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Abstract. Dynamics of solitons is considered in an extended nonlinear Schrödinger 

equation, including a pseudo-stimulated-Raman-scattering (pseudo-SRS) term 

(scattering on damping low-frequency waves, nonlinear dispersion and inhomogeneity 

of the spatial second-order dispersion (SOD). It is shown that wave-number downshift 

by the pseudo-SRS may be compensated by upshift provided by spatially increasing 

SOD with taking into account nonlinear dispersion. The equilibrium state is stable for 

negative parameter of nonlinear dispersion and unstable for positive one. The 

analytical solutions are verified by comparison with numerical results  

1. Introduction 

The great interest to the dynamics of solitons is motivated by their ability to travel long distances 

keeping the shape and transferring the energy and information. Soliton solutions are relevant to 

nonlinear models in various areas of physics which deal with the propagation of intensive wave fields 

in dispersive media: optical pulses and beams in fibers and spatial waveguides, electromagnetic waves 

in plasma, surface waves on deep water, etc. [1-7].   

       Dynamics of long high-frequency (HF) wave packets is described by the second-order nonlinear 

dispersive wave theory. The fundamental equation of the theory is the nonlinear Schrödinger equation 

(NLSE) [8,9], which includes the second-order dispersion (SOD) and cubic nonlinearity. Soliton 

solutions in this case arise as a result of the balance between the dispersive stretch and nonlinear 

compression of wave packets.  

       To solve many applied problems there is the necessary decreasing of solitons`s space size. Such 

decreasing is accompanied, as usually, by stimulated scattering on low-frequency (LF) media 

perturbations. To this time stimulated scattering on spatially homogeneous LF time modes (stimulated 

Raman scattering (SRS)) was considered in details [1]. SRS is described in extended NLSE by term 

with time delay of nonlinear kerr response. For localized nonlinear wave packets (solitons), the SRS 

gives rise to the downshift of the soliton frequency [10]. The compensation of the SRS was studied to 

this time distally [10-21].  

        For a series media the propagation of short solitons is accompanied by arising of damping LF 

waves. These LF modes are internal waves in the stratified fluid and ion-sound waves in the plasma. 
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Model for describing of stimulated scattering of HF waves on damping LF waves, named as pseudo-

stimulated-Raman-scattering (pseudo-SRS), was proposed in [22-24]. Taking into account the wave 

factor of stimulated LF perturbations significantly varieties the dynamics of short HF solitons. The 

pseudo-SRS leads to the self-wavenumber downshift, similar to what is well known in the temporal 

domain [1,10-21]. The model equation elaborated in [22-24] also included smooth spatial variation of 

the SOD, accounted for by a spatially decreasing SOD coefficient, which leads to an increase of the 

soliton's wave-number, making it possible to compensate the effect of the pseudo-SRS on the soliton 

by the spatially inhomogeneous SOD. The equilibrium between the pseudo-SRS and decreasing SOD 

gives rise to stabilization of the soliton's wave-number spectrum. However, the consideration was 

carried out in disregard of the nonlinear dispersion. 

      In this work the soliton dynamics is considered in the frame of extended NLSE with a pseudo-

SRS, decreasing dispersion and with taking into account nonlinear dispersion. Shows that equilibrium 

state between the pseudo-SRS and decreasing SOD is stable focus for negative nonlinear dispersion, 

and unstable focus for positive nonlinear dispersion.   

2. The basic equation and integral relations 

Let’s consider the dynamics of the HF wave field     ititU exp,  in the frame of extension NSE 

with pseudo-SRS, nonlinear dispersion and inhomogeneous SOD:  
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where  q  is the SOD,   is the pseudo-SRS,   is the nonlinear dispersion. Equation (1) with zero 

conditions on infinity 0


U  has the following integrals: 
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where  iUU exp ,   /K  is the local wave-number of wave packet.  

3. Analytical results 

For analysis of the system (2)-(4) let use the adiabatic approximation, presenting solution in sech-like 

form 
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where       tAtqt / ,     2/2 tAt  ,     const2  ttA . With taking into account (2), (5) and 

system (2)-(4) is reduced to: 
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where     ddqq / ,   0/qqn  ,  00 qq  ,  00 AA  . Equilibrium state of Eqs.(6) is 

 qAnk  5/8,0 2

0**  . In particular for  2

0* 8/5 Aq   equilibrium state achieved for 

10*  nn , coinciding with initial wave-packet parameter. For linearly decreasing SOD, 

 Dqq /10  , after replacements,  3/00 DAqt , 
00 /3 Aqky  , system (6) is reduced to 
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where  0

2

0 5/8 qDA  , 
00 /3 qA  . For 0  the equilibrium state of Eqs.(7) is stable focus, 

0 : center, 0 : unstable focus. The trajectories following from Eqs. (7) on plane  yn,  are 

shown in Figure 1 for initial conditions 00 y , 10 n  for 4/3  with different  .  

 
Figure 1. The trajectories (7) on plane  ny,  for 

4/3 , initial conditions 00 y , 10 n  and 

different  .  

4. Numerical results 

We simulated solutions of the initial-value problem for the wave packet, 

      sechtanh2/3exp0, itU   in the framework of Eq. (1) for   10/1  q , and different 

values of  ,  . The analytically predicted equilibrium value of the pseudo-SRS coefficient for this 

initial pulse is 16/1*  . In direct simulations, the initial pulse for 16/1  and different   is a 

stationary localized distribution (figure 2).  

 
Figure 2. The numerically simulation  tU ,  

for *16/1    with different values of  . 
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   At values of the pseudo-SRS coefficient different from * , the simulations produce nonstationary 

solitons, see an example for   64/34/3 *    in figures 3 and 4.  

 
Figure 3. The numerically simulation  tU ,  for   64/34/3 *    with different values 

of   [(a): 16/1 , (b): 0 , (c): 32/1 ].  

 

In figure 4, numerical results produced, as functions of time, by the simulations for the value of point 

coordinate of the maximum modulus of the wave-packet's shape 
m  (    tUtU ,,max m  ), are 

compared with the analytical counterparts of the mass-center wave-packet envelope   qnq  /10  

obtained from Eqs. (6) for   64/34/3 *    and different values of  .  

 
Figure 4. Numerical results (solid curves) for the value 

of point coordinate of the maximum modulus of the 

wave-packet's shape m  and analytical results (dashed 

curves) for the mass-center wave-packet envelope   

for   64/34/3 *   , and different values of  . 

5. Conclusion  

In this work, we studied the soliton dynamics in the framework of the extended inhomogeneous 

NLSE, includes the pseudo-SRS effect, the lineally decreasing SOD and nonlinear dispersion. The 

results were obtained by means of analytical method, based on evolution equations for the field 

moments, and verified by direct simulations. The stationary solitons exist due to the balance between 

the self-wavenumber downshift, caused by the pseudo-SRS, and the upshift induced by the decreasing 

SOD. The analytical solutions are close to their numerically found counterparts. 
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      The present model does not take into regard the third-order linear dispersion. The compensation of 

the pseudo-SRS in the model of inhomogeneous media which includes this higher-order term will be 

considered elsewhere.  
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