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On syzygies of highest weight orbits

A. L. Gorodentsev, A. S. Khoroshkin, and A. N. Rudakov

ABSTRACT. We consider the graded space R of syzygies for the coordinate al-
gebra A of projective variety X = G/P embedded into projective space as an
orbit of the highest weight vector of an irreducible representation of semisimple
complex Lie group GG. We show that R is isomorphic to the Lie algebra coho-
mology H = H*(L>,C), where L, is graded Lie subalgebra of the graded
Lie s-algebra L = L1 ® L>» Koszul dual to A. We prove that the isomorphism
identifies the natural associative algebra structures on R and H coming from
their Koszul and Chevalley DGA resolutions respectively. For subcanonically
embedded X a Frobenius algebra structure on the syzygies is constructed. We
illustrate the results by several examples including the computation of syzygies
for the Pliicker embeddings of grassmannians Gr(2, N).

Introduction

A. Losev brought to our attention the fact that some computations made by
N. Berkovits in the framework of string theory' contain an intricate description of
minimal resolution for the projective coordinate algebra of connected component of
complex isotropic grassmannian Gr;go(S, 10) associated with non degenerate qua-
dratic form on C'°. Subsequent papers by M. Movshev, A. Schwarz and others?
clarify the Berkovits computations as well as the interplay between the syzygies and
a graded Lie superalgebra Koszul dual® to the coordinate algebra of Gri"s'o(i), 10).
But the main focus of these papers remains with s-symmetric field theories, and
the presentation of underlying mathematics seems to us rather tangled and over-
diligent.

The main goal of these notes is to give relatively simple and clear presenta-
tion of the mathematics behind the sophisticated computations cited above and

to illustrate it by some classical geometric examples. We tried to make the text
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self contained and understandable for advanced students. We believe that the sub-
ject is fruitful, and hope that this exposition could promote mutual understanding
between mathematical and physical communities.

The paper consists of five sections. The first three of them are essentially
independent. In §1 we collect necessary algebraic geometric properties of projective
varieties

X = P(G - vhw) C B(V)

that appear as the projectivization of the orbit of the highest weight vector in an
irreducible representation V of a simply connected semisimple complex Lie group
G. Class of these varieties clearly contains the isotropic grassmannians and serves
a convenient generalization for the smooth? varieties of ‘pure spinors’ considered
in s-symmetric theories cited above. In 1.3 we write down explicitly the quadratic
equations generating the homogeneous ideal®

I(X)={feS(V)|flx =0}.

In 1.2.2 we show that if X is subcanonical, i.e. wx = Ox(—N) for some N € N,
then non zero cohomologies HY(X, Ox(m)) can appear only for ¢ = 0 or for ¢ =
dim X.

In §2 we consider an arbitrary smooth® subcanonical projective variety satisfy-
ing the previous vanishing conditions on H?(X, &'x(m)). By §1, all subcanonical
projective highest weight orbits belong to this class. Using Movshev’s strategy
from [32], [35], we show that for such X the space R of the syzygies for the graded
projective coordinate algebra

A=S(V*/I(X)= ® H° (X, 0x(m))

inherits a natural structure of the Frobenius algebra. In other words, we construct
an s-commutative multiplication on A and a trace form

A2,

such that the bilinear pairing (a,b) = tr (a - b) is non degenerated. This generalizes
and clarifies the duality isomorphisms constructed in [32], [35] for the smooth
varieties of pure spinors.

In §3 we deal with an arbitrary commutative Koszul quadratic algebra A. All
the coordinate algebras of projective highest weight orbits are of this sort due to
Bezrukavnikov’s result [3]. It is well known that such an algebra is canonically
identified with the cohomology algebra

A~ H*(L,C)

4In fact, besides the grassmannians, Berkovits and others consider also a singular quadratic
cone over Grigo(5,11), which is especially interesting for physicists because it serves some model
of gravity. But the mathematical statements here are rather unclear to us and most likely require
appropriate Aso enchantment of the smooth case. In these notes we restrict ourselves to the
smooth homogeneous spaces only.

Sthese equations go back to Kostant and are known to specialists (comp. with [28], [29]);
they have famous infinite dimensional extension developed by V. Kac and D. Peterson (see [23],
[24]); for convenience of readers we sketch a short geometric proof for the finite dimensional case

6in fact all constructions and results of §2 hold for locally complete intersection varieties as
well
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of the graded Lie superalgebra L = & L,, whose universal enveloping algebra
m>1

A' = U(L) is Priddy dual to A. We show that there is an isomorphism of algebras
R ~ H’(L}Q,(C) 5

where the space of syzygies R is considered with the algebra structure constructed
in §2, and Lyo = & L,, C L is graded Lie subalgebra started with Ly-component

m2>=2
of L (the algebra structure on H*(Lx,) is standard). The proof is based on a kind
of differential perturbation lemma (see 3.5.1).

In §4 we illustrate the previous technique by several non trivial examples.
Namely, we compute the syzygies of the most singular commutative quadratic alge-
bra A = T(V*)/Skew(V* @ V*) (see 4.2.1), the syzygies of rational normal curves
(see 4.3.1), and the syzygies of grassmannians Gr(2, N) under the Pliicker embed-
dings (see 4.4.1). These results are also known for experts and can be extracted
from [18], [22], [37], [40] and references therein. Our approach allows to treat all
three examples uniformly: we use the description of the Lie algebra cohomology
H*(L>>). In the first two examples (actually served by free Lie algebras) the com-
putation is very simple and takes just a few rows. In the grassmannian case the
algebra of syzygies is what we call a hook algebra. In the last §5 we collect generic
properties of the hook algebras, in particular, we prove that each hook algebra is
quadratic and koszul.

Acknowledgments. We thank the Mittag-Lefler Institute, the Max Planck
Institute, and THES for the excellent possibilities to meet our colleagues and work
on the subject, and NTNU for the nice opportunity to finish this job. We are
grateful to B. Feigin, V. Kac, A. Losev, M. Movshev and D. Piontkovsky for many
useful discussions. We thank D. Panyushev and V. Popov for the references on the
papers [28], [29], G. Olshansky for the reference on [20], and J. Weyman for the
references on [22], [37], and [40].

1. Projective orbit of the highest weight vector

1.1. Basic notations. Let G be connected and simply connected complex
semisimple algebraic group and V =V, be its complex irreducible linear represen-
tation with a highest weight A. We fix Cartan and Borel subgroups ' C B C G and
write vhy € V for a highest weight vector and P C G for a parabolic subgroup sta-
bilizing 1-dimensional subspace C-vyy. In this part we consider the projectivization
of the highest weight orbit

(1.1) X =G/P ~P(G - vhy) —— P(V),

which is a homogeneous G-space with the natural left action of G. We always put
dim X =d, dimV =n 4 1. Our especial interest is in the case when the canonical
class of X is a negative integer multiple of the hyperplane section, i.e.

(1.2) wx = Ox(—N) for some N € N,

where Ox (1) = ¢*Op(y)(1) is the ample line bundle coming from the projective
embedding (1.1). We will call such a variety X a subcanonical highest weight orbit
(or a SHW-orbit for shortness). To clarify this condition, let us fix some standard
notations related to Lie algebras and recall some basic facts about vector bundles
on homogeneous spaces.
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1.1.1. Lie algebra notations. We denote by g D p D b D h the Lie algebras of
G D P D> B DT and write A™ C A™* C h* for the root and weight lattices of g
and A C A* for the set of all positive roots. As usual, we put

Q:% D a
aEA

to be the half sum of all positive roots. Let {a;} be the basic simple positive roots’
and {w;} be the corresponding fundamental weights, which are dual to «; w.r.t.
the Killing form. Then we have

(1.3) A= an -w; with integer n; > 0,
(14) p=>0d @ O—a, WhereAp:Aﬁ/\l
aEAP

(a simple root a; € A, iff the corresponding n; = 0). We write
Ay :AplﬂAWt ={pe A" (p,a) =0 VaeA, } = @ Z - w;
i|n;#0
for the set of all weights that produce the characters for p and write (u) for the
1-dimensional P-module coming from such a character u € A;"t. We also put

1
acap

Besides B, we will sometimes consider its opposite Borel subgroup B’. If B = T'x U,
where U is the unipotent part of B, then B’ = T x U’ and U'TU is a dense open
subset in G. Similarly, we will write ¢’ = —p for the half sum of all the negative
roots.

1.1.2. Vector bundles on G/P. With any representation E of P is associated
a vector bundle _

E=GxE
P

over X = G/P with the fiber E. Its total space consists of pairs (g,e) € G X E
modulo the equivalence (gp,e) ~ (g,pe) for p € P. Global sections X <, F are
naturally identified with functions G '+ E such that

(1.5) pf(g)=f(gp™") forallpeP.

The left G-action on G/ P is extended canonically to the left G-action on the whole
of E by the rule

g9-(91,€) = (991,€)
and induces a linear representation of G in the space I'( X, E), of the global sections

of E. In terms of equivariant functions (1.5), in this representation an element g € G
sends a function f to a function g - f defined by prescription

(1.6) 9-flg) = flg7'q) -

If the action of P on E can be extended to an action of G, then we have a vector
bundle isomorphism E —— X x E, which takes an equivalence class of (g,€) to
(9,9€)-

Trecall that (0, ;) = 1 for any simple root «;
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In particular, each 1-dimensional P-module {u), where u € A}, leads to the
line bundle

(1.7) (1] =G x{p) -

We will write [u] for this bundle considered as an element of the Picard group®
Pic(X) and will write Ox (u) for the corresponding invertible sheaf of its local
sections.
For example, 1-dimensional P-module (A\) = C - v,y C V), spanned by the
highest weight vector in G-module V), produces the tautological line subbundle
Ox (\) = Ox(-1) CVa=X xVy,

which coincides with the restriction of the tautological line bundle &y, (—1) onto
X.
It is easy to see that the tangent bundle Tx = G x @) comes from the represen-
P

tation

Q:g/p:@g—a-

aEANA,
Hence, the anticanonical line bundle is expressed in Pic(X) as the sum
wy =ATx =3 [~a]=-2(c-0p)-
aEANA,
Thus, a projective orbit (1.1) is subcanonical in P(V}), i.e. satisfies (1.2), iff
(1.8) 2(0—0p) =NX forsome N € N.

This is significant restriction on A (e.g. we will see in 1.2 that it forces quite strong
vanishing condition on the cohomologies of invertible sheaves Ox (k)).
In the next examples we use the standard Bourbaki notations from [5].

EXAMPLE 1.1.3 (the grassmannian Gr(2,5)). Let G = SL(5,C) with the diag-
onal torus T' C G,

h ={a1e1 + azea + -+ +ases | > a; =0},
and the simple roots a; =e; —€;4+1, 1 < i < 4. Then the projective embedding
Gr(2,5) 2> X =P(G - vny) C P(Va)
by means of the representation V with the highest weight A = [0,m,0,0] = m - w>,
m > 1, is subcanonical only for m =1, 5. Indeed, we have

wo = (3e1+3e2—2e35—2¢e4 —2¢65) /5,
20=4¢e1+2ey —2e4 —4e5,
200 =61 —€2+2e3 —2¢5 .
Thus, A = mw, divides 2 (o — g,) = 5w, only for m =1 and m = 5. The former,

non tautological, case gives the Pliicker embedding Gr(2,5) —— Py and leads to
N =5in (1.2).

8in fact, Pic(X) is spanned by the line bundles (1.7), see [39]
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EXAMPLE 1.1.4 (the group G = SL(3,C) x SL(2,C)). This group? has the
diagonal torus T'C G with § = §’ & b”, where

b = {aie] + aseh + azey | a1 + ax + a3 =0},
f)” = {ble’:‘/ll + bgz’:‘g | b1 + b2 = 0} y
20=2¢e] —2eh +ef —&Y .
The representation V) = V' @ V" (where V', V" are the tautological 3- and 2-
dimensional SL(3)- and SL(2)-modules) has
A=w] +w =2¢e] —ey—eh) /3+ (e] —¢€5) /2.
For P = Stab(vy) we have 29, = &} — ¢4, which gives
2(0—0p) =26y —eh—eb +ef —el =3w] + 2w .

We conclude that the tautological highest weight embedding of G/P is itself not
subcanonical. But the embedding

G/P =2 X =P(G -v,) C P(S*V' ® S?V")

(corresponding to V,, = S*V’' ® S*V” with u = 3w]| + 2wY) is subcanonical and
(1.2) holds with N = 1.

ExampLE 1.1.5 (even dimensional pure spinors). Let G = Spin(10,C) be the

universal covering for SO(10,C) and Y = Grj.,(5,10) be a connected component

of the grassmannian of 5-dimensional isotropic subspaces'® in C!° (this is the case
originally considered by Berkovits in [1]). Here g is the semisimple Lie algebra of
type Ds. Using the standard notations of Bourbaki (see [5]) as above, we can write

20=8¢e1 +6ey+4e3+2¢e4
and Y = G/P, where P has 29, =4¢1 +2e2 — 2e4 — 4¢e5 . This gives
2(0—0p) =4(e1 +e2+ez+ea+es).
The HW-orbit embedding corresponding to A = ws = (61 + €2+ -+ +¢&5) /2

Pug

Y —> P(G - vy;) CP(Viy)

is subcanonical with N = 8. More generally, for any m the variety of 2m-dimensi-
onal pure spinors Grit_(m,2m) has subcanonical HW-embedding into P(Vy) with

iso
A=(e1+e2++em)/2.
Indeed,
20=2(m—-1)e1 +2(m—2)ea+---+ 2,1
200 =Mm—-1e+(m—-3)e2+---—(m—1)ep,

and (1.2) holds with N =2 (m — 1).

9n0te that it coincides with the semisimple component for the complexification of the compact
Lie group SU(3) x SU(2) x SU(1)

since Y does also parameterize the decomposable elements of the Clifford algebra (see [10]),
it is often called the variety of 10-dimensional pure spinors
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1.2. Cohomologies of line bundles. The computation of cohomologies of
line bundles on X = G/ P is reduced to the computation of cohomologies on the flag

variety Y = G/B via G-equivariant projection ¥ —+ X . Namely, for each weight

p € AYY we can consider the restriction (u)g, of the 1-dimensional P-module ()

onto B, and form a line bundle [pu]p = G x (i) g, which is clearly isomorphic to
B

the pull back of [u] along w, i.e. 7*0x (u) = Oy (u)z. Then, the Leray spectral
sequence gives canonical isomorphisms

HY(X,Ox (u) ~ H'(Y, Oy (1) p)

for all ¢g. By this reason in the rest of this section we replace P by B, X by Y and
write simply [p] and (u) instead of [i]B, (i) -

It is convenient to describe the representation of G in the space I'(Y, Oy (u))
in terms of its lowest vector. Namely, the lowest weight of T on T'(Y, Oy (1)) is p
and a lowest weight vector is unique up to proportionality. Indeed, if we interpret
the sections of Oy (u) as the functions

G L (w~cC

via (1.5) and (1.6), then for a lowest weight function f we have v’ - f = f for all
u’ € U’ (see notations on page 4). Hence, for any t € T, b€ B

t-fu'b) = f(t~'u'b) = fu"t7'0) = f(t'D),
where u” = t~lut € U’ fixes f and t~'b € B. On the other hand, all three pairs

(t7'0, f(t7'0)) ~ (e, nt™'D)(f(t7'D))) ~ (e, fle))
represent the same point in the total space of the bundle Oy (u) = G x (u). Hence,
B

FE'0) = u(t™'0) " f(e) = u(t)£(b)

(were we write p(b) for the operator corresponding to b € B in the representation
(). This means that ¢ - f = u(t)f over the open dense subset U'B C G and,
moreover, f is uniquely defined there by its value f(e). So, the weight of f is u and
this weight subspace is 1-dimensional.

1.2.1. The Borel-Weil-Bott theorem, being formulated in our notations, de-
scribes all G-modules HY(Y, Oy (u)) as irreducible representations presented by
their lowest weights'!. Namely, given p € A%, we consider its shift u + o', by the
half sum all the negative roots. There are two possibilities:

(1) p+ ¢ lies in the interior part of some Weyl chamber C
(2) p+ o belongs to a wall separating the Weyl chambers

In the first case (o, p + 0') #0 Ya €A and there exist a unique weight p’ in the
lowest Weyl chamber Cjo,, and a unique element w of the Weyl group such that

(1.9) p+o =wy + o)

Hthe formulation most commonly used in the representation theory (see, for example, [21])
actually describes G-modules H?(& (u)) in terms highest weights but the underlying homogeneous
space is always taken to be G/B’, that is the lowest weight vector orbit
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(indeed, w has to be the symmetry that takes Cloy to C and then p’ is determined
uniquely). In this case HY(Y, Oy {u)) # 0 iff ¢ equals the length'? of w in the Weyl
group. This non zero space is an irreducible G-module of the lowest weight p'.

In the second case u + ¢’ is orthogonal to some root @ € A and the equation
(1.9) is unsolvable in a sense that p + o' is not congruent to any weight in the
interior part of Clow modulo the Weyl group action. In this case H4(Y, Oy (u)) =0
for all q.

For example, the above description of I'(Y, Oy (p)) fits the Borel-Weil-Bott
setup as the case when ' = pu, w =€, ¢ = 0. In particular, I'(Y, Oy (u)) # 0 iff p
lies in the lowest weights Weyl chamber Cjoy, .

PROPOSITION 1.2.2. If X = G/P is a d-dimensional SHW-orbit with wx =
Ox(—N), then all the non zero cohomologies H? (X, Ox (k)) are only

H® (X,0x(m)) and H?*(X,O0x(—N—m)),
where m > 0 in the both cases.

PROOF. Since A is a highest weight, —mA € Cloy lies in the lowest weights
chamber for all m > 0. So, for all Ox(m) = Ox (—m\) we have H® (X, Ox(m)) # 0
and H? (X, 0x(m)) = 0 when ¢ > 0. By the Serre duality, this implies

HY(X,0x(—N —m)) = H° (X, 0x(m))" #0

and vanishing of all H? (X, Ox(—N — m)) with q # d.
To manage the remaining values m =1, 2, ..., (m — 1), let us note that in the
Borel-Weil-Bott setup (see 1.2.1) the triviality of the representation

Hd (Xv ﬁX(_N)) = HO (X7 ﬁx)* =C
means that N\ + ¢ = w(g’) for some w from the Weyl group. So, all the weights
(1.10) Ao, 22+0, ..., (N=1DA+7
are internal points of the segment I = { A+’ | 0 < < N } whose endpoints are o’
and NA + ¢ = w(¢’). The both endpoints have Euclidean length ||¢'|| = 1/ (¢, ¢'),
which is the minimal length of the weights lying in the interior part of a Weyl
chamber. By the convexity arguments, all the interior points of I lay strictly closer
to the origin. So, the weights (1.10) can not be interior points of a chamber.
Hence they are not congruent to the interior points of Cjow modulo the Weyl group
action and we deal with the second case of the Borel-Weil-Bott theorem (in the

sense of 1.2.1). Therefore, all the cohomologies H? (X, & (—m\)) do vanish for
1<m< (V-1). O

1.3. Quadratic equations for X . In this section we write explicit quadratic
equations generating the homogeneous ideal of the projectivization of an arbitrary
highest weight vector orbit (1.1) (not necessary subcanonical). Infinite dimensional
versions of two propositions below were proved by Kac and Peterson in [23], [24].
Finite dimensional case goes back to Kostant (comp. with [28], [29]). For the
convenience of readers we sketch here an easy finite dimensional proof.

Let U(g) be the universal enveloping algebra of g. Consider the Casimir element

(1.11) Q=3 abi€U(g),

L2pere the length should be defined w.r.t. the reflections by the walls of the lowest chamber
Clow
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where a; and b; form a pair of dual bases of g w.r.t. the Killing form. It does not
depend on the choice of dual bases, lays in the center of U(g), and acts on each
irreducible g-module by a scalar operator:

Q|V)\ = C)‘]:dvA .
The constant ¢y can be computed by the following formula (see, for example, [14])
(1.12) ax=(A+o,A+0)—(e0,0)=(A+20,1),

where ¢ is a half sum of all positive roots, and we use the scalar product on b*
induced by the Killing form.

With the Casimir element (1.11) it is associated an operator (2 acting on a
tensor product V' @ V" of any two g-modules V', V" by the rule

(1.13) Q0 @) =D a;(0) @b;(0"),

which clearly does not depend on the choice of dual bases a;, b; for g. The actions
of 2 and Qs are related by the formula

(1.14) Q' @v") = QW) @v" +20:0 @) + v @ Qv")

Applying this formula to vpy @ Uhy € V) ® V), which is the highest vector of weight
2, we get

2 Q5 (Uhw @ Uhw) = (C2x — 2€7) * Uhy @ Uhy =
= (4(>‘+Qa>‘)_2(>‘+295>‘)) 'vhw®vhw:2(>\a>\)'vhw®vhw-

At the same time the formula (1.14) shows that Q2 does commute with g-action,
because the Casimir element 2 does. We conclude that for any x € G - vhy C Vi

(1.15) Nzez)=cn-zRrx=4(A+0,\) 2@z,
(1.16) MWrzzr)=(A,\) z0z.

ProOPOSITION 1.3.1. The following four statements about x € V) are pairwise
equivalent:
(1) z € G vpy;
(2) =z ® z lays in the irreducible component Vay C Vy @ V) ;
4) w(zRz)=(A, ) zQx.

ProOOF. We have seen already that (1) = (2) = (3) <= (4). The implica-
tion (3) = (1) follows from the next more precise statement. O

PROPOSITION 1.3.2. The quadratic equations (1.15) generate the homogeneous
ideal of the projective variety X = P(G - vnw) C P(V).

PrROOF. As a g-module, the whole coordinate algebra of P(V)) is isomorphic
to S°(Vy) =~ S*(V,), where i = —wmax(A) is the highest weight of V)" and wmax
is the maximal length element in the Weyl group. It is easy to check (comp. with
[14]) that its g-th homogeneous component S?V,, splits as

(1.17) STV, = Vi @ (Q — cguld) - STV, |
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because the highest weight gu appears in S?V,, with the multiplicity one and the
eigenvalues of 2 on the irreducible submodules V,, C S9V,, with v < qu are strictly
less than cg,,. Let us write

Jg = (Q —cguId) - STV,

for the right summand in (1.17), which collects all irreducible submodules V;, with
v < qu. Since all the weights of SPV,, - .J, C SPT1V, are strictly less then (p + ¢)u,
it is clear that

J=alJ,
q

is a homogeneous ideal in S*V,,. We would like to check that J is generated by Js.
The key point is that for any v € V,, we have

(1.18) [Q — cgu1d] (v?) = @ [Q — ¢2,1d] (v?) - 072 .

Indeed, using the Leibnitz rule and the relation (1.14), we get
Q) =q-Qv) v +q(g— 1) Q@) 07 =
-1
ZQ'Cu'Uq-l-%'(Q(U2)—2'Q(U)~U) 172 =

-1
=(—¢*+2q) ¢, v + % SQ?) 0?2
This reduces (1.18) to the purely numerical identity
9(¢ —1)
2

which is verified by straightforward computation using (1.12).
Since the powers v? span S?V), as a linear space, the identity (1.18) says actually
that the ideal J is generated by its quadratic component

Jo = (= ¢2,1d) - S?V, .

(q2 — 2q) Cy+ Cqp = C2u

Taking into account the equality con = c3,, we see that these quadratic equations
coincide with (1.15) as well as with ones mentioned in the condition (3) of the
previous proposition.

Now, rewriting the decomposition (1.17) as SV, = V,, & J,, we see imme-
diately that any g-invariant ideal I 2 J should contain the irreducible submodule
Vgu for all ¢ > 0, i.e. should be of finite codimension in S*(V},) as a vector space.
This means that J = v/.J coincides with the homogeneous ideal of the projective
variety Y C P(V)) defined by the quadratic equations (1.15). Moreover, this means
that Y does not contain proper g-invariant closed algebraic subsets. Since any G-
orbit of minimal dimension inside Y \. X would be such a subset, we conclude that
Y =X. O

2. Syzygies of the projective coordinate algebra

The content of this section was influenced by our discussions with M. Movshev.
We streamline and clarify arguments used in [35], [32] and construct the Frobenius
algebra structure on the syzygies of an arbitrary projective variety X C P(V)
satisfying the following three properties
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(1) X is smooth'3;

(2) for m € Z the cohomologies H!(X, Ox(m)) =0, if i # 0, d = dim X ;

(3) X is subcanonical, i.e. wx = Ox(—N) for some N € N.
As we have seen in §1, these conditions hold for the SHW-orbits (1.1). So, the
syzygy space of any SHW-orbit always carries a Frobenius algebra structure.

2.1. Coordinate algebra of a projective variety. By the definition, the
coordinate algebra of a projective variety X C P,, = P(V) is the graded algebra

(2.1) A= @ H(X,0x(m)=S5/7,

where S = @ S™V* is the symmetric algebra of V* (the homogeneous coordinate
m=0

algebra of P(V)) and J = {f € S| f|x = 0} is the homogeneous ideal of X.
In terms of generators and relations, such an algebra A is described by its
minimal free resolution

(22) ‘F2 ‘Fl ‘Fo ‘A ‘0,
which is an exact sequence of graded free S-modules of the form
(2.3) F,= ® Ry, % S[—q],

where R, ; are finite dimensional vector spaces of p-th order syzygies of degree q for
A and we write m,, for the minimal degree appearing among the order p syzygies.
We will call p the homological degree and q¢ — the internal degree.

The minimality of the resolution (2.2) means that all homogenous components
of all matrix elements of each its differential are polynomials of strictly positive
degree, i.e. for any p the differential F}, —— Fj,_; takes each syzygy submodule
R, 4 ® S[—q] into <EB 1Rp_17,, ® S[—v]. Thus, the tensor multiplication by the

Vsq—

trivial S-module C annihilates all the differentials in a minimal free resolution (2.2)
and we get for each p an isomorphism of graded vector spaces
(2.4) R, & @ R,,=Torl(4,C).

Q>mp
In particular, the dimensions dim R, ; do non depend on the choice of a minimal
resolution.

EXAMPLE 2.1.1 (the HW-orbits). If X = G/P is embedded into P(V') as the
highest vector orbit (1.1), then its ideal J = (Q) is generated by the quadratic
equations (1.15), which form a linear subspace

QCS*Vv*cSs.
Thus, the resolution (2.2) starts with Fop = S, i.e. mg =0, Ry = R0 = C. Then,
Fi =Q®S[-2],i.e. m; =2and Ry = Ry > = Q. Further, it follows from the
minimality that m, > p+ 1 for all p > 1.

Note that the group G acts naturally on the coordinate algebra A and on the
Tor-spaces, thus on the syzygies. During the proof of the proposition 1.3.2 we have
seen that Q C S?V* collects all the irreducible direct summands of S?V* except for
Vay, where p is the highest weight of V*. This gives an effective way to compute
at least the starting term of minimal resolution.

L3in fact, all results of this section (and their proofs) hold for any locally complete intersection
varieties (see [19], [12] for details); all we need is well defined invertible dualizing sheaf wx
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Say, for the Pliicker embedding Gr(2,5) ~ P(G - v,,) C P(V,,) = Py, which
corresponds to A = wy = [0,1,0,0] in the notations of 1.1.3, we have p = w3 =
[0,0,1,0], thus 2 u = [0,0,2,0], and S2V* = Vi0,0,2,0] © V]0,0,0,1 (this is immediate
from dim S*C'® = 55). Hence, Q = Vio,0,0,1] and dim Q = 5.

Similarly, for the variety of 10-dimensional pure spinors Gr;_, (5, 10) (see exam-
ple 1.1.5) we have u = A = wj, dim V), = 16, dim S?V* = 136, but dim V5, = 126.
This implies @ = V,,, , dimV,,, = 10. Note that in the both cases, Gr(2,5) C Py
and Gr;" (5,10) C Py5, the quadratic equations @ form an irreducible G-module.

150

2.2. DGA resolution for the algebra of syzygies. The syzygies R, , can
be computed using the standard Koszul resolution for the trivial S-module C

(25) o dy _ K2 dy _ Kl dy _ K() dy _ (C _ 0
that has K, = APV* % S[—p| and the differential dx = > 8%1- ® x;, which takes

Ow
(2.6) w®f'—>za—0i®l°i'f,
where g, 1, -..,19, issome basisin V* considered inside the exterior algebra AV*
and xg,x1,...,T, is the same basis of V* but considered inside the symmetric

algebra SV*. The derivation 9/9¥; takes'*
191:191'1 /\19i2/\"~/\19ik — (—l)u_lﬂ]\i, when ¢ =i, €1,
and annihilates all ¥ with J Z i.
Tensoring the Koszul resolution (2.5) by A over S, we get a complex
(27) 00—+ A"V g Al-n 1] 2,
2. AV @ A2 2. V' @A) e A—ro0,

whose differential is given by the same formula (2.6) considered modulo the qua-
dratic relations (@) C S. The p-th homology group of (2.7) coincides with

Torg(A, C)=R,

from (2.4). The Koszul complex (2.7) can be considered from two different view-
points. First of all, taking the direct sum of its elements, we get a DG-algebra
(2.8) g = dp, Gp= APV @ Al-p],
p=0 C

whose multiplication is induced by exterior and symmetric multiplication of the
tensor factors:

W f)-meg)=nMwan @ (fg),
where we write |x| € Z/2Z for the parity of = induced by the internal degree of =.
It satisfies a - b = (—1)I9I'*Ip - @ for homogeneous'® a € @,|, b € o, and agrees
with the differential (2.6):

d(a-b) = (da)-b+ (—1)* a-(3D) .

14 9 0 a

. . . _ _.d .
note that grassmann partial derivatives skew commute 35 55— = 39; 99; and satisfy

i J
the graded Leibnitz rule %(wl ANwsz) = (%wl) A wo + (71)‘“‘1‘(411 A (%a@)

I5here and further we write |z| = p for the degree of a homogeneous element z € <7,
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This implies that the syzygies R = & R, = H (<) also inherit an associative algebra
p

structure.
We are going to show that this structure is graded Frobenius, i.e. there is a
non degenerated scalar product

R®R a®b—(a,b)
C

C

such that (a,b-c¢) = (a - b,c) and (a,b) = £(b,a), where the sign rule depends
on the parity of codim X (see page 16). This scalar product can be written as
(a,b) =tr(a-b), where

a—(e,a)=(a,e)

(2.9) tr: R - C

is some natural trace form that comes from well known geometric construction,
which will be described in the next section using another viewpoint on the Koszul
complex (2.7).

5
Namely, let us fix some isomorphism!'® A"*'V — C, which performs to
identify (APV)" with A"T1~PV via non degenerated pairing

(2.10) APV @ AmHPY ATy e c.

w@n—wAn

Further, we identify AP (V*) with (APV)" via non degenerated pairing induced by
lifting A? (V*) into (V*)®, APV into V®P, and taking the complete contraction®”.
It is easy to see that under this identification the Koszul complex (2.7) turns to the
complex

(2.11) 0 — A]-n—1] -2+ V& Al-nl 2. AV @ Al-n +1] 2,
N A"V @ A2 N A"V @ A[-1] 2. ATV 94— 0,

whose components also form an associative graded superalgebra'®
o' =a ANV @Ap—n—1]
P C

w.r.t. the multiplication induced by exterior multiplication in AV and the usual
one in A. The differential 0 sends a homogeneous element a € <7, to pIdy -a, where
Idy € V@V™* is considered as an element of V® A[—n] C &’ and the multiplication
is taken inside «/’. Note that 9 is no longer compatible with the multiplication.
However the interpretation (2.11) reveals projective geometrical meaning of 0.

2.3. Euler-Dolbeault bicomplex. There is canonical Euler exact triple of
coherent sheaves on P, = P(V)

0 Op, —TENET o (1) — T — 0,

which describes the tangent sheaf T' = Tp, over any point p € V as the factor space
V/C - p. The exterior powers of this triple

0 — A" T —+ A™V ® O, (m) — AT — 0

n

16recall that dimV =n + 1 and P,, = P(V)
7in terms of dual bases 97 € V, ¥9; € V*, the full contraction between 97 and ¥ ; equals
org - L!, where p is the degree of the monomials

8in a physical cant the exchange & «~ ./ is known as ‘odd Fourier transform’
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are naturally organized into a long exact sequence of locally free Op,_ -modules

(212) 0 — Op, — V@ Op, (1) — A’V @ Op, (2) —>
—— A"V O, (n—1) — A"V ®Op,(n) — Op,(n+1) — 0

whose maps are given by the left multiplication by Idy = >~ 9} ® z;, where ¥ € V
form the dual base to ¥; € V* but z; € V* are considered now as global sections
of (1), and ‘the multiplication’ means exterior multiplication in the first factor
and tensor multiplication in the second one. Hence, twisting by &p, (k—n—1) and
using the identification APV ~ A"+1=PV* described above, we can rewrite (2.12)
as

(213) 0 —» Op (k—n—1) —" A"W* @ Op. (k —n) —=

e NV R G, (k—2) 2 VE R G, (k— 1)~ G, (k) — 0,

where the differential APV* @ Op, (k — p) L Al g Op, (k—p+1) is given
by the same formula (2.6).

Since X is smooth, restricting (2.13) onto X we get the following exact sequence
of locally free coherent sheaves on X:

(2.14) 0 —> Ox(k—n—1) —2 A"W* @ Ox(k —n) —r

AV R Ox(k—2) — V@ Ox(k—1) —» Ox(k) — 0.

Note that the Koszul complex (2.7) is a direct sum of complexes obtained from
(2.14) by applying the global sections functor I'(X, *).

Now consider the flabby Dolbeault d-resolutions'? for all coherent sheaves in
(2.14). They are organized in the exact bicomplex of flabby sheaves of abelian
groups &7 = APV* ® Q%(k —p) on X:

] ]
8 * 0,q+1 8 —1y* 0,q+1 o
= APV QYT (k—p) — APV QT (k—p+1) — -
(2.15) ﬂ ﬂ
2L pry @ Q% (k — p) 0 ALy @Ok —p+1) _2, .

51 51

Writing &7 in the (—p,g)-cell of the second coordinate quadrant of (p,g)-plane,
we get a diagram bounded by inequalities —n — 1 < —p < 0, 0 < ¢ < d, where
d = dim X. Tt has the following obvious properties:

L9We use the Dolbeault complex just by tradition. In fact, any natural flabby right resolution
&F of complex (2.14) would be OK for the forthcoming computation. Say, the usage of the
canonical Godemant resolution could make the computation even more transparent and works for
non smooth locally complete intersection varieties as well.
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(1) All the rows of (2.15) are exact and acyclic w.r.t. the functor I'(X, *).
In particular, taking the global sections in (2.15), we get a bicomplex
I(X, &) ), with exact rows, whose associated total complex is exact.

(2) For each p the p-th column of (2.15) gives a flabby resolution for the
coherent sheaf APV* ® O(k — p). So, applying I'(X, *) to p-th column
of (2.15), we get a complex whose g-th cohomology group equals APV* ®
HY(X,0x(k—p)).

Hence, there is a spectral sequence that converges to the zero cohomologies of the
total complex associated with I'(X, &7) and it has

(2.16) E " =HYI(X,&),0) =AV* @ H(X,0x (k—p)) .
Now, if X satisfies the condition (2) formulated on page 10, then
HYX,0x(k—p))=0 forq#0,d.

Therefore all non zero terms of the spectral sequence (2.16) will be situated only
in two horizontal rows: ¢ =0 and ¢ = d = dim X.

PROPOSITION 2.3.1. Under the assumptions (1-3) on page 10 for each k € Z
and any 0 < p < n+ 1 there is an isomorphism

(2.17) Tp : ;kz—d—p,n—N+1—k — Ry k
provided by the differential in Eq-term of spectral sequence (2.16).
ProOF. The bottom row g = 0, of (2.16), coincides with the internal degree k
homogeneous slice of the Koszul resolution (2.7):
0 — AnTLy™ Q@ Ap_n_1 —8>
C
AV @Ay e V@A — Ay — 0
C C
Hence, the bottom row in the Es-term consists of the following syzygies:
E, 7% = Tot%(A,C), = Ry, .
For the upper row ¢ = d in (2.16) we claim that it is dual to the complex

o « o % 8
0~— Ay Np1p ~—V %An—N—k — ANV %An—N—k—l ~—

48_ ATH_IV* ®A7N7k — 0 ,
C

because of H4(X, Ox (k—p)) ~ H°(X, Ox(p—k — N))* by the Serre duality?® and
APV o~ (A"“*”V*)* via the dual version of pairing (2.10). So, the top row in E»
is filled by the spaces dual to the following syzygies:

E;p’d = TOI"Z“_”(A,C)Z_NH_k =Ry pn—N41—k -

The differentials in the consequent terms of this spectral sequence will be non
trivial only in E;. Therefore, to get the zero limit, the F4-differential should map
(=p—d—1,d)-cell isomorphically onto (—p, 0)-cell providing isomorphism (2.17). O

20here we use the condition (3) on page 10: wx = Ox (—N)
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COROLLARY 2.3.2. If the ideal of X is generated by some linear space of
quadrics Q C S*(V*), then non zero syzygies R, can appear only for the fol-
lowing values p, k:

ep=0,k=00rp=n—d, k=n—N+1, where Roo =C>~R}_, . N1
ep=1k=20orp=n—-d—-1,k=n— N —1, where

Rio=Q~R, 4 1, N_1;
e 2<p<n—d-2andp+l1 <k <p+d—N,where Ryy ~ R} _; , . Ny1k-
ProoOF. Indeed the syzygies R, = 0 automatically vanish in the following
four cases:
1) p<0 or p>n+1 2) p=0 and k#0
3) p=1 and k#2 4) 2<p<n+1 and k<p
Applying this to the right hand side of (2.17) we see that R, » = 0 also for p > n—d

orp<d—1l,forp=n—dandk#n—N+1,forp=n—d—1landk#n—N—-1,
and finally, for2<p<n—-d—2and k>2p+d— N — 1. O

EXAMPLE 2.3.3 (continuation of 1.1.3, 1.1.5, and 2.1.1). For the grassmannian
Gr(2,5) C Py we have n =9, d = 6, N = 5. Thus, by the above corollary,

R;5>~Roo=C, Ry3~Ri»=Q C’

and all the other syzygies vanish. For 10-dimensional pure spinors Gr;t (5,10) C Py5

180

we have n = 15, d = 10, N = 8. The previous corollary implies that
Ry g~ Roo=C, Rig~Ri»=0Q~ c'o

and all other syzygies of orders 0, 1, 4, 5 vanish. The precise computation of Ry ~
R requires more sophisticated computational analysis of the Spin(10,C)-module
R. It was made, e. g. in [9], [11], [35].

2.4. Scalar product and trace on R. Let us define the trace functional
(2.9) as a linear form on R that annihilates all R, j except for R,_qn—n4+1 and
sends Ry—dq,n—nN+1 t0 B o = C via isomorphisms 7'0_1 inverse to 7y defined in 2.3.1.
This form provides the syzygy algebra R with a scalar product

(2.18) (a,b) ¥ tr (a - b)

which satisfies the property (a-b,c) = (a,b-¢) = tr (a-b-c), because R is associative.

Since for @ € Ry 1, b € Rp—g—pn—N+1—k We have a - b = (—1)p(n=d=p)p . g
the scalar product (2.18) is purely symmetric, if codimp, X = (n — d) is odd. If
codimp, X is even, then (2.18) is even supersymmetric, that is symmetric, when
the both arguments are even, and skew-symmetric, when the both arguments are
odd.

PROPOSITION 2.4.1. The scalar product (2.18) is non degenerate, and Ya€R

75 (@) = (a,%)

as the linear forms on R.
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PRrROOF. There is a natural scalar product on E;-term of the spectral sequence
(2.16) induced by the multiplication and the trace form provided by the Serre
duality. It takes

APV @ H (Ox (m1)) x APV* @ H (Ox (ms))

(2.19) l
ATV @ HY (0x (~N))~C

for p1 + p» = (n + 1) and m1 + mas = —N (all the other components of E; are
mutually orthogonal). Clearly, it is non degenerated. We extend the isomorphism
from the bottom row of (2.19) to a linear map E; XLc , which annihilates all the
components of By except A"T1V* @ H?(0Ox(—N)), and define the scalar product
on FE; by prescription

(2.20) (a,b)1 € T (ab) .
Since d; satisfies d (ab) = (d1a)b + (—1)!% a (db) and imd; is annihilated by Tr,
this scalar product interacts with d; by the rule
(221)  (dia, b), = Tr ((dia) b) = (=) Tr (a(dib)) = (=1)1** (a, dib), -

Let us show that this scalar product induces well defined non degenerate pairing
on the cohomologies H(E;,d;) = E» = R and that this pairing coincides with (2.18)
and produces the duality maps (2.17). We can fix some vector space decomposition
(compatible with the p-grading on Ey): By = Z@&W = dW & C & W such that d;
takes W isomorphically onto di W =im (d,), Z = diW & C = ker(d,), and C ~ E»
consists of representatives for the cohomology classes. It follows from (2.21) that
Z C (dy W)l. Hence, the scalar product of cohomology classes is well defined, and
for each p the pairing

W,

" aw,,—-C
w,n(dw):- "

induced by (2.20) is non degenerate?!. Let
wp = dime W), = dimc di Wy,
w), = dime (W,,/(W,, N (d1W)i)) .

;P . . ey oy oy
Then wj, = w;,— for each p and evident inequalities w), < wy, = wj,_, < Wp—p = w,

imply that w!, = w, for all p. So, W N (d;W)" = 0, that is (d,W)" = Z and
Z+ = (d;W). This implies C+ N C = 0, which means that (2.20) gives a non
degenerate pairing on C.

Now write w € A"T'V* @ H? (0x(—N)) for the basic element being sent to 1
by the isomorphism from the bottom row of (2.19). For any a € E; *° there exists
some b € E;pfdfl’d such that Tr (ab) = 1. Then ab = w in Ry,_gn—n~n+1. Since in
E4-term dg,(a) = 0, we have 1 = dg,(w) = dg,(ab) = (=1)? adg,(b). Therefore
tr (adg,(b)) = 1, which means that for any a € R the linear form tr (a - %) is non
zero and coincides with 75! (a). O

2lnote that A Wy_p C (d1W)n+1_p
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3. Cohomology of the dual graded Lie superalgebra

We are going to compare an algebra of syzygies for an arbitrary commutative
graded quadratic Koszul algebra A and an algebra of cohomologies of a graded
Lie superalgebra L Koszul dual to A in the sense of Ginzburg and Kapranov [17].
Namely, in 3.6 we identify the syzygies of A with the cohomologies of Lie subalgebra
L>> C L and give alternative description for the algebra structure on the syzygies.

By quite deep theorem of R. Bezrukavnikov (see [3]) the projective coordinate
algebra of any highest weight orbit X = G/P (not necessary subcanonical) is
Koszul. Thus our results can be applied to the syzygies of the highest weight
vector orbits.

Certainly, the coincidence of two algebra structures on the space of syzygies
(one constructed in §2 and another we will construct in this section) could be
extracted from the general bar-cobar equivalence staff??. But in our situation this
will be clearly apparent, fortunately, and we will check it ‘by hands’. We begin
with recallment of some standard resolutions and the experts could jump directly
to 3.4.1.

3.1. Dual quadratic algebra. Recall that a quadratic algebra®® generated
by a vector space V* is an associative algebra A of the form

A=TV"/(),

where T(V*) is the tensor algebra of a vector space V* and (I) C T(V*) is a double
side ideal spanned by a vector subspace I C V* ® V*, of homogeneous quadratic
relations. Well known Priddy’s construction (see [16, p. 108], [38]) attaches to any
such an algebra A the dual quadratic algebra A' generated by the dual space V
with the orthogonal relation ideal

A =T(V)/(IH),

where I+ C V ® V is the annihilator of I. Clearly, A" = A.

A projective coordinate algebra A = @& H°(X,0(m)) of any variety X C
m=0

P(V) whose ideal is generated by quadratic equations {¢”} C S?V* fits into this
framework as

A=5(V")/(Q)=TV")/(C+Q),
where C' = Skew(V* ® V*) ~ A2V* consists of commutativity relations and @ C

Sym(V* ® V*) is the linear span of symmetric bilinear forms ¢”, polarizing the
quadratic equations for X. In this case the Priddy dual algebra

A'=T(V)/(QF NSym(V & V))
can be tautologically treated as universal enveloping algebra for graded Lie super-
algebra2*
(3.1) L= & L, =Yie(V)/(Ann (Q)) ,

m2>1

22gee [25], [26, sec. 4] for the most comprehensive approach

23recall that in this paper we restrict ourself by C-algebras only; but in this section the reader
can everywhere replace C by an arbitrary field of zero characteristic

24¢his is the simplest motivating example for much more wide Koszul duality between graded
Com and Lie operads, see [17]
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which is a factor of free graded Lie s-algebra generated by V (taken with odd parity)
through graded Lie ideal generated by Ann (Q) C Sym(V @ V), i.e. by

{vi ®v2+v2 @01 | q(vr,v2) =0 Vge } .
Thus, Ly =V, Ls = S5*V/Ann (Q) ~ Q*, etc.
In terms of coordinates, if we fix some dual bases {v;}, {z'} for V, V* and
{¢"}, {z,} for Q, @*, then we can describe L as graded Lie s-algebra generated by

L, with elements v; of parity 1 as a basis for Ly, elements z, as a basis for L,, and
Lie s-brackets given by

(3.2) [vi,v5] = Z(]N”(Ui,’l)j) c2, = Za;’jz,, ,
v v
where af; is the matrix of ¢” in the basis v;, i.e. ¢" = Y a¥;z'a’.

3.2. Bar construction. Recall that for any graded associative C-algebra B

with unity and augumentation B —» C, there is the bar-complex of free graded
left B-modules

33) --- -2+ Bo[B**] -+ B®[B**] -~ Bw[B] -~ B

€

- C -0,

where the tensor products are taken over C and the B-linear differential is defined
on the free generators by prescription

(34) 01@[b1 @by @ D bp]) = by @ [by @ - @ b+
m—1

+1® Z(_l)i[bl®"'®(bibi+l)®"'®bm]-
=1

It is clearly contracted onto C by the homotopy taking
(3.5) bo @1 @ Qb — 1Ry Rb1 @+ & by

and gives the standard free resolution for the trivial B-module C in the category
of graded left B-modules. The space of free generators T¢(B) carries the natural
coalgebra structure dual to the tensor multiplication

A
T¢(B) T“(B) @ T°(B)
b1 ® - @ by HZ[b1®"'®bi] ® [bit1 ® @ by
i=0
(where [] L 1) and the bar differential is a coderivation w.r.t. this coproduct, i.e.
satisfies?

(10+0®1)cA=A0d.
Thus, Ext} (C, C) can be described as the cohomology algebra of the DG algebra
(3.6) Homp(B ® T¢(B),C) = Hom¢(T¢(B),C) = T(B*)

25applying; a homogeneous operator monomial fi1 ® fo2 ® -+ ® fm, to a homogeneous vector
monomial v1 ®V2® - - - ® vy, we always assume the Koszul sign agreements: fi® fo @ ® fm(v1 ®
V2@ ®um) = (—1)° - fi(v1) ® f2(v2) ® -+ @ fm(vm), where € = |fm]| - (|lv1] + -+ + |vm—1]) +
[frm—1l- (il + -+ |vm—2]) + -+ [f2] - [v1]
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whose multiplication is the standard tensor multiplication®® and the differential is
dual to (3.4), i.e. takes 1 to zero, acts on degree 1 generators § € B* as

3" B(b1,bs) = B(bybs)

and is extended onto the whole of T(B*) by the Leibnitz rule. We call (3.6) the
cobar complex of B. It is naturally bigraded. In what follows we always call the
degree w.r.t. the natural grading in the tensor algebra as the (co)homological
degree in a contrast with the internal degree, which equals the total sum of degrees
of all tensor factors w.r.t. the internal grading of B.

3.3. Koszulity. Let B = A' = T(V)/(I') be the dual quadratic algebra for
A =T(V*)/(I). There is the Koszul complex of graded left B-modules

(3.7) Kp=(B® A", d)

whose differential di comes from the right B ® A-module®” structure on B ® A*
given by the right multiplication in B and dual to the left multiplication in A.
Namely, it is easy to see that the Casimir element

Idy € Ende(V)=V@V* =B, @4, CB® A

has the zero square in B ® A. By the definition, di is given by the right action of
Idy on B® A*. In ‘low level’ notations, if v;, z; are dual bases for V' and V*, then

di(b® a) = Z(b c0;) @ (oxy),
where aox; = (A _arelzie) (C) € A* . For example, if
B = A(V) = T(V)/(Sym(V © V),
A=SV*)=T(V")/(Skew(V* @ V*))
are the ordinary exterior and symmetric algebras, then
0
KS(V) = <S(V) R A(V), Zvi ® %>

is the Koszul complex (2.5) but with V instead of V*.
There is canonical morphism of the differential graded B-modules

(3.8) Kp=B® A" —2" + B T(B)

induced by the coalgebra morphism A* —— T¢(V) = T¢(B;) C T¢(B) dual to the
structure morphism of algebras T(V*) —s A = T(V*)/(I). It is well known and

26it is instructive to see how does it agree with the classic Yoneda product
Extk (C,C) ® Bxt7 (C,C) —£2220% | pygkdm (g, )
defined by obvious extending of ) € B®™*, » € B®™" to the B-linear homomorphisms
$,9: BRT(B) — C,
then lifting ¢ to some degree m homomorphism of free resolutions B ® T¢(B) i» B ® T¢(B),

and taking the composition 1 ® B®(m+k) Umik g ® BOk “CL 1 g ok ¥, C; clearly,

e = (1 ® b)) o A gives precisely the required lifting of ¢ to the morphism of bar resolutions and
leads to the Yoneda product ¥ op = (¥ ® ¢)oA, which coincides with the tensor product of
multilinear forms

27the algebra structure on B® A is given by (a1 ®b1)- (a2 ®b2) = (—1)l221111 (g1 a2) ® (b1 b2),
where || means the internal degree of z modulo 2
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not difficult to check (see [36], [38]) that the following conditions on B are pairwise
equivalent:
(1) the Koszul complex Kpg gives a free graded left B-module resolution for
C, i.e. the mapping (3.8) is a quasiisomorphism;
(2) A~ Exty(C,C);
(3) Ext%j (C,C) = 0for i # j, where Ext"/ means the internal degree j graded
component of i-th derived functor Ext’;

(4) for each m > 3 the subspaces W, = V& @ [+ @ V®(m-—v=2) c yom
(where 0 < v < (m — 2)) form a distributive lattice®® in V™ .
Quadratic algebras satisfying this conditions are called Koszul algebras. Of course,
B is Koszul iff A = B' is Koszul, and one can exchange B and A in the above
properties. Since Homp(*, C) kills the Koszul differential, applying this functor
to (3.8) we get DGA homomorphism from A, considered as DG algebra with the

zero differential, to the cobar complex (3.6)

(3.9) A~ (T(B"),d),

which is a quasiisomorphism as soon as A, B are Koszul. Thus, each Koszul algebra
A is canonically identified with the algebra Extg(C,C) via (3.9).

3.4. Chevalley complex. For a commutative Koszul algebra A = S(V*)/(Q)
the quaisiisomorphism (3.9) means the natural identification of A with the Lie

algebra cohomology

A=~ Extyy;,(C,C) ¥ H*(L,C),

which can be computed using another reduction of the bar complex for B = U(L)
known as Chevalley’s complex. Let us write A°(L) for the graded s-exterior coal-
gebra, which is dual to the tensor algebra of L* factorized through the relations
u® v+ (=1)"I"ly ® u. It can be considered as the sub-coalgebra of T¢(B) via the
s-alternation embedding

1
(3.10) ertNex N Nep — o Z $-8gN(0) €x(1) A €x(2) N+ A €o(m)

" oe6,
where s-sign takes proper account of the internal degree of the permuted elements.
One can check (see [4, §3 ex.21], [8, ch.XIII, ex.14]) that the bar differential on
T¢(B) takes the subcoalgebra A¢(L) to itself and the resulting subcomplex?®

(3.11) - % BoAL % BoAL % BoL-%B-—"»C—0

gives the free graded left B module resolution for C as well. We call it the Chevalley
resolution and denote by € or €(L) when the precise reference to L is important.

Practical handling of (3.11) becomes more demonstrative with an alternative
Lie theoretic interpretation of ¢. Namely, let us write L for another copy of the
vector superspace L but with the inverse parity and the trivial abelian s-Lie struc-
ture. Then we can write €,, = A™(L) = S™(L) (because of the parity change) and
treat

C=B®A™(L)=B®S™(I)=U(LaL)

281ecall that this means the coincidences W, N (Wg + Wy) = Wo N Wg + Wy N W, and
Wao + (W NW,) = (Wa + Wg) N (Wa + W) for all «, 8, v or, equivalently, the existence of a
basis E = {e;} C V®™ for VO™ such that Ya W, N E is a basis for W,

29 hose differential d¢ is the restricted bar differential
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as the universal enveloping algebra of an abelian extension L @ L that contains

L as a Lie subalgebra, L as an abelian ideal, and has Lie brackets defined by
prescriptions®’

[1‘,y]:[l’,y]L ) [T)y]zoy
[1‘,?] = mL ) [y> 1‘] = (_1)‘I‘WL

for all z,y € L. Thus, in new s-symmetric notations, €,, consists of degree m
s-symmetric monomials

(3.13) b-€ey - -€,, wherebe B=U(L)=¢&;,, e €L.
They also can be embedded into T¢(L) via s-symmetrization identical with (3.10).

To get an alternative description for the Chevalley differential (3.11), let us
131

(3.12)

. . d . .
define for a moment a new differential”’ € — € as the odd right s-algebra deriva-
tion®? whose action on the generating vector space L @ L is given by by the same
rule as the bar differential

(3.14) d(z) =0, d(z) == Vezel .

It is clear that d preserves the enveloping algebra relations and automatically sat-
isfies the right Leibnitz rule w.r.t. supercommutators:

d([a,b]) = [a,d(b)] + (=1)"[d(a), 1] .

Its action on the generators (3.13) looks like
(3.15) d(e1ex -+ ) =
Ziej'él o0 N Z i[ei,ej]gl A o0 “ B

1<j<m J 1<i<j<m ¢ J

where the precise sign calculation is quite cumbersome, but it is not so important
for our purposes®3. Note that the coalgebra structure on the bar complex agrees
with the standard coalgebra structure on the universal enveloping algebra, which
is given on generators £ € L @ L by the usual rule

(3.16) A)=1l+t21,
and is extended onto the whole of € as a homomorphism of graded algebras
¢ 2eue,
where the algebra structure € ® € is given by (a®b)-(c®d) = (=1)!"ll(a-c)@ (b-d) .
The differential d agrees with (ihe coalgebra, structure (3.16), i.e. satisfies®*
(3.17) Aod=(10d+d®1)oA.

306¢ course, the last two formulas, describing the action of L on L, are equivalent, because
of [7,z] = —(=1)1=IA+D [z 7] = —(=1)1=IA+¥Dz, y] = (—1)I=1A+HYD (—1)lellyl]y, o]

3lwe will see soon that it coincides with de

32; e. satisfying the right Leibnitz rule d(ab) = ad(b) + (—1)/’ld(a)b

33for example, to see that d> = 0, it is enough to mention that d, being an odd right
derivation, forces the commutator [d,d] = 2d? to be the right derivation of € as well; now d =0
follows from (3.14)

34indeed, since A is an algebra homomorphism and both d, (1 ® d + d ® 1) are the right
derivations, the both sides of (3.17) are right derivations of € with values in €® €; by (3.14) and
(3.16) they coincide on the generating vector space L & L




ON SYZYGIES OF HIGHEST WEIGHT ORBITS 23

We conclude that d = dc on € C T(B). In particular, this gives the ‘low level’
description for (3.11) via (3.15).
Thus, we can compute Extg(C, C) as the cohomologies of the complex

(C*(L),d) = Homp(&(L), C) = Home(A(L),C) = (A(LY),dc) ,
which carries the natural DG algebra structure whose multiplication is induced by

the multiplication in the s-exterior algebra and the differential is induced by (3.15).
Let us finalize this preliminary discussion as

PROPOSITION 3.4.1. Let A be an arbitrary commutative Koszul quadratic alge-
bra, B = A' = U(L) be its dual algebra treated as the universal enveloping algebra
for a graded Lie s-algebra L. Then A, considered as DG algebra with the zero
differential, admits canonical isomorphism

(3.18) A~ H(C*(L),d)
with the cohomology algebra of DG algebra (C*,dy), which has C™ = A™L* =
SmT”* , the differential d}; : C™ —— C™*! is acting as

(3.19) dp@es - en) = Y E(enelen - T o),

1<i<j<m ¢ J
and the multiplication in C* is given by the shuffle product®
(3.20) [poth] (B1B2  Bhpm) = D +0(Bi, Biy - Eiy) (€, 8jy =+ Ej) -
The isomorphism (3.18) takes the internal graded component A; to the i-th internal
degree component of the i-th cohomology space. It comes from the quasiisomorphism

(3.9) and quasiisomorphic embedding (3.10) of Chevalley’s resolution (3.11) into bar
resolution (3.3).

3.5. Differential perturbation lemmma. The proof of the main results of
the next sect. 3.6 will be based on the lemma influenced by A. Losev’s talks on
‘enhanced spectral sequences’, which is a slight variation on the simplest, degree
one, case of the homotopy structure transferring in Kadeashvili’s type of thing3®.

Let (E, d: E — E, d?> = 0) be an arbitrary differential S-module over an
arbitrary ring S. Assume we are given with the diagram of S-modules and S-linear
homomorphisms

(3.21) E—H
4

together with S-linear homotopy E —Z+ E that satisfy the following properties:
(3.22) Ao=1, oA =1+ dsx+ »d ,
(3.23) W =d*=Xd=do=Mx=0=0

(this means that H can be included into E as the retract of d capturing all its
homology). We intend to show that under this assumptions and appropriate ‘con-
vergency condition’ any perturbation D = d + 0 (even not necessary commuting
with d) induces some non trivial differential d on H and a perturbation (X, o', ),
of the diagram (3.21) and the homotopy s, such that X, ¢’ remain to be the inverse

35the summation in (3.20) goes over all T = {i1 < iz < --- < ix}, J ={j1 <jo < --- < jm}
such that TUWJ={1,2, ..., (m+k)}
36comp. with [7]; see also [31] for similar explicit Aco-formulas most closed to our framework
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homotopy equivalences between the complexes (E, D) and (H,d). The convergency
condition in question is the existence of s¢, €y, £, € Endg(E) defined by the fol-
lowing series

o et + 3005 + 2036050 + 300505203 + - = (1 +e)) = (1 +¢,)s¢,
(3.24) S G =6, > G =5
m>1 m>=1

Note that these operators are well defined, for example, if 6sr € Endg(FE) is locally
nilpotent®7.
LEMMA 3.5.1. Under the assumptions (3.21)—(3.23), let
D=d+é6: E—E, D’>=0,
be another S-linear differential on E. If the operators (3.24) are well defined then
the perturbed operators X def AMl1+4ey), o def (14+¢e,)o satisfy the conditions
(1) No' =Idy, oN =1Idg+ D/ + 5D ;

(2) d =XNDo=Nbp=0DX= 6\ is actually the same operator on H ;
(3) 02 =0, i.e. O provides H with the differential;
(4)

A
4) ON = XND and o0 = D¢, i.e. (E,D) —— (H,d) are morphisms of

’

complexes providing the inverse to each other homotopy equivalences.
PRrROOF. It follows from (3.23) that exo = Ae, = exg, = 0. This implies
No =A1+e))(1+e,)0=Xo=1dg,

which is the first relation in (1). The conditions d> = 0 and D? = (d + §)> = 0
imply that 62 = —d§ — dd. Using this relation and (3.24), we get

go6x = (1 +60)0%(1 +¢,)2 =
(3.25) = —(14+ex)dd(1+¢ep)3e — 2(1 +€,)dd(1 +e,) 2 =
= —dey —e,ds .

Now, to compute ¢'\, we substitute pA = 1 + dsc + sd and write the result as a
sum of three terms

(3.26) N =(1+¢e,)o N1 +ex)=(1+e,)(1+dx+3xd)(1+¢ey) =
=14ey)(I4ex)+ L 4ep)dse(l +ex) + (14e,)5d(1 +ey),
then expand these summands using (3.25) and (3.24) :
(I4e)(L+ex)=1+e,+erteper=1+05+0—codsd —5/dey ,
(1+e,)dx(14+ex) = (1+¢e,)dx =ds +e,dsd
(1+¢ep)d(1+ex) =5/d(1 +ey) =/d+ 5/dey .
Adding up the right sides, we get the homotopy relation required in (1)
ON =146 +04+dsd +/d=1+Ds/ +D.
Since we have AD = A, Dp = 0p, €6 = 0, , (2) follows
NDo=XNdo=A1+ex)d0=N(1+¢,)0= Ao =\Dg .

37.e. VeeE 3m=m(e) eN: (63)me=0



ON SYZYGIES OF HIGHEST WEIGHT ORBITS 25

The commutation relations (4) also follow from AD = A\d, Do = dp using (1)
ON =ADg'N = AD(1 + D5 + D) = X(1+6/)D = XD ,
00 =0NDo=(1+Ds+»D)Do=D(1+58)o=Do .
Finally, 00 = AD¢'d = AD?¢' = 0 gives (3). O
3.6. Chevalley’s complex as S(V*)-module. Consider graded Lie ideal

Lyy= @ L, CL
m2>2

and denote by (C*(Lsy),dZ?) its Chevalley complex. The s-exterior algebra of L
splits as the graded algebra into the tensor product

(21 (D)= A5 0 L) = ALL) @ AL = C(L32) 9

where®® S = S(V*) = A(L?) is the projective coordinate algebra of P(V). The
both sides of (3.27) carry the natural structure of right S-modules®® coming from
the algebra inclusion

S(V*) = ALy) — A(L7)
and the isomorphism (3.27) is clearly S-linear. Moreover, the Chevalley differential
(3.19), acting on the left side, is also S-linear because of dq(L1) = 0. The right side
of (3.27) carries the intrinsic S-linear differential

(3.28) d=dz*®1

induced by the Chevalley differential for the Lie s-algebra L>,. We transfer it to
the left side preserving the notation d for it. Then on the left side we have

(3.29) de =d+36

where d acts on the subalgebra A(L%,) by the same formula (3.19) and annihilates
all the monomials containing Li-factors, and ¢ is the difference, which is automat-
ically S-linear as well. We are in a position to apply the differential perturbation
lemma of 3.5.1.

THEOREM 3.6.1. Let A be commutative Koszul quadratic algebra,
B=A"=U(L)

be its dual, treated as the universal enveloping algebra of the graded Lie s-algebra L
(see 3.1). Then for each p > 1 and any q there exists an isomorphism

(3.30) Ry q(A) = HTP(L3,,C),

between q-th internal degree components of p-th syzygy space of A (see (2.4)) and
(g — p)-th cohomology space of L.

PRrOOF. Let us split C*(L>2) as the vector space over C into a direct sum of
bigraded subspaces

(3.31) C*(Lzs)=H®Ia®P

38recall that Ly = V has internal degree 1, thus, its s-exterior algebra is nothing but the

ordinary symmetric algebra
39%ince S is a commutative algebra, it does not matter from what side does it act from, but

we use the right action to outline that it commutes with the left B-action on the cobar complex
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where I = imd;? and H & I = kerdZ®>. Thus H ~ H*(Ls») and d takes P
isomorphically onto I and annihilates H & I. Write s for the operator

(3.32) HoloP - HoIoP

that annihilates H @& A and acts on I as —d~! : I —~ P. We write

A
(3.33) C*(Ls0) T2 H

0
for the embedding and the projection associated with the direct sum decomposition
(3.31). So, our s, A, p satisfy the relations (3.22), (3.23). Tensoring (3.33) by S
and combining it with the S-module isomorphism (3.27), we get the diagram of
S-modules

(3.34) (C*(1), do(1) === H* ()0,

Fl

and the S-linear map C*(L) —— C*(L) that satisfy the relations (3.22), (3.23) as
well. Further, the composition 43¢, where § comes from the decomposition (3.19),
is locally a nilpotent operator, because it is clear from (3.19) that 6d—' preserves
the homological degree and strictly decreases the difference between the total inter-
nal degree and degree induced by the homological grading coming from C*(Lx5).
Thus, the differential perturbation lemma from 3.5.1 provides H*(Lx2) with the
differential

(3.35) d=Xo| D (6:9™ |00

m2>=0

such that (H*(Lx2) ® S,0) becomes a complex of free graded S-modules homotopy
equivalent to the Chevalley complex (C*(L),d:(L)). Since the latter is quasiiso-
morphic to A as a DG S-module, we can compute

R, = Torf;(A, C)

as p-th cohomology of the complex obtained by tensoring (H*(Ls2) ® S,0) by
C over S. Because the differential (3.35) strictly increases the internal S-module
degree, it will be annihilated by this tensoring and we get the required isomorphism
(3.30). O

3.6.2. Coincidence of two algebra structures on the syzygies. In §2 we have
equipped the space of syzygies by an algebra structure induced by the Koszul DGA
resolution (2.8) for A. On the other side, the Lie algebra cohomology H*(Lx2)
also has an algebra structure induced by the Chevalley’s DGA resolution. So, the
both sides of (3.30) come with the intrinsic algebra structures. In fact this two
structures do coincide.

THEOREM 3.6.3. The isomorphism R ~ H*(Lx>) constructed in the previous
theorem is an isomorphism of algebras.

ProoF. We have to compare Chevalley’s DG algebra C*(Lx2) with the DG
algebra

(3.36) o = AQKs,



ON SYZYGIES OF HIGHEST WEIGHT ORBITS 27

where Kg = S‘(V*)%A‘(V*) is the Koszul complex (2.5), which is the Koszul
resolution for C as the left module over S = S(V*). To this aim consider

(3.37) E=C(L)gKs =C(L)@A(V")

equipped with the differential D = d; ® 1 + 1 ® dk, where dy is the Koszul differ-
s s

ential (2.6). This DG algebra has the compatible structure of right DG module
over DG algebra Kg. The S-module isomorphism (3.27) extends obviously to the
isomorphism of right Kg-modules

(3.38) C'L)@Ks=F =~ E'=C"(L22) 9 Ks .

The right side has the intrinsic S-linear differential d = d? ’91+1® dx, which can
be transferred to E. Thus, we get two decompositions for D into a sum

(3.39) D:d0<§1+1%§dK:d+6

We are going to compute the algebra structure on the cohomology space H(E, D)
using the spectral sequences associated with these two decompositions.

The first decomposition D = d; ® 1 + 1 ® dx has commuting summands, i.e.
represents E as a double complex. Those spectral sequence that firstly computes
the Koszul cohomology degenerates in Es-term. Its F;-term is concentrated at the
zero row and coincids with the Koszul resolution (3.36). Thus, H(E,D) ~ R and
has the multiplication induced from (3.36).

The second decomposition D = d + ¢ corresponds to the natural filtration
on E coming from the Serre-Hochschild filtration of the pair (L,Ls») on C*(L),
where ¢-th filtered component is dual to the C-linear span of all monomials (3.13)
that contain < ¢ generators e; € Ly C L. It is clear from (3.19), (3.20) that this
filtration is compatible with D and the product in E. Thus, we conclude that the
algebra structure on H(E, D) coincides with the one induced from the DG algebra
structure on the E;-term of the spectral sequence for this filtration.

Obviously this Ej-term is nothing but the right side of (3.38) with its natural
algebra structure and differential d = d? 2914+ 1®dy. To compute its homology we
can use the fact that it, in its own turn, is the sum of two commuting differentials.
Applying the same arguments as above, we conclude that the Es-term is isomorphic
to H*(L>») and has the algebra structure induced by the Chevalley DGA resolution
for Ly>. Now Theorem 3.6.1 implies that this spectral sequence also degenerates at
E>-term. We conclude that there is an algebra isomorphism H(E, D) ~ H*(Lx>).
Thus R ~ H(E,D) ~ H*(L>») and we can say that the multiplicative structures
on R is induced from C*(Lx»). O

4. Some geometric examples

4.1. Notation and preliminaries. In this section we use Theorem 3.6.1 to
describe the syzygies

(4.1) Rpg(A) =~ H"P(L>2,C),

of projective coordinate algebras of certain HW-orbits in P(V') by computing the
cohomologies staying in the right hand side of (4.1). Recall (see 2.1.1) that the
bigraded components (4.1) the syzygies of an HW-orbit are equipped with the
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natural action of GL(V). Our computations will use irreducible decompositions of
(4.1) w.r.t. this action.
4.1.1. Young diagram notations. We depict a partition*’

A=A M)

(where A\; > XAy > ... > A;) by Young diagram with k rows of lengths A\, Aa, ..., A
like

(4.2) T for A=[53.3,1)

and write X' = [A], A}, ..., A),] for the transposed diagram (say, for (4.2) we have
N =14,3,3,1,1]). The total number of cells |[A\| = > \; will be called a weight of
the diagram. The shorted notation [p7', 052, ..., 05»] means the Young diagram
that has s; rows of length p; (in (4.2) X = [5,32,1]).

Also we will use the Frobenius notation and write

(43) (a13a27"'7ap|517627"'76p)
for the Young diagram A whose main diagonal consists of p cells and
Ni=a;+i, N=p+i foreachi=1,2,...,p

(in (4.2) A = (4,1,0]3,1,0)). Note that in this notation oy > az > -+ > a, >0
and B1 > o > - > f, > 0.

4.1.2. Irreducible GL-modules. With any Young diagram A = [Ag, Aa,..., \g]
is associated an irreducible GLg (C)-module 7y of the highest weight

)\161 + A2€2 + -+ Ak&k

which is simultaneously the irreducible SLi(C) C GLg(C) - module of highest
weight

(A= A2)ar+ (A2 = Az)ag + -+ (A1 — Ap) 1
(where a; = ¢; — ;41 are the simple roots as in 1.1.3). Recall that 75 can be
constructed by factorizing the space

(4.4) MNEANY ANV g - @AY

(where V' = C* is the tautological GLg-module and the exterior powers are the
lengths of columns of A) through the column exchange relations®'. Such a relation
can be written for any choice of the following data:

e a filling T of the Young diagram A by n = |A| vectors vy,va,...,v, €V
e a number ¢ of a column in A
e a collection I of cells in the next (i + 1)-th column

Taking an exterior product of the vectors v, along each column of A and tensoring
these products together, we get an element v? € A*; then the column exchange
relation, which corresponds to T, i, I says that in m

(4.5) vl = ZUJT ,

40sur notations for the Young tableaux and associated symmetric functions agree with [13],

[80] where the reader can find all the formulas we will use below to express the symmetric poly-
nomials through each other
see [13]
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where ¢ runs through the permutations of v,’s providing order preserving exchanges
between I-cells and all collections of #I cells in the previous i-th column*?. For
example, an exchange relation corresponding to a filled diagram and the only

possible choice i = 1, I = {2} says that V v, v2,v3 in 7(2,1) we have
(V1 Av2) ® vz = (v3 Av2) @v1 + (V1 Avz) @2,

which is nothing but the Jacobi relation [[v1, va], vs]+ [[va, v3], vi]+[[vs, v1],v2] = 0.

If we write e;,es,...,e for the standard basis in V = CF, then the standard
basis for 7 is formed by classes of elements e? € A* obtained from fillings T' of
A by vectors e; such that the indexes of e; weakly increase across each row and
strictly increase down each column, i.e. form a Young tableau T of the shape A
on the alphabet [1..k]. With any such a tableau T one can associate a monomial
2l = M) .. 2™, where m; is number of occurrences of i in 7. Then the
character of the irreducible GLg-module 7 is the Schur polynomial

sx(x1,22,..., %) = ZwT,
T

where the sum is running over all Young tableaux. For example, a filling

1
T = [3[3]4

4l4[5
5

[

2[5]

of the diagram (4.2) is a valid tableau for GL5 and contributes monomial x3zs 232322

into s[5,3,3,1] (this monomial computes the eigenvalue of the standard basic vector
coming from e? = (e; Aes AegAes) @ (e1 Aez Aey) @ (e AegAes) Dex Des).

4.1.3. Euler’s GL-characters. Since the category of GL-modules is semisimple,
each term of any GL-equivariant complex K* splits as

K" = S TN,
A€A,

where A, is the set of highest weights of all irreducible representations appearing
in K¥ (counted with multiplicities). We call the alternated sum

(4.6) xre E3 =17 Y sy

v AEA,

the Euler GL-character of K*. Clearly, xx+ = Xm(x+), where H(K*) is con-
sidered as a complex with zero differentials. Similarly, one can define the Euler
GL-characters for graded GL-equivariant commutative and Lie s-algebras. A pow-
erful tool for comparing these characters is provided by the following version of the
Koszul duality.

4.1.4. Quillen’s duality. In discussion before Proposition 3.4.1 we associated the
Chevalley complex C*(a) with any Lie s-algebra a. It can be treated as commutative
s-algebra A*(a*[—1]) equipped with the differential whose action on generators is
dual to the bracket A2a —— a. This construction provides a functor from the
category of Lie s-algebras to one of commutative DG-algebras.

On the other side, with any commutative s-algebra A one can associate in a sim-
ilar way the Harrison complex J#°(A), which is a free Lie s-algebra Zie*(A*[—1])
equipped with the differential whose action on generators is dual to the multiplica-
tion S24 —— A. Thus, we get a functor acting in the opposite direction.

42 _ A .
if #1I = m there are totally (n;) such permutations
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Applying to these functors the general result proven in [17, th.4.2.5] for any
pair of Koszul dual operads, we get

LemMMA 4.1.5. Two functors described above are homotopy inverse to each
other, i.e. for any pro-nilpotent Lie s-algebra a and any s-commutative algebra A
there exist natural quasi-isomorphisms C*(A*(A)) — A, #*(C*(a)) — a.
O

COROLLARY 4.1.6. Let a be a pro-nilpotent graded Lie s-algebra equipped with
GLg-action preserving the graded Lie s-algebra structure. Then the Euler GLg-cha-
racters of a and H = H*(a,C) are related by

(4.7) Xu =Y (-1)"enoXa,
(4.8) X = (= 2 am) (1= (=1)"pn) ) ox

where | is the Mdbius function, e, are the elementary symmetric polynomials, p,
are Newton’s sums of powers, and o means the plethysm of symmetric functions.

PROOF. It is well known that GL-character of A”(V') equals e, (see [30]) and
GL-character of Zie™(V') equals %Ed‘n,u(d)pdg (see [27]). The signs in (4.7) and
(4.8) come from the grading shift. O

4.1.7. Free Lie algebras. If a = Zie(W) be a free Lie (graded, s-) algebra
generated by a vector space W, then its universal enveloping algebra U(a) is a free
associative algebra generated by W and the trivial U(a)-module C admits a short
free resolution

(4.9) 00— U)W > Ula) - C 0.

For any subalgebra b C a an isomorphism of b-modules U(a) ~ U(b) ® S(a/b)
shows that (4.9) is a free resolution for C in the category of U(b)-modules as well.
It is well known that pro-nilpotent Lie algebra b is free iff H*(b,C) = 0 for i > 1.
In particular, applying Homg () (* , C) to the short resolution (4.9), we get

LeEMMA 4.1.8. A subalgebra of any free Lie (super)algebra is free. (]

4.2. The most singular case. To begin with, consider the commutative qua-
dratic algebra with the maximal possible space of quadratic relations, i.e.

A=S(V)/(S*V).

Its Koszul dual Lie s-algebra is the free graded Lie algebra L = Zie (V[—1]) gener-
ated by the vector space V situated in degree 1. The existence of resolution (4.9)
(written for a = L) and criteria from sect. 3.3 imply that L and A are Koszul. By
Lemma 4.1.8 the Lie subalgebra L>» C L is free as well. This implies that the
syzygies (4.1) vanish for (¢ — p) > 1. Thus, non trivial syzygies are described by

PROPOSITION 4.2.1. For A= S(V)/S*(V) the component R, 11y of syzygies
(4.1) is the irreducible GL(V')-module 77y 1p-17. All the other syzygies vanish.

PROOF. In this case the Koszul complex (2.7) takes extremely simple form and
can be written as the tensor product K* = (C® V) ® A*(V[—1]). Thus, its Euler
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GL(V)-character has the following expression in terms of the elementary symmetric
polynomials ey,

(4.10) Xie =(L+e) > (~DFer =1+ (1) (erer — exs1) -

k>0 k>1

By the Frobenius character formula??, the latter multiplier of degree (k+1) coincides
with the irreducible GL(V')-character

S[2,1k—1] = det, (zlg el;i_1>

of the irreducible GL-module [2,1*71]. Since for each g > 0 there is only one non
zero component R, , and it has p = ¢—1, we conclude that [2,1¥71] = Ri k1) O

4.3. Syzygies of the Veronese curve. The Veronese embedding takes

P, =P(U) ———~ P(S"U) =P, .

In appropriate coordinates on P(S™U) it sends (ug : u1) € Py to

(o @1 ovn ixn) = (uf up tuy s ul 2l L sl
The image is described by the quadratic equations z;x; = xyz,, (for all possible
choices of 4, j, k, m with i + j = k + m), so, we get the quadratic algebra

A=Clzo, ..., z,)/(izj — Zpxm | i+j=k+m) .

In the dual coordinates z' on V* = S"U* the relations for the Koszul dual Lie
s-algebra take a form

(4.11) Z [',29) =0, where k=0,1,...,2n.
i+i=k

Let us order the generators in the following non-standard way
20> > > o>t

This ordering induces the filtration on L. Since the leading Lie monomial of k-th
relation in (4.11) is [2°,2¥] for k < n and is [2", 2*] for k > n, associated with this
filtration graded Lie algebra L’ is isomorphic to the direct sum of the abelian Lie
algebra generated by z°, ™ and the free Lie algebra Zie(W), where W is the linear
span of remaining (n — 1) variables z?, ... ,2("=1) Since the abelian part makes no
contribution in the Chevalley complex for L, we have C*(L») = C*(Zie(W)>2)
and can repeat word for word the computations of the previous section taking W
instead of V.

COROLLARY 4.3.1. The only non zero syzygies of the Veronese curve in P,, are

Rp,p+1 = T[2,17-1] with** dim Rp,l)+1 =p- (pil)' O

43
44

see, for example, [30, ch. 1.3, formula (3.5)]
we consider Rp p41 as GL(W)-modules and apply the hook length formula (see [12], [30])
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4.4. Syzygies of the grassmannian Gr(2, N). This computation gener-
alizes the examples 1.1.3, 2.3.3. The Pliicker embedding

(4.12) Gr(2, N) — P(G - vpy) C P(V,,,)

realizes the grassmannian as the SHW-orbit of G = SL(N, C) with the index (1.2)
equal to N. Moreover, the natural action of GLx(C) on P(V,,) preserves the
grassmannian and is kept on the syzygies as well. Write W = V; for dual to the
standard N-dimensional representation of GLy. It follows from Propositions 1.3.1
and 1.3.2 that the projective coordinate algebra of the Pliicker embedding (4.12)
has the following GLy-module decomposition:

(4.13) A=S(NW)/(AW) = EO Tlk.k] -

Our computation of the syzygies of A will be organized as follows. In section 4.5
we compute the Euler GL-character of the Koszul complex

(4.14) K*=A (N°W)[-1]) @ A.

Then, in section 4.6, we completely describe the generators of L>,, i.e. compute
H'(Ls»,C). It turns out that these generators form a graded GL-module*?
. 1
pey a1y W (2 ) = Ho-tg = H (D22, 0)q -

Moreover, we will show that 74, —1),...(¢p—1) | (@1 4+2),....(ap+2)) @PPears with multi-
plicity one in the syzygy space Ry (4, +...4q,)-

This allows to guess the shape of answer and forces to introduce a bigraded
skew commutative GLy-equivariant s-algebra

A= ®A,,, where
Py

(4.15) Apg = @ T .
Pl N o)y sy s (1T Dl m2) [ D) (L)
i1+ +ip=q

We define A as a skew commutative s-algebra generated by the graded vector space

T(g—2|q+1) 5 for2<¢< (N —-2),

4.16 A, =®A,, where Ay , =
( ) ! q La, WHEEE A {0, otherwise

By the definition, the multiplication map A; 5, ® --- ® A1y, —> A, (g1 4.-4q,) 1S
given by the projection onto irreducible component

(417)  T((q=2),p=2) | @+ D)ser(gp+1) C Tqr—2]a1+1) @+ @ T(g,—2]g,+1) >

if @ > --- > ¢p, and vanishes when some of ¢;’s coincide. Since the component
(4.17) has the multiplicity one, the corresponding projection is unique up to propor-
tionality and we actually get well defined associative algebra A with the components
(4.15). This algebra gives a particular example of GL-equivariant hook algebra.

General properties of hook algebras will be discussed systematically in the next
§5. In particular, in section 5.1.2 we show that A is quadratic and Koszul.

Using this result, we show in section 4.7 below that a Lie s-algebra L, Koszul
dual to A, is isomorphic to Ly,. This implies the coincidence

A=H(L,C)=H(Ls,,C)=R.

45we are using here the Frobenius notations (4.3)
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THEOREM 4.4.1. The syzygies of the Grassmannian Gr(2,N) form a bigraded
skew commutative Frobenius quadratic Koszul algebra isomorphic to the algebra A
defined in (4.15)<(4.17): Ry q = Ag—p,q- O

5. Koszul complex. Euler’s GL-character of K* = A* ((A?W)[-1]) ® A is

(4.18)  XKe = Xae(A2W[-1]) - (Z S[j,j]) =

g = (zk:( 1) 6k062) . (Zh J+1hj71),

where hj, are the complete symmetric functions, o denotes the plethysm of symmet-

ric functions, and
hj  hju
S[5,4] = det <h] . ;lj >

by the Frobenius character formula®®. The right hand side of (4.18) has the follow-
ing expansion in terms of Schur polynomials:

LEMMA 4.5.1. xyg = Z (—1)i1+"'+i”S((ilq),...,(irl)\(i1+2),...,(ip+2)) .
p=0
(N=3)2i1>-->ip>0
PROOF. We deduce it from the following generalized Littlewood formula es-
tablished in [20, Th. 4.4, eq. (2)]:

pin i _
(4.19) > (-1 TS (i1 7) e 7) [ 1) =
p=0 N L
n>=ip > >i, 20 j+r-L _j_r—1
- "7 n (r—1) det (.T'Z 2 — Z; / 2 )
o e 1<i,5<n
[[a =) - [[a 7 - - Shisn
iy i=1 C(n)

where the Weyl determinant A¢(,,) in the denominator can be expressed as

4.20) A T1,%2,...,T —det(:r —x; 7) =
(420) A (@122, ) ™
—Ha: . H:r -1) - H(a:i—a:j)(l—a:ia:j).
i=1 i<j
We take r = 3 and note that det (w{“ — a:i_j_1> e staying in the numerator
1<i,jsn

of (4.19) can be written as

(4.21) Acn) - H:ri_l . (Z e?—e]-ejH) .
i=1 j

Indeed, consider the (n + 1)-th order Weyl determinant Ac (1) (T1,-..,%n,q) as
a Laurent polynomial in ¢ and compute its coefficient at ¢' in two ways: by the
straightforward expansion of the determinant in the middle of (4.20) and using
triple product expansion from the last term of (4.20). In the first case we get

(=1)7 det (m i J) 1<icn = (—1)" det (l‘gH—m;j*l)

2<j<n+1 1<i,j<n

465ee [13] or [30, ch. 1.3, formula, (3.4)]
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In the second case we have

[[ 1H D [[@i — 21— ziza ™ @® = D [[ (@i — )1~ 2iq) =
i=1 i<j i=1

Hw ¢ "N -1) - (zn:(—l)ien—iqi) : (Zn:(—l)ieiqi),
i=0 i=0

1= 1=

whose coefficient at ¢! is (4.21) multiplied by (—1)". Now, substituting (4.21) in
the numerator of (4.19), we get the identity

(4.22) Y (CDPFEEE s () i) =

p=0
i3> >ip 20 n
= [Ia - wizy) (E €5 €j+1€j71) =

i<

n(n+1)

2
:( ( ]. ekoh2> (E 6 €j+1€j,1).
k=0

Since it holds for all n, we can consider (4.22) as an identity in the complete ring
of symmetric functions (in the infinite set of variables) and apply to (4.22) the
w-involution, which exchanges sy < sy/, e < hg. So, we get

D (CDPEETER S i 1 43) (it 3) =

p=0
i1>>ip 20
= (Z( ]_ ekoeg) (Z h2 J+1h]‘,1) ,
k
whose right hand side coincides with (4.18) O

COROLLARY 4.5.2. For any decreasing sequence (N —3) =iy > -+ >ip, >0
the irreducible representalion (i, —1),.. (i,~1)|(i1+2).....(i,42)) oppears in the both
GLpx-modules

A (AW @ Ay C k6>9 AY (AW @ A
>0
with multiplicity one and comes down into R, , = HP (K¢, )(q) with ¢ = p+ i1 +
ot ip

PRrROOF. Using the Weyl formula*” we can write yx as

(4.23) XASATWI1) " XA = D S((in—1)slip—1) | i1smip) * D 5[] -
p=0 j=0
N2ip>>i,>0
The classical Littlewood—Richardson rule*® implies that
S((ilfl)r"'v(ipfl) | (i1+2)r"'7(ip+2))

(staying in Lemma 4.5.1) could appear in (4.23) only as the product
S((i1—1),ees(ip—1) | 1,.0s3p) " S[pyp] -

47 comp with [30, ch. 1.5, example 9(a)]
8see [13], [30]
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Thus, the irreducible component m((;, —1),...,(i,—1) | (i142),...,(ip+2)) COMeS into

Hp(Kér)(p+i1+~~+ip)
exactly from A" Fir (A2W) ® A(,), where it sits with multiplicity 1. O

4.6. Dual Lie s-algebra. Let us fix some coordinates z',..., 2V on W and
write £% = 2’ Az’ for the corresponding basis of L; = A2W*, which is the generat-
ing space for the graded Lie s-algebra L Koszul dual to A in the sense of 3.1. Since
Sym? (A2W*) ~ Tl o) @ Tiap, it follows from (3.1), (3.2) that Ly = A*W* and the
relations for L have the form
(4.24) [a:ij,:rkl] = —[mik,xﬂ] = [a:“z,a:jk] .

Let us write shortly L], = L,/ ([L>2,L32] N Ly) = H'(L»2,C)(,) = Rp—1,, for the
space of degree n generators in subalgebra L.

LEMMA 4.6.1. L/ ~ ﬂz‘nﬁlnﬂ) for each n in range 2 <n < N — 2.

PROOF. Induction on n. For n = 2 we have L) = Ly = A*W* generated by
commutators (4.24). For n > 2 we have the surjective commutator map

a®z'—[a,z']

L, @ N*W* L, .

By the inductive assumption and the Littlewood—Richardson rule, the left hand
side has the following irreducible GLy-module decomposition

(425) W[klz] (24 7Tz<n_3|n) ~
> Tin—2.0in,0) D T(n—2in+1) ® T(n=3,0/n,1) D T(n—3,01n+1,0) D T(n—3/n+2) -

The s-Jacobi identity implies that [a, [z¥, 2%¢]] = [[a, %], 2*¢] + [[a, 2*¢], %] . Since
the left hand side here vanishes in L), = (L>2/[L>2, L>2])(n) , the skew symmetriza-
tion operator taking

o 1 oo o
viv kuty v v kvt kvl viv
zy:cu [lay,z™7"],z ]'—>§ zu:c,, (lay, ™), z*] = [[a,, z* ], "))
acts on L) as the identity. On the other hand, it annihilates all the irreducible
summands of (4.25) except for the second one, which definitely has to appear in
Ry_1n = H'(L»»,C)(,) = L;, by the corollary 4.5.2. O

4.7. Proof of Theorem 4.4.1. Since A is (super) skew commutative and
Koszul, its quadratic dual algebra B = U(L) is an universal enveloping algebra for
some graded Lie s-algebra L such that H*(L,C) = A. It follows from Corollary 4.5.2
and Lemma 4.6.1 that there is a surjective homomorphism of associative algebras
H*(L>>,C) — A. Since 2-th Lie algebra cohomologies describe the relations,
we conclude that the relations of Ly, contain the ones of L. Because the both
algebras are generated by the same vector space, there is a surjective GL-module

homomorphism L Y Ly». Tt follows from Corollary 4.1.6 that xr., = xu, i.e.
the Euler GL-character of ker ¢) vanishes. This forces ker ¢ to have each irreducible
GL-module equal number of times in its even and odd parts. But it is impossible,
because the Young diagrams appearing in odd and even parts of L have different
number of cells modulo 4 (they consist of 4k + 2 and 4k cells respectively). Thus,
kerty = 0 and theorem 4.4.1 is completely proven.
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5. Appendix: koszulity of hook algebras

In this section we use the notations fixed in sec. 4.1.

5.1. Hook algebras. We call I'-shaped diagram I' = (a|8) a hook of width
a + 1 and hight 8+ 1. We say that two hooks I'y = (a1|81), I'2 = (az|f2) are
compatible and write I’y > T's, if their union I'y UTy = (a1, a2|f182) is a valid
Young diagram, i.e. has a; > as and 51 > fs.

Let us fix an ordered collection of pairwise compatible hooks

(51) >y > - >y,

equipped with some internal parities |T';| € Z/(2). We assume that the heights of
all hooks are bounded by k and write m; = mr, for the corresponding irreducible
GLg-modules. For any increasing collection of indexes I = (i1,i2,...,is) C [1..m]
we denote by

(5.2) Pr =T, =Ty ULy U U,

the Young diagram build from the corresponding hooks and write 7; = mr, for
the associated irreducible GLg-module. It follows from the Littlewood—Richardson
rule that 7y appears in the irreducible decomposition of m;, ® m;, ® - -- ® m;, with
multiplicity one. Thus, there is a canonical GLj-equivariant projection

(5.3) Hrt Ty @ My @ -0+ @ My, —>> 77 -

Hence, GLi-module A = @ n; admits a GLg-equivariant associative algebra struc-
T
ture whose multiplication satisfies the relations

(1) z-y = (=DMl y . g for any z € 75, y € m; and any choice of ¢ # j in
the range [1..m];

(2) z-y =0 for any =,y € m; and any choice of i € [1..m];

(3) z1 @2 - -+ - x5 = py(x1,x2,...,x5) for any choice of strictly increasing
indexes I = (i1,%2,...,is) C [1..m] and any collection of z, € 7;, .

In other words, A is s-commutative w.r.t. the internal parity, it is generated by

Z/(2)-graded vector space Ay = S 7r,, and all non zero multiplication maps in A
i=1

are induced by projections (5.3). There is also an external grading

A= & A,, where A= @ 7p,, Ag=C.
s=0 #1=s

We call A a hook algebra associated with hooks (5.1) and write A(T'1,Ts, ..., Ty),
if the precise reference on the hooks is important. In sec.5.1.3-5.1.5 we will prove

THEOREM 5.1.1. Any hook algebra A is quadratic and Koszul.

Since the algebra A described in (4.16)—(4.15) is a hook algebra build from the
hooks T'; = (i — 1]i + 2), 1 < i < (N — 3) of parities |I';| = ¢ (mod 2), we get

COROLLARY 5.1.2. The algebra A, used in sec. 4.4, is quadratic and Koszul.
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5.1.3. Proof of theorem 5.1.1. For each m; = 7r, we fix the standard basis
labeled by the Young tableaux Tt, of shape I'; on the alphabet [1.. k] (see sec. 4.1.2).

Let A be an algebra spanned by A; and satisfying only the first two sets of
the relations for A, i.e. A is s-commutative w.r.t. the internal parity and satisfies
m; - m; = 0 for all 4. Thus, Ais a quadratic monomial algebra, in particular, it is
automatically Koszul*®. With respect to the GLjg-action, the graded components
of A are decomposed as

As= @& i, @my, @+ Q4
#I=s

where the sum runs over all strictly increasing collections I = (iy,42,...,i5) C
[1..m]. Tensor products of the standard basic vectors from 7; form a basis for A,.
We call these products standard basic monomials. They are numbered by Young
diagrams (5.2) filled by numbers from range [1..m] in such a way that each hook
I';, C I'r is a valid Young tableau but the whole I';y may be not. Let us call these
filled diagrams hooked tableauz or h-tableaux for shortness.

We write z7 € A for the standard basic monomial corresponding to an h-tab-
leau T'. Note that zg - x7 = 0, if the underlying Young diagrams contain common
hooks. Otherwise, zg - 7 = *+xg.7, where S - T is build from S, T by rearranging
their hooks in strictly decreasing order. Thus, z7 do actually behave as monomials.

The hook algebra can be presented as A = K/J, where J = @ J; is a graded

S

ideal whose components split w.r.t. the GLg-action as

Js= & Jr, where Jr :ker(m1 R Ty @ -+ @ Ty, _kr, m) .
#I=s

To show that A is quadratic Koszul algebra, we will equip the set of all standard

basic monomials z7 € A with a preorder < satisfying following two PBW-type®°

conditions:
(5.4) Ts X L7 = TR.s < Tg.r for any h-tableaux R, S, T';

for any h-tableau T which is not a valid tableau there exist an

element hr € (Jz - A) N Jr (uniquely determined by T') such that

(5.5) hr —xr = Z csrs forsome cg €Z.

S<T
I(S)=I(T)
The second condition implies that each basic monomial 7 is congruent modulo the
elements hr to some monomial z7» whose h-tableau T’ is a valid Young tableau.
Since the images of the latter monomials form a basis for the vector space A =
61971'1 = A/J, we conclude that the elements hr generate J as a vector space.

Because hy lay in the ideal (J3) spanned by the quadratic component of J, we get
J = (J2). Thus, A is quadratic.

Further, let J° be a monomial ideal spanned by the leading monomials of the
elements from J. By the same reasons as above, J° is generated by all 7 such
that T is not a valid tableau. Now the same arguments as in [36, ch. 3] show that

koszulity of the monomial quadratic algebra A° = A /J° implies the koszulity of A.

495ee [36]
505ee [86] for non-commutative version of the Poincare-Birkhof-Witt theory
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Indeed, the multiplicative condition (5.4) implies that the preorder in ques-
tion induces a filtration on the bar complex of the hook algebra A such that the
associated graded complex is the bar complex of the Koszul algebra A°. Com-
puting Exta(C,C) via the spectral sequence associated with this filtration, we get
Extao (C,C) as the first term of the sequence. It shows that Extkj (C,C) =0 for
i # j (see details in [36, ch. 3]).

Thus, to finish the proof of theorem 5.1.1, it remains to equip the set of h-tab-
leaux with a preorder satisfying the PBW-properties (5.4)—(5.5).

5.1.4. PBW-preorder on h-tableaux. Consider an h-tableau 7" whose Young di-
agram is the union of strictly decreasing hooks I';; > I';, > --- > I';.. For any
pe[L..k],ve[l..m]let xT(u,v) be a number of times the element u does ap-
pear in the v-th hook I';, of T'. For a fixed s we consider the numbers x7 (i, v) as
the components of m-dimensional vector

& o= (1), X" (1,2), - x T ()

where x?'(u,v) = 0 when v > s. For example, if we deal with GL4-equivariant
hook algebra built from m = 3 hooks, then 2-hooked tableau

111124
T =[31]2]2
43

produces four 3-component vectors
(56) Xi =(2,1,0) x3 =(1,1,0)
X3 =(1,2,0) xi =(2,0,0).

Note that a diagram 7T is not uniquely defined by the collection of k vectors
X' = (X3, Xk -

For example, collection (5.6) also comes from the h-tableau
111144
T'=[2]1]2[3
312

and some others.
We will compare the vectors xg using inverse right lexicographic ordering, i. e.

we say that (x; (1), x5 (2),-.-,x5(m)) < (xZ(1),xX(2),...,xE (m)), if

(5.7) X2 (o) > xT(vo) & Yv>vy x5(uv) =xT(,v).

We say that S < T, if (x7,x5,--->X5) < (X, xZ,...,x¥) w.r.t. the inverse right
lexicographic ordering, i.e. if X,é; = X,{ for all u > po and Xfa > xfa in the sense
(5.7). By the definition, the condition S < T means either the strong inequality
S < T or the coincidence (x7,x5,-.-,x7) = T, x3, ..., xF).

Thus, the relation < gives a preorder on the set of h-tableaux and two h-tab-
leaux are equivalent w.r.t. this preorder iff their fillings differ by a permutation
preserving the content of each hook. This preorder evidently satisfies the multi-
plicative condition (5.4). It remains to construct special elements hy satisfying the
PBW-condition (5.5).

5.1.5. PBW-basis for J. Consider an arbitrary hooked tableau T which is not a
valid tableau. Let the Young diagram of T" consist of hooks I'y > I's > --- > [';. We
take minimal ¢ such that a hooked subtableau of T" formed by I'; 1 U 4oLl -- U
is a valid tableau. Then a subtableau D C T formed by I'; UT';;1 is not valid. This
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can happen by two reasons (we write J, 4 for an element staying in p-th row and
g-th column of D):

(A) 3k >2 : dk2 < 0,1, i.e. the wrong inequality appears in some row of
D (but not in the first);

(B) condition (A) fails but 3£,k > 2 : 614 > O ¢, i.e. all rows of D are valid
and a wrong inequality appears in some column (but not in the first).

We will construct hp separately for each case. However, in the both cases we
construct hr as an element of the space

(5.8) TR QMim1 @ Ji 41 ®Tig2 ® - @7, where

UFZ-,FZ-+1

(5.9) Jiiv1 = ker (ﬂ'ri Q7T 1y ﬂTquH_l) CJy.
It follows from the Littlewood—Richardson rule that the representation mp, which
is the target of the multiplication map (5.3), comes with multiplicity one in the
space T; @ -+ @ M1 & Tp,ur;,, ® Tiye ® -+ ® 7, , i.e. the multiplication (5.3) is
factorized through this space and we can canonically include (5.8) into J,. Further,
we will present hr as hy = +xg - hp - ¢, where S and R are formed by hooks I,
with v < ¢ and v > i + 1 respectively, D =T'; UT';11 C T is the subdiagram formed
by i-th and (7 + 1)-th consequent hooks, and hp lies in J; ;141 from (5.9).

Starting from this moment, we restrict ourself by this subdiagram D. Let its
shape be 0 = (a1, a2|f1, B2), i.e. D =T Uy, where 'y = (a]51), 'z = (az2]B2).
Consider the diagrams:

'} = (0|31) (i-e. the first column of I'y)
Ty = (a1 = 1j0) =Ty~ T,
Ty = (a1 — 1,as — 1|2+ 1,0) =T, UT,

(i.e. we split the first hook I'y = I') LT, into the first column and remaining part
of the row and form T's by putting this row on top of I';). Recall that we write
A* for the tensor product of exterior powers AV corresponding to the columns
of a given Young diagram A (see (4.4)). The factorization through the column
exchange relations A” ——» mp can be considered as hauling down through the
diagram (5.10) below, where 7p, ® 7, 2+ 7pis the multiplication map, € stays
for particular factorizations through the column exchange relations, the map « :
A2 — ATt ® AT is the alternation in columns of T's, and the maps

0:7p, — T, @Mr, , 0 :I7F, QTp, — T,
T:7TF/1®’/Tf1 —> 7T, , 77:7T[‘11®7Tf2 —> D

are canonical projections onto and an inclusion of an irreducible submodule of
multiplicity one. Indeed, it follows from the Littlewood-Richardson rule that 75,
has multiplicity one in the product 7 ® 7r, and 7r, has multiplicity one in the
product T O, - Similarly, 7p has multiplicity one in the product AT QTF, ®7r,
and this implies that the bottom rhombus of the diagram (5.10) is commutative up
to multiplication by non zero scalar factor. A straightforward computation (but
quite improper for typesetting and too long for being reproduced here) shows that

the composition

T @ I eQRe
AF2 =, AF1 ® AFz 5 ﬂ-r1 ® T,
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annihilates all the column exchange relations in AFZ, i.e. the top rhombus in (5.10)
is commutative up to multiplication by non zero scalar factor as well.

AP = AT @ AT
X@o j®@
A1 @ AT @ AT AT @
/ K Q
G®@ X@
(5.10) ATt @ AT T @ TR, @ 7T,
‘o (@ lo,
mr, ® T, Ty ® T,
\ R\
7D

Thus, the whole diagram (5.10) is commutative up to rescales at the nodes. Now
we are ready to describe the elements hp.

In case (B) we take the rightmost column with the wrong inequality d1 ¢ > 0 ¢
and consider an element e? + €5 € ATt @ AT2 = AT" @ ATt @ AT2 | where S < D is
obtained from D by transposing the entries d1 ¢, d5,¢. Since the image of this element
in 7p; ® 7, is zero, it follows from the commutativity of the bottom rhombus in
(5.10) that hp = zp + 15 = e @ e(eP? + €%) € np, ® 7, lies in kerp C Jo as
required.

In case (A) we take the maximal k such that di 2> < di1 (i.e. the lowest row
with the wrong order) and consider an exchange relation (4.5) that exchanges first
k elements of the second column in D with all k-element ordered subsets of the first
column, i.e. an element

/BDZGD—ZGUDZGD—ZGSGSEAD:AF;®AF2,
o S

where S < D are obtained from D by all the exchanges ¢ in question. Since the
image of hp in 7p is zero, the class of an element 1 ® a(hp) € A ® A2 in the
factor 7r, ® mr, belongs to ker u C J5. At the same time the difference

(.TD — Zaswg) —€ ®E(1 X Oé(/f;D)) € mr, @ T,
S

is a sum of ¢ ® e-images of elements from At ® A2 that have a form considered
above in the case (B). In particular, this difference lies in J5 as well. We conclude
that hr = zp — > asxg satisfies the required properties.

s
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