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INTRODUCTION

We will call a class X of graphs IS-easy if there is an algorithm solving the independent set problem
for graphs in X in polynomial time. If the independent set problem remains NP-complete for graphs
in X then X is called IS-hard. It is known that the class of all planar graphs is IS-hard. The goal of this
article is to prove that some subsets of this class are IS-easy.

The direction for distinguishing IS-easy classes is suggested in [2, 3], where the complexity was
studied of the independent set problem for some hereditary classes of graphs; these are the classes closed
under removal of vertices. Each hereditary (and necessarily hereditary) class X is determined by a certain
set of forbidden induced subgraphs Y . In this case we write X = Free(Y ). If in addition Y is finite then
X is called finitely defined.

The concept of boundary class of graphs is introduced in [3] as an inclusion minimal class presenting
the intersection of a descreasing sequence of IS-hard classes. The following is proved in [3]:

Theorem 1. A finitely defined class is IS-hard if and only if it includes an boundary class.
Therefore, the knowledge of all boundary classes allows us to completely characterize the finitely

defined IS-hard classes. It is also proved in [3] (assuming P �=NP) that some particular class is a
boundary class. This is the class T of all graphs whose every connected component is a tree with at
most three leaves. It remains unknown as yet whether there exist other boundary classes. This question
is equivalent to that of the existence of a graph G ∈ T such that Free(G) is IS-hard [3]. The difficulty of
this problem is illustrated by the fact that the complexity of the independent set problem for Free(P5) is
presently unknown. At the same time, if instead of the whole set of hereditary classes we consider a part
of it, we can hope for an irrefragable answer to this question. For instance, it is proved in [3] that T is
a unique boundary class in the family of strongly hereditary classes, i.e., the classes of graphs closed
under removal of vertices and edges.

In this article, we consider the hereditary subclasses of the class Planar of planar graphs. A class
X is finitely defined with respect to Planar if X = Planar ∩ Free(Y ), where Y is a finite set of graphs.
We can also define the concept of a relative boundary class: a hereditary class Y of graphs is called
boundary relative to a class X if there exists a sequence Y1 ⊇ Y2 ⊇ · · · of IS-hard subsets of X such
that

⋂∞
i=1 Yi = Y and Y is a minimum class with this property. Proofs of an analog of Theorem 1 for

relative boundary classes, as well as the fact that T is an boundary class relative to Planar, repeat almost
verbatim the corresponding proofs in [3]. Even though we could not as yet determine whether other
boundary classes relative to Planar exist, there is more noticeable progress toward this goal than in the
case of (absolutely) boundary classes.
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Let Ti,j,k be a tree with three leaves at distance i, j, and k from the (unique) degree 3 vertex. If i = 0
then this is Pj+k. Consider the classes

Planar(i, j, k) = Planar ∩ Free(Ti,j,k).

The boundary classes relative to Planar distinct from T exist if and only if some of the classes
Planar(i, j, k) are IS-hard. Let us verify that Planar(1, 2, k) is an IS-easy class for every k.

Throughout this article we use the following notation: the set of vertices adjacent to a vertex a is N(a);
the set of vertices at distance 2 from a is N2(a); the set of vertices adjacent to both a and b is N(a, b);
and the distance in a graph between x and y is d(x, y).

1. PLANAR GRAPHS WITHOUT T2,2,2

It is unknown whether Planar(2, 2, 2) is IS-easy or IS-hard. In this section, we only prove that the
independent set problem for it is polynomially equivalent to the same problem for the graphs of this class
with degree bounded by some constant. We then use this fact for proving the main result of the article.

At the first stage, our principal algorithmic tool will be the compressions described in [1]. A com-
pression is a mapping of the vertex set of a graph to itself which, while not an automorphism, is
such that every pair of distinct nonadjacent vertices goes into distinct nonadjacent vertices. Therefore,
a compression transforms a graph into an induced subgraph of it; in addition, it obviously preserves
the independence number. Here we will use only the first and second order the compressions; i.e.,
compressions that fix all but one or two vertices.

A first order compression ϕ is written as
(a

b

)
; this means that ϕ(a) = b, and the remaining vertices

are fixed. This transformation is indeed a compression if and only if a and b are adjacent, and every vertex
adjacent to b and distinct from a is adjacent to a. In other words,

N(b) − {a} ⊆ N(a) − {b}.

The transformation
(a b
c d

)
, which means ϕ(a) = c, ϕ(b) = d, and the remaining vertices are fixed, is

a second order compression if:
(i) c �= d;
(ii) the graph has the edges (a, c) and (b, d), and has no edges (a, b) and (c, d);
(iii) except for a and b, every vertex adjacent to c is adjacent to a as well;
(iv) except for a and b, every vertex adjacent to d is adjacent to b as well.
A graph is called incompressible if it admits neither first nor second order compressions. An incom-

pressible subgraph of a graph G resulting from G by a sequence of first and second order compressions
is called a 2-base of G. A graph can have several 2-bases (for instance, C4 has two bases), but they are
isomorphic [1]. It is obvious that a 2-base of a graph can be found in polynomial time.

Lemma 1. Take an incompressible graph G in Planar(2, 2, 2) and its vertices a and b with
d(a, b) = 2. Then |N(a, b)| � 12.

Proof. Call a vertex x ∈ N(a, b) exceptional if every vertex adjacent to x, except for a and b, belongs to
N(a, b), and a-pure (or b-pure) if there is a vertex adjacent to x but not adjacent to a (to b).

Observe that every vertex in N(a, b) belongs to one of these three categories. Estimate the number of
vertices of each type.

If x and y are two nonadjacent exceptional vertices then the mapping
(a b
x y

)
is a compression. Hence,

the exceptional vertices form a full subgraph. It cannot contain more than three vertices since otherwise
a subgraph K5 will be formed. However, if there is exactly three exceptional vertices then N(a, b) has
no other vertices since otherwise a subgraph homeomorphic to K5 will be formed. Consequently, either
there is at most two exceptional vertices or |N(a, b)| = 3.

Suppose that G includes six a-pure vertices. Consider a plane embedding of G; it determines a cyclic
ordering of the edges incident to each vertex and, consequently, of the adjacent vertices. Let x1, . . . , x6

be the a-pure vertices lying in this cyclic order with respect to a. For i = 1, . . . , 6, take some vertex yi

adjacent to xi and not adjacent to a. These yi need not be distinct, for instance, y1 = y2 is possible,
although y1, y3, and y5 are pairwise distinct and not adjacent to each other. However, then the set
{a, x1, x3, x5, y1, y3, y5} induces a subgraph T2,2,2. Therefore, N(a, b) contains at most five a-pure and
at most five b-pure vertices, and so, at most 12 vertices overall. The proof of Lemma 1 is complete.
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Lemma 2. In each incompressible graph in Planar(2, 2, 2), the degree of every vertex is at
most 120.

Proof. Pick a vertex a of degree d in some incompressible graph G ∈ Planar(2, 2, 2). Consider the
bipartite subgraph H formed by the vertex sets A = N(a) and B = N2(a) and all edges of G joining A
with B. Let π be the cardinality of a maximum matching, and β, the cardinality of a minimum vertex
covering of H . The König theorem yields π = β.

If a vertex x ∈ A is not adjacent to any vertex of B then the mapping
(a
x

)
is a compression.

Consequently, each vertex of A is adjacent to at least one vertex of B, and H contains d edges having no
pairwise common vertices in A. By Lemma 1, every vertex of B is of degree at most 12 in H . Hence, it
takes at least d/12 vertices to cover these d edges. Consequently, π � d/12.

Pick a matching in H with π edges and consider the graph H ′ obtained from H by contracting all
edges in this matching. If d > 120 then H ′ contains at least 11 vertices. Since it is planar, it contains
a vertex b of degree at most 5. Among the vertices not adjacent to b, there is a pair not adjacent to
each other (otherwise a subgraph K5 will be formed). Consequently, H ′ includes an independent set
consisting of three vertices. Corresponding to these vertices, H contains three edges, which together
with the incident vertices induce a subgraph 3K2. However, then these six vertices together with a
induce in G a subgraph T2,2,2. The proof of Lemma 2 is complete.

It is proved in [5] that, given Δ and k, the class of all graphs in which the degrees of vertices are at
most Δ and which include no induced subgraphs T1,k,k is IS-easy. By Lemma 2, this yields

Lemma 3. The class Planar(1, 2, 2) is IS-easy.
In the next section, we will prove a more general statement.

2. PLANAR GRAPHS WITHOUT T1,2,k

Theorem 2. The class Planar(1, 2, k) is IS-easy for every k.

Proof. A clique in a graph G is called separating if the removal of all its vertices from G increases the
number of connected components of G. It is proved in [3] that if there exists a polynomial-time algorithm
which solves the independent set problem for connected graphs without separating cliques in a hered-
itary class X then X is IS-easy. Therefore, consider a connected graph G ∈ Planar(1, 2, k) without
separating cliques. If G includes no induced subgraph T1,2,2 then we can apply to G a polynomial-time
algorithm for Planar(1, 2, 2), which exists by Lemma 3. Let us show that if G includes no subgraph T1,2,2

then the radius of G is at most k + 2.
Suppose that G includes a subgraph T1,2,2 with the vertex set S = {a, b1, b2, b3, c1, c2} and edges

(a, b1), (a, b2), (a, b3), (b1, c1), and (b2, c2). Show that in G the distance from a to every other vertex is
at most k + 2.

Take a vertex d outside of S. Among the shortest paths joining a and d choose a path through the
greatest number of vertices of S. It is obvious that this number is at most three. Denote this path by
P = x0, x1, . . . , xt, where x0 = a and xt = d. Call an edge not lying in P and joining a vertex of this path
to a vertex of S a chord. If (xi, y) is a chord (y ∈ S) then i � 3, for otherwise there would be a shorter
path from a to d. Suppose that t � k + 3. Consider the various possibilities for the relation between P
and the vertices of S, and show that, in all cases, the graph includes either an induced subgraph T1,2,k or
a separating clique.

Case 1. The path P passes through three vertices of S. There are two equivalent possibilities.
Consider one of them: x1 = b1 and x2 = c1.

1.1. There is no chords. Then S and x3, . . . , xk generate T1,2,k.
1.2. There are some chords. The unique chord in this case must be the edge (x3, c2) since all

other chords would provide a shorter path from a to d. If this chord is present then the vertices
c2, x1, x2, . . . , xk+3 induce T1,2,k.

For brevity, henceforth we will simply list the vertices which must be removed in order for the
remaining vertices of S to form together with some vertices of P (not necessarily all) a subgraph T1,2,k.
For instance, in the case in question, we must remove a, b2, and b3.
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Case 2. The path P passes through two vertices of S, and x1 = b1. If chords are absent then we
remove b3. If there is a chord joining x3 with either c1 or c2 then we have a path from a to d of the same
length passing through three vertices of S. The presence of chords joining x3 to either b2 or b3 would
provide a shorter path from a to d. Consequently, there can be only chords incident to x2.

2.1. If the chord (x2, c2) is present then we remove b2, b3, and c1.
2.2. If (x2, c2) is absent and (x2, b2) is present then we remove a, b3, and c1.
2.3. The chords (x2, c2) and (x2, b2) are absent, but (x2, b3) is present. If (x2, c1) is present then we

remove b1, b2, and c2; and if it is absent then we remove a, b2, and c2.
2.4. If (x2, c2), (x2, b2), and (x2, b3) are absent then we remove c1.
Case 3. The path P passes through b3, and there exist no paths of the same length from a to d passing

through b1 or b2. If there is no chords then we remove c1. No chord incident to x3 can be present for the
same reasons as in Case 2. Hence, only the chords incident to x2 can be present. If a chord connects x2

to either b1 or b2 then a path of the same length is formed passing through this vertex. It remains to
consider the chords (x2, c1) and (x2, c2). If both are present then we remove a, b2, and b3; and if only
(x2, c1) is present then we remove c2.

Case 4. The path P avoids the vertices of S except for a. If there is no chords then we remove b1

and c1. For the same reasons as above, no chords incident to x3 can be present, and as for x2, only the
chords to c1 and c2 can be present. If only one of them is present then we remove x1, and if both then we
remove x1, a, b2, and b3. It remains to consider the case that there is only one chord from x1.

4.1. The chord (x1, b1) is present, but (x1, b2) and (x1, b3) are not. If (x1, c2) is present then we
remove a, b3, and c1; and if it is absent then we remove b1 and c1.

4.2. The chord (x1, b3) is present, but (x1, b1) and (x1, b2) are not. If (x1, c1) is present then we
remove a, b2, and c2; and if it is absent then we remove b3 and c2.

4.3. The chords (x1, b1) and (x1, b2) are present, but (x1, b3) is not. If (x1, c1) is present then we
remove b1, b2, and c2; and if it is absent then we remove a, b3, and c2.

4.4. The chords (x1, b1) and (x1, b3) are present, but (x1, b2) is not. If (x1, c1) is present then we
remove b1, b3, and c2; and if it is absent then we remove a, b2, and c2.

4.5. The chords (x1, b1), (x1, b2), and (x1, b3) are present. In this case, the graph includes three
triangles with the edge (a, x1). In a plane embedding, each edge is incident to at most two faces.
Consequently, in every plane embedding, at least one of these triangles does not bound a face. Then
it is a separating clique.

Thus, the radius of G is at most k + 2. It is shown in [6] that every planar graph of radius r has
treewidth at most 3r + 1. Also it is known [4] that the independent set problem is solvable in polynomial
time in the class of graphs of tree-width bounded by a constant. The proof of the theorem is complete.
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