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1. Basic concepts and results

One of the main goals of this work is to apply the previous results of the
author |29, 30], and to prove new theorems on local and global leaf stability
of contormal foliations of codimension ¢ > 2. We also remind our results
about local and global stability of compact leaves of foliations with quasi
analytical holonomy pseudogroup admitting an Ehresmann connection and
corresponding results of other authors.

Local stability of leaves and foliations

T'he notion ot stability of leaves of foliations was introduced by Ehresmann

and Reeb. the founders of the theory of foliations.
Remind that a subset of foliated manifold is called saturated if it may
be represented as a union of some leaves of the foliation.

Definition 1. A leaf L of a foliation (AL, F') is said to be proper it it is an
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embedded submanifold of the foliated manifold M. A foliation is proper, if
every its leaf is proper. A leaf L is called closed if L is a closed subset, of M.

Definition 2. A leaf L of a foliation (M, F') of codimension ¢ is said to be
locally stable in sensec of Ehresmann and Reeb, 1f there exists a family of
its saturated neighbourhoods Wy, B € 5, with the following properties:

(1) there exists a locally trivial fibration fg : Wg — L, 3 € B, with a ¢-
dimensional disk DY as the typical fiber, whose fibers are transversal
to the leaves of the foliation (W3, Fw, );

(2) for some 0 € B the traces of these neighbourhoods form a base of the
topology of a fiber of the fibration fs : Ws — L over € L at the
point x.

A foliation is refer to be [ocally stable it each its leaf is locally stable.

According to the well-known theorem of Reeb |23, 24}, any compact leaf
of a foliation with finite holonomy group is locally stable.

The leaf stability of Riemannian foliations

Blumenthal and Hebda [4] introduced a notion of Ehresmann connection
for a smooth foliation (M, F') as a smooth g-dimensional distribution 91 on
M transverse to (M, F') with the vertical-horizontal property (the precise
definition see in Section 2). We showed (|31], Proposition 2), that a com-
plete Cartan foliation admits an Ehresmann connection. It is known exam-
ples of Riemannian foliations with an Ehresmann connection whose are not
(transversally) complete (Example 1). Thus, the existence of an Ehresmann
connection for a Cartan foliation (with fix transverse Cartan geometry) does
not 1mply the completeness of this foliation in general.

The Proposition 1 describes the structure of a saturated neighbourhood
of a proper leaf L, and I'(L, z), € L, is the germ holonomy group usually
used in the foliation theory [24].

Proposition 1. Let L be a proper leaf of a Riemannian foliation (M. F)
with an Ehresmann connection M. Then there exist a bundle like metric
g on M relatively which M is orthogonal to (M, F) and a family of saturated
tubular neighbourhood W s of the radius 8 € (0,r], r > 0, with the orthogonal
projection fg =: Wz — L, where fg = f.lw,, satisfying the followmg
conditions:

77

(1 ) the neighbourhood Wy is a smooth fibre space with the projection fs°
Wz — L, and its structure group is the germ holonomy group I'(L. ().
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a € L, of L. The the typical fibre is Dg(a) = cxp,(D(0, 3)), where
D(0,3) € M,, the q-dimensional disk of radius (3, on which I'(L,a)
naturally acts by isomerties;

(2) the distribution My = M|w, s an integrable Ehresinann connection
for the submersion fg: Wy — L;

(3) the germ holonomy group of an arbitrary leaf L(z) C Wy, 2 € f{;l(a.)?
s 1somorphic to the stationary subgroup I'. of the group I'(L.a) at
pownt z;

(4) the restriction fslp . @ L(z) — L is the covering map, and its set of
sheets 1s bijective to the orbit I'(L,a) - z of the point z under the action

of I'(L. a).
The following assertion was proved with the use of Proposition 1.

Theorem 1. Let (M, F') be a Riemannian foliation of an arbitrary codi-
menston q = 1 admaitting an Ehresmann connection. Then the following
three conditions for a leaf L are equivalent:

(i) L 1s locally stable leaf;
(i1) L is a proper leaf:
(12i1) L is a closed leaf.

For transversally complete Riemannian foliations Theorem 1 and assertions
equivalent to Proposition 1 were proved by the author in [32]. Under an
additional assumption about the existence of a complementary topological
foliation, the local stability of a proper leaf of Riemannian foliation has been

proved by Ehresmann [10]. For parallel foliations on a complete Riemannin
manifold the equivalence of conditions (7)-(#i) of Theorem 1 was proved
in 15|, where the proof is considerably simpler., due to specificity of the
case. In [1] it was proved that a proper leaf of a Riemannin foliation on
manifold with a complete bundle like metric is covered by all near leaves.

Theorem 2. Let (M. F) be a Riemannian foliation of codimension g > 1
admutting an Ehresmann connection. If there exists a closed leaf L of (M, F)
with a finite (germ) holonomy group U'(L,x), x € L, then:

(1) any its leaf L. is closed subset of M with a finite holonomy group
(Lo aa), a € L, and L., is a locally stable leaf:
(2) the leaf space M/F is a smooth g-dimensional orbifold.

Theorem 2 mayv be proved by analogy with the author’'s proot of similar
Theorem 2 in [32]. Here we give a new proof of this statement.
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Corollary 1. Let (M, F) be a Riemannian foliation of codimension q 2 1

with an Ehresmann connection. If any its leaf is a closed subset of M, then
(M, F') is locally stable and the leaf space M/F is a smooth q-dimensional

orbifold.

In the case, when (M, F') is a Riemannian foliation on a Riemannian

manifold with complete bundle like metric the statement of Corollary 1 was
proved by Reinhart [21].

Theorem 3. Let (M, F) be a Riemannian foliation of codimension q > 1
admitting an Ehresmann connection. If there exists a closed leaf L of (M, F)
with a finite fundamental group m (L, x), then any its leaf Ly, is closed with
a finite fundamental group m1(La,xa), Ta € Lo, and (M, F') is a locally
stable Riemannian foliation.

Based on statements of this section, Theorem 1 in [30] and the paper [28]
we ask the following.

Question: For a Riemannian foliation (M, F') with an Fhresmann con-
nection N there 1s a bundle like metric g such that 9 is a orthogonal dis-

tribution to (M, F'). Does there exist a transversally complete bundle like
metric g, which 1s 9M-conformal to ¢

Criterions of the local stability of leaves of conformal
foliations

Using Theorems 1 and 2 and results of our previous paper [30] we prove the
following two criterions of the local leaf stability for conformal foliations.

Theorem 4. Let (M, F) be a conformal foliation of codimension g > 2
admitting an Ehresmann connection. Then a leaf L of (M, F) is locally

stable if and only +f L s a proper leaf with inessential holonomy group (in
sense of Section 2).

Theorem 5. Let (M, F) be a proper non-Riemannian conformal folia-
tion of codimension q > 2 admatting an Ehresmann connection. Then the
following three conditions for a leaf L of (M, F) are equivalent:

(1) L s locally stable;
(11) L is an unclosed leaf;
(i1i) L has a finite holonomy group T'(L, x).
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The problem of local stability of compact foliations

A foliation is called compact, if every its leaf is compact. Epstein [11] proved
that any leaf of a compact foliation (M, F') has a finite holonomy group iff
the leaf space M/ F is Hausdorff. Reeb showed that a codimension one com-
pact foliation has a Hausdorff leaf space. Millett [18] put out the conjecture
that all holonomy groups of a compact foliation on a compact manitold are
finite. As it was said, according to the famous Reeb’s theorem a compact
leaf with a finite holonomy group is locally stable. Therefore the Millett’s
conjecture is called a problem of local stability. Now it is known that for
g = 2 the Millett’s conjecture is valid unlike the case ¢ = 3. It the toliated
manifold M is not compact, the analog of the Millett’s conjecture 1s not

true for compact foliations (M, F') of codimension 2. Different criterions of
local stability of a compact foliations were proved [9, 18, 33, 34]. Among
them there is Rummer’s characterization of a compact locally stable folia-
tion by the existence of a Riemannian metric with respect to which every
leaf is a minimal submanifold. Epstein stated that (M, F') is a compact
locally stable foliation iff there exists a Riemannian bundle like metric g on
M such that the volume function of leaves is locally bounded.

The leaf local stability takes an important place in works on partially
hyperbolic diffeomorphisms with compact central foliations [5, 13].

Definition 3. Pseudogroup of local diffeomorphisms ‘H of a manifold N
is quasi analytical, if for any open subset U in N and an element h € H,
the condition h|y = idy implies h = idp(x), where D(h) is the connected
domain of definition of h containing U'.

The results of our works ([33], Theorem 5 and [34]|, Theorem 8.1) imply
the following criterion of the local leaf stability of compact foliations (M, F')
without assumption of compactness of M.

Theorem 6. All holonomy groups of a compact foliation (M, F') are finite
if and only if it satisfies the following two conditions:

(1) there exists an Ehresmann connection for (M, F');
(2) the holonomy pseudogroup H(M, F) of this foliation is quasi analytical.

The effectivity of this criterion is confirmed by the following corollary.

Corollary 2. Compact complete Cartan foliations and compact complete
G-foliations of a finite type are locally stable. Leaf spaces of those foliations
are smooth orbifolds.
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In the case when M is compact, Corollary 2 implies Theorem 1 of

Wolak (26] for complete compact G-foliations of a finite type.
Lawson put out the following problem ([17], Problem 14):

Characterize the foliations of compact manifolds in which every leaf is

compact.

T'heorem 7 decides this problem for conformal foliations (M, F) of codi-
mension g > 2 without assumption of compactness of the foliated mani-

fold M.

Theorem 7. Any compact conformal foliation of codimension g > 2 is

a locally stable Riemannian foliation, the leaf space of which is a smooth

q-dimensional orbifold.

L 8
The analogous theorem for a compact tmnsversel}) holomorphic foliation of

codimention 2 was proved by Walczak [25].

Remark 1. If all leaves of a conformal foliation (M, F') of codimension
q > 2 are closed subsets of M, then (M, F') is a Riemannian foliation.
which is not local stable in general (see Example 2).

Global stability of a compact leaf of foliations with quasi
analytical pseudogroup

For a leat L of a foliation (M, F') with an Ehresmann connection 91, Blu-
menthal and Hebda introduced a holonomy group Hegn (L, x) (its definition
1S given in Section 2). *

Our results from (33, 34] implies the following statement.

Proposition 2. Let (M, F) be a foliation with an Ehresmann connection
W and L be any its leaf. The natural group epimorphism x : Hom (L, z) —
['(L,z) of holonomy groups is isomorphism if and only if the holonimy
pseudogroup 'H = H(M, F) of this foliation is quasi analytical.

Application of Theorem 1 of Blumenthal — Hebda [4] and Proposition 2

allowed us to obtain the following assertion about the global stability of
some compact leaves.

Theorem 8. Let (M, F') be a smooth foliation with an Ehresmann connec-
tion and quasi analytical holonomy pseudogroup. Then the existence a com-
pact leaf L with a finite germ holonomy group I'(L, z)} (or finite fundamental
group w1 (L, x)) guarantees compactness of every leaf L., of this foliation and

finiteness of the holonomy group I'(L, x4}, x4 € La, (or finite fundamental
group m(La, o)) and the local stability of (M, F).
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In particular, Theorem 8 implies the global stability ot a compact leat
with finite germ holonomy group of complete Cartan foliations. For com-

plete G-foliations of finite type the analogous result belongs to Wolak 26].

Global leaf stability of conformal foliations

Let (M, F) be a foliation. A saturated set is a union ot leaves.

Theorem 9. Let (M, F) be a conformal foliation of codimension q > 2
admitting an Ehresmann connection. If there exists a closed leaf L of
(M, F) with a finite holonomy group I'(L,x) (or a finite fundamental group
nwi(L,z)})), then any its leaf L, is closed with a finite holonomy group
I'(LayTa), Ta € Lo, (respectively, a finite fundamental group m (Lo, o))
and (M, F) is a locally stable Riemannian foliation, the leaf space of which
s a smooth g-dimensional orbifold.

Corollary 3 ([2]). Let (M, F) be a complete conformal foliation of codi-
mension g > 2. If there exists a compact leaf with a finite holonomy group,
then any its leaf is compact with a finite holonomy group.

Corollary 3 belonging to Blumenthal |2| was a unique known result
about the leaf stability of a conformal foliation.

Corollary 4. Let (M, F) be a conformal foliation of codimension q > 2
admitting an Ehresmann connection. If any its leaf is a closed subset of M,
then (M, F) is a locally stable Riemannian foliation.

Remark 2. We constructed an example of a complete transversally affine
foliation (M, F') of an arbitrary codimension ¢ > 2 with an Ehresmann
connection such that (M, F') satisfies conditions of both Theorem 9 and
Corollary 4, but it is not locally stable (Example 3). Thus, statements on
stability of noncompact leaves (Theorems 9 and Corollary 4) can not be
generalized to all complete Cartan foliations unlike statements on compact
leaves (Corollary 2 and Theorem §)

The following assertion about global stability of a compact leal with
a finite germ holonomy group was proved by us without assumption of
completeness or the existence of an Ehresmann connection of the folia-

tion (M, F).

Theorem 10. If a conformal foliation (M, F) of codimension q > 2 on
a compact manifold M has a compact leaf L with a finite holonomy group
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I'(L), then any its leaf is compact with a finite holonomy group and (M, F')
1s a locally stable compact Riemannian foliation.

T'he analogous theorem for holomorphic foliations of codimension k on
compact complex Kaehler manifolds was proved by Pereira {20].

Remark 3. Theorems 3, 8-10 are some analogous of the well-known Reeb
global stability theorem (23|, according to which a smooth codimension
one foliation (M, F') of a closed manifold M containing a compact leaf with

a hnite fundamental group has only compact leaves with finite fundamental
gToups.

2. Cartan foliations. Holonomy and completenéss
FEhresmann connection for foliations

Remind the notion of an Ehresmann connection belongs to Blumenthal and
Hebda [4]. At that we use a term a vertical-horizontal homotopy introduced
earlier by Hermann [14].

Let (M, J) be a foliation of arbitrary codimension ¢ > 1. A distribution
0t on a manifold M is called transversal to a foliation F if for any x € M the
equality T, M = T, F &N, holds, where & stands for a direct sum of vector
spaces. Vectors from M., x € M, are called horizontal. A piecewise smooth

curve o is horizontal (or 2N-horizontal) if each of its smooth segments is an
integral curve of the distribution . A distribution T'F' tangent to leaves
of the foliation (M, F') is called vertical. One says that a curve h is vertical
if h is contained in the leaf of the foliation (M, F').

A wertical-horizontal homotopy (v.h.h. for shot) is a piecewise smooth
map H : [ xIs = M, where I, = I = |0, 1], such that for any (s,t) € 11 x5
the curve H|; .+ is horizontal and the curve H {s}x1, 1S vertical. A pair
of curves (H|r, « {01, H|{oyx1,) is called a base of the v.h.h. H. Two paths
(0, h) with common origin ¢(0) = h(0), where o is a horizontal path and
h 1s vertical one, are called an admassible pair of paths.

A distribution 90 transversal to a foliation (M, F') is called an Ehres-
mann connection for (M, F') if for any admissible pair of paths (o, h) there
exists a v.h.h. with a base (o, h).

Let 9 be an Ehresmann connection for a foliation (M, F). Then for
any admissible pair of paths (o, h) there exists a unique v.h.h. H with base
(o, h). We say that o := H| « 1y is the result of the transfer of the path

o along h with respect to the Ehresmann connection M. It is denoted by

ho .
o —> o. Take any point x € M. Denote by 2. the set of horizontal curves
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with the origin at z. An action of the fundamental group mi (L, x) of the
leaf L = L(z) on the set €2, is defined by the following a way:

(I)_T X 7T1(L1.TE) X Q;I; — Q:I: : ([h],ﬂr) — E:

where [h] € 7 (L,z) and & is the result the transfer of o along h rela-
tively 9. The quotient group Hon(L,z) = 7 (L,z)/Ker(®,) of the ker-
nel Ker(®,) of the action ®, in 7 (L,x) is a group of M-holonomy of
a leaf L [4].

Cartan foliations

Notions belonging to Cartan geometry can be found in 16} and [6]. The
definition of Cartan geometry & = (P(N, H),w) of type (G, H) is equivalent
to specifying the following objects:

(1) a Lie group G and its closed Lie subgroup H with Lie algebras g and
h, respectively;

(2) a principal H-bundle 7 : P — M;

(3) a g-values 1-form w on P called a Cartan connection having the follow-

Sy

Ing properties:

(1) w(A*) = A for any A € p, where A" is the fundamental vector held
corresponding to A;
(ii) R*w = Ady(a ")w, Va € H, where Ady is the adjoint representa-
tion of the Lie subgroup H in the Lie algebra g of G;
(iii) for any v € P the map w, : T,(P) — g is bijection.

Further we assume that Cartan geometry £ of a type (G, H) is effective, 1.e.,
the left action of the group GG on GG/H is effective. At that the Blumenthal’s
definition of a Cartan foliation {3| and our one |31] are equivalent.

Let N be g-dimensional manifold and M be a smooth n-dimensional
manifold, 0 < ¢ < n. Unlike M the connectedness of the topological space
N is not assumed. An N-cocycle is the set {U;, fi, {ki;}}i e such that:

(1) The family {U;,7 € J} forms an open cover of M.

(2) The mappings f; : U; — N are submersions into N with connected
fbers.

3) U, NU; # 0, i,j € J, then a diffeomorphism k;; : f;(U; N U;) —
fi(U; NU;) is well-defined and satisfies the equality f; = kij; o f;.

Definition 4. Let a foliation (M, F) be given by an N-cocycle
{U;, fi,{ki;}}ijeq. If the manifold N admits an effective Cartan geom-
etry such that every local diffeomorphism k;; is an isomorphism of the
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Cartan geometries induced on open subsets f;(U; N U,) and f;(Ui; N U;),
then we refer to (M, F') as a Cartan foliation defined by the (N, £)-cocycle
Wi, fis {kij} bige.

At the beginning we represent in the following statement about differ-
ent interpretations of the holonomy groups of Cartan foliations, which was
established in the previous work of the author ([30], Proposition 5).

Proposition 3. Let (M, F) be an arbitrary Cartan foliation defined by
(N, &)-cocycle {Us, fi,{kij}}iseqs and m @ R — M be the projection of the
foliated H-bundle over (M, F) with lifted foliation (R,JF). For each leaf
L = L{x) of (M, F) consider the leaf L = L(u), where u € R, w(u) = x €
Ui, of the lifted foliation (R, F) and v = f;(x). Then the germ holonomy
group I'(L, x) of L 1s isomorphic to the following groups: -

o the subgroup H(L) :={a € H|R,(L)=L} of H;

e the group of covering transformations of the reqular covering |y
L— L.

e the group of germs at point v of local isomorphisms from the holonomy
isotropy subpseudogroup H,(N,&).

If in conditions of the Proposition 3 we consider an other point v’ € 7~ ! (z)
and the leaf £’ = L'(u), then the group H (L) must be conjugated to H(L)
in H. Therefore, the following definition makes sense.

Definition 5. Refer to the holonomy group of a leaf L of a Cartan foliation
as relatively compact or inessential if the corresponding subgroup H(L) of
the Lie group H is relatively compact. Otherwise the holonomy group of a
leaf is called essential.

Completeness

Let 9N be a smooth g-dimensional distribution on M transverse to a Car-
tan foliation (M, F') of codimension q and M be a smooth distribution on
R transverse to the lifted foliation (R, F) such that mu(ﬁu) = Mr(w)
u € R. Denote by X(R) the set of smooth vector fields on R and by
X5 (R) the subset of smooth vector fields tangent to M. A Cartan foliation
(M, F) is called complete (or 9M-complete) if any wgr-constant vector field
X € X5 (R) is complete, where wg is g-valued base 1-form on R induced
by Cartan connection w |2, 31]. As was proved by us in [31] (Proposition 2),
if (M, F) is a 9M-complete Cartan foliation, then 9 is an Ehresmann con-

nection for (M, F'). It is naturally true for conformal and Riemannian fo-
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liations. An 9%-complete Riemannian foliation with a bundle like metric,
where 9N is the complementary orthogonal distribution to this fohation, 1s

called a transversally complete one.

3. Proofs of statements for Riemannian foliations

Proof of Proposition 1. Let (M, F) be a Riemannian foliation with an
Ehresmann connection 9 defined by N-cocycle {U;, fi.{ki;}}ijes and I
be a transverse distribution to (M, F'). Then, as known (see, for instance
30], Proposition 1) there exists such Riemannidﬁ metric g on M and gn
on /N, that:

(i) the distribution 9 is orthogonal to the foliation (M, F'), and every
submersion f; : U; — V; = f;(U;) is Riemannian;

(ii) any geodesic v on the Riemannian manifold (M, g), which is tangent
to 9 at one point, is tangent to N at every point;

(iii) for every admissible pair of paths of the form (o, h), where o is -
h o .
horizontal geodesic, the result & of the transfer o —> o is also M-

horizontal geodesic of the same length as o, i.e. [(g) = (o).

The metric ¢ is a bundle like one in terminology of Reinhart [22]. Denote
by d the distance function of the Riemannian manifold (M, g).

Suppose now that a leaf L is proper. Let S be a connected open relatively
compact subset in the leaf L. Then ({19], p. 73) there are such ¢ > 0 and
an open contractible neighbourhood V; satistying the following properties:

(i) For any y € V. there exists a unique z =: f(y) € S and a unique vector
X € M, such that y = exp,(X) and || X || = d(y,5).

(ii) The orthogonal projection f : V. — S thus defined is trivial fibration
whose typical fiber is the open disc D(0,¢) in 9M,, where a is a fixed
point in S.

One say that V, is a tubular neighbourhood of S with radius €. As a leaf
L is proper, according to ([24], Theorem 4.11) without loss generality we
assume that LNV, = 5.

There exists a normal convex neighbourhood B(a, 2r) C V: at a with ra-
dius 2r. The set of convex neighbourhoods B(a, 3), 8 € (0, r| torms a base ot
the topology of M at point a. Put Wg := UL, where L.,NB(a, ) # 0. Then
every Wy is an open saturated neighbourhood ot L ([24], Theorem 4.10).
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We shall use notation Dg(a) = exp,(D(0,8)), where D(0,8) C M,. Re-
mark that Dg(a) is the diffeomorphism image of D(0, 3). Show that the

family of neighbourhoods {W3 |3 € (0, r]} satisfies to Definition 2.

Define a map fg : Ws — L by the following a way. Take any point
z € Wg. According to the definition of W3 there is a point y € L(z) NDg(a).
There 1s a unique horizontal geodesic v jointing a = ¥(0) with y = ~(1),
and v(s) € Dg(a), Vs € [0,1]. Connect y with z by a piecewise smooth path
h in the leaf L(z). Then (!, h) is an admissible pair of paths and there

. h — —
exists the transfer v~ ! —> 371 Put f3(z) = ¥(0) € L. Show that this
definition takes meaning.

Let h’ be an other piecewise smooth path in the leaf L(z) connecting

!

: h - _
h'(0) = y with A/(1) = z and 7' —> ~'7". Then fs(z) = 7/(0) € L.

— 1

Consider the transfer v~! —> 571, then 771(1) = y. According the above
property (iii) [() = /(). Therefore d(7(0),3(0)) < d(a,y) + d(y,5(0)) =
2[(v) < 27 and 7(0) € Vo.NL(z) = S. So it is necessary that v(0) = 7(0) = y
and ¥ = ~. It implies the equality v = +'. Thus fz does not depend of the
choice of the path connecting y with z.

Consider the case, when there is an other point 4’ € L(z) N Dg(a). Let
k be a path connecting v with z in L and ¢ be a horizontal geodesic in
Dg(a) joints @ with y'. By analogy with the above arguments we see that the
result of the transfer of v~! along h- k™! is equal to o. Therefore the result
of the transfers of y~! along h and o~ ! along k are coincided, i.e. ¥ = o
and fz(z) = ¥(0) = a(0). Thus, the map fz : Wz — L is really defined. It
is not difficult to check that fz: Wz — L is a surjective submersion. Note
that the foliation F3 = Flw, is an integrable Ehresmann connection for
the submersion fz. Therefore fgz : Wz — L is the projection of the locally
trivial fibration whose typical fiber is the open ¢-dimensional disc D.(a) on
which the holonomy group I'(L, a) naturally acts by isometries. Thus, the
statements (1) and (2) are valid.

Remark that (Wpg, F'lw,) is a suspended foliation with fg: Wg — L as
transverse fibration. This foliation is defined by suspension of the natural
group homomorphism 71 (L,a) — I'(L,a), where I'(L, a) is considered as a
subgroup of the diffeomorphism group of Dg(a). Therefore, thanks to the
quasi analyticity of I'(L, a) the properties (3) and (4) also take place.

Proof of Theorem 1. It is follows from Definition 2 that a locally stable
leaf L is proper. In conformity with Proposition 1 the family of saturated
neighbourhoods Wpg, 8 € (0, €], of a proper leaf L satisfies Definition 2, i.e..
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(i) is equivalent to (ii).

Let L be a proper leaf of a Riemannian foliation (M, F') admitting an
Eresmann connection. We proved ([30], Theorem 1) that the holonomy
pseudogroup of Riemannian foliation admitting an Eresmann connection 18
complete and the closure of any its leaf is a minimal set. As a nontrivial
minimal set contains only improper leaves it is necessary that L be a closed
leaf. As it is well known (see for instance [19], p. 22), every closed leat is

proper. Thus, (ii) is equivalent to (iii).

Proof of Theorem 2. Let 9 be an Ehresmann connection for a Rieman-
nian foliation (M, F'). Consider the foliated H-bundle 7 : R — M, where 1/
is O(q) (or H = SO(q), if (M, F') is a transversally orientable Riemannian
foliation), with the lifted foliation (R, F) over the given conformal foliation
(M, F). Observe that the induced distribution M = {ﬁu lu € R}, where

M, = {X € TuR|mu(X) € TyM ,x = w(u)} is an Ehresmann connection
for (R, F).

Let L be a closed leaf with a finite holonomy group I'(L,z). Take an
arbitrary point u € #~!(x). Denote by L the leaf of (R, F) passing through
w. In accordance with Proposition 2, the finiteness of I'(L, z) implies that
the restriction 7w|s : £ — L is a finite sheet covering. As the closed leat
L is proper, L is a proper leaf of the lifted foliation. Thus the e-foliation
(R, F) with an Ehresmann connection has a proper leaf. Thanks this, by
analogy with the proof of Proposition 4.4 from the Conlon’s work 8] it
is not difficult to show that leaves of (R, F) are coincided with fibres of a
locally trivial bundle 7y, : R — W. Therefore every leaf of the lifted foliation
is proper and closed.

Take any point y € M. Let y € L, and L, is a leaf of (R, F) over
L.. ie. L, C 7 Y(Ly). Therefore the intersection 7' (y) N L, is discrete
and closed subset of 7~ !(y). The fiber 7~'(y) is compact, because it is
diffeomorphic to the compact Lie group H. It implies the finitness ot the
set 771 (y)NLq. As the group of the covering transformations of the regular
covering mz. : Lo — Lo 1s bijective to the set 7Y y) N L, it is finite. In
accordance with Proposition 3 the holonomy group I'(La,y) of L, is also

finite. The formula
RW W x H— W :(w,a) — mp(Ra(v)), Y(w,a) € W x H, Yu € m,  (w),

defines a smooth action of the group H on the base manifold W' (see for
example, [31], Proposition 4). Observation that the stationary group H,,
v € W. of the action RY is isomorphic to the group of covering transfor-
mations of the covering w|z. : Lo — Lo, where Lo = T Y(v), implies the
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finiteness of all stationary groups. Therefore the orbit space W/H of this
action 1s a smooth ¢-dimensional orbifold.

Denote by f : M — M/F : L — [L] and f% : W — W/H the
corresponding projections. The map

k:M/F — W/H : L]~ m(x~'(f'[L])), V[L] € M/F,

is well defined and is a bijection. Remind that both f and f" are open
mappings. The submersions 7 and 7, are also open maps. Thank this,
k:M/F - W/H is a homeomorphism of the topological spaces. Thus we
have a natural identification of M/F with N/H through , hence M/F is
a g-dimensional orbifold.

Proof of Corollary 1. Let (M, F) be a Riemannian foliation all leaves of
which are closed subsets of M. By Theorem of Epstein-Millett-Tishler 12]
there exists a saturated dense G5 subset of M formed by leaves without
holonomy. Therefore there exists a closed leaf L of (M, F') with the trivial
holonomy group. The application of Theorem 2 finishes the proof.

Proof of Theorem 3. Suppose that there exists a closed leat L with a
finite fundamental group 7 (L, ). As the holonomy group I'(L, ) is a group
homomorphism image of 71(L,x), the group I'(L, x) is finite. According to
Theorem 2 every leaf L, of (M, F') is closed and has a finite holonomy
group I'(Ly, x4 ), where z, € L, and (M, F') is a locally stable foliation.

We shall use notations introduced above. Let 7w : 'R — Al be the projec-
tion of the foliated H-bundle over M, where H is equal to O(q) or SO(q).
Using Proposition 3 we see that w|s : £L — L is a finite sheet covering
map onto L, so the fundamental group 71(L,u), 7(u) = x, is also finite.
Therefore the universal covering map f : £LY — L is a finite sheet covering.

Let L, be any leaf of (M, F), x, € L, and u, € 7~ '(z,). Denote by L,
the leaf of lifted foliation (R, F) passing through u,. In accordance with
Proposition 3 the group of covering transtormations of the regular covering
map 7|c. : Lo — Lg is isomorphic to the group I'(L,, ), hence it 1s
a finite sheet covering map.

In the proot of Theorem 2 we have showed that the existence of an
Ehresmann connection for (M, F') implies the existence of an Ehresmann
connection for the lifted foliation (R, F). Therefore the leaves £ and L,
are diffcomorphic. So the universal covering map f° : £,” — L, is also
a finite sheet covering. Therefore 7|, o fg . £.° — L., is the finite sheet
universal covering map. It implies the finiteness of the fundamental group

T (Lnr 3 mr_r)-
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4. Proofs of other theorems and their corollaries

Proof of Theorem 4. If (M, F) is a Riemannian foliation, the assertion
ol Theorem 3 follows from Theorem 1.

Further by an attractor of a foliation (M, F') we understand a nonempty
closed saturated subset M of M admitting an open saturated neighbour-
hood U such that the closure in M of any leaf from U \ M contains M.
The neighbourhood U is called a basin of M and denoted by Atir(M). Ii,
moreover, Attr(M) = M, then the attractor M is called global.

Assume now that (A, F') is non-Riemannian conformal foliation of codi-

mension ¢ > 2 with an Ehresmann connection 2. By our Theorem 4
from [30], (M, F’) is complete. Therefore, in accordance with Theorem 5
proved by us in |29| (M, F') has the following properties:

e there exists a global attractor M of this foliation, that 1s either one

closed leaf or the union of two closed leaves, or the nontrivial mini-
mal set;
e the induced foliation (A, Far, ), where My = M \ M, is Riemannian.

Note that the restriction 9y of the distribution 90t onto the open satu-
rated subset M, is an Ehresmann connection for the Riemannian foliation
(Mg, Far, ).

Assume that L is a local stable leaf of (M, F'). Agreeably to Definition 2
any local stable leaf is proper and is not an attractor. If M is nontrivial min-
imal set, then any leaf from M is improper. Therefore, the leat L belongs
to the Riemannian foliation (Mg, Fa7,) admitting an Ehresmann connec-
tion My. So in accordance with our Theorem 3 from [30] the holonomy

egroup of the leat L is inessential.

Converse, suppose that L is a proper leaf with inessential holonomy
aroup of non-Riemannian conformal foliation (M, F') of codimension g > 2.
Then by Theorem 5 from |30] it is necessary L C Myp. Thus, L is a proper
leaf of the Riemannian foliation (My, Fs,) with an Ehresmann connection.

According to Theorem 1 L is a local stable leaf.

Proof of Theorem 5. Consider a proper non-Riemannian conformal foli-
ation (M, F') of codimension ¢ > 2. Then there exists a global attractor M
which is either a closed leaf with an essential holonomy group or the union
of two closed leaves with essential holonomy groups ([30], Theorem 6).
Put Ay = M\ M. As it was observed in the proof of Theorem 3, in this
case (Mo, Fy,) is a Riemannian foliation with an Ehresmann connection on
the open saturated subset Al of M. Therefore (Mg, Fiar,) is proper foliation.
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Application of Theorem 1 and Corollary 1 allowed us to state that every
leat L of (Mg, Fay,) is locally stable and closed in M, with a finite holonomy
group. Hence the closure C'l(L) of L in M is equal to CI(L) = LUM and L
18 locally stable unclosed leaf of (M, F') with a finite holonomy group. Thus.
L C My iff L is an unclosed leaf or, equivalent, L. has a finite holonomy
group.

The remark that L is a local stable leaf of (M, F) ift L C My leads to

the finish of the proof.

Proof of Theorem 7. As (M, F') is a compact conformal foliation (A, F')
of codimension ¢ > 2, it has not an attractor. According to Theorem 2
proved by us in [29] in this case (M, F') is a Riemannian foliation. It is well
known (see for instance, 19|, Proposition 3.7) a codimension ¢ compact,
Riemannian foliation is locally stable, and its leaf space M/F admits a
structure of smooth ¢-dimensional orbifold.

Proof of Theorem 9. According to our Theorem 4 proved in [30] for non-
Riemannian conformal foliation (M, F') of codimension g > 2 the existence
of an Ehresmann connection is equivalent to its completeness. Therefore
Theorem 5 of [30] implies that if a conformal foliation (M, F') admitting
an Ehresmann connection has a closed leaf with a finite holonomy group
I'(L,z) or a finite fundamental group mi(L, ), then (M, F') is a Rieman-
nian foliation. So the statements of Theorem 9 follow from Theorem 2 and

Theorem 3 respectively.

Proof of Corollary 4. If all leaves of conformal foliation (M, F') of codi-
mension g > 2 are closed, then (M, F') has not attractors. Thus (M, F') 1s
a Riemannian foliation satistying Corollary 1.

Proof of Theorem 10. Let (M, F') be a conformal foliation of codimen-
sion ¢ > 2 on a compact manifold M. Emphasize that a finite holonomy
group is inessential. Therefore in accordance with Theorem 4 proved by
the author in [29| the existence of a compact leaf with a finite holononiy
group implies that (M, F') is a Riemannian foliation. As M is compact, a
bundle like metric g on M relatively the foliation (M, F') is complete. Then
the g-dimensional distribution orthogonal to TF' is an Ehresmann connec-

tion for this foliation. Therefore the assertion of Theorem 10 follows from
Theorem 9 (and also from Theorem &). [
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o. Examples

Example 1 ([27]). Let E3 = E! x E? be an 3-dimensional Euclidian
space. Put M = E? \ (E1 x {(0,0)}), where (0,0) € E?4. Then the foliation
(M, F), where F = {E' x {(z,y)} | (z,y) € E?\ (0,0)}, is not transversally

complete Riemannian foliation admitting an Ehresmann connection.

Example 2. Consider a product of circles S' x S'. Let p : St x §1 —
S! : (z.y) — x be the canonical projection onto the first multiplier. Put
M = (S x SH\ {(a.b)}, where (a,b) € S' x S* and pas = p|as. Let (M, F)
be the foliation formed by fibres of the submersion pp; : M — S*.

The foliation (M, F') is Riemannian, and every its leaf is a closed subset
of M with the trivial holonomy group. This foliation has a compact leaf
diffeomorphic to the circle S! with finite holonomy group. As there exists
a noncompact leaf Ly = p,; (a), the foliation (M, F)) is not locally stable.
Remark that (M, F') does not admit an Ehresmann connection. This exam-
ple shows that the existence of an Ehresmann connection is the essential

condition in Theorems 1-3, 6 and Corollary 1.

Example 3. Denote by f4 the linear transformation of the plane R* having

11
h trix A=
the matrix (01

the integral numbers Z on the product R x R* x R™ = R>*™ where m is
an arbitrary nonnegative integer number, by the following formula

) in the canonical basis. Define an action of the group

P:ZxR' XR*xR™ 5 R'x RExR™: (n,t,z,w) = (t —n,(fa)"(2),w)

for all n € Z and (t,z,w) € R' x R* x R™. As the action ® of Z is
proper and free, the (m + 3)-manifold of orbits M = R' xz (R* x R™)
is defined. Let p : R! x R?* x R™ — M be the projection on the orbit
space. We get a foliation (M, F') of codimension m+2 covered via p by
the trivial foliation F}, = {R' x {(z,w)}|(z,w) € R* x R™}. Note that
the other trivial foliation F/ = {{t} x R* x R™|t € R'} of the product
R! x R? x R™ is projected by p onto a simple foliation (M, F') transversal
to (M, F). Therefore the distribution 9 = TF’ tangent to (M, F"’) is an
integrable Ehresmann connection for (M, F'). Moreover, it 1s not difficult to
see that (M, F') is M-complete transversally affine foliation. Observe that
all leaves of (Al, F') are closed subsets in M.

Let r: R' x R? x R™ — R* x R™ be the projection onto the multiplier.
For any point v € M there exists a point (z,w) € r(p~'(v)) € R? x R™.
Emphasize that a leaf L = L(v) is compact and diffeomorphic to the circle
S iff z = (2.0) € R? in the the coordinates defined by the canonical
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basis of 7. Note that any neighbourhood of a point (z,w) = ((z,0),w) in

———

R* x R™ contains a subset of the form {((r + ny,x), w)|n € Z} tfor some

y > 0. 5o does not exist a neighbourhood of a point ((«,0). w) invariant

relatively the action @ of the group Z and belonging to an e-neighbourhood

of ((,0),w) in the usual topology in R* x R™. It means that any compact

leat L = L(v) is not stable unlike noncompact leaves diffcomorphic to R'.
Thus, the constructed foliation (M, F') is not locally stable.
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