and only if they define the same germ at the point x of the holonomy diffeomorphisms Dq

x → Dq
y from Dq

x

to Dq
y , where Dq

x and Dq
y are q-dimensional disks transversal to this foliation. Denote 〈h〉 the equivalence

class containing h.
Definition 6. The set G(F ) := {(x, 〈h〉, y)|x ∈ M,y ∈ L(x), h ∈ A(x, y)} is called the graph of

the foliation (M,F ) [6].
Suppose that h and g are paths such that h(1) = g(0). Denote by h · g the product of the path h and g.

The equality (x, 〈h〉, v) ◦ (v, 〈g〉, y) := (x, 〈h · g〉, y) where h(1) = g(0), defines a partial multiplication
◦ in the graph G(F ) with respect to which G(F ) is a groupoid named the holonomy groupoid of the
foliation (M,F ). By a natural way the graph G(F ) is provided by a structure of a (2n − q)-dimensional
smooth manifold which is non-Hausdorff, in general [6].

Definition 7. A pseudogroup H of local holonomy diffeomorphisms of a manifold N is called
quasi-analytic if the existence of an open connected subset V in N such that h|V = idV for an
element h ∈ H implies that h = idD(h) in the whole connected domain D(h) of h that contains V .

According to ([10], Proposition 2), Winkelnkemper’s criterion of the property of the graph G(F ) to
be Hausdorff can be reformulated as follows:

Proposition 1. The topological space of the graph G(F ) of a foliation (M,F ) is Hausdorff iff
the holonomy pseudogroup of this foliation is quasi-analytic.
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The mappings

p1 : G(F ) → M : (x, 〈h〉, y) �→ x, p2 : G(F ) → M : (x, 〈h〉, y) �→ y

are referred to as canonical projections, and p1 and p2 are submersions onto M .

Definition 8. A foliation F = {Lα = p−1
1 (Lα) = p−1

2 (Lα)|Lα ∈ F} is defined on the graph G(F )
and is called the induced foliation.

3.2. An Ehresmann Connection for a Smooth Foliation

Recall the notion of an Ehresmann connection which was introduced by R.A. Blumenthal and
J.J. Hebda [8]. We use the term a vertical-horizontal homotopy introduced previously by R. Hermann.
All mappings are supposed to be piecewise smooth.

Let (M,F ) be a foliation of an arbitrary codimension q ≥ 1. Let M be a q-dimensional transverse
distribution on M , then for any x ∈ M the equality TxM = TxF ⊕Mx holds. Vectors from Mx, x ∈ M ,
are called horizontal. A piecewise smooth curve σ is horizontal (or M-horizontal) if each of its smooth
segments is an integral curve of the distribution M. The distribution TF tangent to the leaves of the
foliation (M,F ) is called vertical. One says that a curve h is vertical if h is contained in some leaf of a
foliation (M,F ).

A vertical-horizontal homotopy is a piecewise smooth map H : I1 × I2 → M , where I1 = I2 =
[0, 1], such that for any (s, t) ∈ I1 × I2 the curve H|I1×{t} is horizontal and the curve H|{s}×I2 is vertical.
The pair of curves (H|I1×{0},H|{0}×I2) is called a base of the vertical-horizontal homotopy H . Two
paths (σ, h) with common origin σ(0) = h(0), where σ is a horizontal path and h is a vertical one, are
called an admissible pair of paths.

A q-dimensional distribution M transversal to a foliation (M,F ) of codimension q is called an
Ehresmann connection for (M,F ) if for any admissible pair of paths (σ, h) there exists a vertical-
horizontal homotopy with the base (σ, h).

Let M be an Ehresmann connection for a foliation (M,F ). Then for any admissible pair of paths (σ, h)
there exists a unique vertical-horizontal homotopy H with the base (σ, h). We say that σ̃ := H|I1×{1} is
the result of the transfer of the path σ along h with respect to the Ehresmann connection M.

3.3. Proof of Theorem 2

Let (M,F ) be a pseudo-Riemannian foliation on a pseudo-Riemannian manifold (M,g). As for as
every pseudogroup of local isometries of a pseudo-Riemannian manifold is quasi-analytic, according to
Winkelnkemper’s criterion (Proposition 1) the graph G(F ) is Hausdorff. Observe that the definition of
the inducted foliation (G(F ),F) implies that both foliations (M,F ) and (G(F ),F) are given by the same
holonomy pseudogroup H. Recall that the germinal holonomy group of any foliation is interpreted as a
group of germs at the relevant point v of the local transformations ϕ from the holonomy pseudogroup
H such that ϕ(v) = v. This implies that the holonomy groups Γ(L, x) and Γ(L, z), where L = p−1

1 (L),
z = (x, 〈h〉, y) ∈ G(F ), are isomorphic. Thus the assertion 1 of Theorem 2 is valid.

Let F be the induced foliation and F (i) :=
{
p−1
i (x)|x ∈ M

}
, i = 1, 2, be two simple foliations on

the graph G(F ). Define a special pseudo-Riemannian metric on the graph G(F ). Denote by M

the q-dimensional distribution on M orthogonal to the pseudo-Riemannian foliation (M,F ). Since
the pseudo-Riemannian metric g is non-degenerate on the leaves of this foliation, there exists a
decomposition of the tangent space TxM = TxF ⊕Mx, x ∈ M , of M into the orthogonal sum of vector
subspaces. For any z = (x, 〈h〉, y) ∈ G(F ) put Nz := {X ∈ TzG(F )|p1∗zX ∈ Mx, p2∗z(X) ∈ My}.
Emphasize that there exists a bijective mapping of the a intersection p−1

1 (x) ∩ p−1
2 (y) to the holonomy

group Γ(L, x). Therefore N = {Nz|z ∈ G(F )} is a smooth q-dimensional distribution on the graph
G(F ) and for any z ∈ G(F ), the tangent vector space TzG(F ) admits the following decomposition into
a direct sum of vector subspaces

Tz(G(F )) = Tz(F
(1))⊕Nz ⊕ Tz(F

(2)). (12)
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According to the decomposition (12), any vector field X ∈ X(G(F )) admits a unique representation in
the form

X = X(1) +XN +X(2), (13)

where X(i) ∈ XF (i)G(F ) and XN ∈ XNG(F ). Let us define the pseudo-Riemannian metric d on G(F )
by the equality

d(X,Y ) := g(p1∗X, p1∗Y ) + g(p2∗X
(1), p2∗Y

(1)), (14)

where X,Y are represented in the form (13).

Note that the foliations F (1), F (2) and distribution N are pairwise orthogonal in the pseudo-
Riemannian manifold (G(F ), d). Moreover, the restriction of d onto any leaf of each foliation F, F (1)

and F (2) on the graph G(F ) is non-degenerate, and, for any X,Y ∈ XTF(G) we have d(X,Y ) :=

g(p1∗X(2), p1∗Y (2)) + g(p2∗X(1), p2∗Y (1)). This means that the induced pseudo-Riemannian metric d|L
on a leaf L is locally the direct product of the pseudo-Riemannian metric induced on leaves of foliations
F (1)|L and F (2)|L. Therefore (see, for example [7]) the distributions TF (1) and TF (2) are orthogonal and
parallel on (L, d|L). Hence (L, d|L) is a non-degenerately reducible pseudo-Riemannian manifold.

Further the restriction of d (respectively, g or pi∗) onto the corresponding submanifold of G(F ) (or
vector subspaces) will be denoted as well by d (respectively, g or pi∗).

The canonical projection p1 : G(F ) → M is pseudo-Riemannian submersion because p1∗z :

TzF
(2) ⊕Nz → TxM is an isomorphism of the pseudo-Euclidean vector spaces (TzF

(2) ⊕Nz, d) and
(TxF, g|TxF ) by the definition of d.

Show that the canonical projection p2 is also a pseudo-Riemannian submersion. Take any point z =
(x, 〈h〉, y) in G(F ). The pseudo-Riemanniance of (M,F ) implies the existence of a linear isomorphism
φxy : Mx → My induced by the local holonomy isometry along h of the pseudo-Euclidean vector
spaces (Mx, g) and (My , g). According to the definition of d the restriction p2∗z : TzF

(1) → TyF

is an isomorphism of pseudo-Euclidean spaces. Observe that the restriction p2∗z : TzF
(1) ⊕Nz →

TyM = TyF ⊕My is equal to p2∗z = (p2∗z|TzF (1) , φxy ◦ p1∗z|Nz ). This implies that p2 is also a pseudo-
Riemannian submersion.

Take any vector X ∈ Nz. Let γ = γ(s) be the geodesic of (G(F ), d) passing through the point z in the
direction of the vector X, i.e. γ(0) = z, γ̇(0) = X. Therefore γ is the geodesic orthogonal to the leaves
L(1)(z) and L(2)(z) of the foliations F (1) and F (2). As for as L(1) and L(2) are the fibers of the pseudo-
Riemannian submersions p1 and p2, according to Corollary 1 at the any point of γ(s) the tangent vector
γ̇(s) is orthogonal to the both fibers L(1)(γ(s)) and L(2)(γ(s)). Since Tγ(s)L = Tγ(s)L

(1) ⊕ Tγ(s)L
(2),

then the tangent vector γ̇(s) is orthogonal to Tγ(s)L. Thus geodesic γ = γ(s) of the pseudo-Riemannian
manifold (G(F ), d) orthogonal to leaves of the foliation (G(F ),F) at the one its point is orthogonal to
the foliation (G(F ),F) at each its point.

According to Theorem 1, due to non-degeneracy of a pseudo-Riemannian metric on leaves of this
foliation, (G(F ),F) is a pseudo-Riemannian foliation.

Assume that there exists another pseudo-Riemannian metric d̂ on G(F ) satisfying the second
statement of Theorem 2. Let N̂ be the q-dimensional distribution that is orthogonal to the foliation
F in (G(F ), d̂). Therefore p1∗N̂z = Mx and p2∗N̂z = My for every point z = (x, 〈h〉, y) in G(F ).
Consequently N̂ = N and d̂(X,Y ) = d(X,Y ) = g(p1∗X, p1∗Y ) for any X,Y ∈ XNG(F ). According
to our assumption, in relation to both metrics d and d̂ the foliations F (1), F (2) are orthogonal, with pi,
i = 1, 2, are pseudo-Riemannian submersions. Due to the decomposition (13) and bilinearity of d and d̂

it is necessary that d = d̂.

Thus the statements 1 and 2 of Theorem 2 are proven. The statement 3 of Theorem 2 is proved by
analogy with ([11], Proposition 5).
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4. TWO GRAPHS OF A FOLIATION WITH AN EHRESMANN CONNECTION

4.1. Holonomy Groups of Foliations with Ehresmann Connections

Let (M,F ) be a foliation with an Ehresmann connection M. Take any point x ∈ M . Denote by Ωx

the set of horizontal curves with the origin at x. An action of the fundamental group π1(L, x) of the
leaf L = L(x) on the set Ωx is defined in the following way: Φx : π1(L, x)× Ωx → Ωx : ([h], σ) �→ σ̃,
where [h] ∈ π1(L, x) and σ̃ is the result of the transfer of σ ∈ Ωx along h with respect to M. Let
KM(L, x) := {α ∈ π1(L, x)|α(σ) = σ ∀σ ∈ Ωx} be the kernel of the action Φx. The quotient group
HM(L, x) = π1(L, x)/KM(L, x) is the M-holonomy group of the leaf L, see [8]. Due to the pathwise
connectedness of the leaves, the M-holonomy groups at different points on the same leaf are isomorphic.

Let Γ(L, x) be a germinal holonomy group of a leaf L. Then there exists a unique group epimorphism
χ : HM(L, x) → Γ(L, x) satisfying the equality χ ◦ μ = ν, where μ : π1(L, x) → HM(L, x) : [h] �→ [h] ·
KM(L, x) is the quotient map and ν : π1(L, x) → Γ(L, x) : [h] �→ 〈h〉, where 〈h〉 is the germ of the
holonomy diffeomorphism of a transverse q-dimensional disk along the loop h at the point x.

Emphasize that the M-holonomy group HM(L, x) has a global character unlike the germinal
holonomy group Γ(L, x) having a local-global character: global along the leaves and local along the
transverse directions.

4.2. The Graph GM(F )

The graph GM(F ) of a foliation (M,F ) with an Ehresmann connection was introduced by the second
author in [9] (see also [10]).

Let (M,F ) be a foliation of an arbitrary dimension k on an n-manifold M and q = n− k. Suppose
that the foliation (M,F ) admits an Ehresmann connection M. Take any points x and y in a leaf L of
(M,F ). Introduce an equivalence relation ρ on the set A(x, y) of vertical paths in L connecting x with y.
Paths h and f in A(x, y) are called ρ-equivalent if they define the same transfers of M-horizontal curves
from Ωx to Ωy with respect to the Ehresmann connection M.

The set of ordered triplets (x, {h}, y), where x and y are any points in a leaf L of the foliation (M,F )
and {h} is a class of paths connecting x and y which are ρ-equivalent to h, is called the graph of
the foliation (M,F ) with an Ehresmann connection M and is denoted by GM(F ). The following
maps p1 : GM(F ) → M : (x, {h}, y) �→ x, p2 : GM(F ) → M : (x, {h}, y) �→ y are called the canonical
projections.

The graph GM(F ) is equipped with a smooth structure and the binary operation (y, {h1}, z) ∗
(x, {h2}, y) := (x, {h1 · h2}, z) becomes a smooth M-holonomy groupoid.

5. THE PROOF OF THEOREM 3

I. We will use the following lemma which is easy proved.
Lemma 1. Let (M,F ) be any transversally complete pseudo-Riemannian foliation of a

codimension q. Then the orthogonal q-dimension distribution M is an Ehresmann connection
for (M,F ).

Let (M,F ) be a transversally complete pseudo-Riemannian foliation. According to Lemma 1, the
distribution M is an Ehresmann connection for (M,F ). Therefore two graphs G(F ) and GM(F ) are
defined. Since the graph G(F ) is Hausdorff, according to ([9], Theorem 2), we may identify the graph
G(F ) with the graph GM(F ). In this case Γ(L, x) ∼= HM(L, x) for any x ∈ M . In accordance with
([9], Theorem 1), the canonical projections pi : G(F ) → M , i = 1, 2, define locally trivial bundles with
the same standard fiber Y . It is easy to see that Y = L0 is diffeomorphic to any leaf Lα without the
holonomy of the foliation (M,F ).

Observe that the q-dimensional distribution N is an Ehresmann connection for the induced foliation
(G(F ),F). It implies that the distribution K = N⊕ TF (2) is an Ehresmann connection for the submer-
sion p1 : G(F ) → M . Moreover, a K-lift of any M-curve in M is a N-curve in G(F ). Since p1 is a
pseudo-Riemannian submersion, any N-lift of a M-geodesic γ in (M,g) to any point z ∈ p−1

1 (γ(0)) is a
N-geodesic in (G(F ), d) and the projection p1 ◦ γ̂ of every N-geodesic γ̂ in (G(F ), d) is the M-geodesic
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in (M,g). These facts and the transversal completeness of (M,F ) imply the transversal completeness
of (G(F ),F).

Since the holonomy pseudogroup H(G(F ),F) is quasi-analytical, the holonomy groupsΓ(Lα, z) and
HN(Lα, z) are isomorphic. In accordance with the first statement of Theorem 2 the holonomy groups
Γ(Lα, z) and Γ(Lα, x), x = p1(z), are isomorphic. Therefore Γ(Lα) ∼= HM(Lα) ∼= Γ(Lα) ∼= HN(Lα).

Thus, three statements of Theorem 3 are proved.

Remark that statement 4 follows from the proven statements 2 and 3 of Theorem 2.

II. Assume that a pseudo-Riemannian foliation (M,F ) is geodesically invariant.

It is easy to show that for any two leaves L0 and L there exists a piecewise smooth horizontal geodesic
σ : [0, 1] → M such that a0 = σ(0) ∈ L0 and a = σ(1) ∈ L. Let L0 be a fixed leaf without holonomy and
L be any other leaf of the foliation (M,F ). Take any point x ∈ L0. Connect a0 with x by a vertical path h :
[0, 1] → L0, h(0) = a0, h(1) = x. As (M,F ) is a transversally complete pseudo-Riemannian foliation
according to Lemma 1 M is an Ehresmann connection for foliation (M,F ). Then for the admissible
pair (σ, h) there exists the vertical-horizontal homotopy H : I1 × I2 → M with the base (σ, h). Let
σ̃ := H|I1×{1}. In this case by ([10], Lemma 1) the following map fσ : L0 → L : x �→ σ̃(1) is well defined
and is a regular covering with the deck transformation group isomorphic to HM(L, x) ∼= Γ(L, x).

According to our assumption, the foliation (M,F ) is geodesically invariant, then Proposition 2.7
from [12] implies that the covering fσ : L0 → L is local isometry with respect to the induced pseudo-
Riemannian metrics g|L0 and g|L on L0 and L. Therefore for any leaf L without holonomy the map
fσ : L0 → L is an isometry.

Using ([12], Proposition 2.7) and considering that p1 and p2 are pseudo-Riemannian submersions we
get that F, F (1) and F (2) are geodesically invariant and pseudo-Riemannian foliations on the pseudo-
Riemannian manifold (G(F ), d), i.e. (3) is true.

Now it easy to check the fulfilment of statements (ii) and (iii) in II.

6. LORENTZIAN FOLIATIONS OF CODIMENSION 2 ON CLOSED 3-MANIFOLDS

6.1. Theorem of C. Boubel, P. Mounoud, C. Tarquini [13]

Definition. The algebraic Anosov flows of codimension 2 on closed 3-manifolds, up to finite
coverings and finite quotients, are the following:

1) The geodesic flows of the unit tangent bundle of hyperbolic compact surfaces;

2) The flows defined by the suspensions of linear hyperbolic diffeomorphisms of the 2-torus.

An application of Molino’s theory of Riemannian foliations on compact manifolds [3] and the
classification of the Lorentzian Anosov flows given by E. Ghys in [14] allowed C. Boubel, P. Mounoud,
C. Tarquini ([13], Theorem 4.1) to describe the topological structure of transversally complete Lorentzian
foliations of codimension 2 on closed 3-manifolds in the following way:

Theorem 4. Up to finite coverings, a 1-dimensional transversally complete Lorentzian
foliation on a compact closed 3-manifold is either smoothly equivalent to a foliation generated
by an algebraic Anosov flow or a Riemannian foliation.

The structure of suspended algebraic Lorentzian foliations of codimension 2 on closed 3-manifolds
and their graphs is described in the following Subsection 6.6.2.
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6.2. Example

Let A =

⎛

⎝a b

c d

⎞

⎠ ∈ SL(2,Z) be a matrix of integers such that ad− bc = 1 and a+ d > 2. Such

matrix A induces an Anosov automorphism fA of a torus T2 := R
2/Z2 conserving its orientation.

Let us consider the action of the group of integers Z by the formula

ΦA := T
2 × R

1 × Z → T
2 × R

1 : (u, t, n) �→ (fn
A(u), f + n), n ∈ Z. (15)

Then the quotient manifold M := T
2 ×Z R

1 is defined, and M is a closed 3-manifold. Let ϕ : T2 ×R →
M be the quotient mapping. Since ΦA preserves the trivial foliation Ftr = {{u} × R

1|u ∈ T
2}, the

foliation (M,F ) of codimension 2 is defined.

There exists the Lorentzian metric g = η

⎛

⎝ −2c a− d

a− d 2b

⎞

⎠, η ∈ R \ {0}, on the plane R
2 which is

invariant in relation to A ([15], Theorem 1). This metric induces the flat Lorentzian metric on T
2 which is

denoted also by g. Therefore g̃ :=

⎛

⎜
⎜⎜
⎝

−2c a− d 0

a− d 2b 0

0 0 1

⎞

⎟
⎟⎟
⎠

is a flat Lorentzian metric on the manifold M , and

(M, g̃) is a locally pseudo-Euclidean manifold with the Lorentzian totally geodesic foliation on (M,F ).
Emphasize that (M,F ) is not a Riemannian foliation.

Let k : M̃ → M be the smooth universal covering map for M and F̃ := k∗F be the induced foliation
M̃ . Then M̃ = R

3 ∼= R
2 × R

1 and F̃ = {{v} × R
1|v ∈ R

2}. Let pr : M̃ = R
2 ×R

1 → R
2 be the

projection onto the first multiplier. The group Ψ := 〈A〉 ∼= Z is the global holonomy group of the foliation
(M,F ) that is covered by the trivial fiber bundle pr : M̃ = R

2 × R
1 → R

2. The restriction k|L̃ : L̃ → L

onto an arbitrary leaf L̃ ∼= R
1 of (M̃, F̃ ) is the holonomy covering map and a local isometry.

The graph G(F ) is a 4-dimensional manifold with the induced foliation F of codimension 2. The
generic leaf L of (M,F ) has a trivial holonomy group and L ∼= R

1. Hence the generic leaf L ∼= L× L ∼=
R
2. The holonomy group of any other leaf Lα of (M,F ) is isomorphic to Z and Lα

∼= S1. In this case the
leaf Lα := p−1

1 (Lα) is isometric to the Euclidean cylinder R1 ×Z R
1.

Let k̃ : G̃ → G(F ) be the universal covering map, in this case G̃ is diffeomorphic to R
4 and it is

provided by the induced foliation F̃ := {{u} ×R
2|u ∈ R

2}, where G̃ = G̃(F̃ ) is the graph of the foliation
(M̃ , F̃ ) and the following diagram

G(F )
k̃←− G̃(F̃ ) ∼= R

2 × R
2 p̃r−→ R

2

↓ p1 ↓ p̃1 ↓ id

M
k←− M̃ ∼= R

2 × R
1 pr−→ R

2

is commutative, where p1 : G(F ) → M and p̃1 : G(F̃ ) → M̃ are the canonical projections, p̃r : R2 ×
R
2 → R

2 is the projection onto the first multiplier.

Denote by f : R3 → T
2 × R

1 the universal covering map. Let y0 := f(03) where 03 is zero in R
3 and

x0 := ϕ(y0). Compute the fundamental group π1(M,x0). The regular covering map ϕ : T2 × R
1 → M

induces a group monomorphism ϕ̂ : π1(T
2 × R

1, y0) → π1(M,x0) onto a normal subgroup N ∼= Z
2

of π1(M,x0), and, for fixed point y0, the quotient group π1(M,x0)/N is isomorphic to the deck
transformation group Ĝ ∼= Zwith a generator ΦA|T2×R1×{1}. Let us consider the leafL0 = L0(x0) which
is diffeomorphic to the circle. Observe that the inclusion j : L0 → M induces a group monomorphism
ĵ : π1(L0, x0) → π1(M,x0) onto H := Im(ĵ) ∼= Z, and the deck transformation group induced by H is
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equal Ĝ. Therefore ([16], Proposition 1.3.1) the fundamental group π1(M,x0) is the semi-direct product
H �N ∼= Z � Z

2.
Emphasize that foliations (M,F ) and (G(F ),F) are both totally geodesic and Lorentzian, with the

manifolds M and G(F ) are the Eilenberg–MacLane spaces of the type K(H �N, 1), i.e. πn(M) =
πn(G(M)) = 0 ∀n ≥ 2, π1(M) = π1(G(F )) ∼= H �N .

ACKNOWLEDGMENTS

Partially supported by the Russian Foundation of Basic Research (grant no. 16-01-00312) and by
the Basic Research Program at the National Research University Higher School of Economics in 2017
(project no. 90).

REFERENCES
1. B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity (Academic, New York, London,

1983).
2. B. Reinhart, “Foliated manifolds with bundle-like metrics,” Ann. Math. 69, 119–132 (1958).
3. P. Molino, Riemannian Foliations, Vol. 73 of Progress in Mathematics (Birkhauser, Boston, 1988).
4. A. D. Lewis, “Affine connections and distributions,” Rep. Math. Phys. 42, 135–164 (1998).
5. N. I. Zhukova and A. Y. Dolgonosova, “The automorphism groups of foliations with transverse linear

connection,” Cent. Eur. J. Math. 11, 2076–2088 (2013).
6. H. E. Winkelnkemper, “The graph of a foliation,” Ann. Glob. Anal. Geom. 1 (3), 51–75 (1983).
7. H. Wu, “On the de Rham decomposition theorem,” Illinois J. Math. 8, 291–311 (1964).
8. R. A. Blumenthal and J. J. Hebda, “Ehresmann connections for foliations,” Indiana Univ. Math. J. 33, 597–

611 (1984).
9. N. I. Zhukova, “The graph of a foliation with Ehresmann connection and stability of leaves,” Russ. Math. 38,

76–79 (1994).
10. N. I. Zhukova, “Local and global stability of compact leaves and foliations,” J. Math. Phys., Anal. Geom. 9,

400–420 (2013).
11. N. I. Zhukova, “Singular foliations with Ehresmann connections and their holonomy groupoids,” Banach

Center Publ. 76, 471–490 (2007).
12. K. Yokumoto, “Mutual exclusiveness along spacelike, timelike, and lightlike leaves in totally geodesic

foliations of lightlike complete Lorentzian two-dimensional tori,” Hokkaido Math. J. 31, 643–663 (2000).
13. C. Boubel, P. Mounoud, and C. Tarquini, “Lorentzian foliations on 3-manifolds,” Ergodic Theory Dynam.

System 26, 1339–1362 (2006).
14. E. Ghys, “Deformations de flots d’Anosov et de groupes fuchsiens,” Ann. Inst. Fourier 42, 209–247 (1992).
15. N. I. Zhukova and E. A. Rogozhina, “Classification of compact Lorentzian 2-orbifolds with non-compact full

isometry groups,” Sib. Math. J. 53, 1037–1050 (2012).
16. D. Bump, Group Representation Theory. http://sporadic.stanford.edu/bump/group/. Accessed 2010.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 39 No. 1 2018


