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Abstract. Let γ be a Gaussian measure on a locally convex space and H

be the corresponding Cameron-Martin space. It has been recently shown by

L. Ambrosio and A. Figalli that the linear first-order PDE

ρ̇+ divγ(ρ · b) = 0, ρ|t=0 = ρ0,

where ρ0 · γ is a probability measure, admits a weak solution, in particular,
under the following assumptions:

‖b‖H ∈ Lp(γ), p > 1, exp
(
ε(divγb)−

)
∈ L1(γ).

Applying transportation of measures via triangular maps we prove a similar

result for a large class of non-Gaussian probability measures ν on R∞, under

the main assumption that βi ∈ ∩n∈NLn(ν) for every i ∈ N, where βi is the
logarithmic derivative of ν along the coordinate xi. We also show uniqueness

of the solution for a wide class of measures. This class includes uniformly

log-concave Gibbs measures and certain product measures.

1. Introduction

In this paper we study infinite-dimensional continuity equations

(1) µ̇+ div(µ · b) = 0, µ0 = ζ,

where µ = µt(dx), t ≥ 0, is a curve of probability measures on R∞ equipped
with the product σ-algebra induced by the Borel σ-algebra on R and b : R∞ →
R∞. Furthermore, µ̇ = ∂

∂tµ, div is meant in the sense of distributions and ζ is a
probability measure on R∞ serving as the initial datum. One approach to solve
equation (1) is to choose a reference measure ζ and search for solutions for (1) with
ζ = ρ0 · ν which are of the form µt(dx) = ρ(t, x) · ν(dx). Then (1) can be written as

(2) ρ̇+ divν(ρ · b) = 0, ρ(0, x) = ρ0,

where divν is the divergence with respect to ν, i.e. (−1) times the adjoint of the
gradient operator on L2(R∞, ν). We stress that the choice of the reference measure
(even in the finite-dimensional case, where R∞ is replaced by Rd) is at our disposal
and should be made depending on b. For instance, in the finite-dimensional case
b might be in a weighted Sobolev class with respect to some measure ν absolutely
continuous with respect to Lebesgue measure, but not weakly differentiable with
respect to Lebesgue measure itself. Then one should take ν to be the measure
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for which the components of b are in W 1,2(ν). So, singularities of b will thus be
compensated by the zeros of the Lebesgue density of ν.

Likewise in the infinite dimensional case of R∞, where one usually takes a Gauss-
ian measure as reference measure, since they are best studied. However, in many
cases this is not the best choice, for similar reasons as we have just seen, in the
case of Rd. For instance, there are interesting examples (presented in Section 7.2
below), where the reference measure should be taken to be a Gibbs measure, whose
energy functional can be ”read off” the given map b which determines equation (1),
respectively (2).

The key point, that for such reference measures we can identify conditions so
that (2) has a solution and/or that this solution is unique, lies in the fact that
many probability measures on Rd are images of Gaussian measures under so-called
triangular mappings which turn out to have sufficient regularity in many concrete
situations. Therefore, we can reduce existence and uniqueness questions (1), re-
spectively (2) to the case of a Gaussian reference measure, studied in [7] and [20].

To explain this and also to review a bit the history of the problem, let us return
to equation (2) and recall that the associated Lagrangian flow has the form

(3) Ẋ(t, x) = b(X), X(0, x) = x.

A finite-dimensional theory of equations (1) and (2) for weakly differentiable drifts
b has been deeply developed in a recent series of papers by L. Ambrosio. G. Crippa,
C. De Lellis, G. Savaré, A. Figalli and others (see [5] and the references therein).
This theory works under quite general assumptions and includes, in particular,
existence and uniqueness results for BV (bounded variation) vector fields.

Relatively little is known, however, in the infinite-dimensional setting. The first
results in this direction have been obtained by A.B. Cruzeiro [19], V.I. Bogachev
and E Mayer-Wolf [15]. The starting point for us was the paper [7], where some
finite-dimensional techniques (including the Di Perna-Lyons theory of renormalized
solutions) have been generalized to the infinite-dimensional Gaussian case. Other
recent developments can be found in Ambrosio-Figalli [6], Le Bris-Lions [28], Fang-
Luo [20], Bogachev-Da Prato-Shaposhnikov-Röckner [16].

We stress that the uniqueness of the solution is a more difficult problem compared
to the existence. The latter can be established under quite broad assumptions (see,
for instance, [16] for the apparently most general results about existence). The
uniqueness proof obtained in [7] relies very strongly on the Gaussian framework.
An important technical point was smoothing by the Ornstein-Uhlenbeck semigroup
which behaves very nicely with respect to many natural operations on the Wiener
space (divergence, projections, conditional expectations, differentiation etc.). The
absence of such a nice smoothing operator seems to be the main difficulty when
one tries to solve (2) for non-Gaussian reference measures.

In this paper we prove an existence result for the case of reference measures ν
on R∞ with logarithmic derivatives integrable in any power. We also show unique-
ness for a wide class of product measures, including log-concave ones. Another
uniqueness result is proved for a class of uniformly log-concave Gibbs measures.

Our approach relies on the mass transportation method. The general scheme
works as follows. Instead of directly solving (2) we consider a mass transportation
mapping T : R∞ → R∞ pushing forward the standard Gaussian measure γ onto
ν: ν = γ ◦ T−1. If νt = ρt · ν is the solution to (2), then the family of measures
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γt = νt ◦ S−1 with S = T−1 solves the continuity equation for the new vector field

(4) c = DT−1 · b(T ),

here D denotes total derivative. Applying (slightly generalized) existence and
uniqueness results for the Gaussian case from [7], we get a solution γt of the equation
associated to the vector field c and transfer it back, i.e. νt = γt ◦ T−1.

The main advantage of this approach is that the divergence operator commutes
with T :

divγc =
[
divνb

]
◦ T.

Hence the crucial assumptions on divγc can be directly transferred to divνb. On the
other hand, assumptions on integral norms of c and Dc impose some restrictions
on Sobolev norms of T and S = T−1. To prove the corresponding a-priori bounds
is the main technical difficulty of our approach.

Note that we are free to choose any type of transportation mappings provided
they have sufficient regularity. In this paper we deal with triangular mass trans-
portation. A short discussion about the optimal transportation approach can be
found in the very last section of this paper. The advantage of these mappings is
their simple form. Even in the infinite-dimensional case they have essentially finite-
dimensional structure. We obtain some Sobolev estimates on S and deduce from
them the existence result for (2). The key estimate for triangular mappings applied
in this paper looks as follows. Let S =

∑
i Si ·ei be the triangular mapping pushing

forward the measure ν onto the standard Gaussian measure γ. Then∫
‖∂xjS‖2l2 dν =

∑
i≥j

∫ (
∂xjSi

)2
dν ≤

∫
β2
j dν.

Here βj is the logarithmic derivative of ν along xj . For more details on triangular
mappings see [8].

The paper is organized as follows. In Section 2 we prove an extension of the
results from [7]. In particular, we weaken some assumptions in [7] by introducing
a slightly weaker notion of solution (see Remark 2.1). In Section 3 we establish
Sobolev estimates for triangular mappings. In Section 4 we prove the key technical
relations between transport equations and mass transfer. The existence result is
proved in Sections 5. Sections 6-7 deal with the uniqueness in the product and
Gibbsian case. In particular, we prove a uniqueness result for log-concave Gibbs
measures with the following formal Hamiltonian

∞∑
i=1

Vi(xi) +

∞∑
i,j=1

Wi,j(xi, xk).

In Section 8 we briefly discuss the approach via optimal transportation mappings
and the finite-dimensional case. In particular, we prove an existence and uniqueness
theorem for a broad class of log-concave measures under ”dimension-free” assump-
tions. Furthermore, in Example 8.5 we give an example in the finite-dimensional
case, for which our result (see Theorem 8.4) implies existence and uniqueness for
(2), where b : R∞ → R∞ is not BV (hence the results of [7], [4] are not applicable).

Notations: Throughout the paper p∗ is the dual numbers to p ∈ [1,∞[: 1
p+ 1

p∗ =

1. We denote by Fn the σ-algebra generated by the projection Pn(x) = (x1, · · · , xn)
and by EFnν the corresponding conditional expectation. Everywhere below ‖ · ‖
means the standard l2-norm (finite and infinite dimensional). We denote by ∇ and
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D2 the derivatives of first and second order along H = l2 respectively. For every
linear operator A : l2 → l2 the notation ‖A‖ means the standard operator norm and

‖A‖HS =
√

Tr(A∗A) the Hilbert-Schmidt norm. The time derivative of a function

f is denoted by ḟ . We fix the standard orthogonal basis in R∞ consisting of vectors
ei = (δij)j∈N. We use the word ”positive” in the sense of ”strictly positive” (i.e.
”> 0”), otherwise we say ”nonnegative”

2. The Gaussian case

In this paper we use the following core of smooth cylindrical functions: C is the
linear span of all infinitely differentiable functions ϕ(x1, · · · , xn) depending on a
finite number of coordinates and having a compact (considered as functions on Rn)
support.

Remark 2.1. (i) The use of functions of the form ϕ(x1, · · · , xn), ϕ ∈ C∞0 (Rn),
is natural for R∞, but differs from the standard core in the Gaussian case,
where ϕ usually depends on a finite collection of measurable functionals
Xhi , hi ∈ H, which are N (0, ‖hi‖2)-distributed.

(ii) Clearly, C separates the points of R∞. Furthermore, a simple monotone
class argument shows that C is dense in any Lp(ν), p ∈ [1,∞) and any
finite measure ν on R∞.

Let ν be a probability measure on R∞.
Throughout the paper it is assumed that

H1) all the projections

νn = ν ◦ P−1n ,

where Pn(x) = (x1, · · · , xn), have Lebesgue densities.
H2) for every i ∈ N there exists a function βi ∈ L1(ν) such that∫

∂eiϕ dν = −
∫
ϕβi dν.

for every ϕ ∈ C.
βi is called logarithmic derivative of ν along ei

Remark 2.2. Note that these assumptions are not independent: H2) implies H1)
for n = 1.

Remark 2.3. It is important to keep in mind that the projections νn also have
logarithmic derivatives given by the conditional expectations EFnν βi.

We say that a mapping b : R∞ → R∞ has divergence divνb ∈ L1(ν) if the
following relation holds for every ϕ ∈ C:

(5)

∫
divνb ϕ dν = −

∫
〈b,∇ϕ〉 dν.

For an account in infinite-dimensional analysis on spaces with differentiable mea-
sures the readers are referred to [8], [9].

We study (2), where ρ = ρ(t, x) is a family of probability densities with respect
to ν with initial condition ρ(0, ·) = ρ0, i.e. we are looking for solutions ρ(t, x) given
as densities of a family of probability measures µt(dx) = ρ(t, x) · ν(dx).
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Definition 2.4. We say that ρ is a solution of (2) for t ∈ [0, T ] with initial value
ρ0 if for every ϕ ∈ C and t ∈ [0, T ] one has

(6)

∫
ϕρ(t, x) dν =

∫
ϕρ(0, x) dν +

∫ t

0

∫
〈b,∇ϕ〉ρ(s, x) dν ds.

Remark 2.5. The solution in the finite-dimensional case is defined in the same way.

Remark 2.6. We note that the existence of the right-hand side is not obvious be-
cause it is not clear a-priori that 〈b,∇ϕ〉ρ(s, x) ∈ L1(I[0,t]ds × ν). Nevertheless,
we will see in the following Lemma that this is indeed the case if c defined in (4)
satisfies some natural assumptions.

The following result has been proved by Ambrosio and Figalli in [7] (Theorem
6.1) for ρ0 ∈ L∞(γ). The proof of this result is the same and so we omit it here.

Lemma 2.7. Consider the standard Gaussian measure γ on Rd. Let ‖c‖ ∈ Lp(γ),

p > 1 and ‖ exp
(
ε(divγc)−

)
‖L1(γ) < ∞ for some ε > 0. Then for any ρ0 ∈ Lq

′
(γ)

with q′ > q = p
p−1 = p∗ there exists T = T (ε, p, q′) > 0 such that the equation

ρ̇+ divγ
(
c · ρ

)
= 0

admits a solution ρ on [0, T ] satisfying supt∈[0,T ] ‖ρt‖Lq(γ) <∞.

Let us give the idea how to control the Lp-norms of ρt via divγc needed in the
proof of Lemma 2.7. Below we set for brevity

ρt = ρ(t, ·), and Xt := X(t, ·)
(see (3)). The well known change of variables formula for the mapping x→ Xt(x)
is given by the Liouville formula:

ρt(Xt) = ρ0 · exp
(
−
∫ t

0

divγc(Xr) dr
)

= ρs(Xs) exp
(
−
∫ t

s

divγc(Xr) dr
)
.

One has for any q ≥ 1∫
ρqt dγ =

∫
ρq−1t (Xt)ρ0 dγ =

∫
ρq0 exp

(
−
∫ t

0

(q − 1)divγc(Xr) dr
)
dγ

≤ 1

t

∫ t

0

∫
ρq0 exp

(
−t(q − 1)divγc(Xr)

)
dγ dr.

Applying the Hölder inequality and change of variables one gets that Λ(t) =∫ t
0

∫
ρqr dγ dr satisfies Λ′ ≤ C(Λ/t)δ for some δ > 0. By the standard arguments

one gets that Λ′ is uniformly bounded. This finally gives the following key estimate
for ρt: for any q′ > q there exist positive constants q1(q, q′), q2(q, q′) such that

(7)

∫
ρqt dγ ≤

(∫
ρq
′

0 dγ
)q1 ∫ t

0

∫
exp
(
q2t[divγc]−

)
dγ dr.

Clearly, under assumptions of Lemma 2.7 the right-hand side of the inequality is
finite for sufficiently small t.

Lemma 2.8. Let c satisfy the assumptions of Lemma 2.7 and f be a bounded
Lipschitz function:

|f |Lip = sup
x 6=y

|f(x)− f(y)|
‖x− y‖

<∞.

Then the solution ρt obtained in Lemma 2.7 satisfies the following property:
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1) If, in addition,

divγc ∈ LN (γ), ‖c‖ ∈ Lp
′
(γ) for some N > q∗, p′ > p,

then there exist positive constants C, δ depending on

p, q, p′, q′, ‖c‖Lp′ (γ), ‖divγc‖LN (γ), ‖ exp
(
ε(divγc)−

)
‖L1(γ)

‖ρ0‖Lq′ (γ), sup |f |, |f |Lip

such that

(8)
∣∣∣∫ fρ1+δt dγ −

∫
fρ1+δs dγ

∣∣∣ ≤ C|t− s|, for all t, s ∈ [0, T ].

2) Without any extra assumption there exists a positive constant C depending on

p, q′, ‖c‖Lp(γ), ‖ exp
(
ε(divγc)−

)
‖L1(γ), ‖ρ0‖Lq′ (γ), |f |Lip

such that

(9)
∣∣∣∫ fρt dγ −

∫
fρs dγ

∣∣∣ ≤ C|t− s|, for all t, s ∈ [0, T ].

Proof. We proof only 1) because the proof of 2) is easier and follows the same
line. In the same way as in [7] we reduce the proof to the case when X(t, x) is a

globally defined smooth solution to Ẋ = c(X), X(0, x) = x. We apply the change
of variables formula for the mapping x → Xt(x). Let s < t, δ > 0 and f be a
bounded Lipschitz function.∫

ρ1+δt f dγ =

∫
ρδt (Xt)f(Xt)ρ0 dγ

=

∫
ρδs(Xs)f(Xt) exp

(
−δ
∫ t

s

divγc(Xr) dr
)
ρ0 dγ

=

∫
ρδs(Xs)f(Xt) dγ +

∫
ρδs(Xs)f(Xt)

[
exp
(
−δ
∫ t

s

divγc(Xr) dr
)
− 1
]
ρ0 dγ

=

∫
ρ1+δs f dγ +

∫
ρδs(Xs)

(
f(Xt)− f(Xs)

)
ρ0 dγ

+

∫
ρδs(Xs)f(Xt)

[
exp
(
−δ
∫ t

s

divγc(Xr) dr
)
− 1
]
ρ0 dγ.

Here we use that ρs · γ is the image of ρ0 · γ under x → X(t, x). Note that
|e−t − 1| ≤ u(t), where u(t) = emax{−t,0}|t|. Since f is convex one can apply the
Jensen inequality. Then the last term in the right-hand side of the above inequality
can be estimated by

sup |f |
t− s

∫
ρδs(Xs)

∫ t

s

u
(
δ(t− s)divγc(Xr)

)
dr ρ0 dγ.

The latter can be estimated by

sup |f |
[∫

ρq1δ+1
s dγ

] 1
q1
[ 1

t− s

∫ ∫ t

s

uq
∗
1
(
δ(t− s)divγc

)
ρr dr dγ

] 1
q∗1

≤ sup |f |
[∫

ρq1δ+1
s dγ

] 1
q1

[ 1

t− s

∫ ∫ t

s

uq
∗
1q
∗(
δ(t− s)divγc

)
dr dγ

] 1
q∗1q
∗ [ 1

t− s

∫ ∫ t

s

ρqr dr dγ
] 1
q∗1q .
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Applying again the Hölder inequality and Lemma 2.7 (see (7)) it is easy to show
that the latter does not exceed C|t − s| for some C, ε where t − s, δ are chosen
sufficiently small and q∗1 close to 1.

Analogously, we estimate∫
ρδs(Xs)

(
f(Xt)− f(Xs)

)
ρ0 dγ ≤ ‖f‖Lip

∫
ρδs(Xs)

∫ t

s

‖c(Xr)‖ drρ0 dγ

≤ (t− s)‖f‖Lip

[∫
ρp2δ+1
s dγ

] 1
p2
[∫ 1

t− s

∫ t

s

‖c‖p
∗
2ρr drdγ

] 1
p∗2

≤ (t− s)‖f‖Lip

[∫
ρp2δ+1
s dγ

] 1
p2
[∫
‖c‖p

∗
2p dγ

] 1
p∗2p
[ 1

t− s

∫ ∫ t

s

ρqr drdγ
] 1
p∗2q .

Choosing p∗2 close to 1 and a sufficiently small δ we get the desired result. �

Remark 2.9. Below we generalize the existence result of [7] in infinite dimensions
which has been established under the assumption that ‖c‖ ∈ Lp(γ), p > 1. We
prove it under the weaker assumption ci ∈ Lp(γ). Furthermore, we work with our
slightly weaker notion of solution from Definition 2.4 above.

Lemma 2.10. Let ν = γ =
∏∞
i=1 γi be a product of the standard Gaussian mea-

sures. Assume that c = (ci) : R∞ → R∞ is a mapping satisfying:

1) There exists p > 1 such that ci ∈ Lp(γ) for every i.
2) The divergence divγc satisfies

(10) exp
(
ε(divγc)−

)
∈ L1(γ).

Then there exists T = T (ε, p, q′) > 0 such that the equation ρ̇ + divγ
(
c · ρ

)
= 0

has a solution ρt on [0, T ] for every initial condition ρ0 ∈ Lq
′
(γ) with some q′ >

p
p−1 = p∗. In addition, supt∈[0,T ] ‖ρ(t, ·)‖Lq(γ) <∞.

Proof. Let us set:

c(n) =

n∑
i=1

EFnγ ci · ei

and

ρ0,n ·
(
γ ◦ P−1n

)
=
(
ρ0 · γ

)
◦ P−1n .

Equivalently, ρ0,n = IEFnγ ρ0. Note that assumption 1) ensures that c(n) is well-
defined.

It is well-known (and easy to check) that

divγc(n) = EFnγ [divγc].

This relation easily implies that [divγc(n)]− ≤ EFnγ [divγc]− and |divγc(n)|m ≤
EFnγ |divγc|m, m ≥ 1.

By convexity and Jensen’s inequality one has

c(n) ∈ Lp
(
γ ◦ P−1n

)
.

Consider the equation

ρ̇n + divγ(ρn · c(n)) = 0
7



with ρn|t=0 = ρ0,n. Since ‖ρ0,n‖Lq′ (γ) ≤ ‖ρ0‖Lq′ (γ), we get by Lemma 2.8 that

there exists T = T (ε, p, q′) > 0 such that this equation admits a solution ρn on
[0, T ] satisfying the following dimension-free bound

M = sup
t∈[0,T ],n∈N

‖ρn(t, ·)‖Lq(γ) <∞.

For any function ϕ ∈ C, the following identity holds:

(11)

∫
ϕρn(t, x) dγ =

∫
ϕρn(0, x) dγ +

∫ t

0

∫
〈cn,∇ϕ〉ρn(s, x) dγ ds.

Applying a diagonal argument one can extract a subsequence (which is denoted
in what follows again by ρn) such that {ρn(tk, x)} converges weakly in Lq(γ) to some
function ρ(tk, x) for any tk from a dense countable subsequence I = {tk} ⊂ [0, T ].
Then {ρn(t, x)} converges weakly in Lq(γ) for any t ∈ [0, T ] to a function denoted
in what follows by ρ(t, x). Indeed, since

sup
n
‖ρn(t, x)‖Lq(γ) <∞,

by a standard subsequence argument it is enough to show that {
∫
fρn(t, x) dγ} is a

convergent sequence for every f ∈ Lp(γ). Clearly, it is sufficient to check the claim
for functions from C. Since for such a function f ∈ C the sequence {

∫
fρn(tk, x) dγ}

is convergent for every tk ∈ I, it follows easily from the estimate (9) (we use here
that f is cylindrical, hence the right-hand side of (9) depends on a finite collection of
ci) that {

∫
fρn(t, x) dγ} is a Cauchy sequence. Thus, we get that ρn(t, x)→ ρ(t, x)

weakly in Lq(γ) for every t ∈ [0, T ].
One has for every smooth cylindrical function ϕ = ϕ(x1, · · · , xk)

lim
n

(∫
ϕρn(t, x) dγ −

∫
ϕρn(0, x) dγ

)
=

∫
ϕρ(t, x) dγ −

∫
ϕρ(0, x) dγ.

Set: gn(s) =
∫
〈cn,∇ϕ〉ρn(s, x) dγ. Using the convergence c(n) → c in Lp(γ), one

gets

lim
n
gn(s) = lim

n

∫
〈cn,∇ϕ〉ρn(s, x) dγ =

∫
〈c,∇ϕ〉ρ(s, x) dγ = g(s)

for every s ∈ [0, T ]. Clearly,

sup
s∈[0,T ],n∈N

|gn(s)| ≤ sup
s∈[0,T ],n∈N

‖ρn(s, ·)‖Lq(γ)‖Pk ◦ c‖Lp(γ)‖∇ϕ‖L∞(γ).

Then the Lebesgue dominated convergence theorem implies∫ t

0

∫
〈cn,∇ϕ〉ρn(s, x) dγ ds→

∫ t

0

∫
〈c,∇ϕ〉ρ(s, x) dν ds.

Passing to the limit in (11) we get that ρ is the desired solution. �

Before we proceed to the general case, let us explain the main idea of the proof.
We construct a mapping T pushing forward another measure µ onto ν. If T is
sufficiently smooth, one can define the following new drift:

c = DS(T ) · b(T ),

where S is the inverse mapping to T . One has

µ = ν ◦ S−1
8



and

(DT )−1 = DS(T ).

Let us give a heuristic proof of the key relation:

(12) divµc ◦ S = divνb.

Take a test function ϕ ∈ C. One has

(13)

∫
〈∇ϕ, c〉 ◦S dν =

∫
〈∇ϕ, c〉 dµ = −

∫
ϕ divµc dµ = −

∫
ϕ(S) divµc◦S dν.

On the other hand, we note that by the chain rule

(14) ∇(ϕ(S)) = (DS)∗∇ϕ(S).

Hence
∫
〈∇ϕ, c〉 ◦ S dν is equal to

(15)

∫
〈(DS∗)−1∇(ϕ(S)), c(S)〉 dν =

∫
〈∇(ϕ(S)), b〉 dν = −

∫
ϕ(S)divνb dν.

Obviously, (13) and (15) imply (12).
Now let us try to solve the equation

ρ̇+ divν(ρ · b) = 0

for a wide class of probability measures. Assume that ν is the image of the standard
Gaussian measure γ under a mapping T . Setting c = DT−1 · b(T ) = DS(T ) · b(T )
we transform the equation into

(16) ġ + divγ(g · c) = 0,

where every ρ · µ is the image of g · γ under T . Applying Lemma 2.10 we obtain a
solution to (16). Then the function

ρ(t, x) = g(t, T−1(x))

presents the desired solution. This follows immediately from the definition of solu-
tion in Definition 2.4 and the change of variables formula.

3. Sobolev estimates for triangular mappings

Consider a Borel probability measure µ on R∞. We denote by µi = µ ◦ P−1i

the projection of µ onto the subspace generated by the first i basis vectors. Recall
that throughout the paper µi is assumed to have a Lebesgue density, which will be
denoted by ρµi . For every fixed x = (x1, · · · , xi−1) we denote by µ⊥x,i the corre-
sponding one-dimensional conditional measure obtained from the disintegration
of µi with respect to µi−1. Note that µi−1 = µi ◦P−1i−1. These measures are related
by the following identity∫

ϕρµidx =

∫
ϕ(x, xi) µi(dxdxi) =

∫ (∫
ϕ(x, xi)µ

⊥
x,i(dxi)

)
µi−1(dx)

for all bounded Borel ϕ : Ri → R.
If for µi-almost points x the corresponding conditional measures µ⊥x,i have Lebesgue

densities, they will be denoted by ρµ⊥x,i . In this case the latter formula reads as∫
ϕρµidx =

∫ (∫
ϕ(x, xi)ρµ⊥x,idxi

)
ρµi−1(x) dx.

9



In this section we study a-priori estimates for so-called triangular mappings. We
call a mapping T : R∞ → R∞ triangular if it has the form

T =

∞∑
i=1

Ti(x1, · · · , xi)ei

and, in addition, xi → Ti(x1, · · · , xi) is an increasing function.
Given two probability measures µ and ν on R∞ we are looking for a triangular

mapping T : R∞ → R∞ pushing forward µ onto ν. The proof of existence of
mappings of such type on R∞ for a broad class of measures can be found in ([12],
[8]). It relies on the fact that T can be precisely described in terms of conditional
probabilities of µ and ν. In the one-dimensional case T = Tµ,ν is defined by the
relation ∫ x

−∞
ρµ(t) dt =

∫ T (x)

−∞
ρν(t) dt.

In the finite- and infinite-dimensional case T is obtained by induction

1) T1 is the increasing transport of the projections on the first coordinate

(17) T1(x1) = Tµ1,ν1(x1)

2) Ti, i > 1, is the increasing transport of the one-dimensional conditional
measures µ̃, ν̃:

(18) Ti(x1, · · · , xi) = Tµ̃,ν̃(xi),

where µ̃ = µ⊥x,i, ν̃ = ν⊥Ti−1(x),i
, x = (x1, · · · , xi−1).

The existence result and the basic properties formulated in the following theorem
have been proved in the ([11], [12]).

Theorem 3.1. Let µ be a probability measure on R∞ satisfying the following as-
sumptions:

1) Any projection µi, i ∈ N, is absolutely continuous measure with respect to
Lebesgue measure on Ri.

2) For µi-almost all x the corresponding conditional measures µ⊥x,i are abso-
lutely continuous, with respect to Lebesgue measure on R.

Then there exists a triangular mapping T pushing forward µ onto ν. The mapping
T is unique up to a set of µ-measure zero.

Let ν be another such measure. Then there exists a triangular mapping S pushing
forward ν onto µ. In addition, they are reciprocal:

T ◦ S = Id ν − a.e.

S ◦ T = Id µ− a.e.

Remark 3.2. The absolute continuity of µ⊥x,i follows, in particular, from the absolute
continuity of the conditional measures of µ in the direction ei. The latter follows in
turn from the existence of the logarithmic derivative βi. In particular, the measures
satisfying our general assumptions from Section 2 do satisfy the assumptions of
Theorem 3.1.

Note that in the one-dimensional case T and S are just non-decreasing mappings
which can be written exactly in terms of the distribution functions of µ and ν. Hence
T (S) admits classical pointwise derivative T ′ µ (ν)-almost everywhere. One can
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easily check that T ′ is µ-a.e. positive, because otherwise ν has a non-trivial singular
part. In particular

T ′(S) · S′ = 1, µ− a.e.

Remark 3.3. Since every Ti is constructed as a one-dimensional increasing trans-
portation of conditional measures, the following generalization of the above relation

∂xiTi(S) · ∂xiSi = 1 µ− a.e..

is valid in the finite- and infinite-dimensional case.

If T and S are smooth (meaning that every function Ti, Si is smooth) then their
Jacobian matrices are triangular:

DT =


∂x1

T1 0 0 · · · 0 0 0 · · ·
∂x1T2 ∂x2T2 0 · · · 0 0 0 · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
∂x1

Ti ∂x2
Ti ∂x3

Ti · · · ∂xi−1
Ti ∂xiTi 0 · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·



DS =


∂x1

S1 0 0 · · · 0 0 0 · · ·
∂x1

S2 ∂x2
S2 0 · · · 0 0 0 · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·
∂x1

Si ∂x2
Si ∂x3

Si · · · ∂xi−1
Si ∂xiSi 0 · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·


In addition, if all ∂xiTi(x) 6= 0 at x (which happens µ-a.e.), then

DS(T (x)) = (DT )−1.

In this section we establish global Sobolev estimates for triangular mappings.
Note that some (dimension-dependent) Sobolev estimates for the triangular map-
pings have been obtained in [29]. See also [25] for similar results on optimal trans-
portation.

Definition 3.4. Let ν be a probability measure on R∞ and f ∈ L1(ν). We say
that ∂xif is a Sobolev partial derivative of f if fβi ∈ L1(ν) and∫

∂xif · ϕ dν = −
∫
f · ∂xiϕ dν −

∫
fϕβi dν

for every ϕ ∈ C. Obviously, this defines ∂xif uniquely.

Definition 3.5. Let p ∈ (1,∞) and ν be a probability measure such that βi ∈
Lp
∗
(ν) for all i. We say that a function f belongs to the Sobolev class W 1,p(ν) if

‖f‖Lp(ν) +
∥∥∥( ∞∑

i=1

f2xi
)1/2∥∥∥

Lp(ν)
<∞.

If, in addition, every fxi has all Sobolev partial derivatives in Lp(ν) and

‖D2f‖HS =
(∑
i,j

f2xixj
) 1

2 ∈ Lp(ν),

we say that f ∈W 2,p(ν).

Remark 3.6. Though we shall not use this below, it follows by [3] that due to the
assumption that βi ∈ Lp

∗
(ν) for all i ∈ N both W 1,p(ν) and W 2,p(ν) are complete.
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All derivatives of S and T below will be understood in the Sobolev sense, with
respect to ν and µ respectively.

We start with a one-dimensional estimate.

Proposition 3.7. Let µ = e−V dx, ν = e−W dx be two probability measures on
R with continuously differentiable functions V and W . Consider the increasing
mapping T pushing forward µ onto ν. Assume that

xW ′(x) ≥ −1 + ε

p− 1

for some p > 1 and ε > 0. Assume, in addition, that |x|
p(p+δ)
δ ∈ L1(ν), |V ′|p+δ ∈

L1(µ) for some δ > 0. Then T ′ := DT ∈ Lp(µ).

Proof. By the change of variables formula
∫ x
−∞ e−V (t) dt =

∫ T (x)

−∞ e−W (t) dt. Clearly,
this implies that T is differentiable and

e−V = T ′e−W (T ).

Moreover, T ′ = eW (T )−V is continuously differentiable and satisfies

T
′′

= T ′
(
W ′(T )T ′ − V ′

)
.

Take a positive test function ξ. Integrating by parts one obtains∫
R
(T ′)pe−V ξ dx =

= −(p− 1)

∫
R
T (T ′)p−2T

′′
e−V ξ dx+

∫
R
T (T ′)p−1V ′e−V ξ dx−

∫
R

(T ′)p−1e−V ξ′ dx

= −(p− 1)

∫
R
TW ′(T )(T ′)pe−V ξ dx+ p

∫
R
T (T ′)p−1V ′e−V ξ dx−

∫
R

(T ′)p−1e−V ξ′ dx.

Note that

ε

∫
R

(T ′)pe−V ξ dx ≤ −p
∫
R
T (T ′)p−1V ′e−V ξ dx−

∫
R

(T ′)p−1e−V ξ′ dx

≤ ε

2

∫
R
(T ′)pe−V ξ dx+N(ε, p)

∫
R
T p(V ′)pe−V ξ dx−

∫
R

(T ′)p−1e−V ξ′ dx.

By the Hölder inequality∫
R
T p(V ′)pe−V ξ dx ≤

∫
R

(V ′)p+δe−V ξ dx+ C(δ, p)

∫
R
T
p(p+δ)
δ e−V ξ dx

=

∫
R
(V ′)p+δe−V ξ dx+ C(δ, p)

∫
R

|x|
p(p+δ)
δ e−W ξ dx,

−
∫
R

(T ′)p−1e−V ξ′ dx ≤ ε

4

∫
R

(T ′)pe−V ξ dx+ c(p, ε)

∫
R

∣∣∣ξ′
ξ

∣∣∣pξe−V dx.

Thus, we obtain a bound for
∫
R(T ′)p(V ′)pe−V ξ dx. Taking a suitable sequence

{ξn} with ξn → 1 and limn

∫
R

∣∣∣ ξ′nξn ∣∣∣pξne−V dx = 0 we complete the proof. �

Now let us come back to the infinite-dimensional case. Below in the proofs we
apply the following scheme.

1) Prove the statement for smooth positive densities.
2) Approximate the Sobolev densities by smooth positive densities and deduce

the desired estimates.
12



First, we need an approximation lemma.

Lemma 3.8. For every probability measure ν = ρ dx on Rd satisfying βi =
ρxi
ρ ∈

Lp(ν) for some p ≥ 1 (with βi := 0 on {ρ = 0}) and all 1 ≤ i ≤ d there exists a
sequence of probability measures νn = ρn dx such that

1) νn → ν in variation norm,

2) limn

∫ ∥∥∥∇ρnρn ∥∥∥pρn dx =
∫ ∥∥∥∇ρρ ∥∥∥pρ dx.

3) every ρn is smooth and nonnegative,
4) the partial derivatives ∂xiρn are uniformly bounded and integrable for every

i, n.

Moreover, if every logarithmic derivative βi has Sobolev derivative along any coor-
dinate xj and, in addition, there exists p ≥ 1 such that

∂xjβi =
∂xixjρ

ρ
−
∂xiρ · ∂xjρ

ρ2
∈ Lp(ν), βi ∈ L2p(ν)

then item 2) can be strengthened as follows:

lim
n

∫ ∥∥∥∇ρn
ρn

∥∥∥2pρn dx =

∫ ∥∥∥∇ρ
ρ

∥∥∥2pρ dx, lim
n

∫ ∣∣∂xixjρn
ρn

∣∣pρn dx =

∫ ∣∣∣∂xixjρ
ρ

∣∣∣pρ dx.
Sketch of the proof: The proof is quite standard and we only give a sketch

here. It consists of two steps: 1) approximate ρ by ϕn ·ρ, where {ϕn} is a sequence of

smooth nonnegative compactly supported functions satisfying supx

∥∥∥∇ϕnϕn

∥∥∥pϕn <∞
for every n such that ϕn → 1 pointwise; 2) approximate compactly supported ρ

by the ordinary convolutions with smooth kernels (2πt)
d
2 e−

x2

2t2 . For 2) we apply
Jensen’s inequality and Fatou’s lemma.

Remark 3.9. It is straightforward to check using (17), (18) that T and S are contin-
uously differentiable, µ = e−V dx, ν = e−W dx, and V,W have uniformly bounded
derivatives. Note that in this case all conditional measures have positive densities
and all the derivatives ∂xiSi, ∂xiTi are positive. More precise statements about the
regularity of triangular mappings can be found in [12] (Lemma 2.6) and [29].

Proposition 3.10. Consider the triangular mapping S pushing forward ν onto
γ. Assume that βi ∈ L2(ν) for all i. Then for every i the mapping Si belongs to
W 1,2(ν). In particular, the following estimates hold:∫ (

∂xiSi
)2
dν ≤

∫ (
IEFiν βi

)2
dν,∫ (

∂xjSi
)2
dν ≤

∫ (
IEFiν βj

)2
dν −

∫ (
IEFi−1
ν βj

)2
dν, i > j.

In particular,

‖∂xjS‖2 =
∑
i≥j

∫ (
∂xjSi

)2
dν ≤

∫
β2
j dν.

Proof. First, we note that due to the finite-dimensional structure of triangular
mappings it is sufficient to establish the statement for finite-dimensional measures.
We start with the case when ρν = e−V , where V is a smooth function on Rd with
uniformly bounded derivatives.
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In the proof we apply the following relation between the logarithmic derivatives
and conditional densities of the corresponding projections

IEFiν βi =
∂xiρν⊥x,i
ρν⊥x,i

.

We keep the notation ργ for the Lebesgue density of the 1-dimensional standard
Gaussian measure γ:

ργ =
1√
2π
e−

t2

2 .

According to Remark 3.9 all the functions Si are continuously differentiable and
∂xiSi > 0. It follows by the change of variables formula that

∫
S2
i dν =

∫
x2i dγ,

hence Si ∈ L2(ν). This implies that ∂xiSi ∈ L1(ν). Indeed∫
∂xiSi dν = −

∫
Siβi dν ≤ ‖Si‖L2(ν)‖βi‖L2(ν).

Let us estimate
∫ (
∂xiSi

)2
dν. One has the following explicit formula for Si (we

stress that the expression below makes sense because ρν is positive as well as the
densities of its projections and conditional measures):

(19)

∫ Si(x,xi)

−∞
ργ(t) dt =

∫ xi

−∞
ρν⊥x,i(t) dt,

where

ρν⊥x,i(t) =
ρνi(x, t)∫∞

−∞ ρνi(x, t) dt
.

Differentiating (19) along xi one obtains

(20)
ρν⊥x,i
ργ(Si)

= ∂xiSi.

Formally applying integration by parts we get∫ (
∂xiSi

)2
dν =

∫
∂xiSi

ρν⊥x,i
ργ(Si)

dν = −
∫
∂xiSi · S2

i

ρν⊥x,i
ργ(Si)

dν

− 2

∫
Si
∂xiρν⊥x,i
ργ(Si)

dν ≤
∫

1

∂xiSi

(∂xiρν⊥x,i
ρν⊥x,i

)2 ρν⊥x,i
ργ(Si)

dν =

=

∫ (∂xiρν⊥x,i
ρν⊥x,i

)2
dν =

∫ (
IEFiν βi

)2
dν.

To justify the above computation we integrate not over ν but over ξ · ν, where ξ is
a compactly supported smooth function on Rd. By the same arguments one gets∫ (

∂xiSi
)2
ξ dν ≤ (1 + ε)

∫ (
IEFiν βi

)2
ξ dν + c(ε)

∫ (∂xiξ
ξ

)2
ξ dν.

Choosing ”an appropriate” convergent sequence ξk → 1 with limk

∫ (∂xiξk
ξk

)2
ξk dν =

0 one easily gets the desired result.
Analogously, one has for ∂xjSi, i 6= j:

ργ(Si)∂xjSi =

∫ xi
−∞ ∂xjρνi(x, t) dt∫∞
−∞ ρνi(x, t) dt

−
∫ xi
−∞ ρνi(x, t)dt

∫∞
−∞ ∂xjρνi(x, t) dt·(∫∞

−∞ ρνi(x, t) dt
)2 .
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Denoting the right-hand side by f one gets

(21)
∂xjSi

∂xiSi
=

f

ρν⊥x,i
.

Consider the following formal computations∫ (
∂xjSi

)2
dν =

∫ (
∂xiSi

)2 f2

ρ2
ν⊥x,i

dν =

∫
∂xiSi
ργ(Si)

f2

ρν⊥x,i
dν

=

∫ ∫
∂xiSi
ργ(Si)

f2 dνi−1 dxi = −
∫ ∫

∂xiSi
ργ(Si)

S2
i f

2 dνi−1 dxi

− 2

∫ ∫
Si

ργ(Si)
ffxi dνi−1 dxi ≤

∫ ∫
f2xi

ργ(Si)∂xiSi
dνi−1 dxi

=

∫ ( fxi
ρν⊥x,i

)2
dνi =

∫ (∂xjρνi
ρνi

−
∫∞
−∞ ∂xjρνi(x, t) dt∫∞
−∞ ρνi(x, t) dt

)2
dν

=

∫ (
IEFiν βj − IEFi−1

ν βj

)2
dν =

∫ (
IEFiν βj − IEFi−1

ν βj

)2
dν

=

∫ (
IEFiν βj

)2
dν −

∫ (
IEFi−1
ν βj

)2
dν.

To justify the global integration above we integrate again with respect to ξ · ν,
where ξ is a compactly supported smooth positive function on Rd. Repeating the
above arguments one gets∫ (

∂xjSi
)2
ξ dν = −

∫
Si · ∂xjSi · ∂xiξ dν −

∫ ∫
∂xiSi
ργ(Si)

S2
i f

2ξ dνi−1 dxi

− 2

∫ ∫
Si

ργ(Si)
ffxiξ dνi−1 dxi

The term −
∫
Si · ∂xjSi · ∂xiξ dν can be estimated by

ε

∫
(∂xjSi)

2ξ dν +
4

ε

∫
S2
i

(∂xiξ
ξ

)2
ξ dν.

Finally

(1− ε)
∫ (

∂xjSi
)2
ξ dν ≤

∫ (
IEFiν βj − IEFi−1

ν βj

)2
ξ dν +

4

ε

∫
S2
i

(∂xiξ
ξ

)2
ξ dν.

Estimating the term
∫
S2
i

(∂xiξ
ξ

)2
ξ dν by the Hölder inequality and choosing an

appropriate sequence ξn → 1 we complete the justification of the above formal
computation.

It remains to approximate an arbitrary density ρ on Rd with
∫
β2
i ρ dx < ∞ by

smooth densities and prove that the desired a-priori estimate is preserved under
taking the limit. Indeed, let ρ(k) = e−Vk be approximating densities constructed in

Lemma 3.8. Let S(k) be the triangular mappings pushing forward ρ(k) dx onto γ.

Note that the functions S
(k)
i · ρ(k) are in W 1,1(Rn). Indeed,∫

‖DS(k)‖HSρ(k) dx ≤
[∫
‖DS(k)‖2HSρ(k) dx

]1/2
≤
∑
i

∫
(β

(k)
i )2ρ(k) dx ≤ ‖

√
ρ(k)‖2W 1,2(Rn)
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and∫
|S(k)
i |‖∇ρ(k)‖ dx ≤

[∫
|S(k)
i |

2ρ(k) dx
]1/2
‖√ρ(k)‖W 1,2(Rn) =

[∫
x2i dγ

]1/2
‖√ρ(k)‖W 1,2(Rn).

Using Sobolev embeddings and extracting an almost everywhere convergent subse-
quence one can assume from the very beginning that S(k) · ρ(k) converges almost
everywhere. Using that ρ(k) converges almost everywhere to ρ, one can easily see

that S(k) converges to a triangular mapping S at ν-almost all points. Using almost
everywhere convergence it is easy to check that S pushes forward ρ onto γ. From
the almost everywhere convergence and the following change of variables formula∫

‖S(k)‖2ρ(k) dx =

∫
‖x‖2 dγ =

∫
‖S‖2ρ dx,

one gets that S(k) · √ρ(k) converges to S · √ρ in L2(Rd). Applying the estimates

above one proves that ∇S(k)
i · √ρ(k) converges (up to a subsequence) weakly in

L2(Rn) to a vector field v . Standard integration by parts arguments show that v
can be identified with ∇Si ·

√
ρ. Indeed,∫

ϕ · ∂xiS(k)ρ(k) dx = −
∫
∂xiϕ · S(k)ρ(k) dx−

∫
ϕ S(k) · ∂xiρ(k) dx.

The left-hand side converges to
∫
ϕ · v√ρ dx and the right-hand side to

−
∫
∂xiϕ · Sρ dx−

∫
ϕ S · ∂xiρ dx

(this follows from the strong convergence of S(k) · √ρ(k) and ∇ρ(k)/
√
ρ(k)). Hence∫

|∂xiS|2ρ dx ≤ limk

∫
|∂xiS(k)|2ρ(k) dx ≤ lim

k

∑
i

∫
(β

(k)
i )2ρ(k) dx =

∑
i

∫
(βi)

2ρ dx.

The other estimates can be justified in the same way. Hence the proof is complete.
�

Remark 3.11. It is clear, that formula (20) remains true in the non-smooth setting,
for instance under the assumptions of Proposition 3.10. We understand ∂xiSi as
the Sobolev derivative or just as the classical derivative of the one-dimensional
increasing mapping xi → Si. Taking product from i = 1 to d in (20) we obtain the
change of variables formula

(22) ρν = (2π)−d/2e−
1
2 |S|

2

detDS =

d∏
i=1

ργ(Si) · ∂xiSi.

Remark 3.12. In what follows we will give a proof for a-priori estimates only in
the case of smooth and positive densities. The complete justification for Sobolev
densities can be spelt out as in the proof of Proposition 3.10.

In particular, note that since all the densities are positive and smooth, all the
expressions in the intermediate computations are well-defined.

We also note that in the general (i.e. Sobolev) case ∂xiSi remains positive ν-
almost everywhere, because ∂xiSi = 0 implies that the corresponding conditional
density of ν vanishes, which can happen only on a set of ν-measure zero.
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Remark 3.13. Another estimate of this type has been mentioned (without rigorous
proof) in [25] ∫

β2
i dν =

∫
‖∂xiS‖2 dν +

∑
k

∫ (∂xixkSk
∂xkSk

)2
dν.

Moreover, if the image measure µ is not Gaussian, but uniformly log-concave, i.e.
has the form µ = e−W dx with D2W ≥ K · Id, K > 0, then∫

β2
i dν ≥ K

∫
‖∂xiS‖2 dν +

∑
k

∫ (∂xixkSk
∂xkSk

)2
dν.

Remark 3.14. One can easily generalize Proposition 3.10 to the Lp-case. Under the
same assumptions for every p > 1 there exists C = C(p) such that∫ (

∂xiSi
)p
dν ≤ C(p)

∫ ∣∣IEFiν βi∣∣pdν
and ∫ ∣∣∂xjSi∣∣pdν ≤ C(p)

∫ ∣∣∣IEFiν βj − IEFi−1
ν βj

∣∣∣pdν.
The proof follows along the same line of arguments as above.

We prove some Lp-estimates for higher order derivatives. Taking logarithm of

both sides of the identity
ρ
ν⊥
x,i

ργ(Si)
= ∂xiSi and differentiating the result along xj one

gets
∂xjρν⊥x,i
ρν⊥x,i

+ Si · ∂xjSi =
∂xixjSi

∂xiSi
.

Hence

∂xixjSi = ∂xiSi
∂xjρν⊥x,i
ρν⊥x,i

+ Si · ∂xjSi · ∂xiSi.

Then applying the standard Hölder and Jensen inequalities and using that Si ∈
LN (η) for every N > 0, we get trivially the following bound.

Proposition 3.15. For every p > 1 and ε > 0 there exists C(p, ε) such that under
assumptions that βk ∈ Lp(ν) for all k, one has∥∥∥∂xixjSi

∂xiSi

∥∥∥
Lp(ν)

≤ C(p, ε)‖βj‖Lp+ε(ν)

and

‖∂xixjSi‖Lp(ν) ≤ C(p, ε) ‖|βi|p‖L2+ε(ν) · ‖|βj |p‖L2+ε(ν).

See also Remark 3.13.

It remains to estimate ‖∂xjxmSi‖Lp(ν) for j 6= i,m 6= i.

Proposition 3.16. Let j < m < i and p > 1. Assume that βj , βm ∈ L2p(ν) and
βj admits partial Sobolev derivative ∂xmβj ∈ Lp(ν).

Then there exists C(p) such that∫
|∂xjxmSi|p dν ≤ C(p)

∫ (
β2p
j + β2p

m + |∂xmβj |p
)
dν.
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Proof. In the same way as above the proof is reduced to the case where the densities
are smooth and positive and admits integrable derivatives (see Proposition 3.10).

For simplicity let us consider only the case p = 2. We use relation (21): ∂xjSi =

∂xiSi
f

ρ
ν⊥
x,i

with

(23) f =

∫ xi
−∞ ∂xjρνi(x, t) dt∫∞
−∞ ρνi(x, t) dt

−
∫ xi
−∞ ρνi(x, t)dt

∫∞
−∞ ∂xjρνi(x, t) dt·(∫∞

−∞ ρνi(x, t) dt
)2 .

Differentiating ∂xjSi = ∂xiSi
f

ρ
ν⊥
x,i

along xm we get

∂xjxmSi =∂xixmSi
f

ρν⊥x,i
+ ∂xiSi ·

∂

∂xm

[ f

ρν⊥x,i

]
= ∂xjSi

∂xixmSi
∂xiSi

+ ∂xiSi ·
∂

∂xm

[ f

ρν⊥x,i

]
= ∂xjSi

∂xixmSi
∂xiSi

− ∂xjSi
∂xmρν⊥x,i
ρν⊥x,i

+ ∂xiSi
∂xmf

ρν⊥x,i
.

The bounds for the first two terms follow immediately from the previous estimates.

Let us estimate
∫ (
∂xiSi

∂xmf
ρ
ν⊥
x,i

)2
. One has∫ (

∂xiSi
)2 f2xm
ρ2
ν⊥x,i

dν =

∫
∂xiSi
ργ(Si)

f2xm
ρν⊥x,i

dν =

∫ ∫
∂xiSi
ργ(Si)

f2xm dνi−1 dxi

= −
∫ ∫

∂xiSi
ργ(Si)

S2
i f

2
xm dνi−1 dxi − 2

∫ ∫
Si

ργ(Si)
fxmfxixm dνi−1 dxi

≤
∫ ∫

f2xixm
ργ(Si)∂xiSi

dνi−1 dxi =

∫ (fxixm
ρν⊥x,i

)2
dνi.

Differentiating (23) one gets

fxixm
ρν⊥x,i

=
∂xmxjρνi
ρνi

−
∂xjρνi
ρνi

∫∞
−∞ ∂xmρνi(x, t)dt∫∞
−∞ ρνi(x, t) dt

− ∂xmρνi
ρνi

∫∞
−∞ ∂xjρνi(x, t)dt∫∞
−∞ ρνi(x, t) dt

−
∫∞
−∞ ∂xjxmρνi(x, t)dt∫∞
−∞ ρνi(x, t) dt

+ 2

∫∞
−∞ ∂xmρνi(x, t)dt

∫∞
−∞ ∂xjρνi(x, t) dt(∫∞

−∞ ρνi(x, t) dt
)2 .

Arguing as above, we easily get

IE
(fxixm
ρν⊥x,i

)2
≤ C

∫ (
β4
j + β4

m + (∂xmβj)
2
)
dν.

Hence the proof is complete. �

4. Transfer of solutions

We consider in this section a probability measure ν on the space X, where
X = Rd or X = R∞. We denote by γ the standard Gaussian measure if X = Rd
and the product of the standard Gaussian measures on R1

γ =

∞∏
i=1

γi(dxi),

if X = R∞.
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Everywhere in this section S is the triangular mapping pushing forward ν onto
γ. As usual, we set: T = S−1 and c = DS(T ) · b(T ).

It will be assumed throughout that ν admits logarithmic derivatives βi ∈ Lp(ν),
i ∈ N, at least for some p > 1 (independent on i). Thus by Remark 3.14 the
functions Si are all Sobolev, more precisely Si ∈ Ln(ν) for all n and |∇Si| ∈ Lp(ν).

We also apply systematically the
Chain rule: for every f ∈ W 1,p(ν) and every smooth compactly supported

function ϕ on R one has ϕ(f) ∈W 1,p(ν) (see Lemma 2.6.9 [9]).
We also need the following important fact (see Theorem 2.6.11 [9]).

Theorem 4.1. Assume that d <∞, p ≥ 1. The set of smooth compactly supported
functions is dense in the weighted Sobolev space W 1,p(ν), ν = ρ dx provided log ρ ∈
W 1,p(ν).

Everywhere below βi is the logarithmic derivative of ν along ei.

Lemma 4.2. Assume that X = R∞ and βi ∈ Lp(ν), bi ∈ Lp
∗
(ν) for some p > 1

and all i. Assume that divνb ∈ L1(ν). Then every ci ∈ L1(γ) and, in addition, c
admits a divergence and the following relation holds: divγc ◦ S = divνb.

Proof. It is easy to see that for every ϕ ∈ C∞0 (Rn) the function ϕ(S) is cylindrical
and belongs to W 1,p(ν) by the chain rule. Clearly ∇ϕ(S) = (DS)∗∇ϕ(S). By
Theorem 4.1 there exists a sequence of C∞0 (Rn)-functions {ψk} such that ψk →
ϕ(S) and ∇ψk → ∇

[
ϕ(S)

]
in Lp(ν). This, in particular, implies that the relation

−
∫
f · divνb dν =

∫
〈∇f, b〉 dν holds for f = ϕ(S). The assumptions of this lemma

now imply that ci ∈ L1(γ) for every i. Hence∫
〈∇ϕ, c〉 dγ =

∫
〈∇ϕ, c〉 ◦ S dν =

∫
〈(DS∗)−1∇(ϕ(S)), c(S)〉 dν

=

∫
〈∇(ϕ(S)), b〉 dν = −

∫
ϕ(S)divνb dν = −

∫
ϕ divνb(T ) dγ.

This implies the last assertion. �

Lemma 4.3. Assume that X = Rd and βi ∈ Lp(ν), for any p ≥ 1 and all i ∈
{1, · · · , d}. Assume, in addition, that 1

ρν
is locally integrable in any power. Then

for every ϕ ∈ C∞0 (Rn) there exists a sequence of C∞0 (Rn)-functions {ψk} such that
ψk → ϕ(T ) and ∇ψk → ∇

[
ϕ(T )

]
γ-almost everywhere and weakly in Ln(γ) for any

n ≥ 1.

Proof. In the same way as in Lemma 4.2 we show first that ϕ(T ) belongs to W 1,n(γ)
for any n ≥ 1. Then one can find approximating sequences for any n and choose
the desired one by a diagonal argument. To show that ϕ(T ) belongs to W 1,n(γ) we
apply Remark 3.14. One gets that the functions 〈DS∗ei, ej〉 are integrable in any
power. One has∫

‖∇
[
ϕ(T )

]]
‖n dγ ≤

∫
‖DT ∗ · ∇ϕ(T )‖n dγ =

∫
‖(DS∗)−1 · ∇ϕ‖n dν.

It remains to show that all the functions 〈(DS∗)−1ei, ej〉 are locally ν-integrable
in any power. Since 〈DS∗ei, ej〉 admits the same property, we only need to show

the local integrability of 1
(detS)n . Taking into account that 1

detS =
ργ(S)
ρν

(see (22))

and the assumptions of this lemma we only need to show that S is locally bounded.
Applying again the local integrability of 1

ρν
we get that S belongs to the standard
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local Sobolev class W 1,p
loc for every p. Then the boundedness of S follows from the

classical embedding theorem. �

Proposition 4.4. Assume that X = R∞. Let ρ(t, x) be a solution to the equation
ρ̇ + divν(ρ · b) = 0. Assume that there exists p > 1 such that supt∈[0,T ] ‖ρ(t, ·) ·
bi‖Lp∗ (ν) <∞ and, in addition, βi ∈ Lp(ν) for all i.

Then the function g(t, x) defined by the relation g ·γ = (ρ ·ν)◦S−1 is the solution
to the equation

ġ + divγ(g · c) = 0

Proof. We know that∫
ϕρ(t, x) dν =

∫
ϕρ(0, x) dν +

∫ t

0

∫
〈b,∇ϕ〉ρ(s, x) dν ds, for all t ∈ [0, T ].

Let us apply this identity to the function ϕ = ψ(S), ψ ∈ C∞0 (Rn). This is possi-
ble, because ∇ϕ ∈ Lp(ν) by Proposition 3.10 and one can approximate ϕ and its
gradient in Lp(ν) by smooth cylindrical functions (see the proof of Lemma 4.2).

By the change of variables formula∫
ϕρ(t, x) dν =

∫
ψg(t, x) dγ,

∫
ϕρ(0, x) dν =

∫
ψg(0, x) dγ.

Taking into account the chain rule ∇ϕ = (DS)∗∇ψ(S) we immediately get for all
t ∈ [0, T ]∫ t

0

∫
〈b,∇ϕ〉ρ(s, x) dν ds =

∫ t

0

∫
〈DS·b,∇ψ(S)〉ρ(s, x) dν ds =

∫ t

0

∫
〈c,∇ψ〉 g(s, x) dγ ds.

Hence g satisfies the desired integral relation and the proof is complete. �

Proposition 4.5. Assume that X = R∞ and the following assumptions hold

1) βi ∈ Lm(ν), for all m, i ∈ N
2) 1

ρνn
is locally integrable in any power for every n ∈ N, where ρνn is the

Lebesgue density of the projection ν ◦ P−1n = ρνn dx

Assume, in addition, that that g solves the equation ġ + divγ(g · c) = 0 for some c
satisfying supt∈[0,T ] ‖g(t, ·) · ci‖L1+ε(γ) <∞ for some ε > 0 and all i.

Then the function ρ defined by the relation ρ · ν = (g · γ) ◦ T−1 is the solution to
the equation

ρ̇+ divν(ρ · b) = 0.

Proof. We apply the same arguments as in the proof of the previous proposition.

We note that
∫ t
0

∫
〈b,∇ϕ〉ρ(s, x) dν ds is well-defined for every ϕ ∈ C, t ∈ [0, T ],

because bi = 〈(DS)−1c(S), ei〉, any function 〈(DS)−1ei, ej〉 (depending on a finite
number of variables) is locally integrable in any power by the previous proposition
and

sup
0≤s≤T

‖ci(S)ρ(s, ·)‖L1+ε(ν) <∞

by the change of variables formula.
The relation∫ t

0

∫
〈c,∇ψ〉g(s, x) dγ ds =

∫ t

0

∫
〈b,∇ϕ〉ρ(s, x) dν ds, t ∈ [0, T ],
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with ψ = ϕ(T ), ϕ ∈ C, can be easily justified with the help of Lemma 4.3. In-
deed, since ψ can be approximated in the corresponding Sobolev norm by smooth
functions, the integral in the left hand side is well-defined and the chain rule is
applicable. �

5. Existence

In this section we prove the existence result by transferring a solution in the
Gaussian case (whose existence was established in [7]) with the help of a triangular
mapping.

Theorem 5.1. Assume that ν is a probability measure on R∞ such that:

1)

βi ∈ Lm(ν) for all m, i ∈ N;

2) there exists p > 1 such that

bi ∈ Lp(µ) for all i ∈ N;

3) there exists ε > 0 such that

exp
(
ε(divνb)−

)
∈ L1(ν);

4) 1
ρνn

is locally integrable in any power for every n ∈ N, where ρνn is the

Lebesgue density of the projection ν ◦ P−1n = ρνn dx.

Then for every ρ0 ∈ Lq
′
(ν), and q̃ with q′ > q̃ > p∗ there exists t0 > 0 depending

on the above parameters such that the equation

ρ̇+ divν
(
b · ρ

)
= 0

has a solution on [0, t0] satisfying ρ|t=0 = ρ0 and

(24) sup
t∈[0,t0]

‖ρ(t, ·)‖Lq̃ <∞.

Remark 5.2. One can easily see that assumptions 1), 4) together with Sobolev em-
bedding imply that 1/ρνn is Hölder continuous. This may be sometimes restrictive
for applications. We stress that we need 1) and 4) mainly for a-priori estimates
on DT (see Lemma 4.3). There are some possibilities to weaken these assumption.
Some (weaker) sufficient conditions for T to be locally Sobolev one can find in [29].
This result is applicable if one has high integrability of ρ0 and bi. Some bounds
on DT are available under the assumption that ν is log-concave. They work even
better if instead of triangular mapping one applies optimal transportation. See
Theorem 8.4 and Example 8.5 below.

Proof. Consider the triangular mapping T sending γ to ν. Let us show that c =
DS(T ) · b(T ) satisfy all the assumptions of Lemma 2.10. One has

ci =

i∑
j=1

∂Si
∂xj

(T )bj(T ).

It follows immediately from the assumption of this theorem and Remark 3.14 that
ci ∈ Lp

′
(ν) for every i and p′ < p.

By Lemma 4.2 divγc ◦ S = divνb. Consequently, the assumption 2) of Lemma
2.10 is satisfied. Hence, there exists a solution to the equation ġ + divγ(g · c) = 0
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with g(0, x) = ρ(0, T (x)). Proposition 4.5 now implies that ρ = g(S) is the desired
solution.

Property (24) is a slight extension of the corresponding statement of Lemma
2.10 and can be easily checked. Hence the proof is complete. �

Example 5.3. Let us give an example of a probability measure on R∞ with integrable
logarithmic derivatives which is typical for applications and satisfies the assumption

of the above theorem. We consider Gibbs measures on a lattice RZd , which can be
formally written in the following way

(25) ν =′′ exp
(
−
∑
k∈Zd

Vk(xk)−
∑
k,j∈Zd

Wk,j(xk, xj)
)
dx′′,

where ′′dx′′ denotes infinite-dimensional Lebesgue measure on RZd (which does not
exist). The following existence result has been established in [1]. Assume that there
exist a number N ≥ 2 and a symmetric matrix J = {Jk,j}k,j∈ZRd such that

Wk,j(xk, xj) = Wj,k(xj , xk)

|Wk,j(xk, xj)| ≤ Jk,j(1 + |xk|+ |xj |)N

|∂xkWk,j(xk, xj)| ≤ Jk,j(1 + |xk|+ |xj |)N−1

|Vk(xk)| ≤ C(1 + |xk|)L, |∂xkVk(xk)| ≤ C(1 + |xk|)L−1

∂xkVk(xk) · xk ≥ A|xk|N+σ −B
for some A,B,C, σ > 0, L ≥ 1.

The matrix J is also assumed to be fastly decreasing (see [1] for details), in
particular the finite range case Jk,j = 0 if |j − k| > N0 for some N0 is included.

Then there exists a probability (”Gibbs”) measure ν on RZd with exponentially
integrable logarithmic derivatives

βk = ∂xkVk(xk) +
∑
j∈Zd

∂xk(Wk,j +Wj,k) k ∈ Zd.

It was shown in [1] that such ν is a rigorous definition of ν in (25) via the Dobrushin-
Lanford-Ruelle equations. See [2] for uniqueness results.

6. Uniqueness in the Gaussian case

The following result was essentially established in [7]. We give below a slightly
modified version with a sketch of the proof.

Theorem 6.1. Assume that there exist p > 1, q > 1 such that ‖c‖ ∈ Lp(γ),
‖Dc‖HS ∈ Lq(γ), divγc ∈ Lq(γ).

Then for every t0 > 0 there exists at most one solution to (2) satisfying

sup
0≤t≤t0

‖ρ(t, ·)‖Lr(γ) <∞,

where r ≥ max(p∗, q∗).
If, in addition, d < ∞ and p ≥ q, the assumption ‖Dc‖HS ∈ Lq(γ) can be

replaced by ‖Dc‖ ∈ Lqloc(γ).
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Sketch of the proof. We discuss only the case d <∞ (the proof for d =∞ is
almost the same). Fix a non-negative C∞0 (Rd)-function ϕ. Let ρ be a solution to
(2). Set: ρ̂ = ϕ · ρ (this is important only for d < ∞, since in this case we apply
the local assumption). Take any ψ ∈ C∞0 (Rd) such that ψ = 1 on supp(ϕ) and set
ĉ = ψ · c. Note that ρ̂ solves the following equation

d

dt
ρ̂+ divγ(ĉ, ρ̂) = 〈∇ϕ, ĉ〉ρ.

Let us smoothen ρ̂ with the Ornstein-Uhlenbeck semigroup: ρε = e−εTε(ρ̂). One
has

d

dt
ρε + divγ(ĉ · ρε) = e−εrε(ρ̂, ĉ) + ρεdivγ(ĉ) + e−εTε(〈∇ϕ, ĉ〉ρ),

where rε(v, b) = eε〈b,∇(Tε(v))− Tε(divγ(v · b)).
The uniqueness proof relies on the concept of the so-called renormalizing solu-

tions. Take a continuously differentiable globally Lipschitz function v and using
smoothness of ρε compute d

dtv(ρε):

d

dt
v(ρε) + divγ(ĉ · v(ρε)) =

[
v(ρε)− ρεv′(ρε)

]
· divγ(ĉ)

+ v′(ρε)
(
e−εrε(ρ̂, ĉ) + ρεdivγ(ĉ) + e−εTε(〈∇ϕ, ĉ〉ρ)

)
.

According to estimate (68) from [7] there exists C = C(p, q) such that for r =
max(p∗, q∗) and small values of ε one has

‖rε‖L1(γ) ≤ C‖ρ̂‖Lr(γ)(
√
ε‖ĉ‖Lp(γ) + ‖divγ ĉ‖Lq(γ) + ‖(Dĉ)sym‖Lq(γ)).

It follows from the assumptions of this theorem that the right-hand side is finite.
In addition, rε → −divγ(ĉ) · ρ̂ in L1(γ) as ε→ 0 (Proposition 3.5 in [7]).

Passing to the limit one obtains that

d

dt
v(ρ̂) + divγ(ĉ · v(ρ̂)) =

[
v(ρ̂)− ρ̂v′(ρ̂)

]
· divγ(ĉ) + v′(ρ̂)(〈∇ϕ, ĉ〉ρ)

in the distributional sense (i.e., ρ is a renormalizing solution). Assume that there
exists two different solutions ρ1, ρ2 in Lr(γ) with the same initial condition. Ap-
plying this relation to the difference ρ = ρ1 − ρ2 and v(t) = max(0, t), we get that
for every ϕ ∈ C∞0 (Rd) one has d

dt (ϕ · ρ+) + divγ(c · (ρ)+ϕ) = 〈∇ϕ, c〉ρ+. Finally,

d

dt
ρ+ + divγ(c · (ρ)+) = 0

in the distributional sense. Clearly, d
dt

∫
ρ+ dγ = 0, hence

∫
ρ+ dγ = 0 and ρ = 0.2

7. Examples of uniqueness

In this section we study uniqueness problem for transport equations. As in
Theorem 5.1 we reduce the proof to the Gaussian case (see Theorem 6.1).

Recall that
c = DS(T ) · b(T ).

Since the assumption on the divergence can be directly transferred, we need only
to find some sufficient conditions for

‖c‖, ‖Dc‖HS ∈ Lp(γ).

One can try to apply the trivial operator norm estimate

‖c‖ ≤ ‖DS(T )‖‖b(T )‖.
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Let us stress, however, that operator norm estimates do not seem to be available
in the case of triangular mappings (unlike optimal transportation ones). In spite
of this let us give another estimate of c which does not use operator norms.

Lemma 7.1. For every 1 ≤ p ≤ 2 and q ≥ 1 one has∫
‖c‖p dγ ≤ C(p, q)

(
sup
i

∫
βpqi dν

) 1
q ·
[ ∞∑
i

(∫
|bi|pq

∗
dν
) 1

2q∗
]2
.

Proof. Trivially we have

‖c‖ ≤
∞∑
i=1

|bi(T )| · ‖∂eiS(T )‖.

Applying the inequality ∑
i

|ai| ≤
(∑
i

|ai|
1
q
)q

which holds for every q ≥ 1, we get for every 1 ≤ p ≤ 2

‖c‖p =
( ∞∑
i=1

|bi(T )| · ‖∂eiS(T )‖
)p
≤
( ∞∑
i=1

|bi(T )|
p
2 · ‖∂eiS(T )‖

p
2

)2
=

∞∑
i,j=1

|bi(T )|
p
2 · |bj(T )|

p
2 · ‖∂eiS(T )‖

p
2 · ‖∂ejS(T )‖

p
2 .

By the Hölder inequality and Proposition 3.10∫
‖c‖p dγ ≤

∞∑
i,j=1

(∫
|bi(T )|

pq∗
2 · |bj(T )|

pq∗
2 dγ

) 1
q∗
(∫
‖∂eiS(T )‖

pq
2 · ‖∂ejS(T )‖

pq
2 dγ

) 1
q

≤
∞∑

i,j=1

(∫
|bi|pq

∗
dν
) 1

2q∗ ·
(∫
|bj |pq

∗
dν
) 1

2q∗ ·
(∫
‖∂eiS‖pq dν

) 1
2q ·
(∫
‖∂ejS‖pq dν

) 1
2q

≤ C(p, q)
(

sup
i

∫
βpqi dν

) 1
q ·
[ ∞∑
i

(∫
|bi|pq

∗
dν
) 1

2q∗
]2
.

�

7.1. Product case.

Theorem 7.2. Assume that ν is a product measure on R∞

ν =

∞∏
i=1

e−wi(xi) dxi.

Assume that for some ε > 0, δ > 0, 1 < p ≤ 2, q > 1

1)

tω′i(t) ≥
(−1 + δ)ε

pq∗(pq∗ + ε)− ε
for every i

and

sup
i

∫
βpq

∗+ε
i dν <∞;
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2) ‖Db‖HS ∈ Lp(ν) and
∞∑
i=1

(∫
|bi|pq dν

) 1
q

+
∑
i 6=j

(∫
|∂xj bi|pq dν

) 1
q

<∞;

3) divν(b) ∈ Lp(ν).

Then ‖c‖, ‖Dc‖HS ∈ Lp(γ). In particular, for every t0 > 0 there exists at most
one solution to the equation (2) satisfying

sup
0≤t≤t0

‖ρ(t, ·)‖Lp∗ (ν) <∞.

Proof. First we check that the assumptions of Lemma 4.2 and Proposition 4.4 are
satisfied. This is clear except for the estimate sup0≤t≤t0 ‖ρ · bi‖L(pq∗)∗ < ∞. To
prove this we apply the Hölder inequality ‖ρ · bi‖L(pq∗)∗ = ‖ρ · bi‖Lpq/(pq−q+1) ≤
‖ρ‖Lp∗‖bi‖Lpq .

By Theorem 6.1 and Proposition 4.4 the problem is now reduced to the unique-
ness problem in the Gaussian case.

Thus, it is sufficient to show that ‖c‖, ‖Dc‖HS ∈ Lp(γ) for some p > 1. Since we
deal with a product measure, the transportation mapping has a simple structure

T = (T1(x1), T2(x2), · · · , Tn(xn), · · · ).
Hence

ci = ∂xiSi(Ti)bi(T ).

We apply Lemma 7.1. Note that that in this case ∂ejSi = 0. Taking this into
account and following the proof of Lemma 7.1 we can get a more precise estimate:∫

‖c‖pdγ ≤ C(p, q)

∞∑
i=1

(∫
|bi|pq dν

) 1
q ·
(∫

βpq
∗

i dν
) 1
q∗

≤ C(p, q) sup
i

(∫
βpq

∗

i dν
) 1
q∗
∞∑
i=1

(∫
|bi|pq dν

) 1
q

, 1 < p < 2.

Let us estimate DC. Taking into account that Si and Ti are reciprocal, one
easily gets

∂xici =
(∂xixiSi
∂xiSi

· bi + ∂xib
i
)
◦ T.

and

∂xjci =
( ∂xiSi
∂xjSj

∂xj b
i
)
◦ T, i 6= j.

One can estimate ‖(∂xici)‖ in the same way as ‖c‖ and applying Proposition
3.15 one gets∫
‖(∂xici)‖p dγ ≤ C(p)

[∫
‖(∂xibi)‖p dν + sup

i

(∫ (∂xixiSi
∂xiSi

)pq∗
dν
) 1
q∗
∞∑
i=1

(∫
|bi|pq dν

) 1
q
]

≤ C(p, q)
[∫
‖(∂xibi)‖p dν + sup

i

(
‖βi‖Lpq∗+ε(ν)

)p ∞∑
i=1

(∫
|bi|pq dν

) 1
q
]
.

Similarly∫
‖B‖pHS dγ ≤ sup

i,j

(∫ [ ∂xiSi
∂xjSj

]pq∗
dν
) 1
q∗ ∑

i6=j

(∫
|∂xj bi|pq dν

) 1
q

,
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where Bi,j = ∂xici, i 6= j, Bi,i = 0.
It remains to estimate∫ [ ∂xiSi

∂xjSj

]pq∗
dν ≤

[∫ [
∂xiSi

]pq∗+ε
dν
] pq∗
pq∗+ε

[∫ [ 1

∂xjSj

] pq∗(ε+pq∗)
ε

dν
] ε
pq∗+ε

=
[∫ [

∂xiSi
]pq∗+ε

dν
] pq∗
pq∗+ε

[∫ [
∂xjTj

] pq∗(ε+pq∗)
ε

dγ
] ε
pq∗+ε

.

According to Proposition 3.7 and Proposition 3.10 we get that the right-hand side

is finite if |βi|Lpq∗+ε(ν) <∞ and tω′i(t) ≥
(−1+δ)ε

pq∗(ε+pq∗)−ε . The proof is complete. �

Corollary 7.3. Let ν be as in Theorem 7.2 satisfying tw′i(t) ≥ 0. Assume that

1)

sup
i

∫
|w′i(t)|Ne−wi(t)dt <∞

for every N > 1:
2) for some 1 < p ≤ 2 and q > 1 one has (∂xibi) ∈ Lp(ν);
3) divν(b) ∈ Lp(ν) and

∞∑
i=1

(∫
|bi|pq dν

) 1
q

+
∑
i 6=j

(∫
|∂xj bi|pq dν

) 1
q

<∞.

Then ‖c‖, ‖Dc‖HS ∈ Lp(γ). In particular, for every t0 > 0 there exists at most
one solution to the equation (2) satisfying

sup
0≤t≤t0

‖ρ(t, ·)‖Lp∗ (ν) <∞.

7.2. Gibbs measures. In this section we prove uniqueness for the measures de-
scribed in Example 5.3. More generally, we will assume:

Assumption (A): There exist smooth functions Vi(xi),Wi,j(xi, xj) such that

(26) βi = V ′i (xi) +

∞∑
j=1

∂xiWi,j

and there exists N0 ≥ 1 such that Wi,j = 0 if |i− j| > N0.
Clearly, in this case the corresponding mapping S has a special structure

S(x1, · · · , xn, · · · ) = (S1(x1), S2(x1, x2), · · · , Sn(xn−N0 , · · · , xn−1, xn), · · · ).

Example 7.4. Let us consider a Gibbs measure ν =′′ e−Hdx′′ with Hamiltonian

H =

∞∑
i=1

Vi(xi) +

∞∑
i,j=1

Wi,j(xi, xj).

Under the assumptions of Remark 5.3 there exists a unique Gibbs measure ν sat-
isfying (26), as explained above.

We will also need the following 1-dimensional version of the Caffarelli contraction
theorem (which holds true for optimal transport mappings in any dimension, see
[18], [23]).
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Theorem 7.5. Let T : R→ R be the canonical increasing mapping pushing forward
a probability measure e−V (x) dx onto a probability measure e−W (x) dx. Assume that
V and W are twice continuously differentiable and V ′′ ≤ C, W ′′ ≥ K. Then T is

Lipschitz satisfying T ′ ≤
√

C
K

We recall that a probability measure µ on Rd is called log-concave if it has
the form e−V · Hk|L, where Hk is the k-dimensional Haussdorff measure, k ∈
{0, 1, · · · , d}, L is an affine subspace, and V is a convex function. We call a measure

µ uniformly log-concave if 1
Z e

K|x|2 ·µ is a log-concave measure for some K > 0 and a
suitable renormalization factor Z. It is well-known (C. Borell) that the projections
and conditional measures of log-concave measures are log-concave. The same holds
for uniformly log-concave measures. We can extend this notion to the infinite-
dimensional case. Namely, we call a probability measure µ on a locally convex space
X log-concave (uniformly log-concave with K > 0) if its images µ ◦ l−1, l ∈ X∗,
under all linear continuous functionals are all log-concave (uniformly log-concave
with K > 0). We will also use the fact that the (one-dimensional) conditional
measures of uniformly log-concave measures are uniformly log-concave with the
same constant.

Theorem 7.6. Assume that assumption (A) is satisfied and

1) for every n ≥ 1

sup
i

∫ (
|βi|n + ‖∇βi‖n

)
dµ <∞;

2) ν is uniformly log-concave;
3) for some 1 < p0 ≤ 2, q0 > 1

∞∑
i=1

(∫
|bi|p0q0 dν

) 1
2q0

<∞;

4) for some 1 < p < 2
∞∑

j,k=1

k
p
2

(∫
|∂xkbj |

4p
2−p dν

) 2−p
8

<∞.

Then ‖c‖, ‖Dc‖HS ∈ Lq(γ) for some q > 1. If, in addition, divν(b) ∈ Lq(ν), then
for every t0 there exists at most one solution to (2) satisfying sup0≤t≤t0 ‖ρ(t, ·)‖Lq∗ (ν) <
∞.

Remark 7.7. a) According to results of [1] there exist probability measures satisfying
the assumptions of the theorem (see Remark 5.3). In particular, 1) is automatically
satisfied for these measures.

b) We believe that the factor k
p
2 in 4) can be removed. This factor arise just

because we deal with triangular transportations and the quantity ∇Tk is difficult
to control (see Lemma 7.8 ). One can get a better control applying optimal trans-
portation mappings. Unfortunately, the existence of such a mapping in the infinite
dimensional case for mutually singular measures is an open problem to the best of
our knowledge.

c) The assumption of uniformly log-concavity of the Gibbs measure ν can be
expressed in terms of the potentials Vi,Wij . Note that it is sufficient to require the
uniformly log-concavity of the approximations.
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Proof. It is easy to check that b, ν, and ρ satisfy the assumptions of Lemma 4.2,
Lemma 4.3, and Proposition 4.4. Thus the problem is reduced to the uniqueness
problem in the Gaussian case. We have to show that ‖c‖, ‖Dc‖HS ∈ Lq(γ) for
some q > 1. The first part follows from Lemma 7.1. The second part follows from
Lemmata 7.8, 7.9. Indeed, note that

(27) Dc =
(
DS ·Db · (DS)−1

)
◦ T +

( ∞∑
i=1

bi · (DSxi)(DS)−1
)
◦ T.

In the same way as in Lemma 7.1 and applying Lemma 7.9 we get the desired
estimate for

∑∞
i=1 bi(DSxi)(DS)−1. Note that 1

∂xiSi
= ∂xiTi(S) is bounded by

1√
K

as a one-dimensional optimal mapping of a Gaussian measure onto a uniformly

log-concave measure by the Caffarelli theorem. Here we use the fact that the
corresponding conditional measures are uniformly log-concave.

We apply Lemma 7.8 to estimate DS ·Db · (DS)−1. To complete the proof we
need to estimate

∫
|∇Tk|2 dγ. Indeed, since ν is uniformly log-concave, we can

apply Remark 3.13. We get K
∫
|∂xiT |2 dν ≤

∫
x2i dγ. Hence∫

‖∇Tk‖2 dγ =

∫ k∑
i=1

(∂xiTk)2 dγ ≤
k∑
i=1

∫
‖∂xiT‖2 dγ ≤

1

K

k∑
i=1

∫
x2i dγ =

k

K
.

�

Lemma 7.8. For every 1 < p < 2 there exists C, depending on p,N0, and

supi
∫
|βi|

4p
2−p dν such that∫

‖DS ·Db · (DS)−1‖pHS ≤ C
[ ∞∑
j,k=1

(∫
|∂xkbj |

4p
2−p dν

) 2−p
8
(∫
‖∇Tk‖2 dγ

) p
4
]2
.

Proof. We estimate ‖DS ·Db · (DS)−1‖2HS =
∑∞
i=1 ‖DS ·Db · (DS)−1 · ei‖2.

For simplicity set M = DS ·DB, L = (DS)−1. Then∫ ( ∞∑
i=1

‖MLei‖2
) p

2

dν ≤
∫ ( ∞∑

i=1

( ∞∑
k=1

|Li,k|‖M · ek‖
)2) p2

dν

≤
∫ [ ∞∑

i=1

∞∑
k,j=1

|Li,k||Li,j |‖M · ek‖‖M · ej‖
] p

2

dν ≤
∫ ∞∑

k,j=1

∞∑
i=1

|Li,k|
p
2 |Li,j |

p
2 ‖M · ek‖

p
2 ‖M · ej‖

p
2 dν

≤
∞∑

k,j=1

(∫
‖M · ek‖

p
2−p ‖M · ej‖

p
2−p dν

) 2−p
2
(∫ ∞∑

i=1

|Li,k||Li,j | dν
) p

2

≤
∞∑

k,j=1

[(∫
‖M · ek‖

2p
2−p dν

) 2−p
4
(∫
‖M · ej‖

2p
2−p dν

) 2−p
4
(∫ ∞∑

i=1

|Li,k|2 dν
) p

4
(∫ ∞∑

i=1

|Li,j |2 dν
) p

4
]

=
( ∞∑
k=1

(∫
‖M · ek‖

2p
2−p dν

) 2−p
4
(∫ ∞∑

i=1

|Li,k|2 dν
) p

4
)2
.

Furthermore,

∞∑
i=1

∫
|Li,k|2 dν =

∞∑
i=1

∫
|(DT )i,k|2 dγ =

k∑
i=1

∫
|∂xiTk|2 dγ =

∫
‖∇Tk‖2 dγ
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and∫
‖M · ek‖

2p
2−p dν =

∫ ( ∞∑
i=1

(

N0∑
r=0

∂xiSi−r · ∂xkbi−r)2
) p

2−p
dν

≤ C(p,N0)

∫ ∞∑
i=1

( N0∑
r=0

|∂xiSi−r|
2p

2−p |∂xkbi−r|
2p

2−p

)
dν

≤ C(p,N0)

∞∑
i=1

N0∑
r=0

(∫
|∂xiSi−r|

4p
2−p dν

)1/2(∫
|∂xkbi−r|

4p
2−p dν

)1/2
≤ C(p,N0) sup

i

( i∑
j=i−N0

(∫
|∂xiSj |

4p
2−p dν

)1/2) ∞∑
j=1

(∫
|∂xkbj |

4p
2−p dν

)1/2
≤ C

∞∑
j=1

(∫
|∂xkbj |

4p
2−p dν

)1/2
.

In the last estimate we apply Proposition 3.14 and the special structure of S .
Finally, we obtain∫
‖DS ·Db · (DS)−1‖pHS ≤ C

[ ∞∑
j,k=1

(∫
|bj,k|

4p
2−p dν

) 2−p
8
(∫
‖∇Tk‖2 dγ

) p
4
]2
.

�

Lemma 7.9. Assume that for every p ≥ 1

sup
i

∫ (
|βi|p + ‖∇βi‖p +

1

(∂xiSi)
p

)
dµ ≤ C(p).

Then supi
∫
‖(DSxi)(DS)−1‖pHS dν ≤ D with D depending on p and N0.

Proof. Due to the special structure of S the matrix DSxi only has a finite number
of non-zero entries. The result now follows immediately from Remark 3.14 and
Propositions 3.15, 3.16. �

8. Finite-dimensional case and optimal transportation

Instead of triangular mappings one can also apply the optimal transportation
mappings. For a detailed account on optimal transportation see [13], [30]. In this
case the available a-priori estimates are essentially better in many respects. For
instance, there exist Lp-estimates on operator norms of DT which do not depend on
dimension (see [25], [13]). Unfortunately, this approach has certain disadvantages:
1) unlike the triangular mappings, the optimal transportation mappings do not
have an explicit form and the a-priori estimates for them are usually hard to prove,
2) the existence problem for optimal transportation mappings in infinite dimensions
is solved in sufficient generality only for the case when the measures µ and ν have
a finite Kantorovich distance W2(µ, ν) (see [21], [22])). If µ = γ is Gaussian, this
limitation means that basically we should restrict ourselves to measures which are
absolutely continuous with respect to γ, i.e. ν = g · γ and, moreover, have finite
entropy, that is

∫
g log g dγ <∞.
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Remark 8.1. Some new existence results on optimal transportation of certain Gibbs
measures are obtained in [26]. These results together with estimates from [25], [13]
can be used to obtain infinite-dimensional uniqueness/existence statements for the
case where ν is uniformly log-concave. But we don’t consider this approach in this
paper.

We assume in the rest of this section that d < ∞. We consider the optimal
transportation mapping T pushing forward the standard Gaussian measure γ onto
ν = e−W dx. In particular, T has the form T = ∇Ψ, where Ψ is a convex function.
The inverse mapping S = T−1 is optimal too and has the form S = ∇Φ, where Φ
is the convex conjugate to Ψ.

The drifts c and b are related in the same way as above

c = DS(T ) · b(T ) = D2Φ(T ) · b(T ).

Let us illustrate how our methods work in the finite-dimensional case.

Theorem 8.2. (Uniqueness) Assume that W is locally Hölder, ‖Db‖ ∈ L2
loc(ν),

|b| ∈ L4(ν), |∇W | ∈ L4(ν). Then ‖c‖ ∈ L2(γ), ‖D2c‖ ∈ L2
loc(γ) and for every t0

and every fixed initial condition ρ0 ∈ L2(ν) there exists at most one solution to (2)
satisfying sup0≤t≤t0 ‖ρ(t, ·)‖L2(ν) <∞.

Remark 8.3. 1) Note that we do not need any bounds on the second derivatives of
W .

2) The assumption of Hölder continuity is made only to assure high enough local
integrability (even boundedness) of ‖D2Φ‖ · ‖(D2Φ)−1‖. We believe that this can
be achieved in some other (more efficient) way without Hölder continuity. We note,

however, that Sobolev estimates for optimal transportation in W 1,p
loc with big p are

hard to prove. See in this respect the recent paper [27] and the references therein.
3) Some estimates applied in the proof are valid in the infinite-dimensional set-

ting.

Proof. First we note that the second partial derivative ∂evΦ of Φ is locally Hölder
for any vectors e, v ∈ Rd, because both measures ν and γ have Lebesgue densities
which are locally Hölder. This follows from the well-known results of Caffarelli [17]
(see [24] for technical improvements for unbounded domains). Clearly, the same
holds for D2Φ. Let us apply Proposition 4.4. We need to show that ‖c‖ ∈ L2(γ),
‖Dc‖ ∈ L2

loc(γ).
For ‖c‖ one has the trivial estimate

‖c‖ ≤ ‖DΦ(T )‖ · ‖b(T )‖,
which implies

2

∫
‖c‖2 dν ≤

∫
‖D2Φ‖4dν +

∫
‖b‖4 dν.

By Theorem 6.1 from [25] assumption ‖∇W‖ ∈ L4(ν) implies that ‖D2Φ‖ ∈ L4(ν).
Hence ‖c‖ ∈ L2(ν).

Let us estimate Dc:

Dc =
[
D2Φ ·Db · (D2Φ)−1

]
(∇Ψ) +

[
(D2Φ)b(D

2Φ)−1
]
(∇Ψ),

where for brevity we set

(D2Φ)b =

d∑
i=1

bi · ∂xi(D2Φ).
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Using the standard HS-norm inequalities

‖AB‖HS ≤ ‖A‖ · ‖B‖HS , ‖BA‖HS ≤ ‖A‖ · ‖B‖HS ,

applied to an arbitrary A and symmetric B, we get

‖Dc‖HS ≤
(
L‖Db‖HS + L1/2 · ‖(D2Φ)−1/2(D2Φ)b(D

2Φ)−1/2‖HS
)

(∇Ψ),

where L = ‖D2Φ‖ · ‖(D2Φ)−1‖.
Since ‖D2Φ‖, ‖(D2Φ)−1‖ are locally bounded functions, we only need to locally

estimate

‖(D2Φ)−1/2(D2Φ)b(D
2Φ)−1/2‖HS ;

To this end we apply the following inequality

∫
〈D2W · b, b〉η dν ≥

∫
‖D2Φ · b‖2η dν +

∫
〈(D2Φ)b · b, (D2Φ)−1∇η〉 dν

(28)

+ 2

∫
Tr
(
(D2Φ)b ·Db · (D2Φ)−1

)
η dν +

∫
‖(D2Φ)−1/2(D2Φ)b(D

2Φ)−1/2‖2HSη dν,

proved in Lemma 7.1 [25]. Here η ∈ C∞0 (Rd) with
∫ ∥∥∥∇ηη ∥∥∥pη dν < ∞ for a suffi-

ciently big p.
Since we do not assume existence of D2W , we apply the integration by parts

formula to get rid of this:∫
〈D2W · b, b〉η dν =

∫
〈∇W, b〉2η dν −

∫
〈∇W, b〉divµb · η dν −

∫
〈∇W,Db · b〉η dν

+

∫
〈∇W, b〉〈∇W,∇η〉 dν.

Clearly, the right-hand side is finite by the Cauchy inequality.
The elementary estimates∫

〈(D2Φ)b · b, (D2Φ)−1∇η〉 dν ≤ ε
∫
‖(D2Φ)−1/2(D2Φ)b(D

2Φ)−1/2‖2HSη dν(29)

+ C(d, ε)

∫
‖L‖|b|2 ‖∇η‖

2

η
dν,

and

2

∫
Tr
(
(D2Φ)b ·Db · (D2Φ)−1

)
η dν ≤ ε

∫
‖(D2Φ)−1/2(D2Φ)b(D

2Φ)−1/2‖2HSη dν

(30)

+ C(ε)

∫
‖L‖‖Db‖2HSηdν.

imply that ‖(D2Φ)−1/2(D2Φ)b(D
2Φ)−1/2‖2HS ∈ L2

loc(ν), hence ‖Dc‖ ∈ L2
loc(γ) . �

The following theorem is formulated in a ”dimension-free” manner. This means
in particular that this formulation makes sense in the infinite-dimensional setting.
Actually, we believe that an appropriate generalization of the theorem always holds
in the infinite-dimensional case provided the corresponding optimal transportation
map of ν to γ does exist.
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Theorem 8.4. (Existence and uniqueness) Let ν be a probability measure with
Lebesgue density on Rd. Assume that ν is a uniformly log-concave measure, so, in
particular, there exists K > 0 such that D2W ≥ K · Id in the interior of the support
of ν. Assume that W belongs to W 2,p(ν) for some p ≥ 1 and, moreover,

∂xiW ∈ L2p(ν), 1 ≤ i ≤ d, ‖D2W‖p ∈ L1(ν).

In addition, we assume that∫
〈D2Wb, b〉 dν <∞, bi ∈ L

4p
2p−1 (ν), 1 ≤ i ≤ d,

and

divνb ∈ L2(ν), ‖Db‖
4p

2p−1

HS ∈ L1(ν).

Then

1) under the additional assumption that eε(divνb)− ∈ L1(ν), there exists a solu-
tion to (2) for any initial ρ0 ∈ L2+ε(ν) satisfying sup0≤t≤t0 ‖ρ(t, ·)‖L2(ν) <
∞;

2) any two solutions to (2) satisfying sup0≤t≤t0 ‖ρ(t, ·)‖L2(ν) < ∞ with the
same initial condition ρ0 coincide.

Proof. The proof follows the same line as the proof of the previous theorem. Ac-
cording to the Caffarelli’s theorem ‖(D2Φ)−1‖ ≤ 1√

K
. According to a result of [25]∫

‖D2Φ‖2p dν ≤
∫
‖D2W‖p dν <∞. This implies that L ∈ L2p(ν).

We use the estimates from the proof of the previous theorem. By Hölder’s
inequality

∫
‖L‖‖Db‖2HS dν <∞. Applying that

∫
〈D2Wb, b〉 dν <∞ we get from

(28) and (30) that∫
‖(D2Φ)−1/2(D2Φ)b(D

2Φ)−1/2‖2HSdν <∞,
∫
‖D2Φ · b‖2 dν <∞,

and, finally ‖c‖2, ‖Dc‖2HS ∈ L1(ν). The uniqueness statement follows easily from
Proposition 4.4 with the help of Hölder’s inequality.

For proving existence, we cannot use Theorem 5.1 directly, because assumptions
1) and 4) are not fulfilled in general. Note, however, that we need 1) and 4) only
to apply Proposition 4.5. But the statement of Proposition 4.5 holds trivially in
our case because of the uniform bound ‖(D2Φ)−1‖ ≤ 1√

K
(see the proof of Lemma

4.3). �

Example 8.5. Let

ν = ρ(x) dx, ρ(x) = C

d∏
i=1

e
−( 1

x2
i

+
x2i
2 )
I{xi>0}.

Note that ν = e−W is uniformly log-concave and ‖∇W‖, ‖D2W‖ belongs to Lp(ν)
for any p > 0. Fix an arbitrary q > 0 and set b = x

‖x‖q . It is easy to check that

divνb is bounded from below and the other assumptions on b are satisfied. Hence
for every ρ0 ∈ L2+ε(ν) there exists a unique short-time (even long-time) solution
to (2).

Note that if q is big, then b is not a BV function with respect to Lebesgue
measure. This makes inapplicable the finite-dimensional theory from [5].
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