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PROBABILISTIC EXTENTION  

OF THE CUMULATIVE PROSPECT THEORY 

 
 

A number of experiments indicate probabilistic preferences in cases where no one alternative is 

absolutely optimal. The task of predicting the choice of one of the alternatives among multiple 

alternatives is then practically important and not trivial. It can occur in situations of choice under 

risk when no one lottery stochastically dominates others. 

For risky lotteries there are several complicated models of probabilistic binary preference. For 

the first time, we herein propose the probabilistic extension of the cumulative prospect theory 

(CPT). The presented visual graphic justification of this model is intuitively clear and does not 

use sophisticated cumulative summing or a Choquet integral.  

Here we propose a model of selecting from a set of alternatives by continuous Markov random 

walks. It makes predicting the results of a choice easy because it fully uses dates received by 

probabilistic extension of СPT.  

The proposed methods are quite simple and do not require a large amount of data for practical 

use. 
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1. Introduction 
  

Practical experiments often show that in similar situations a rational individual can make 

a different choice from a pair of alternatives. This means that binary preferences cannot be 

determined uniquely and that we can only indicate the probability of choosing each alternative.  

When discussing the axiomatization of stochastic models for choices over a set of 

alternatives, as seen in Dagsvik [2008], the nature of probabilistic choice are originally given. 

But in this article, we are interested in the causes of probability preferences.  

Probabilistic binary preferences can occur if no single alternative is absolutely optimal. 

The first alternative is more preferable by some parameters (for example, price and weight) and 

the second is more preferable by other parameters (quality and ergonomics) [Swaita and Marleya 

2013]. Probabilistic binary preferences can happen in situations of choice under risk, if no one 

lottery stochastically dominates another. Axiomatic models of probabilistic binary choice under 

risk in this situation have been studied by Blavatskyy [2012].  

Here, for the first time, we introduce probabilistic binary preferences as an extension of 

the cumulative prospectuses theory of Tversky and Kahneman [1992]. We made it by using a 

visual graphical representation of prospects that are casually used by Wakker [2010, pp.160, 

197] to explain the concept of rank-dependent utility. We also define the probabilistic binary 

preferences by graphic form, which is intuitively clear and does not require sophisticated 

cumulative summing or Choquet integrals in a continuous case.  

The idea of probabilistic extends back to Fishburn [1978] and Kiruta et al [1980]. In 

comparing the alternatives x and y, an individual assesses why (or by how much) the first 

alternative is better than another and why (or by how much) the second alternative is better than 

the first.  These values are referred to as the comparative utility
2
 ),(  . If no one alternative 

absolutely dominates another, 0),( yx  and 0),( xy . The ratio of these values 

),(/),( xyyx   determines the ratio of probabilities for choosing each alternative.   

The CPT defines specific utility )(xu for each prospect x. The paradigm of rational choice 

assumes that the individual will choose the most useful alternative and the selection result will be 

univalent. However in this paper we determine the comparative utility function ),(   for a pair 

of lotteries, so we use it to construct the probabilistic extension of CPT.  

There are several quiet serious criticisms of CPT. Birnbaum et al [1999] presented 

examples of the violation of the first-order stochastic dominance principal. Wu and Markle 

                                                 
2 Fishburn [1978] calls it “incremental expected utility advantage”, but thanks to Kiruta et al [1980] we will here call 

it shorter as “comparative utility”. 
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[2007] presented examples of the violation sine-depends principle. The applicability of CPT for 

mixed prospects seen by us is limited. That is why the probabilistic extension of CPT introduced 

here is only for non-negative prospects.  

We then examine the following question in this paper. An individual has probabilistic 

binary preferences on a set of lotteries and must choose one alternative. How can one predict the 

choice result? There are several widely known approaches, such as Bradley-Terry-Luce and quit 

new (see Cattelan M. [2012], Blavatskyy [2009]). But in our case, the probability binary 

preferences are generated by comparative utility. So we propose to use a model of selection by 

continuous Markov random walk on a set of alternatives introduced in Zutler [2011]. This model 

can use values of comparative utility and allows us to easily receive the required prediction. It 

studies the course of the selection process in time. That is, it studies how an individual will go 

through and compare alternatives, and where it leads. The essential final question is formulated 

as follows: “Which alternative will an individual choose?” rather than “What is the most useful 

alternative to an individual?” Therefore, the received prediction coincides with our intuitive idea 

of a choice’s result. 

The proposed model has the following prerequisites. Firstly, how can individual actually 

choose? The simplest model of the selection process is a sequential scan that occurs in the mind 

of the individual. An individual “sets” all the alternatives in a row and then “takes” the left-most 

alternative and begins to compare it in order to option on the right. If an individual finds a better 

alternative, it “takes” it and “leaves” the old alternative. When an individual comes to the right-

hand end of row, he finally chooses the alternative that remains “in hand”. 

Given the shortage of time, the sorting process can be more erratic. The individual 

“takes” some alternative in the hope that it is the best. He randomly inspects the remaining 

alternatives. Some of alternatives that catch the individual’s eye will be worse than the 

alternative “in hand”. The superiority of the other alternatives might not be notice and missed. 

But if the individual notices an alternative that is better, he or she will “grab” it and “throw” the 

old choice back into the pile. If the individual preferences are transitive, then he or she will 

eventually find a better alternative, and the process of brute force stops. For non-transitive 

preferences this formal stochastic process cannot ever stop. We then assume that the result of 

selection will be probabilistic and proportional to the time within which an individual considers a 

particular alternative as the best. 

We assume that the selection process is implemented by a continuous homogeneous 

Markov random walk on a set of alternatives. That is, the intensity of the transition from the 

“taken” alternative to any other alternative depends only on which alternative he or she “holds” 

now. This process was called a Continuous Markov Chain Choice (CMCC). The system of 
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differential equations for the CMCC model is obtained by standard methods. Regarding the 

ergodicity of the process, there will be a system of linear equations in a steady state. 

The continuous Markov model has an advantage over a discrete model. If we have any 

numerical representations of binary relation on the set of alternatives, for the continuous model it 

does not require that we normalize the transition probabilities. These numerical values of 

advantage can be used explicitly as transitions intensities. In contrast, for a discrete Markov 

process it should be made to normalize the transition/no transition in each step. In case of a 

probabilistic extension of CPT, we will take the intensity of transition equal to comparative 

utility. 

The paper is organized as follows: Section 2 introduces the probabilistic extension of the 

CPT and Section 3 presents a selection model by a continuous Markov random walk for this 

case.  

 

2. Probabilistic extension of the cumulative prospect theory 
2.1 Cumulative prospect theory and Prospect diagram 

Suppose that we have a prospect (lottery
3
) x with positive and negative outcomes (gains 

and losses), where the probability of outcome xi is pi. To calculate the utility of a prospect, 

Tversky and Kahneman [1992]
4
 proposed a cumulative model, which is as follows. Let the 

outcomes be numbered in ascending order of their values, meaning that i > j if the utility is xi > 

xj. For positive outcomes, positive indices are used, for negative ones, negative indices are used, 

for the zero outcomes (status quo), zero indices are used, x
+
 and x

-
 denote the positive and 

negative parts of a prospect.  

The weight function W(p) reflects the subjective assessment of probability by an 

individual. The value function V(x) reflects the desirability by an individual to receive x over 

nothing. The utility of the lottery is calculated as follows: 
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3 The fundamentals of the CPT are usually presented in a situation of uncertainty ‒ the implementation of the possible states of 

nature. Here we made the presentation adopted in a situation of risk ‒ a lottery.  
4 Here we present only a brief introduction to the CPT. The most detailed description of CPT is available in Wakker [2010]. For 

axiomatic foundations see Wakker and Tversky [1993]. 
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Here 

i  means the difference between the values of the weight function for the outcome “not 

worse than xi”, and the weighting function of the outcomes “strictly better than xi”. For a 

continuous set of alternatives, this formula is transformed into a Choquet integral. 

 

Let us present diagrams of the prospects. For positive prospects (lottery), the diagram of 

the prospects is the graph of reliably obtained values – a decreasing function V(p) on the 

probability interval [0, 1]. For example, for the prospect x = ($ 200, 0.3; $ 100, 0.2; $ 50, 0.5) a 

diagram is equals to V($ 200) on the interval from 0 to 0.3, V($ 100) on the interval from 0.3 to 

0.5, and V($ 50) on the interval from 0.5 to 1 (see Fig. 1).  

 

 

Fig. 1 

A prospect diagram allows us to calculate cumulative utility easier. For a positive prospect: 
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meaning that ω(р) is the density of the weight function W(p). 

 

In the general case for a mixed prospect, we can construct diagrams as follow. For the 

positive part of the prospects it is the graph of reliably obtained values (on the interval [0, 1]). 

For the negative part of the prospects it is the graph of reliable loss values (on the interval [-1, 

0]). For example, the prospect for z = (-50$, 0.2; -10$, 0.1; 100$, 0.4; 50$, 0.3) is shown on Fig. 

2. 
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Fig. 2 

For the mixed prospect: 
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is the density of the weight function for gains and losses. 

 

Example 

Let us consider violations of the Independence Axiom of the Allais-type paradox in an 

example from Kahneman and Tversky [1979]. Of the two alternatives х1 = ($ 4000, 0.8; $ 0, 0.2) 

and у1 = ($ 3,000, 1.0), about 80% of the respondents choose the alternative у1. That is to say that 

80% of the respondents prefer to receive $3000 for sure, rather than to participate in a lottery 

where the gain is $4000 with a probability of 0.8. If the probability of gain in both lotteries is 
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reduced by 4 times, then from the obtained alternatives х2 = ($4000, 0.2; $0, 0.8) and у2 = 

($3000, 0.25), about 65% of the respondents choose the alternative х2. 

To explain the paradox, we consider the prospect diagrams given in Fig. 3 and formula (1). 

 

 

                                             a)                                                       b) 

Fig. 3 

Since the density of the weighting function significantly increases in the vicinity of p = 1 (the 

respondents overvalued the lack of risk), then: 

 

1

0

0.8

0

)()3000$()()4000$( dppωVdppωV       but       
0.25

0

0.2

0

)()3000$()()4000$( dppωV>dppωV  

which explains this paradox. 

 

2.2 Stochastic dominance and Probabilistic choice 

Of the two alternative prospects x = ($ 200, 0.3; $ 100, 0.2; $ 50, 0.5) and x' = ($ 190, 

0.3; $ 90, 0.2; $ 40, 0.5), an individual’s choice is clearly in favor of the first one. Considering 

the same chances, it ensures greater gain. This means stochastic dominance. For a comparison of 

the prospects in less obvious situations, such as x and y = ($ 200, 0.1; $ 150, 0.1; $ 80, 0.3; $ 50, 

0.2; $ 30, 0.3), we can construct auxiliary diagrams of the prospects (see Fig. 4a). The diagram 

of prospect x is strictly higher than y, a choice of the individual will be in its favor. As Vх(р) ≥ 

Vy(р) for all p, a prospect x stochastically dominates y, too. 
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                                             a)                                                      b) 

Fig. 4 

Finally, if an individual will compare prospects x and z = ($150, 0.8; $0, 0.2), then no one 

stochastically dominates the other. There is some reasons to choose prospects x and some 

reasons y. It means that the choice can be probabilistic. 

If a prospect stochastically dominates over the second one, the rational choice of an 

individual should be unambiguous. However, if neither of the two prospects dominates, each 

prospect is in some way better than the other. The individual has incentives to select each of the 

prospects and it can be assumed that the choice will be probabilistic in nature. 

We define the function of the comparative cumulative utility ),(   on the pairs of 

positive prospects: 

   

1

0

)(0),()(max),( dppωpVpVba ba       (2) 

This function corresponds to an area between the prospects diagrams, where prospect a is higher 

than the prospect b, which is represented by the crosshatched area in Fig. 4b (a - blue, b - red). If 

the density of the weighting function were identically equal to unity, the value of the 

comparative utility would be equal to the square of this area. It is obvious that 

),(),()()( xyyxyuxu   . 

 

2.3 Probabilistic extension of the cumulative prospect theory 

We denote yx a  (there ]1;5.0(a ) of the two alternatives x and y, an individual 

chooses x with probability a, and chooses y with probability (1-a). Then notion yx 1  will mean 

that an individual prefers x over y for sure. We denote x ~ y, then of the two alternatives x and y 

an individual chooses x or y with equal probabilities (a = ½).  
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Let us consider the following model of probabilistic preference relations. For any pair of 

alternatives x and y, there are a pair of non-negative values ),( yx  и ),( xy , which 

demonstrate the advantage alternatives x over y and advantage alternative y over alternative x. 

Both of these values can be positive simultaneously as if in some parameters where x is better 

than y, and in some parameters alternative y is better than x. The probability that an individual 

selects each of the alternatives is determined by the ratio ),( yx  and ),( xy .  

We say that the probabilistic preference relation is represented by a positive function of 

comparative utility if there exists (unique up to positive multiplication) a binary function ),(   

such that: 
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Based on the comparative utility function defined by (2), we can determine a probability 

binary relation on the set of prospects by formula (3).  

For lotteries in Fig. 4a (for simplicity, we assume that the density of the weight function 

is equal to the unity and linear value function:  w(p)=1 and V(x)=x): 

0),(,27),(  xyyx   and  yx 1 . 

40),(,25),(  xzzx   and xz 6504  or xz 62.0 . 

 

Example 

We return to the Allais paradox and ask why the preferences of the respondents were 

divided. Why did the choice of 20% of the respondents in the first poll and 35% in the second 

poll not coincide with the choice of the majority? Clearly, the respondents may have different 

value or weight functions. However, according to the probabilistic model constructed above, 

even with identical value and weight functions the responses could be divided. In fact, as seen in 

Fig. 3: 
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That is, with a non-zero probability, x1 and у1 can be selected, which can be calculated by 

formula (3). Similarly, for х2= ($ 4000, 0.2, 0, $ 0.8) and у2= ($3000, 0.25): 

  0)()3000$()(0),()(max),(

0.25

0.2

1

0

2222   dppωVdppωpVpVyx xy    and 

    

0.2

0

1

0

2222 0)()3000$()4000$()(0),()(max),( dppωVVdppωpVpVxy yx  , 

which explains why the responses were divided in the second poll. 

 

3. Model of selecting from a set of alternatives by continuous 

Markov random walks on a set of alternatives 
 

3.1 Continuous Markov Chain Choice  

Choosing by means of a continuous homogeneous Markov random walk is performed as 

follows. A set of process states coincides with a set of alternatives and an individual may “take” 

any alternative as the best. At any given time he or she can probabilistically move to another 

state by “taking” another alternative. At the same time, the intensity of the transition depends 

only on the current state of the alternative that he or she “holds”. In the case of ergodicity of the 

walk process, the result of the probabilistic choice of probabilistic corresponds to the stationary 

distribution. 

Let us recall that the Markov property states that the conditional probability distribution 

for the system at the future depends only on the current state of the system, and not additionally 

on the state of the system in the past. 

Let }...,,,{ 21 msssS   ‒ a set of states and the probability of transition from si to sj  

jimji  ,..1, during time t  is )(),( totss ij  , where ),( ij ss  is the non-negative 

constant, or the intensity of the transition. This process is called a continuous-time homogeneous 

Markov chain. 

The Markov process is called ergodic if for any initial state there are marginal 

probabilities of the state process at t  which do not depend on the initial state. In particular, 

this condition is satisfied if the vertices of the graph are connected and between any two vertices 

there is a directed path. That is the stationary probability distribution of the process. 
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In the case of ergodicity of the walk process, the result of the probabilistic choice 

corresponds to the stationary distribution. 

 

3.2 Governing equations of CMCC 

Let us determine the equation of the CMCC model. If at time t the process is in state sj 

with probability pj(t). Then, at time tt   it goes into si with probability )(),( totss ji  . 

Thus, we have: 

)()(),()(),(1)(
11
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Transiting to the limit 0t , we obtain a system of differential equations: 
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In the case that a stationary probability distribution exists, the derivatives in the right-hand side 

vanish when t → ∞. Thus, we obtain a system of linear equations (actually, dependent, rank = m 

+1): 
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     (4) 

The resulting probability distribution )...,,( 21 npppp   is interpreted as the probability that an 

individual will select either of the alternatives of a set S.  

In the case of probabilistic extension of CPT, we will take the intensity of transition for a 

CMCC model as equal to comparative utility. Note that in case of two alternatives, the 

probability of selecting received by (4) will equal the probability received by (3). 

 

Example 

Let us consider a set of three alternative prospects a = ($50, 0.5; $10, 0.5), b = ($40, 0.7; 

$0, 0.3), c = ($20, 1.0), and d= ($10, 0.5; $0, 0.5). The graphs of the prospects are shown in Fig. 

5a.  
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Fig. 5 

For simplicity, assume that W(p) = p and V(x) = x. Comparative utility are equal to: 
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The graph of a Markov random walk is shown in Fig.5b.
5
 The defining system of equations for 

the stationary distribution for (4) is: 
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and has a solution of (0.48, 0.36, 0.16, 0). 

 

NOTE  In this example, the order of probabilities of choice alternative coincide with the 

order of cumulative utilities for alternatives. But this is not necessarily the case in all examples.  

In the CMCC model, most probability of choice can be possessed by an alternative of the 

non-maximal utility. This could occur in a situation where some of the best alternatives are very 

similar and some are fundamentally different. For example, among the nominees for the film of 

the year award, there may be two thrillers, a romance movie, and a comedy. And in the struggle 

for the jury’s attention, the similar alternatives (thrillers) may lose to the less useful (interesting), 

but very different alternative (romance movie). 

 

                                                 
5 In choice theory, it is acceptable to draw the arrow from the edges of a better alternative to the worst, and this 

tradition is respected. The individual in the process of a random walk goes from the worst alternative to the best 

alternative.  In other words, it moves against the direction of the arrows. 
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Conclusion  

This paper proposed: 

• A probabilistic extension of the cumulative prospect theory with its graphic form. 

We present a simple visual graphic model of lotteries. In this graphic model it is clear that 

the concept of stochasticity dominates one lottery over another. If an individual chooses one 

alternative over two lotteries and no one particular lottery stochastically dominates the other, we 

can state probabilistic preferences. In the framework of CPT, we calculate comparative utilities; 

the advantage of the first lottery over another and advantage of the second lottery over the first. 

These values determine the probabilities of choice for each lottery.   

• A model of choice using a continuous Markov random walk for a probabilistic extension of 

CPT.  

Here we consider the task an individual undertakes when selecting one alternative from a 

set of alternatives between which he has binary probabilistic preferences. In case of a 

probabilistic extension of CPT, it is proposed to use a model of continuous Markov random 

walk. The transition probabilities were set equal to comparative utilities, which were already 

received. 

The proposed methods are easy to understand and intuitively clear. Although the models 

are based on rather crude assumptions and exaggerate the actual process of choosing the 

individual, they do not require a large amount of initial data for researchers. The obtained results 

may be quite acceptable for practical use, for example in financial analysis or marketing.   
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