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Abstracts. In present paper we consider a class of 3-dimensional diffeomorphisms with finite hyperbolic chain
recurrent set and finite number of orbits of heteroclinic tangencies. We prove that necessary conditions for
topological conjugacy of two diffeomorphisms from this class 1s a generahzatmn of moduh of stability for
analogous two-dimensional systems.
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Introduction
According to S: Newhouse and J. Palis [11], there is an open set of arcs that start in Morse-

Smale diffeomorphism and have first bifurcation point at diffeomorphism with heteroclinic
tangency. In survey [1] bifurcations of systems from boundary of set of Morse-Smale-

- type diffeomorphisms are described; this boundary includes systems with non-transversal

intersections of invariant manifolds. Obviously, heteroclinic tangency of invariant manifolds is
not structurally stable situation. Moreover, in such situation continuous topological invariants
(moduli of stability) appear.

- J. Palis was one of the first who noticed existence of moduli of stability [13]. He discovered
that even two-dimensional diffeomorphisms with heteroclinic one-sided tangency already have
moduli. Further advance in this direction was done by W.de Melo and S.J.van Strien
in [8] where they found necessary and sufficient. conditions for diffeomorphism of orientable
surface to have finite moduli of topological stability; these moduli fully describe all classes of
topological conjugacy in some neighbourhood of such diffeomorphisms.

T.M. Mitryakova and O.V. Pochinka obtained a topological classification for a class of
orientable surface diffeomorphisms with finite numbers of moduli of stability [9]. Radical
difference between result of this paper and paper [8] is that the classification was done not
only for “near” systems from some neighbourhood, but for “far” systems too.

There are only few results known in case of higher dimensions. In S.Newhouse, J.Palice
and F.Takens’ paper [12] has been proven a necessary condition for topological conjugacy
of two diffeomorphisms with one orbit of one-sided heteroclinic tangency. In.J.Palis and W.
de Melo’s paper [6] n-dimensional manifolds’ diffeomorphisms with one orbit of one-sided
heteroclinic tangency are considered and classification of d1ifeomorhphlsms in ne1ghbourhood.
is presented <
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In present paper we study necessary conditions for topological conjugacy of 3-manifolds’
diffeomorphisms with few orbits of one-sided heteroclinic tangency.

1. Formulation of results

In present paper we consider a class of V"ciiffveornorp'hisms“‘\lf C D1ff4( M3). We say that
orientation preserving diffeomorphism of smooth manifold M3 is from class W if it satisfies:
following conditions:

1) chain reccurrent set Ry is finite and consists of hyperbolic fixed points. Eigenvalues of -
Df at fixed points are positive and have no resonances? until third order; o

2) wandering set of diffeomorphism f contains finite number of heteroclinic tangency
orbits

Let p, q be different hyperbohc saddle pomts of diffeomorphism f such that 1ntersect10n o
wyn W“ is non-empty. Any point z € W,y N W“ is called a point of heteroclinic mtersectzo'n
Further chara,cterlzmg of point - x is based on whether intersection is tmn.sve_rsal or non-
transversal. Two smooth submanifolds Ny and Ny ( Ny, "Ny C M 3) are intersected
transversally at point x € (N1 N Ny) if TyN; + TNy = T, M3. Let = be an isolated tangency -
point of two-dimensional manifolds N; and Nz, Nj, Nz C M?3; then z is a one-sided
tangency point if there exists neighbourhood V; of point z such that N3 intersects not more
than one- connected component of V; \ V3. For example, any. 1solated pomt of tangency of
two-dlmensmnal invariant mamfolds of 3—d1men81ona,l dlffeomorphlsm fis one—s1ded tangency
point. - '

Let a be a saddle ﬁxed pomt of dlffeomorp}usm fe \II Denote by J R3 —) R3
linear dlffeomorphlsm defined by J ordan normal form of llnearlzatlon Df in nelghbourhood.
of o. The origin O(0, 0, U) is a saddle pomt of Jo. In section 2 we construct examples of B
Jo-invariant neighbourhood of point O for each type of Jordan form. ’

Definltlon 1. We say that f- 1nvar1ant neighbourhood U, of saddle fixed point o is C*-

lmearwmg if there ex1sts Ol-d1ffeomorph1sm Yo U, -—~> Us, that congugates f iU' ‘with Ja|
Uy,

The following lemma is pro\\/en“in section 2 B -

Lemma 1. For any saddle ﬁxed poznt o of dzﬁeomorphzsm f 6 \If exzsts lmeamzmg
nezghbourhood B

We say that point a is in Aif it is'a point of heterochmc ta,ngency of twwd1men81onal'
invar1ant mamfolds ‘For any point.a € A we define saddle points o} and o} such that
a €W ’a Obviously saddle point - ¢ has one-dimensional unstable manifold and o¥ -
has’ one—dlmensmnal stable manifold. Denote by g and A elgenvalue that corresponds to :

one- dlmenélonal elgenspace for- Jos and for Jau respectlvely
Sl ’F"

zRecall that the set of elgenvalues (,01, 02, .. ,pn) of opera,tor Ais called resona,nt 1f exxst non—negatlve,
1ntegers i e {1 n} m; (j =1,. ..,n), |m| = Z m] > 2 such that o= pYt e py? .- o™ The number.

jm| is called mn order of the resonance.
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NECESSARY CONDITIONS OF TOPOLOGICAL CONJUGACY 187

For any point a we define parameter ©, and put it equal to 12 ﬁa
a

. The following theorem

has been proven in article [12] in general setting for manifolds of dimension greater or equal
than 2. For sake of completeness we prove it in our case.

Theorem 1. Suppose that f, f' € U are topologically conjugated via homeomorphism h such
that h(a) = o for point a € A, h(o%) =05, h(o}) =0%. Then O, = Oy ..

- Recall that U,s = ¢ (U,] 3) and Usu = apau (Us, u) are linearizing neighbourhoods.
Denote by U, the connected component of Uae N Uau that contains point a. For any point
p € U, put by definition

Coordinate expression of map g, is

ga(mv Y, Z) = (éa(m, Y, Z), ﬂa(iﬂa Y; Z), Xa($7 Y, Z))

Now consider a subclass ¥* C ¥ with diffeomorphisms such that ©, is irrational for any
point a € A. Let a and d be points from A such that o) = o3, od = o}, and derivatives
0 0 "

Ba = sz ~(a®) and By = 6de (d®) have same sign. By deﬁmt1on, put 75 =1 / ﬁd,ll/ hf”“. The
main result of present paper is the follovvmg theorem: A -

Theorem 2. Suppose that f,f' € WU* are topol09zcally conjugated via homeomorphzsm h
such that n(a) =a/, h{d) =d for points a,d € A such that Bq- = Bq > 0, h(0]) = o3
and h(o¥) = Then T8 =79

2. Linearizing neighborhood

Recall that by J, : R® — R3 we denote linear diffeomorphism defined by Jordan normal
form of linearization D f at saddle point o. Suppose o has two-dimensional stable manifold;
then there are three possibilities for diffeomorphism J, : R? — R3 and J-invariant
neighbourhood Uy, of origin:

1. Jo(z,y,2) = (M@, Mgy, p2), where 0 < A, A2 <land p>1;

. 2 2
Uy, = {(a;,y, z) €R3: (w]zl"logu )‘1) + (y|z|—l°gu )‘2) < 1} .
2. Jo(z,9,2) = (Az + y, Ay, pz), where 0 < X< 1 and p>1;

ﬂ 2 ,
Us, = {(w,% z) €R3: 2|28 (yz - Aliu"lnlzl"—kw) < I}U{Z=0}-

3. Jo(z,y,2) = (p- (z-cosp—y-singp),p- (z-sinp+y-cosy), puz), where 0< p <1 and
p>1
Us, = {(w,y, 2) ER®: (2 +y?) - o] T8’ < 1}'
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. Qz :

Puc. 1. Lmeamzmg nexghborhood Uy, for. J,,(x,y,z) ()\m: A2y, pz)

Similar formulas can be ertten in case When saddle ﬁxed pomt o has two—dlmensmnal
unstable manifolds. - : ;

Lemma 2. Any saddle ﬁxed pomt ez of dzﬁeomorphzsm few: has lmeamzmg nengourhood

Proof Accordmg to Behtskn theorem (see [2], chapter 6, §5 or, [15] theorem 3. 20), since
f € Diff*(M?) and has no resonances until third order, in ne1ghbourhood of o dlf‘feomorphlsm' ‘
f is conjugated with its differential via C* ¢coordinate transformation. In other'words, for map:
f.€ W exist neighbourhood V of saddle point o, neighbourhood Vp of origin 0(0,0,0), and
Cl dlffeomorphlsm Vot V, '~ Vo which conjugates flv, with Df,|v,. Put by definition

U f(V,) and Vp = U Df™(Vp). Since W? and Wy are submamfolds of M3
neL

(thls can be done like in [10], theorem 1), diffeomorphism 1, extends to a diffeomorphism
Yo : Vo — Vo; we put by definition y(z) = Df; ™ (s (f™(x))) where m is an integer .
number such that f™(z) € V,. Diffeomorphism D falv is conJuga,ted with its Jordan form
Jo by linear coordinate transformation 9 : RS — R3.. 44

For any k € N put by definition - ey e :
Uk = {(m,y,z) eR®: (Vkz,Vky, 2) € U;a}.

a

s conguga.ted with J by
U, Uso

diffeomorphism _ h(z,y, z ) = (\Fﬂ: vky, z). It now follows that Uy = 1/) 1o S‘l(Uk ) is a
required lmearlzmg nelghbourhood with conjugacy : :

Choose k € N such that UJ - Vo Note that J

 Yo=hoSody iU, Us,.

3. Auxiliary statements
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Lemma 3. For the map 9a(T, Y, 2) = (Sa(w Y, 2), M0 (T, Y 2); Xa(T, Y, 2)) the following

relations holds: ?‘;fca( #)=0, 8{;; = (aq) =0, a‘) 3& 0.
Proof. There is a following correspondence between Wj,, Wgh and the1r 1mages in linearizing

neighbourhoods U, Jos U gt

plane Ozy € Uy,, corresponds to W5,

surface s ( o-'u,) in Uy, corresponds to W3

plane Ozy € UJU,‘% corresponds to Wiu;

surface ou(Ws) in Uy, corresponds to Ws.
a

Let a be the tangency point of Wﬁa and },‘g. Since 1,5 and yu are diffeomorphisms,
points s (a) and ¥yu(a) will be heteroclinic tangency points of images of W7, and W
in neighbourhoods Uy,, and Uy, (see [7]).

Now consider two smooth curves on plane Oxzy C Uy, s that pass through point a®. Let the
tangent vectors to these curves at point a® be equal to (1 0,0) and (0,1, 0) respectively. Map
9ga(,y, #) sends these curves to curves on surface ¢,u(W3s) C Uy, » - Tangent vectors to curve
images at point a® must have zero z-coordinate because curves touch plane Ozy C Uy, at
point a¥. Suppose that curves were parameterized by a parameter t; then by chain rulg we
obtain :

o 06 O
! dr Oy 0z ’
Y\ | o om om | (%
1T Bz Oy 0z Ye I
L Xt e O OXa %
Jr Oy 0z

where the matrix of partial derivatives is a Jacobi matrix for map g.(2,y, z). Substituting
tangent vector in right hand side for (1 0,0) and (0,1,0), we obtain that tangent vectors

&, 77a Xa) and (8&1 877@ 8Xa

to curve images are equal to (== =2 —==) respectively. Since curve

on’ 0z Oz oy ' By’ By
images touch plane Ozy C Ujag we get that %% =0 and 62;@ = 0. However, g4(z,y,?)
is a diffeomorphism and det Dg,(a®) .7& 0, so we necessarily have that %Xf #0. |

In further theorems and lemmas we will often refer to the following sentence:

Proposition 1. Let o be a saddle fixed point and J, be one of the Jordan forms mentioned
earlier. Then for any sequence {r,}, rn € Uy, \ Oz that tends to r € (Oz \ O) exist
subsequence {rn;}, sequence {k;}, k; — +oo and point ¢ € Ozy\{O} such that {f* (ry;)}
tends to pomt q (the proof is analogous to the proof of lemma 2. 1 1in [3])

Let {ay} C (Ua \ W5h) be the sequence of po1nts such that {a,} tendsto a € Wi, N
[ — la]f

lav]s

o—u

as n — +00 and there exist positive constants Ci and C such that <
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8.

\ U Lo e Y i )
¢ = 3 kn 1
: {an} - {bn_ f(an)} i O% :
b =y - o
.c e A . . ; ‘.
42 M1y ,,,,, T A
VV;% "| ";i 7 a,:,, Ao

Pue. 2. Illustration for lemma 4 '

9035 = 903 11 Mot that thess inocabtios dhoallon 1. tae miate fom W

——y~—5~f—y~ < (5. Note that these inequalities disallow to take points from Wg3s, ie.

ay} CU, v U WE, ). From proposition 1 it follows that there exist subsequence {a, },
o¥ 44 p q m

sequences {kn} and {mp}, point b € (Wi \ of) and point ¢ € (W§, \ o¥) such that

lim &k, = 400, 735{.10 M, = +00, {bp = f¥r(a,,)} and {c, = f7mm(aw,)} tend to band ¢
respectively (see fig. 2). For the sake of briefness we denote by {an} asequence {a,,}.

and

. Mp _lri tha
Lemma 4. 7}31(;10 - o

Proof. Since ¢y = f~™n (an) and ay, = f~*n(by), it follows that

el = A7™  Jan)?,  [Bals = pkn - [an]S

Consider fatio %Zﬂg = A e kn —[[%Z%A ’]‘f‘érmv {ZZ]]ZEL .can bé expressed as
lan]y _ Xa([an]zs [anlg [an]) : Xa([anl3: [an]§, [an)3) — Xa([alS, [a]}, [a]2)
lanly 0 famls Coelenlz—fals :

Applying mean value theorem, we obtain

Xa([anl3, [anl3, [an]8) = xallals, als; lal3)
o anfgfalg o o o
Rt e ey e e e e e
B 7([a‘n]z ~[al]3) 'f'“é‘:‘v‘([an]w - [a]w)Jr- —@([an]y—- [a]y)“
el f_ [anls — [a)s o = |
K | _ % | O%a lanle—[ofp  O%e lan]z —[als
R % oz [an].g_;[a]z By Tan)s — [a)2’
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8)2(1 8)2@ 8)2(1‘

where 9z’ Oy’ B are the values of corresponding partial derivatives at the intermediate
z
‘point of segment with a and a, as an end points. Clearly, the limit of this ‘expression is
Xa “(a®) as n tends to infinity; it can be easily shown since [on]z ~ o]z and
0z T - an)g
s _ g8
M are bounded and. BX“, OXa are continueus at point -a® and are equal to zero.
[anl: do ' By
Takmg logarlthm of [[Zn%z dividing by —kn -1n A, and rea,rra,ngmg terms, we obtam
mn
My, lnﬂa 1 [aﬂn,]u [Cn]u o
e = 11 z2 -1 2.
T o T Ing (n fanls " a2
BXG 8 [C]qzll
Expression in right hand side tends to In P (@°) —In e as n — 400, 80
z
.m ln pg
im T
nroo oy DA

O

The proof of lemma 5 uses ideas from articles [5] (proof of lemma 2.3) and [9].

By 43 ( gg) and £5F (¢2 ) denote separatrices of invariant manifolds W and W,
such that wgg(ﬁgg) 0Z+ = {z €0Z:2>0} ( Yos(lys) =0Z" ={2€0Z:2< 0})
and oy (£5) = OZ*+ ( yuy(£5) = 0Z7).

Lemma 5. Let a € A be the point of heteroclinic tangency. Suppose that ©, is irrational
‘number. Then for any point b € egg exists €q € {+, —} such that for any point c € ESE" exist

scquence {an) -+ a and scquences {mp) > 100, {kn} > 0o such that lim Fen {an, =b,
(>}
lim f~™n(an) = c.
nN-—>c0
. . Oxa ) ) . Oxa .
Proof. Put ¢4 = + if FX—(a“’) > 0 and put it equal to — if -g-(——(as) < 0 For the sake of
. 2 z

being definite, take e, = + and c € gsj;‘ Consider a sequence of points {ay,} such that
lamlz = [a]3, [om]y = laly, [om]Z = gl

Since ¢ € Ef, then inequality [oy,]Y > 0 holds for any point of sequence {am}. Put by

8
definition B, = %@—]]—%. From -[-%T]é”—]—s—[a]—x = 0 and [——[15——]—5-@2 = 0 it follows that
m miz ) ™mlz : :
0 ;
,&Lmo‘, B = (;Cz“( a®) = B, (see lemma 4). Put be deﬁmtlon -

gty (o) ! (B;Am[ 13)'_ NEE éa v gm)

m - =

In p, ln p, In g | In Il'a,
then rearranging of terms gives SRR

1 Ba

In { [c]¥— In =2
. ([ I 5(1) N Brm, m ln)\a\.‘
Inpig In pg lnl"'a.
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Put by definition .8 = _~——————~3——— and Cm, ﬁm then Sm = 0+ (m + m . Note
" In g In pg In pg

thit -Ef—bﬁ = 8 < 0, 0 = const,* lim ¢, = 0 and "liih Sy = —O00. Consider‘the
ln)\ m—>o0

1

mapping ‘¥ : R <= R.where y = 2 +wy and wg = = ThlS map induces a d1ﬂ?eomorph1sm
i a

g : St — S! via covering map p(z) = ™. By construction { is a rotation by angle 2w,

where wy < 0 and {0+ mw,} = L) y™(0). Since O, is irrational then w, is irrational
too and p( |J y™(6)) is dense on c1rcle (see [4], proposmon 1.3.3). Then sequence p(S.,)
N

me
is also dense in circle becauseé 11m (i = 0. For any m number s, can be expressed as
m—o0

$m = &m + Sm where &, is an integer part of sy, and §m 0, 1) From hm Sm = =00
follows that lim £ = —oo. Since {5} is dense in [0, 1) set {,u } is dense in 15 4g)-
m—o0

q+1 q-+1

Let g be the integer number such that - uf < [b] < s then pd™™ is dense in [uf, ,ua )
Hence, for any point b € £%, b= (0,0, [b]$) exists subsequence {8m, } such that [b]$ = 5+

ad
where § = li_)m Sm,,- 1t now follows that

q+3m

[b]3 = 4§ Jim pigmm = 11{“ e g mn = g hm izt es"mh‘““ =
N=>00 n—0o0

. _ Infom, R :
= uf 1}1{{)10 g S exp ('—“1['1—1‘/:;& In ua) = Mg 1}5210 Hog, gm” [t |2

~ Put by deﬁn1t1on ~5mn tq=kn, {an}= {amn} bn = f’cn (an) = fm (an) Obv1ous1y
{an} is a required sequence, B O

Lemma 6. Let L:R?® — R3 be the linear diffeomorphism such that L(Oz) = Oz
and L(Ozy) = Ouwxy. Suppose that Llo. acts like a homothety with coefficient p >
1 and for any point P & Ouxy iterations L™(P) tend to O as n - +oo. Let
® = (D1(z,y,2), P2(z,y,2), P3(x,y, 2)) be a diffeomorphism. that commutes with L; also,

0z

Proof. Since plane Ozy isinvariant under map ® then it is true that ®3(z,y, 0) = 0 According
to Hadamard’ lemma (see formulatlon and proof in [14] ), function ®3 can be expressed as

: D3 ,
&(Ozy) = Oxy. Then the dem’vatzve =3 s constant at plane Ozy and is non-zero.

2z g(x,y, 2 )Where 9(z,y, z) is continuous function such that ‘g( z,9,0) = I(my 0)° Since

maps L and ® commute then for any n € Z maps L™ and & commute too. Now cons1der the
sequence of points {(@n, Yn, #n) Inen such that z, =z*, Yy, =y", 2z, =p ~2% where x* and
y* are the coordinates of arbitrary point from plane Omy Apply equality ®o L™ =L"0®
to (zn, Yns Zn): and calculate the z-coordinate of result. After that we obtam equahty

("% + 9(L™ 0y (@ny Yn), 4 zn) w2, - g(wn,yn,zn)

which also can be written as
g(L“Io@y(mn, Yn)s U 2n) = §(Zn, Un, 2n)-
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Passing to the limit, we obtain that g¢(0,0,0) = g(z*,y*,0), ie. for any z* and y*:

84’3 _ 023 __ 0% o
1(93*,1;* 0 = |(0 0,0)" From ®3(z,y,0) = 0 follows that |(%y 0 = !(:c,y,()) 0
o
and 3‘(000) # 0 because diffeomorphism (I> has non-zero determmant of Jacobi
mgtrlx S , O

Lemma 7. For any points d,a € A such that of= o} and o} = oy, parameter 77 doesn’t
depend on choice of linearizing neighbourhoods of saddle point og and oy.

Ba

Ba

a, d € A. It’s sufficient to prove that ratio

1/In pg -
, where [, = aé‘z“ (¢°) and Sy = 8Xd (ds) for pomts

2 doesn’t depend on ch01ce of diffeomorphisms

Proof. Recall that 7§ =

Ba
ipas . 0'3 - UJ o8 and wgu Ug-u - UJ ur
Recall that for point o € A mapplng 9a(2,y, 2) was deﬁned earlier as

Ga = d’a}j o (¢U§|Ua)—1 : @ba'g(Ua),"') ¢53(Ua)7

where U, is a connected component of Uss N Uau which contains point @ . Suppose that
we’ve chosen another linearizing neighbourhoods UUS Uau and diffeomorphisms

'l/Jg-g:UUs——)UJs’ @baui o-u——-}UJu

that don’t coincide with 9y and oy respectlvely By U, denote the connected component
of Ugs ﬂUgu which contains point a. By definition, put g, = nguo(z/)(,s lz,)~1; the coordinate
expression for o will be

gﬂ:(x7 ;ya Z) = (ga(x, y7 Z), ﬁa(xu y; Z): 92(1(-73, y7 Z))
Then ' .
Go = TPag o w;gl o Qﬁa}; ° 10;31 © TPag ° 'Qb;gl'

Put by definition ¥ = Q,Zgg o 1,0;21» and U¥ = 1,503 o w;;; after that we obtain §, = ¥%og,0
(¥*)~L. By construction, diffeomorphisms ¥* and ¥* commute with linear diffeomorphisms
Jys and Jyu respectively. Put by definition -

V¥ (2,9, 2) = (¥i(2,y,2), ¥i(z,y, 2), ¥5(2, 9, 2))

and
Uz, y, z) = (¥1(z, 9, 2), O5(z, v, 2), V5 (2,9, 2)).
From ¥*(Ozy) = ¥*(Ozy) = Ozxy it follows that ws (m Y, 0) = \If“(m'u, )::—:‘ 0; obviously

o _ 8\11 ouY B
vy (z,y,0) = (m,y, 0) = 0 and -—8;6-—( ,9,0) = Em (m,y,O) 0 Note that fromh
Go=¥"0gg0 (\Ils) ~1 follows that

74| (ang a0 (g falg0) 2| (g falg0 () (8l3.{al},0)
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where Jacobi matrices are taken at point @ € A. According to lemmas 3 and 6, Jacobi
matrices have followmg form:

v I *
Dga ‘ | * % * , D\Il“ | * * u* ’
([al2,[al0) 9Xa ([a],[az],0) owy
0 '0‘ 5, (4°) 00 —4(a¥)
A * % ok
D(T? sy=1 s o x % ok
() ([aS][a])_ o3

00 (Z5)7an)

where sta,r signs denote coeﬂiments that are irrelevant to the proof Multlplymg Jacobl
matrices, we getiequality : . :
o (aqu‘)"l
(alglalz0) \ 0%
which can be combined with lemma 6 and rewritten as A

| ouy - _(awg>“1
l@eag0 07 (alslasn N 92/ looo

_ony
@sag0 07

I%a
0z

O
(el fap0) 07

([@2,[a15,0)

0z

O
(0,0,0) Oz

The same formula holds for point d € 4. This means that

O%a . OUY Oxa, o O Oxa o
A 5@ F0,00752@)5E0,0,0) .aﬁ(}-\ﬁa,,
a g T B 0 )0 DT o ) D T

O
Suppose that /s is some euclidean neigt bourhood of tanvency point a® € Uy,

~ OXa
Ua, = (Uas) C U,. Suppose that partial derivative ~5~—~ doesn’t change sign in Uys (the

ex1stence of such nelghbourhood follows from continuity of partial derlvatlve) Also suppose
that 1hos (We N U a) intersects exactly one connected component of Ugs \ Yo (Wee N Ua)

(this is posmble because of one-sidedness of tangency). By. U and g .denote sets
{p € Uss: [p)2 > 0} and {p € Ugs: [p]S < O} respectively. Also denote by &, the sign of
partial derivative %( ?); sign that is opposite to &, we will denote by &,. Let a and o

be the points of heteroclinic tangency, h(a) = a/. Suppose that for nelghbourhood Uss holds
MUgs) C U”Z/' It’s always possible to choose such linearizing neighbourhood. Suppose that

h(Usg) € Ugs,; then there exists k € N such that A(UF ’%) C Uss,, where Uag = (U 7 s)
(this observation is similar to the proof of lemma 2). So, 11near1z1ng nelghbourhood U 53 satlsﬁes
this condition. Then we can deﬁne the homeomorphism hg: ’%a (Uda) = Q,b,a (h(Ua ) by :
formula, hs = %s h?,b . Point * o is an image of point a° under the mappmg hs, put by

definition Uys = hg (Uas) For neighbourhood Ups we define sets U, s ‘and U3 e iN similar
manner as for U,e. Note that analogous constructions can be made to define a homeomorphlsm

hu %u(Uau)%%U( ( “))
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Lemma 8. If p* € Ut then xa([pl3, 3, P12) > xal[pl2, I0]5,0) and if p° € Ugs then
Xll([p] [p]ya [P] )<Xa([p] [p]yao) I - .

Proof. Statement can be proven via considering, the expression  xa([pl3, [Pl3, [P2) —
Xa([p)z: [P35, 0 ). Applying the mean value theorem, we obtain

ol 15 1) = xalpls 1, 0) = [ - 258

xa

A

0Xa

where 5 is a value of partial derivative at some intermediate point of segment with

A

(Ils, [pls; [p]5) and ([p]3, [p]5,0) as an endpointes. Since the sign of %X; coincides with ¢, in
neighbourhood Uys, the sign of xa([p]2, [plS, [P15) — xa([D)3, [pl5, 0) is equal to e, -sgn[pls. O

4. Necessary conditions for topological conjugacy

Theorem 1. Suppose that f,f' € U are topologz’cally conjugated via homeomorphism -h
such that h(a) =d for point a € A, h{of) =05, h(cl) =0%. Then O, = Oy.

a'’ .

Proof. We will mark with stroke sign all objects of diffeomorphism f’ that are images of
corresponding objects of diffeomorphism f under homeomorphism A.

First, we choose linearizing neighbourhood Uov, a8 it was described before lemma 8. After
that, we choose the mapping ’l/)au such that i 1mages of points of Wsa under ’lllag, has non-

negative z-coordinate in some nelghbourhood of tangency pomt a (m the opposite case we
can apply changing of coordinates mir, : (z,y,2) — (z,y, —%) and set z,[N;o:, = Imir, o d’o;‘/)'
Thus it is possible to chose sequence {a,} befor lemma 4 such that for af = h(a,) the
following relations hold

Xa (lan]$ [anly, [an]3) > xa ([an]3 [an]y, 0) 2 0.

As a result of choice we have sequence of points {ay}, integer sequences {kn} and {m,}, .
points b € (Wgs \ 03) and ¢ € (Wju \ 0f) such that nl}_}trgokn = +00, nl}_)rgo my = +00 and

sequences {b, = f* (an)}, {cn = f ™ (ay)} tend to points b and c respectively; moreover,
Xa ([anlas [anls [an]2) > Xar([an]3 lanly, 0) 2 0.
There are two possibilities here:

1) Sequence {ay} has subsequence {ay } such that exist posztwe constants Cy and Ca
lan, )z — [@']3 e, ) = @5 |

nal? o langs

and the inequalities < C’z hold for all elements

< Cia d

of subsequence.

In this case both sequences {an,} and {a, } satisfy conditions of lemma 4. On one

In 1
hand, lim Dng 'u“, on the other ha,nd 111’11 Mg _ DR From that we
g—oo kp, ln)\ g0 Ky, ln)\ar
Inp, Inpgy

btain that = .
obbain Bhe InX, InAy
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2) Sequence {aﬁl} has no,_subsequence, which satisfies conditions of case 1).

From conditions for linearizing neighbourhoods and sequence {a,} follows that
Xl Lo, [)2) > 0. )
For images of sequences .:{a,n}, {bn} and {c,} following equalities hold:
lahls = g [ [l = A7 - a2,

Lokl (ol bl 612) = B g - B

“ Where 1w /18 -, ‘S 8 .
‘ B, = lan ]y ".’Xa’([an]m’ ,[afn]y) [of ]z)
[ar]g
Since e
| Xe ([an)3 [anls, [013) > 0,
" then B

lanlz = xar([an]zs [anly, [@]2) < [anlz-
From last inequality follows that -

B g 02 < [a;]f;‘?
M’uh;ﬂipli.Ca,tivhgn by A/ ~mn and d1v1d1ng by B [ )2, we get

[enlz

Ay < R
, DTL [On]; h

After taking logarithm and di\(iding by —kn - 1ln Ay we obtain

1n( el )
Tﬂ‘>_ln,ua/__'.1~> B, -[b,]s ‘

kn, . In )\@/ kn In Ay
Obviously, we have _ lim, o= 0, lim ey =1[¢ ]";‘,: 1}_1_{1010 [b{l]i = [¥']¢ and B, [b]S > 0.
Also we have that lim B, = %(a’ %) because
n-—+00 Oz

p, = el il o 13 fﬁf}jq bl

OX ot /‘ s " z/ 81 gj&a/ s1s i , 65&“/ : I

9z ([an]z - [(L ]z) + W([an]w - [an]a:) + "@T([a’n]y : [a’n]y) BX I
N [ah]i - [_a/]g Y ‘ : - 2,

‘ éf(a.’“ 65(0/. 6)20/
oz’ Oy’ Oz
intermediate point of segment with o' and a/° as an endpointes. From all this we

Wheré are the values of corresponding partial derivatives at some
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conclude that lim 22 > _npy . From' lemma 4 follows - Jim M _lnp =, 50
n—oo ky, ln Ay 4 —00 ky, InA,
1 pg < In g
InA, = InAy’
. . . i ) , B . : ‘m;\?‘ : In Ma,, L
If we begin w1th diffeomorphism f’, we can obtain that hm lc_’ i and
al

. my In g Inpe  Inpg Inp, Inpy

lim —2 > — . Fr 1 t < . 1 = .
Jim B 2 W N om this follows that oy = o, Obviously, mx — oh

O

Let «a be an arbitrary point of heteroclinic tangency. Suppose that linearizing
neighbourhoods Upys and U,y are such that homeomorphlsms h and h can be defined
ag in description before lemma 8. Denote by H, and H, restrictions hs | slp, and hu| oz . Also,
suppose that neighbourhoods U,s and Uye = hS(Uas) are defined as before lemma 8, but

4 A 8 !
with one additional condition: sign of -2 in Uy coincides with sign of (;Ca (a’®). This
z

0z .
condition always can be treated by choosing smaller euclidean neighbourhood inside Ups.

Lemma 9. Let diffeomorphisms f,f' € U* be conjugated by a: homeomorphism h. Let
a € A be an arbitrary point of heteroclinic tangency and h(a) = do'. Then induced conjugating
homeomorphisms Hs and H, have following coordinate expression

N (aF . 2° 2>0 A (2P z>0 Inpy Indg
Hy(z)=<¢° 7~ d Hy(z)=< ™ 7~ , where p = ——2% = —%.
(2) {a; (=2)f, 2<0 and Hu(2) {a“ (=2)f, <0 P~ Tt InAq .

U

Proof. Take any tangency point a € A and COrresponding saddle fixed points o) and oy

Homeomorphism 5 maps pomt a to point do; also, h maps saddle fixed points o; and oy

to o, and ol respectlvely

. Using approach thalt we’ve mentioned in proof of theorem 1, we modify mappings </Jgu
VYou, Yos & wgs Choose wau and eu such that images of points of invariant manifolds

WSZ/ u Ws,s under ¢au and @,b,,u have non-negative z-coordinate in some neighbourhoods

. of tangency points a’“ and a* respectively. Also, choose ys such that for all points
S e 0‘;% holds xa(p®) > Xa([pl5, [p]§; 0) > 0. Similarly choose tgs, such that for all points
peel ;;I holds xa(p"®) > xa([P'13, [P]5,0) > 0. Note that as a consequence of this choice of
) 8Xa 8 8)CC&
5y (a®) and 5

neighbourhoods and mappings we have that partial derivatives —2(a'*) are

positive; also, for homeomorphisms H, and H, following holds:
Hy: 0Z* CUj,y = 0Z% C Uy, , Hy: 027 CUsy =027 C Uy, ,
H,: OZ+CU,]u—)OZ+CUJu, H,: 0z CUju =0z CU,]u,

in other words, this means that o, o > 0 and oy, ap <0.
Applying lemma 5, we obtain that for any point. ¢ € E% exist sequence {an} — a,; .
{an} € (Ua \ (W5, UWgh)) and integer sequences ‘{kn} — ~+00, {mn} — +o00 such that '
= 1 k;n = 0 T ’1{.;}— L H = | —Mn = C.
T}Lngo .b Jim f*(an) = b:(moreover, b € £75) and nl}_}ngo Cn nl_l_])lgo f~™(an) = ¢ By
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construction, we get';that: [br)S = ukn )\m”[ ]?;fw'here ﬂn: LC—L——]— th n, palon X = [b"]zf"
s _ kn\mp — z a '
From nlgrgc [br]3 = [b]2 and 11m Brn = fa, follows 11m 0 flg Al = T

We W111 mark with stroke sign all objects of dlffeomorphlsm f' that are images of
corresponding obJects of diffeomorphism f under conjigating homeomorphism . For

/ 7 u
dlffeomorp}nsm f’ we have similar formulas ,u BT = % [c];jf , Toe By = [[Z %Z According
nlz
Ing, In In g Inpy InAy .
th 1 @ =0y, le. = t fi = e = .
to theorem o o, le oW o, e . Put by definition p = T oW Obvmusly,

MZ? A= (pim X )P and - lim ,Lba?)\a/” = <[ Iz /ja) Now we obtain
» [bn]iﬂn)" oy o Bal28 (il
. o an Aa n — o A (e — .
('[Cn]é‘ (XY = v cnls lenlglan]s

and ‘ o
[b’] lan)z < [b’] (la ]2 — xor (fat, lonl3,0)) -
AT AT AT A
Applying similar reasoning as in proof of lemma 4, we conclude that :

] — X (s, [0, 0)

lafl2

tends to By as n — co. Passing to the limit, we get |

(BE8Y? s Wit

ey, (]2

If we start from dlﬁ omorphism f’ and apply similar considerations, we'll get that

(e []d]ﬁ>;1>> b126a.

Hence,

([b]iﬁa)"_ _ W1he.
¥ el °
in other words, S -
Bl _ 1131 112l
, Bl [T 1Bl
Let’s interpret last formula. If we fix'point ‘¢ and vary point b arbitrarily, then it follows
o LV 2P
|[b]21° etz
From this. follows -that: :[V']f = of ([b]3 ) and [dJ¢ = oﬂ‘ ([c]%)?;- these. formulas define
homeomorphisms H ::0OZ+ — OZ+ and Hf: 02+ = 0Z+. If we take point ¢ €:£., We
can prove similar formula for homeomorphisms H;: OZ~ — OZ~ and H; : 0z~ =077,

= const

= const; similarly, if we fix point b and vary pomt ¢, we get
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NECESSARY CONDITIONS OF TOPOLOGICAL CONJUGACY 199

namely [0S = aF (—=[b]S)? and []Y = oF (~[c]¥)" respectively. In terms of induced
homeomorphlsms we can write formula as e EErr T Dl o

|Bal® _ |0 _ ozl

iﬁa’| ‘O‘ I ’aul

Note that. proof for this lemma was given 111 partlcular case -of mappmgs z/)(,u,, Yoy,
Yos and zpas However, all modifications that we've applied are just. compositions of mirror
symmetries m1rz with original mappings. We can revert these modifications, substitute current
coordinates with “old” coordinates and obtain similar formulas for H, and. Hu for all cases. [J

Recall that in theorem 2 we con81der tangency pomts a, d € A such that o) = o},
oY = o and signs of parameters B4, B, coincide.

Theorem 2. Suppose that f, f € U* are topologically conjugated via homeomorphism h
such that h(a) =a', h(d) =d for points a,d € A such that B, - B4 >0, h(c3) = ol and
ho¥) = ob. Then 79 =T1%.

Proof. Take any of points a or d (for example, a) and choose linearizing neighbourhoods
similarly as in proof of lemma 9. From lemma 7 follows that coincidence of signs of parameters
B4 and B, doesn’t depend on choice of linearizing neighbourhoods. It’s not hard to show that
procedure of ch01ce from 1emma 9 enta,lls that signs of ﬂd: and [, coincide too But this

leads to ol ’us L and 1Bal” = o | 238 = lp then

Bl |04 | \Ba| 1@ I |Bar| lﬁd'l ’

% npa —’gz—:— I ey , i.e. coincidence of parameters 7¢ = 73 . 0
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