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1 Introduction

The solutions for two-person games and for the cost/surplus sharing problems are worth for

studying, since they, together with some consistency axiom(s), can de�ne solutions for the classes

of game (cost/surplus sharing problems) with variable population. The last class of problems and

their solutions have been developed more in detail than those of cooperative games.

The main di�erence between cost/pro�t sharing problems and two-person games consists

in positivity of all components in the domains of their de�nitions: in the former ones all their

components, including the solutions, are nonnegative, and this restriction is super�uous for two-

person cooperative games. Mainly for this reason the most axioms characterizing solutions for

both classes of problems di�er one from another. For example, the popular axiom translation

covariance, meaning independence of solutions w.r.t. arbitrary shifts of individual utilities cannot

be applied to cost/pro�t sharing problems. Only scale covariance (positive homogeneity) is used

for both classes. Conversely, axioms Upper and Low compositions for solutions of cost sharing

problems can not be extended to cooperative games with arbitrary sets of players.

The number of cost sharing methods is enough big, because for cost sharing problems there are

many natural properties whose formalization can be applied for axiomatizations of the methods

[Moulin 2002, Thomson 2003]. Two-person cost sharing problems can be considered as subadditive

games with nonnegative values of characteristic functions. E�cient solutions for such a subclass

of games coincide with methods for cost sharing problems. If the axioms characterizing properties

of a cost sharing method can be extended to solutions of subadditive games with arbitrary

set of players, then the former, possibly, will be extendable to solutions for the whole class of

subadditive games. The same correspondence exists between pro�t-sharing methods and solutions

of superadditive games.

In particular, note that the most known TU game solutions are covariant w.r.t. positive linear

transformations of individual utilities. This axiom needs no explanation in the context of problems

dealing with transferable utilities including classical cooperative games and cost sharing problems.

However, the latters cannot possess this property, since arbitrary shifts (that may be negative) of

individual utilities of players can lead a cost problem out the positive domain. Thus, weakenings

of covariance, applicable for cost sharing methods, may be useful for their characterizations.

Recently the author [Yanovskaya 2012] proposed a weakening of translation covariance axiom,

called by self-covariance. It turned out that the egalitarian solutions for cooperative games with

transferable utilities (TU games) satisfy this axioms and can be characterized with its help.

Moreover, self-covariance can be applied for cost-sharing methods, since the shifts of individual

utilities de�ning the axioms, do not violate positivity of the costs.

In this paper this axiom is applied to solutions of two-person cooperative games together with
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e�ciency, anonymity, path independence and scale covariance. All such solutions are described and

characterized separately for super- and subadditive games. The coincidence of the solutions for

subadditive games. On the subclass of subadditive games with nonnegative characteristic functions

such solutions coincide with the family of cost-sharing methods de�ned and characterized in

[Moulin 2000]. These methods cannot be extended for pro�t sharing problems, because one of

the axioms characterising it � the Low Composition � cannot be applied to pro�t sharing method,

since transformations in its de�nition may go out a pro�t sharing problem from the whole class

of such problems. It turned out that the self-covariance axiom can replace it, and with its help we

obtain the extension of Moulin's methods to the class of two-person pro�t sharing problem.

The paper is structured as follows. In section 2 the main de�nitions of cooperative game

solutions and of cost sharing methods are given. Section 3 describes all cooperative game solutions

satisfying e�ciency, single-valuedness, anonymity, and self covariance. This class turns out very

large, and in section 4 one more axiom �Path Independence � is added, and the corresponding

family of solutions satisfying all them is described. It is shown that the restriction of this family by

nonnegative subadditive games, or, in other words by the set of two-person cost sharing methods,

coincides with the family characrized in [Moulin 2000]. Concluding remarks show the simple

extension of all results to superadditive two-person games and to pro�t sharing methods.

2 Correspondences between cost-sharing problems and two-

person cooperative games

In this section we give de�nitions of cost-sharing problems and cooperative games with two agents

and show a connection between cost-sharing methods and cooperative game solutions.

A cost sharing problem for two agents {i, j} is a triple (ci, cj, T ), where ci, cj > 0 are claims of

the agents, T > 0 is the total cost to be allocated between the agents. Thus, ci + cj > T. Denote

c = (ci, cj). A cost sharing method for a class C of cost sharing problems is a function r : C → R2
+

such that ri(c, T ) + rj(c, T ) = T.

A method r for a class of cost sharing problems with two agents N = {i, j} is anonymous, if
ri(ci, cj, T ) = rj(cj, ci, T ) for all ci, cj, T : ci + cj ≥ T > 0.

The most known cost sharing method is proportional: for every problem (ci, cj, T ) it is de�ned

as rpr(ci, cj, T ) = t(ci, cj), where t satis�es the equality t(ci + cj) = T.

A cooperative game is a pair (N, v), where N is a �nite set of players, v : 2N → (R) is a

characteristic function with a convention v(∅) = 0. In this paper we restrict ourselves by two-

player sets. If this set N = {i, j} is �xed, then a cooperative game is completely de�ned by

three numbers v({i}), v({j}), v({i, j}). A solution ϕ for two-person cooperative game associates

with every game ({i, j}, v) a payo� vector ϕ({i, j}, v) ∈ R2. In the sequel we consider only the

classes of two-person TU games with a �xed set of players N . We will denote them as i, j and for
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simplicity exclude the notation N from all the formulas. Moreover, for brevity and similarity with

cost sharing problems in the sequel we use notation v({i}) = vi, v({j}) = vj, v({i, j}) = T.

Therefore, a subclass of subadditive cooperative games with nonnegative characteristic functions

coincides with the two-agent cost-sharing problems. The set of all cost-sharing methods coincides

with the subset of solutions for such a subclass of two-person games such that every solution

satis�es the de�ned on the next page properties e�ciency and single-valuedness.

First, consider the class of subadditive two-person games G2+ with nonnegative values of

characteristic functions of the great coalition, i.e. the class G+2 = {(N, v)}, where N is an arbitrary

two-element set, and v : 2N → R2 is a characteristic function satisfying vi + vj ≥ v({i, j}) ≥
0, v(∅) = 0. Thus, the domain of this class of games is larger than that for cost sharing problems:

we allow negative values individual values vi, vj of characteristic functions.

Recall some well-known properties of cooperative game solutions that will be further applied

for their characterizations. Since in the paper we consider only two-person games we formulate

them for the class of all two-person games G2
A solution ϕ for the class G2 is

� non-empty or satis�es nonemptiness (NE), if ϕ({i, j}, v)) 6= ∅ for every game ({i, j}, v) ∈ G2;

� e�cient (EFF), if ϕi({i, j}, v) + ϕj({i, j}, v) = v({i, j} for every game ({i, j}, v) ∈ G2;

� single valued (SV), if |ϕ({i, j}, v)| = 1 for every game({i, j}, v) ∈ G2;

� positively homogeneous (PH), if for every α > 0 and a game ({i, j}, v) ∈ G2 it holds

({i, j}, αv) ∈ G2 and ϕ({i, j}, αv) = αϕ({i, j}, v);

� translation covariant (TCOV), if for every game ({i, j}, v)) ∈ G2 and a vector b ∈ R2

x ∈ ϕ(N, v) =⇒ x+ b ∈ ϕ(N, v + b),

where (v + b)k) = vk + bk for k = i, jN, and (v + b)({i, j})) = v({i, j}+ bi + bj;

� covariant (COV), if it is positively homogeneous and translation covariant;

� weakly covariant (WCOV), if it is positively homogeneous and translation covariant with

only respect to shift b ∈ RN with equal coordinates;

� anonymous (ANO), if for every game ({i, j}, v)) ∈ G2 and the unique permutation π({i, j}) =

({j, i}) the following equality holds: ϕ(π({i, j}), πv) = π(ϕ({i, j}, v)). Here the function πv

is de�ned by πvi = vj, πvj = vi, πv({i, j}) = v({i, j}),

� self-covariant (self-COV), if it is positively homogeneous and for every number A ≥ −1 the

equalities

ϕ({i, j}, v + Aϕ({i, j}, v)) = (A+ 1)ϕ(N, v) (1)
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hold for all games ({i, j}, v) ∈ G+2 .

Compare these properties with those applied for characterizations of cost-sharing methods.

First, e�ciency and single-valuedness are contained in the de�nition of cost-sharing methods

themselves. Positive homogeneity and Anonymity are applied in such characterizations without

any modi�cations.

The translation covariance property, as well as weak covariance, cannot be applied for such

a purpose, because the shifts of individual utilities applied in their de�nitions may violate positivity

of components de�ning the cost sharing problems. On the contrary, self-covariance can be considered

as a property of cost-sharing methods.

Let us give two more properties of cost-sharing methods that characterize, together with

positive homogeneity, a family H∗2 of cost-sharing methods [Moulin 2000] that will be extended

to solutions for two-person sub-additive games in section 4. As the the previous properties of

cooperative games we de�ne them only for two-agent cost sharing problems.

A cost sharing method r for two-agent cost sharing problems satis�es

� Upper Composition (UC) or Path Independence, if for all x and T, T ′ such that 0 ≤ T ≤
T ′ ≤ xi + xj it holds

r(x, T ) = r(r(x, T ′), T );

� Lower Composition (LC), if for all x and T, T ′ such that 0 ≤ T ′ ≤ T ≤ xi + xj it holds

r(x, T ) = r(x, T ′) + r(r(x, x− r(x, T ′)), T − T ′);

These are structural-invariance properties allowing to decompose the computation of shares

when available resources are estimated from above or from below.

In the sequel we will consider only e�cient and single-valued solutions, and will understand

under the word "solution"an e�cient and single-valued solution. In this de�nition the set of

solutions for subadditive games with nonnegative values of characteristic functions coincides with

the set of cost-sharing methods for cost sharing problems. This correspondence is a tool for the

following characterizations of cooperative game solutions.

We begin with the de�nition of a family H∗2 of cost-sharing methods characterized in [Moulin

2000]. Every method r from this family is de�ned by an ordered partition of the positive orthant

to cones (their number can be in�nite) with vertices in zero point. The positive parts of the

coordinate axis are the sides of the cones. The orderedness means that the sides of every cone are

ordered by a binary index 1 or 2. On the side of cones the method is proportional, i.e., if k is the

slope of any side of the cone, and the point c = (ci, cj) is placed on this side, then

r(c, T ) = (t, kt), where t =
T

k + 1
. (2)
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If c = (ci, cj) belongs to the interior of a cone, whose sides have the slopes k1, k2, the slope k2

has index 1, k1 has index 2. then

r(c, T ) = (t, T − t), (3)

t =


T

1 + k1
, if T ≤ (1 + k1)(c2 − k2v1)

k1 − k2
T − (c2 − k2c1)

1 + k2
otherwise.

(4)

This means that the point r(c, T ) either lies on the side with index 2, or the points c and

(t, T − t) lie on the direct line, parallel to the side of the cone having index 1, or

Theorem 2.1 (Moulin 2000) The familyH∗2 is the unique family of cost-sharing methods satisfying
PH, UC, and LC.

Since most cooperative game solutions are anonymous, we consider only the subfamilyHa
2 ⊂ H∗2

of anonymous cost-sharing methods. Just cost-sharing methods from this subfamily we will extend

to solutions of games from the set G+2 .
Let us extend the methods from the familyHa

2 to a family of anonymous, positive homogeneous,

and self-covariant solutions of games from the class G+2 . Such a family of two-person subadditive

games we denote by Φ.

In view of anonymity of the methods from Ha
2 it su�ces to de�ne the extensions only for half

a domain

L = {x |xi + xj ≥ 0, xi ≥ xj} (5)

of characteristic function values (vi, vj) for games from the class G+2 . Divide this domain on

cones. In such a partition the positive half-axis xj = 0, xi ≥ 0 may not be a side of some cone.

Note that the slopes of the sides of the cones for methods from the family Ha
2 and cost

sharing problems (c, T ) with ci ≥ cj belong to the set [0, 1]. For partitioning of the set (5) on

the corresponding cones the domain of their slopes is increased to [−1, 1]. Åach ordered partition

of the set (5) on cones de�nes the following solution ϕ :: Let (v, T ) ∈ G+2 be an arbitrary game.

If the ray with the slope k =
vj
vi
is one of the side of a cone of the partition, then ϕ({i, j}, v, T )

is the proportional solution.

If v belongs to the interior of a cone, whose sides have the slopes k1, k2, k1 < k2, then ϕ(v, T ) =

(t, T − t), where t is de�ned by formulas (3),(4), where c is replaced by v.
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Fig.1

On Fig.1 the piece-wise line between the points v and ϕ(v, T ) is the locus of solution points

for games (v,H) when H is going from vi + vj to T.

From the de�nition of the family Φ it follows that they satisfy E�ciency, Single-valuedness,

Anonymity, and Positive Homogeneity. Since the properties of Upper and lower Composition till

now were not de�ned for cooperative game solutions, we lay aside their discussion till section 4.

Proposition 2.1 Solutions from the family Φ verify self-covariance.

Proof . Let (v, T ) ∈ G+2 be an arbitrary game, ϕ ∈ Φ be an arbitrary solution. The proportional

solution satis�es self-covariance, hence, if v is placed on a side of a cone of the partition, then the

Proposition has been proved.

Let now v be placed inside the cone with slopes k1, k2 (Fig.1) All points
1

A+1
(v+Aϕ(v, T )) for

A ≥ −1 are placed on the ray going out from the point ϕ(v, T ) and passing through v. By the

de�nition of the solution ϕ, the following equality holds

ϕ(
1

A+ 1
(v + Aϕ(v, T ))) = ϕ(v, T )

(see also Fig.1) for A ≥ −1. Now by positive homogeneity of solutions from Φ we obtain the result.

However, the properties ANO, PH, and Self-Cov are still insu�cient for axiomatic characterizations

of solutions for two-person subadditive games from the family Φ. Thus, in the next section we

describe a larger family of all solutions satisfying these axioms.

3 The family Ψ

Denote by Ψ a family of all solutions for the class G+2 satisfying e�ciency, single-valuedness,

anonymity, and self-covariance.
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A particular subclass of subadditive games is the class of the additive ones. Let us �nd all

solutions for this class satisfying axioms under consideration. Denote by Gad the set of additive

two-person games. Every game from this class is de�ned by a vector v = (vi, vj) of individual

values of the characteristic function. Thus, we denote additive two-person games with the player

set {i, j} by v.

Proposition 3.1 A solution ϕ for the class Gad2 satis�es e�ciency, anonymity, positive homogeneity,

and self-covariance if and only if it is trivial, i.e., ϕ({i, j}, v) = v for all v ∈ Gadd2 , or egalitarian

ϕe({i, j}, v) = (
vi+vj

2
,
vi+vj

2
).

Proof . Let v = (vi, vj) be an arbitrary vector. Assume that ϕ(v) = x = (xi, xj), where

xi + xj = vi + vj, x 6= v. By Self-covariance and positive homogeneity of ϕ it holds the equality

ϕ(αv+(1−α)x) = x for all α ≥ 0. If there is α ≥ 0 such that the equal share vector (
vi+vj

2
,
vi+vj

2
) =

αv+ (1−α)x, then, by anonymity and self-covariance of ϕ, we obtain ϕ(v) = (
vi+vj

2
,
vi+vj

2
) for all

v.

In the opposite case we would have the relation

vi ≥ vj ⇐⇒ ϕi(v) ≥ ϕj(v). (6)

By using self covariance of ϕ, it is not di�cult to check that this relation holds only if v = ϕ(v).

Let ϕ ∈ Ψ be an arbitrary solution. We call a ϕv-path a locus of solution vectors ϕ(v, T ) for

game with a �xed v = (vi, vj) and variable T ≤ vi + vj.

A multi-valued function ϕ−1 : R2
+ → R2

+ is the converse solution function of ϕ if

v ∈ ϕ−1(x, T ) ⇐⇒ x = ϕ(v, T ).

Since for e�cient solutions a solution vector ϕ(v, T ) = (xi, xj) satis�es the equality xi + xj = T,

the converse solution function in fact depends on two variables x = (xi, xj).

Lemma 3.1 If ϕ ∈ Ψ, then the set ϕ−1(x) is a convex cone with the vertex x and sides in positive

directions of the sums of coordinates.

Proof . Let v ∈ ϕ−1(x). It means that ϕ(v, T ) = x and, by self-covariance and positive

homogeneity of ϕ, the ray going out from x and passing through v is contained in the set ϕ−1(x).

If this ray coincide with the set ϕ−1(x), then it is a degenerate cone.

Assume that there are 2 points v, w ∈ ϕ−1(x) not lying on same line with x. Put a point u inside

the angle generated by the ray from x and passing through v and w. Suppose that ϕ(u, T ) = z 6= x.

Then z ∈ ϕ−1(x), and the ray from z through u intersects one side of the angle in a point y. By
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self covariance of ϕ it should hold two inconsistent equalities ϕ(y, T ) = z and ϕ(y, T ) = x, that is

impossible by single-valuedness of ϕ.

Therefore, the set ϕ−1(x) is a convex cone with the vertex x.

Denote by L1 the half-line

L1 = {x ∈ R2, |xi + xj = 1, xi ≥ xj}. (7)

Give some more properties of solutions from the family Ψ.

Lemma 3.2 For every ϕ ∈ Ψ the set {ϕ(v, 1) |vi + vj > 1, vi ≥ vj} either coincides with the

half-line L1, or equals an interval [(1/2, 1/2), (A, 1− A)] for some A ≥ 1/2.

Proof .First, we prove that the set of points xi ≥ 1/2, for which there is a point v, vi + vj >

1 such that ϕ(v, 1) = (xi, 1 − xi), is either an interval [(1/2, 1/2), (A, 1 − A)], or the half-line⋃∞
xi=1/2(xi, 1− xi).
Suppose that for some yi ≥ 1/2 there is a neighborhood U(yi) = (ai, bi) of a point yi (it may

consists of the unique point yi) such that (ϕ(v, 1))i ∩U(yi) = ∅ for all v : vi + vj ≥ 1, vi ≥ vj, and

let this neighborhood be maximal, i.e., either ϕ−1(ā) 6= ∅, or ϕ−1(b̄) 6= ∅, where ā = (ai, 1−ai), b̄ =

(bi, 1− bi).
Consider the following cases:

1. ϕ−1(ā), ϕ−1(b̄) 6= ∅. Without loss of generality we may suppose that ai > bi. The sets

ϕ−1(ā), ϕ−1(b̄) by Lemma 3.1 are the angles with the vertices ā, b̄ and slopes of their sides

α1, α2, α1 ≥ α2, β1, β2, β1 ≥ β2 respectively. Since these rays do not intersect, α2 > β1.

Let v1 and v2 be arbitrary points on the rays from a with the slope α2, and from b with the slope

β1 respectively, and let w = γv1 + (1− γ)v2 for some γ ∈ (0, 1). Then by Lemma 3.1 ϕ(w, 1) = ā

or b̄. Let ϕ(w, 1) = ā. Then the ray from the point a through the point w should be contained in

the set ϕ−1(ā) that is impossible. Analogously the case ϕ(w, 1) = b̄ is impossible as well.

2. U(yi) = yi. Then for every sequence yni → yi there are vn such that ϕ(vn, 1) = (yni, 1− yni)
for su�ciently large vn. Let yn → y, yin < yi , zn → y, zin > yi, and ϕ(wn) = yn. Denote

[α1
n, α

2
n] [β1

n, β
1
n] the slopes of the boundary rays of the sets ϕ−1(yn) and ϕ−1(zn), respectively.

Then α2
n ≥ β1

n for all n . Without loss of generality we can suppose that there exist the limits

limn→∞ α
2
n = α, limn→∞ β

1
n = β. They satisfy the equality α ≤ β.

If α = β, then take an arbitrary point v on the ray from y in the direction α = β. Then

ϕ(v, 1) = y, since in the contrary for su�ciently large n this ray would intersect the rays from yn

in the directions α2
n, or the rays from zn in the directions β1

n, that is impossible.

If α < β, then take a point v on the ray from y in a direction γ ∈ (α, β). Similar to the previous

case we obtain that ϕ(v, 1) = y.
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3. The case when one of the sets ϕ−1(ā) or ϕ−1(b̄) is empty and another is not, is proved by

combinations of proofs for cases 1 and 2.

Thus, we have proved that on the half-line L1 the range of the function ϕ
−1 is either an interval

[(1/2, 1/2)(A, 1− A)] or the whole half-line L1..

Therefore,

ϕ−1(x) = ∅ =⇒ ϕ−1(y) = ∅ for all y ∈ L1, yi > xi.

Corollary 3.1 In the conditions of Lemma 3.2 for every y ∈ L1 from ϕ−1(y) 6= ∅ it follows that
ϕ−1(z) 6= ∅ for every z ∈ L1 satisfying zi < yi.

Corollary 3.1 shows that the set {x|xi + xj = 1, xi ≥ xj, ϕ
−1(x) 6= ∅} either is an interval

[1/2, a], or the half-line [1/2,∞).

Corollary 3.2 If the set {ϕ(v, 1) |vi +vj > 1} is bounded, equal [(−A,A+1), (A, 1−A)] for some

A ≥ 1/2, then ϕ(v, 1) = (A, 1−A) for all {v|vi + vj ≥ 1, vj < kvi + 1−A(1 + k)}, where k ≥ −1

equals the minimal slope of rays of the cone ϕ−1(A, 1− A).

Proof . The ray xj = kxi+1−A(k+1) for xi ≥ A belongs to the cone ϕ−1(A, 1−A). Let v be a

vector satisfying vj < kvi+1−A(1+k). Denote ϕ(v, 1) = y. Then, by the condition of the Lemma,

yi ≤ A. Assume that yi < A. By self-covariance of ϕ the following inclusion holds: [y, v] ⊂ ϕ−1(y).

Let z be the intersection point of the interval [y, v] with the ray xj = kxi + 1 − A(k + 1). Then,

again by self-covariance of ϕ, it should be ϕ(z, 1) = y, ϕ(z, 1) = (A, 1 − A) that is impossible.

Therefore, ϕ(v, 1) = (A, 1− A).

The next Lemma shows continuity of the function ϕ−1, ϕ ∈ Ψ in x in domains xi + xj = T for

arbitrary T . Give some notation.

Let xn be a sequence of points with a constant sum of coordinates xin+xjn = T satisfying xin >

xjn and converging to x. Without loss of generality suppose that the sequence xn is monotone,

i.e., the sequence xin is either increasing, or decre.asing.

Let xin be increasing and suppose that the sets ϕ−1(xn) are one-dimensional, i.e.,rays. Denote

the slopes of the rays ϕ−1(xn) by kn. Then kn ∈ [−1, 1].

Since the rays ϕ−1(xn) do not intersect ( Lemma 3.1), the sequence kn is decreasing. Therefore,

there is a limit limn→∞ kn = k.

Lemma 3.3 Let a solution ϕ satisfy the conditions of Lemma 3.1, and for the sequence xn → x

de�ned above all the sets ϕ−1(xn) contain the rays with slopes kn ∈ [−1, 1]. If limn→∞ kn = k, then

the set ϕ−1(x) contains the ray with the slope k.
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Proof . It su�ces to consider only the case k > 0.

1. ϕ−1(x) is a ray. Suppose that the direction of this ray does not equal k. Then, by monotonicity

of kn the slope of the ray ϕ
−1(x) is greater than k. Consider the angle with the vertex x and sides

with the directions k and that of ϕ−1(x). Then for every point v , belonging to this angle, it holds

the equality ϕ(v, T ) = x, since for every point y : yi + yj = T, y 6= x the interval connecting v and

x, intersects either the ray ϕ−1(x), or the rays ϕ−1(xn) for su�ciently large n that is impossible

by Lemma 3.1. Therefore, ϕ−1(x) cannot be a ray that contradicts the assumption.

2. ϕ−1(x) equals an angle with the vertex x and sides with the slopes k1, k2, k1 6= k2. Suppose

that k /∈ [k1, k2]. Let v be an arbitrary point in the angle with the vertex x and sides with the

slopes k, ki, i = 1, 2 if |k − ki| < |k − kj|, i, j = 1, 2. Then ϕ(v, T ) = x, since for another point y

on the direct line xi + xj = T the interval, connecting v and y, intersects either the set ϕ−1(x),

or the sets ϕ−1(xn) for su�ciently large n, that is impossible by Lemma 3.1. In particular, the

point v may be placed on the boundary of the corresponding angle, implying that this boundary

is contained in the set ϕ−1(x).

Let us describe solutions for the class G+2 from the family Ψ with the help of their converse.

First we de�ne such converse solution functions for a �xed value T , let it be T = 1. Then a

converse function ϕ−1 depends only on one variable xi. By anonymity, as earlier, consider only

xi ≥ 1/2.

For every number A > 1/2 de�ne a familyHA of multi-valued functions h : [1/2,∞)→ [−A,A],

possessing the following properties: h ∈ HA, if
1) 1 ∈ h(1/2);

2) h(t) = [at, bt], at ≤ bt] for all t ≥ 1/2.

3)the function h has the closed graphic: if xn → x, yn ∈ h(xn), yn → y, then y ∈ h(x),

4) h is weakly decreasing:

lim inf
xn→x−

h(xn) ≥ lim sup
xm→x+

h(xm).

Every function h ∈ HA de�nes an e�cient solution ψh for the class G+2 by a converse solution

function (ψh)−1(x) for x = (xi, xj), xi + xj = 1, A ≥ xi ≥ xj as follows:

(ψh)−1(x) =

{
the ray from x with the slope h(xi), if |h(xi)| = 1,

the angle with the vertex x whose slopes of sides are a, b, if h(xi) = [a, b].
(8)

The solution ψh itself is de�ned for every game (v, 1) ∈ G+2 by the relation

x = ψh(v, 1) ⇐⇒ v ∈ (ψh)−1(x), xi + xj = 1. (9)

Equality (8) shows that for all v ∈ L1 the inequality (φh(v, 1))i ≤ A holds.
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For arbitrary T

ψh(vi, vj, T ) = Tψh
((vi

T
,
vj
T

)
, 1
)
. (10)

To games (v, T ) from G+2 with vj > vi we extend the solution ψh by the anonymity property:

ψh
i (vi, vj, T ) = ψh

j (vj, vi, T ). (11)

Now, given a number A and a function h ∈ HA, the solution ψh has been de�ned for the whole

class G+2 .

Theorem 3.1 A solution ϕ for the class G+2 belongs to the family Ψ if and only if there is a

number A > 1/2 and a function h ∈ HA such that ϕ = ψh.

Proof . Let h ∈ HA be an arbitrary function. Let us show that ψh ∈ Ψ.

Properties 3) and 4) of h imply that for every vector v = (vi, vj), vj ≤ vi, vi + vj > 1 there is

a point x such that v ∈ ψ−h(x). Hence, the solution ψh is non-empty for games (v, 1) ∈ G+2 and,

by using extension (10), it is non-empty for all games from G+2 .
Single-valuedness of ψh(t) for every t follows from nonintersectability of the values (ψh)−1 :

(ψh)−1(x)∩ (ψh)−1(y) = ∅ for every x 6= y, xi + xj = yi = yj that is provided by properties 2) and

4) of h and the de�nition of the converse solution function (8).

Anonymity of ψh follows from (11).

Property 4) of the functions h provides non-intersectability of the sets ψ−h(x), ψ−h(y) for x 6= y

implying single-valuedness of ψh. At last, self-covariance follows from the de�nition of the converse

solution functions whose values are convex cones.

Let now ϕ ∈ Ψ be an arbitrary solution, and let A = maxx such that there exists v, vi ≥ vj

satisfying ϕ(v, 1) = (x, 1− x). We should prove that ϕ = ψhϕ
for some hϕ ∈ HA. For simplicity of

notations without loss of generality suppose that A =∞ and denote HA = H.
Let us construct the function hϕ ∈ H, implying the equality ϕ = ψhϕ

.

Evidently, ϕ((1/2, 1/2), 1) = (1/2, 1/2), so, we put (1/2, 1/2) ∈ hϕ(1/2).

For arbitrary t ≥ 1/2 we put

hϕ(t) = [αt
1, α

t
2], (12)

where ϕ−1(t, 1 − t) equals the angle with the vertex (t, 1 − t) and the sides having slopes αt
1, α

t
2.

Hence, the function hϕ satis�es property 2).

Since the sets ϕ−1(x) and ϕ−1(y) , for xi + xj = yi + yj = 1 are not empty by the assumption

A =∞, closed, and do not intersect, we obtain that the function hϕ(t) (12) is not increasing in t,

i.e., satis�es property 4). By Lemma 3.3 the function hϕ satis�es property 3).

Therefore, hϕ ∈ H, and ψhϕ ∈ Ψ. It remains to show that ϕ = ψhϕ
. By equality (12) for every

t ≥ 1/2 the set hϕ(t) = [kt1, k
t
2] de�nes uniquely the set ϕ

−1(t, 1− t) such that k1, k2 are the slopes
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of the sides of the angle ϕ−1(t, 1 − t). Hence, by (8) ϕ−1 = (ψhϕ
)−1, from what by (9) it follows

that ϕ = ψhϕ
.

This proof was given for the subclass of G+2 of games (v, T ), satisfying T = 1, vi ≥ vj. The

extension of the result to the whole class G+2 is hold with the help of anonymity (11) and positive

homogeneity (10) of solutions from the family Ψ.

Examples .

1.If h(t) = 1 for all t ∈ [1/2,∞), then the solution ψh is standard;

2. h((1
2
) = [0, 1], h(t) ≡ 0 for all t > 1

2
, then the solution ψh is the extension of the constrained

egalitarian solution de�ned for superadditive games [Dutta 1990] to subadditive two-person games

[ Arin, I�narra 2002];

3. If h(1
2
) = [−1, 1] and h(t) = −1 for all t > 1

2
, , then the solution ψh is egalitarian: ψh(v, 1) =

(1/2, 1/2) for all v, vi + vj ≥ 1.

4. If h(t) = 1−t
t
, , then the solution ψh is proportional.

All solutions 1-4 belong to the class Φ. An example of a function h ∈ H , de�ning a solution

ψh ∈ Ψ, but not belonging to the family Φ, is de�ned by the function h(t) = tg 1−t
1+t
. In fact, for every

t ≥ 1/2 the set (ψh)−1(t, 1−t) is a ray, and the function h(t) has no intervals with constant values.

Therefore, the solution ψh is not de�ned by a partition of the half space {(xi, xj) |xi + xj ≥ 0} on
the cones inside which the function h is constant, and on whose sides the solution is proportional.

4 An axiomatic characterization of the family Φ

The family Ψ, characterized in Theorem 4 is very large and contains the family Φ. In this section

we characterize the family Φ by adding one more axiom. Recall that the restriction of the family

Φ to the class of two-person cost-sharing problems coincides with the family Ha
2. The last one

is characterized by Anonymity, upper and lower composition, and positive homogeneitó (Moulin

2000). The Upper and Lower composition properties were not applied to the characterization of

the family Ψ ⊃ Φ (Theorem ). Therefore, it could be natural to choose one of these axioms.

However, the lower composition property can not be applied to a characterization of methods

for pro�t-sharing problems because given two pro�t-sharing problems (c, t), (c, T − t), t < T the

problem (c, T−t), participating in the de�nition of this property, may turn out to be a cost sharing
problem. Since the ultimate goal of the paper is an extension and a characterization of the family

Φ to the whole class of two-person games, this axiom does not match to ful�lling the goal.

On the contrary, Upper composition, or the Path Independence property matches completely

for both classes of sharing problems.

It can be applied for single-valued solutions of two-person both sub- and superadditive games

without any modi�cation.
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A solution ϕ for the class of all class G2 of two-person TU games is path independent (PI), if

for any games (v, t), (v, T ), t < T )

ϕ(v, T ) = ϕ(ϕ(v, t), T ).

In the sequel we use the following notation; k1xk2, axb denote the angles with the vertex x

and the sides with the slopes k1, k2, k1 < k2 or passing through the points a, b respectively.

Evidently, if a solution ϕ satis�es self-covariance and path independence, and for a �xed x ∈ R2

the set ϕ−1(x) is a ray, then the path ϕv is an interval on the ray ϕ−1(x).

To begin with, we will consider the subclass G2+ ⊂ G2 and solutions for it.

Lemma 4.1 Let ϕ be a solution for the class G2+, satisfying the axioms NE, EFF, SV. ANO, self-
C0V, and PI. Let k10k2 be an a maximal angle such that for every interior point x the solution

ϕ on the ray 0x is not proportional. Then for any point z inside the angle the set ϕ−1(z) is a ray

having slope k1 or k2.

Proof . By the condition of the Lemma the path ϕz(v, t) for every interior point z and

t ∈ [0, vi + vj]intersects one of the sides of the angle in a non-zero point. Let it intersect the side

xj = k2xi in a point y.

Let us show that the the interval [y, z] has the slope k1. Denote the slope of the interval [y, z]

by k and assume that k 6= k1, k2. Consider the following cases:

1. k < k1. Then the ray with this slope from the the set ϕ−1(z) intersects the ray xj = k1xi that

is impossible.

2. k1 < k < k2. Then by positive homogeneity of ϕ the solution is proportional on the ray inside

the angle with the slope k that is impossible by the assumption.

3. k > k2. This case is analogous to the case 1.

Since the point z was chosen arbitrarily in the interior of the angle, then their converse ϕ−1(z)

consists of the unique ray with the same slope k1 or k2.

For every point w : wj = k2wi the value of the converse function ϕ
−1(w) is the angle k1ak2.

Lemma 4.2 Let ϕ be a solution for the class G2+, satisfying the conditions of Lemma 4.1.

If in a point a = (ai, aj), ai + aj = 1, ai > 1 the set ϕ−1(a) is an angle k1ak2, k1 < k2, then

1) the ray 0a passes through this angle and

2) on the rays 0a and those from 0 with the slopes k1, k2 the solution ϕ is proportional.

Proof . Denote by ka the slope of the ray 0a to the line xi + xj = 1.

Consider the following cases:

1. ka < k1 < k2 (Fig.2).

15



By positive homogeneity of ϕ ϕ−1(αa) = αϕ−1(a) for every α > 0. Let v ∈ ϕ−1(αa) ∩ (ϕ−1(a)

for some α < 1. Then ϕ(v, 1) = a, ϕ(v, α) = αa, By path independence of ϕ αa = ϕ(v, α) =

ϕ(ϕ(v, 1), α). Since ϕ(v, 1) = a, from the last equality we obtain ϕ(a, αa) = α, that means

proportionality of the solution ϕ on the ray 0a. Therefore, the part of the ray 0a going out from

a belongs to the set ϕ−1(a), that is possible only if ka = k1. This equality implies that on the ray

0a, coinciding with the ray having the slope k1, the solution ϕ is proportional.
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It remains to show that on the ray from 0 with the slope k2 the solution ϕ is proportional. Let

w be an arbitrary point satisfying wi + wj = 1 and lying inside the angle k10k2 (Fig.3).
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The slope of any ray from the set ϕ−1(w) is less than or equal k2. If it does not equal k2, then

its continuation will intersect the ray from a with the slope k2. Then in the intersection point b

we should have ϕ(b, 1) = w, and ϕ(b, 1) = a that is impossible. Hence, for every point w inside

the angle k10k2 ϕ
−1(w) is the ray from w with the slope k2.
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Let a sequence xn → x, xni > k2xnj be a sequence of points on the line xi + xj = 1. Then the

sets ϕ−1(xn), are the rays with the direction k2 By Lemma 3.3 the ray from x with the slope k2

belongs to the set ϕ−1(x), providing proportionality of the solution ϕ on the ray 0k2.

2. k1 < k2 ≤ ka. Similarly to the proof of case 1) we obtain that this assumption leads to

proportionality of ϕ on the ray 0a and k2 = ka.

3. k1 < ka < k2 ( Fig.3) . First, we show proportionality of ϕ on the ray 0a. Take an arbitrary

point w in the angle k1ak2. Then ϕ(w, 1) = a. Positive homogeneity of ϕ implies ϕ(w, α) = αa for

every 0 < α < 1, and by path independence of ϕ the last two equalities imply ϕ(a, α) = αa, that

means proportionality of ϕ on the ray 0a.
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Now let us show proportionality of the solution ϕ on the ray from 0 with the direction k1.

Consider the point y =
(

1
1+k1

, k1
1+k1

)
on the ray (Fig.4). By positive homogeneity of the solution

ϕ and by Lemma 3.3 we have ϕ−1(y) 6= ∅.
Let v ∈ ϕ−1(y) be an arbitrary point. Then ϕ(v, 1) = y. Consider the following cases:

i) The point v is placed on the ray from 0 with the slope k1. Then the claim has been proved.

ii) The point v is placed out of the angle k10ka (Fig 4).
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Fig.5

Then by Lemma 3.1 the angle with the vertex y whose one side has the slope k1 and the other

lies on the ray 0v, is contained in the set ϕ−1(y).

iii) The point v is placed inside the angle ka0k1. (Fig.5) Then the slope of the interval [v, y]

should be between k1 and ka. However, if it greater than k1, then the ray from y through the

point v will intersect the ray from a in the direction k1. In the intersection point z we should have

ϕ(z, 1) = a, ϕ(z, 1) = y that is impossible.

Hence, from pp. ii) and iii) it follows that the ray from y with the direction k1 is contained in

the set ϕ−1(y), implying proportionality of the solution ϕ on the ray 0k1.

Similarly proportionality of ϕ on the ray 0k2 is proved.

Lemma 4.3 If in the conditions of Lemma 4.1 there exists an angle k10k2, k1 < k2 ≤ 1 such that

for every interior point u of the angle the set ϕ−1(u) is a ray, lying inside the sector as well, and

for every boundary point z of the angle the set ϕ−1(z) does not intersect with the interior of the

sector, then the solution ϕ is proportional in all the sector.

Proof . If the set of points X = {x : xi + xj = 1, xi ≥ xj}, placed inside the angle k10k2

and such that on the rays 0x the solution ϕ is proportional, is dense in the interval [ā, b̄], where

ā = (ai, 1− ai), b̄ = (bi, 1− bi), k1 = 1−bi
bi
, k2 = 1−ai

ai
, then then by Lemma 3.3 it is proportional in

all the angle k10k2.

Consider the interval [ā, b̄] of the points of the sector, satisfying ai + aj = bi + bj = 1. Then

the rays from ā, b̄ in the directions 0ā, 0b̄ respectively, belong to the sets ϕ−1(ā), ϕ−1(b̄). The set

of the slopes of the rays ϕ−1(u) for u ∈ (ā, b̄) should �ll the interval (ka, kb), where ka, kb are the

slopes of the rays 0ā, 0b̄ respectively (Lemma 3.1). Therefore, there exists a point c̄ ∈ (ā, b̄) such

that the ray ϕ−1(c̄) lies on the ray 0c̄, and on the ray 0c̄ the solution ϕ is proportional.

Now the angle ā0b̄ is partitioned into two angles ā0c̄ and c̄0b̄ satisfying the conditions of the

Lemma. Such a procedure of dividing every sector into two ones can be continued, and in the

limit, by Lemma 3.3 we obtain that for every u ∈ (ā, b̄) the ray ϕ−1(u) lies on the ray 0u, that

means that on this ray the solution ϕ is proportional.

Theorem 4.1 A solution ϕ for the class G+2 two-person games satis�es axioms EFF, ANO, PH,PI

and Self-Cov if and only if ϕ ∈ Φ.

Proof . The 'if part'. Let ϕ ∈ Φ be an arbitrary solution for the class G+2 . The �rst three

properties follow from the de�nition of the family Φ given in Section 2. Self-covariance of these

solutions has been checked in Proposition 2.1. Path independence is one of the properties of the

family H∗2 two-person cost sharing methods (Moulin 2000). It is evidently saved when extending
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their anonymous subfamily Ha
+ to the class G+2 of subadditive two-person games with nonnegative

characteristic function values of two-person coalitions.

The 'only if' part. Let ϕ be an arbitrary solution for the class G+2 , verifying all the axioms

stated in the Theorem. By Theorem 3.1 ϕ ∈ Ψ. To prove that ϕ ∈ Φ it su�ces to show this fact

for the subclass G12 ⊂ G+2 of games such that ({i, j}, v) ∈ G12 if and only if v({i, j}) = 1, vi +vj ≥ 1,

and vi ≥ vj. Then by applying anonymity and positive homogeneity we prove the result for the

whole class G+2 .
We begin to prove this part of the Theorem with �nding the values of the converse solution

function ϕ−1(x) for all points of the half-line L1, and show that every such a function generates a

partition of the half-line into the cones de�ning the solution ϕ for the class G+2 by formulas being

rewriting of (2),(3) for solutions for the class of subadditive two-person games G+2 .
First, denote by L2 ⊂ L1 the maximal set such that that for every ā = (a, 1 − a) ∈ L2

the set ϕ−1(ā) 6= ∅. This set is non-empty, since (1/2, 1/2) ∈ L2 by anonymity. By Lemma 3.2

L2 = [(1/2, 1/2), (a, 1− a)] for some a ≥ 1/2.

Denote Lp ⊂ L2 the set such that for every point x ∈ Lp the solution ϕ on the ray 0x is

proportional. Such a set is not empty, since (1/2, 1/2) ∈ Lp. By Lemmas 3.3 and 4.1 the set Lp

consists of isolated points and of intervals.

Let us �nd the values of the converse solution function ϕ−1(x̄) for x̄ ∈ (ā, b̄), where (ā, b̄) ∈
L2 \ Lp, is a maximal open interval in which ϕ1(x̄) is single-valued.

By Lemma 4.1 the rays ϕ−1(x̄) for x̄ ∈ (ā, b̄), x̄ = (x, 1− x), b̄ = (b, 1− b), have the same slope
kab coinciding with the minimal slope of the rays from ϕ−1(ā), or with the maximal slope of the

rays from ϕ−1(b̄). From the same Lemma it follows that the sets ϕ−1(x̄) are not degenerate cones

only if on the ray 0x̄ the solution ϕ is proportional implying that the solution ϕ ismproprtional

on the rays 0ā, 0b̄.

Evidently, if on the ray 0x̄ the solution ϕ is proportional, then for x̄ ∈ L2 the ray ϕ
−1(x̄) has

the slope 1−xi

xi
.

Thus, we have obtained that for solutions ϕ satisfying all the properties given in the Theorem,

the function hϕ, de�ned in the previous section for solutions from the family Ψ, satis�es two more

properties:

5) If |hϕ(t)| > 1 for some t > 1/2, then 1−t
t
∈ hϕ(t),

6) If for all t ∈ (ai, bi) |hϕ(t)| = 1, then either hϕ(t) is constant , for all t ∈ (ai, bi), or h
ϕ(t) = 1−t

t
.

Let a function h : [1/2,∞)→ [−1, 1] satisfy the 1)�6). Consider the solution ψh, de�ned in (8)

on the domain L1 = {(xi, xj) |xi + xj = 1, xi ≥ xj}.
We prove that ψh ∈ Φ. De�ne a solution ψh

Let v = (vj, vj) ∈ L, T < vi + vj. If v belongs to the interior of the angle de�ned by the rays

19



0ā, 0b̄). Then ψh(v, 1) = (t, 1− t), where either

t =
vi

vi + vj
, if h(t) =

1− t
t

for all t ∈ (a, b), (13)

or

t =


1

1 + ka
, if 1 ≤ (1 + ka)(vj − kbvi)

ka − kb
1− (vj − kbvi)

1 + kb
, otherwise.

(14)

where ka, kb are the slopes of the rays 0ā, 0b̄, or else

t =


1

1 + kb
, if 1 ≤ (1 + kb)(vj − kavi)

kb − ka
1− (vj − kavi)

1 + ka
, otherwise.

(15)

In the �rst case the solution ψh is proportional, in the last two cases it is de�ned by the paths

(ψh)v when T is varied from vi+vj to 1. These paths are piece-wise lines consisting of two intervals.

The choice of the two possibilities (14) and (15) for the solution ψh(v, 1) in every interval of the

partition of the half-line L1 in which the solution ψh is not proportional, can be done uniquely, if

this partition is ordered. Then we obtain de�nition ψh by (14), if the interval (ā, b̄) is indexed as

(ā1, b̄2)), and de�nition ψh by (15), if the ordered interval is (ā2, b̄1).

Then, de�nitions (13)�(15) added by the set Lp and by an ordering of the partition of the

half-line L1 de�ned by the function h, uniquely determine the solution ψh ∈ Ψ, and they coincide

with those for solutions from the family Φ given in section 3 implying ψh ∈ Φ.

In particular, we can put h = hϕ, so, ψhϕ ∈ Φ from what it follows that ϕ = ψhϕ
for every

ϕ ∈ Φ.

Hence, we have obtained that a solution ϕ satisfying the conditions of the Theorem, belongs

to the family Φ for subadditive games (v, T ) ∈ G+2 with T = 1 and vi ≥ vj. By the properties PH

and ANO this result holds for all games from G+2 as follows:

Let (v, T ) ∈ G+2 be an arbitrary game. If vi ≥ vj, then for arbitrary T > 0

ϕ(v, T ) = Tϕ
(

(
vi
T
,
vj
T

), 1
)
. (16)

If vj > vi, then

ϕ(v, T ) = Tϕ
(

(
vj
T
,
vi
T

), 1
)
. (17)

Note that the games in the right-hand part of equalities (16), (17), satisfy the subclass of G+2
for which the proof of the Theorem has been already obtained.

Evidently, the games in left-hand parts of equalities (16), (17) belong to the family Φ as well.
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5 An extension of solutions from the family Φ to the class

of all two-person games

In this section we extend the family Φ to the whole class of subadditive two-person games such

that the extensions save all the properties given in Theorem 4.1.

Theorem 5.1 Let ϕ̄ be an extension of a solution ϕ ∈ Φ to games (v, T ) where v, T satisfy the

inequalities vi ≥ vj, vi + vj > T, T < 0 the extension veri�es axioms NE, SV, ANO, Self-COV,

and PI. Denote t0 = limt→∞ h
ϕ(t). Then the extension ϕ̄ is de�ned by the following equalities:

If t0 > −1, then

ϕ(v, T ) =



ϕ̄(v, T ) =

(
T

2
,
T

2

)
, if vi = vj or

T ≤ vj −
1− t0
t0

vi),

t0

(
T − (vj −

1− t0
t0

vi)

)
otherwise .

(18)

If t0 = −1, , then ϕ(v, T ) =
(
T
2
, T
2

)
.

Proof . Equalities (18) ( and its symmetric part for vj > vi) determine a nonempty single-

valued and anonymous solution ϕ̄ for subadditive games (v, T ) with T ≤ 0. It is not di�cult to

check that the solution ϕ̄ satis�es the properties Self-Cov and PI. Path independence of solution

ϕ̄ provided by equalities (18) shows that it is, in fact, an extension of the solution ϕ to negative

values T.

Assume that there is an extension ϕ̄ to the whole class of subadditive two-person games,

satisfying axioms NE, SV, ANO, Self-COV, and PI. sider two cases.

1. There exists a point (t0, 1− t0), t0 > 1/2 such that hϕ(t) = t0
1−t0 for all t ≥ t0 (Fig. 6)

Let v be an arbitrary point satisfying vi >
1−t0
t0
vj, vi + vi > 1, T < 0. Denote ϕ̄(v, T ) = y.

Let us show that the interval [y, v] has the slope t0
1−t0 . In fact, the less slope is impossible by the

de�nition of t0. If it is greater than
t0

1−t0 , then the ray from y with this slope would intersect the ray

from zero with the slope t0
1−t0 , and in the intersection point z by self covariance and the de�nition

of t0 we would receive two paths: zy by self-covariance, and z0 by the de�nition of the solution ϕ,

that is impossible.
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2. limt→∞ h
ϕ(t) = 0. In this case ϕ(v, T ) = (T

2
, T
2
) for all T ≤ 0 and v : vi + vi > T, vi ≥ vj.

Indeed, if ϕ̄(v, T ) = y 6= (T
2
, T
2
), then the ray from y passing through the point v would intersect

the line xi + xj = 0 and the rays ϕ−1(t,−t) for su�ciently large t, and we would return to case 1.

Therefore, we have proved that the for every ȳ : yi ≥ yj, yi + yj < 0yi 6= y)j the set ϕ̄−1(ȳ) is

the ray parallel to the axis xi. If yi = yj, then the set ϕ̄−1(ȳ) is the angle whose sides are parallel

to the coordinate axis.

6 Concluding remarks

In all the text new solutions were investigated only for subadditive two-person games. The natural

question arises whether it is possible to de�ne and to characterize the solutions satisfying the same

axioms for superadditive two-person games as well.

It turns out that there is no problem to represent such a solution for this class of games. Let

(v, T ) be a sub-additive two-person game. Then the game (−v,−T ) is superadditive, and vise

versa. We can extend a solution ϕ̄ for the class of subadditive two-person games, considered in

the previous section, to the class of superadditive two-person games as follows: let (v, T ) be a

superadditive game. Put

ϕ̄(v, T ) = −ϕ̄(−v,−T ) (19)

It is clear that this extension veri�es all the axioms stated in Theorem 5.1, though, possibly,

self-covariance is not so evident. Let us show that this property. Let (v, T ) be a superadditive

game. Then
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ϕ(v + Aϕ(v, T )) = −ϕ(−v − Aϕ(−v,−T )) = −(A+ 1)ϕ(−v,−T ) = (A+ 1)ϕ(v, T ). (20)

Coming back, to pro�t-sharing methods, we can note that for this class of problems the family

Φ applied to the positive domain, is not so rich as the family Ha
2. In fact, equality (20) shows

that such methods are the reversed ones of family Φ for negative values T. They coincide with the

class of cooperative game solutions described in [Yanovskaya, 2014] for superadditive games as the

solutions satisfying the axioms ANO, Self-Cov, SI, and Weak Covariance that here is replaced by

the Path Independence axiom.
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