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Abstract

Let X be an algebraic variety over a base scheme S and φ : T → S a base change.
Given an admissible subcategory A in Db(X), the bounded derived category of coherent
sheaves on X, we construct under some technical conditions an admissible subcategory
AT in Db(X ×S T ), called the base change of A, in such a way that the following base
change theorem holds: if a semiorthogonal decomposition of Db(X) is given, then the
base changes of its components form a semiorthogonal decomposition of Db(X ×S T ).
As an intermediate step, we construct a compatible system of semiorthogonal
decompositions of the unbounded derived category of quasicoherent sheaves on X and of
the category of perfect complexes on X. As an application, we prove that the projection
functors of a semiorthogonal decomposition are kernel functors.

1. Introduction

An important approach to non-commutative algebraic geometry is to consider triangulated
categories with good properties as substitutes for non-commutative varieties. Given such a
category, we consider it as the bounded derived category of coherent sheaves on a would-be
variety and try to do some geometry. Note, however, that even the simplest geometric functors
between derived categories often do not preserve boundedness or coherence; the pullback functor
preserves boundedness only if the corresponding morphism has finite Tor-dimension and the
pushforward functor preserves coherence only if the corresponding map is proper. So, to do
non-commutative geometry we need some unbounded and quasicoherent versions of the
triangulated categories under consideration. One goal of this paper is the following: given a
good triangulated category A (considered as a bounded derived category of coherent sheaves), to
define a category Aqc, a substitute for the unbounded derived category of quasicoherent sheaves
and a category A−, a substitute for the bounded above derived category of coherent sheaves.

A straightforward approach to construct Aqc would be just to consider the closure of A under
colimits. However, it is not clear how to define a triangulated structure there. So, instead, we
assume that the category A is given as an admissible subcategory in Db(X), the bounded derived
category of coherent sheaves on some algebraic variety X, and consider the minimal triangulated
subcategory Â ⊂ Dqc(X) containing A and closed under arbitrary direct sums. Defined in this
way, the category Â inherits a triangulated structure automatically, but there arises a question
of dependence of Â on the choice of the variety X and of the embedding A→Db(X). We prove
that it is actually independent of these choices under some technical condition.
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Base change for semiorthogonal decompositions

Another, and in fact the most important, goal of the paper is to define a base change for
triangulated categories. Assume that S is an algebraic variety and A is a good triangulated
category over S (which can be understood, for example, as that A is a module category over the
tensor triangulated category Dperf(S) of perfect complexes on S). Given a base change φ : T → S,
we would like to define a triangulated category AT over T to be considered as the base change
of A. Again, an abstract approach is too complicated, so we assume that A is given as an
S-linear admissible subcategory in Db(X) (S-linear means closed under tensoring with pullbacks
of perfect complexes on S), where X is an algebraic variety over S, and construct AT as a
certain triangulated subcategory in Db(X ×S T ). Once again there arises an issue of dependence
on the chosen embedding A→Db(X), and again we show that the result is independent of the
choice.

The most important technical notion used in the paper is that of a semiorthogonal
decomposition. Actually, we start not with an admissible subcategory A⊂Db(X) but with
a semiorthogonal decomposition Db(X) = 〈A1,A2, . . . ,Am〉. Then we consider a chain of
triangulated categories Dperf(X)⊂Db(X)⊂D−(X)⊂Dqc(X) (here D−(X) is the derived
category of bounded above complexes with coherent cohomology) and ask whether there exist
semiorthogonal decompositions of these categories compatible with the initial decomposition. It
turns out that the categories Aperf

i =Ai ∩ Dperf(X) always give a semiorthogonal decomposition
of Dperf(X), while the categories Âi (the minimal triangulated subcategories of Dqc(X)
containing Aperf

i and closed under arbitrary direct sums) and A−i = Âi ∩ D−(X) always form
semiorthogonal decompositions of Dqc(X) and D−(X), respectively. However, for compatibility
of the last two decompositions with the initial decomposition of Db(X), we need a technical
condition to be satisfied, namely the right cohomological amplitude of the projection functors of
the initial decomposition should be finite (this condition holds automatically if X is smooth).

Similarly, in a situation of a base change we start with a semiorthogonal decomposition
of Db(X). However, here we need some additional assumptions from the very beginning. First
of all, the decomposition of Db(X) should be S-linear and, second, the base change φ : T → S
should be faithful for the projection f :X → S. The latter condition more or less by definition
(see [Kuz06]) is equivalent to the base change isomorphism f∗φ

∗ ∼= φ∗f∗, where the projections
of XT =X ×S T to X and T by an abuse of notation are denoted by φ and f , respectively.

The semiorthogonal decomposition of Db(XT ) is constructed in several steps. First, we
consider the semiorthogonal decomposition of Dperf(X) constructed above. Then we define the
subcategory ApiT of Dperf(XT ) to be the closed under direct summands triangulated subcategory
generated by objects of the form φ∗F ⊗ f∗G with F ∈ Aperf

i and G ∈ Dperf(T ). It turns out that
by acting in this way we always obtain a semiorthogonal decomposition of Dperf(XT ). Further,
we define the category ÂiT to be the minimal triangulated subcategory of Dqc(XT ) containing
ApiT and closed under arbitrary direct sums, and A−iT = ÂiT ∩ D−(XT ). Thus, we obtain
semiorthogonal decompositions of Dqc(XT ) and D−(XT ). Finally, we consider subcategories
AiT =A−iT ∩ Db(XT )⊂Db(XT ). But, to prove that they form a semiorthogonal decomposition,
we again need the assumption of finiteness of cohomological amplitude of the projection functors
of the initial semiorthogonal decomposition of Db(X). We prove that the projection functors of
the obtained decomposition of Db(XT ) also have finite cohomological amplitude.

We show that the constructed semiorthogonal decompositions of Dqc(X) and Dqc(XT )
are compatible with respect to the pushforward and the pullback functors via the projection
morphism φ :XT →X. It follows that the semiorthogonal decompositions of Db(X) and Db(XT )
are compatible with respect to φ∗ whenever φ is proper, and with respect to φ∗ whenever φ has
finite Tor-dimension.
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A. Kuznetsov

It should be mentioned that the seemingly too complicated procedure of constructing AiT is
probably inevitable. The straightforward approach of taking for AiT the subcategory of Db(XT )
generated by objects of the form φ∗F ⊗ f∗G with F ∈ Ai and G ∈ Db(T ) does not give the desired
result even when both φ and f have finite Tor-dimension. Indeed, assume that Ai =Db(X) and
X is smooth. Then Db(X) =Dperf(X) and it is clear that the defined in this way subcategory
of Db(XT ) is just the category of perfect complexes Dperf(XT ), not the whole Db(XT ) as one
would wish. So, one definitely needs to add something to this category to obtain the right
answer. It seems that to add all colimits and then to intersect with Db(XT ) is the simplest
possible solution. And, considering perfect complexes as an intermediate step both removes
many technical problems and gives additional information.

As an application of the obtained results, we prove the following. Assume that Db(X) =
〈A1, . . . ,Am〉 is a semiorthogonal decomposition the projection functors of which have finite
cohomological amplitude. We prove then that these functors are isomorphic to kernel functors
ΦKi given by some explicit kernels Ki ∈ Db(X ×X). In particular, if A⊂Db(X) is an admissible
subcategory and the projection functor to A has finite cohomological amplitude, then it is
isomorphic to a kernel functor. In a special case, when A∼=Db(Y ) for a smooth projective
variety Y , this follows from Orlov’s theorem on representability of fully faithful functors [Orl97].
Indeed, in this case the embedding functor Db(Y )→Db(X) as well as its adjoint are given by
appropriate kernels on X × Y , so the projection functor is given by the convolution of these
kernels. Thus, our result can be considered as a generalization of Orlov’s theorem.

The paper is organized as follows. In § 2, we recall the main technical notions used in the
paper; semiorthogonal decompositions, cohomological amplitude, homotopy colimits etc. We
also discuss several notions and facts related to approximation of unbounded quasicoherent
complexes by perfect ones. In § 3, we investigate when a semiorthogonal decomposition of
a triangulated category T ′ induces a semiorthogonal decomposition of its full triangulated
subcategory T ⊂ T ′. In § 4, we construct extensions of a semiorthogonal decomposition of Db(X)
to Dperf(X)⊂D−(X)⊂Dqc(X). In § 5, we define the base change for an admissible subcategory
and prove the faithful base change theorem. In § 6, we show that extensions Â, A− and the base
change AT of A do not depend on the choice of X and of the embedding A→Db(X) involved in
the definitions. In § 7, we prove that the projection functors of a semiorthogonal decomposition
can be represented as kernel functors.

2. Preliminaries

2.1 Notation
All algebraic varieties are assumed to be quasiprojective.

For an algebraic variety X, we denote by Db(X) the bounded derived category of coherent
sheaves on X, by D−(X) the bounded above derived category of coherent sheaves on X and by
Dqc(X) the unbounded derived category of quasicoherent sheaves on X. Recall that an object
F ∈ Dqc(X) is a perfect complex if it is locally quasi-isomorphic to a bounded complex of locally
free sheaves of finite rank. Recall that perfect complexes are precisely compact objects in Dqc(X),
i.e. if P is perfect, then

Hom

(
P,
⊕
α

Fα

)
∼=
⊕
α

Hom(P, Fα)

for any system Fα ∈ Dqc(X). We denote by Dperf(X) the full subcategory of Dqc(X) consisting of
perfect complexes. Note that Dperf(X) is a triangulated subcategory in Db(X). Given an object
F ∈ Dqc(X), we denote by Hi(F ) the ith cohomology sheaf of F .
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For F, G ∈ Dqc(X), we denote by RHom(F, G) the local RHom-complex and by F ⊗G the
derived tensor product. Similarly, for a map f :X → Y , we denote by f∗ :Dqc(X)→Dqc(Y )
the derived pushforward functor and by f∗ :Dqc(Y )→Dqc(X) the derived pullback functor. We
refer to [KS06] for the definition of these functors. We also denote by f ! :Dqc(Y )→Dqc(X)
the right adjoint functor of f∗ (usually it is referred to as the twisted pullback functor). It
exists by [Nee96] (see also [KS06]). If the morphism f has finite Tor-dimension then f !(F )∼=
f∗(F )⊗ ωX/Y [dimX − dim Y ], again by [Nee96].

Given a class E of objects in a triangulated category T , we denote by 〈E〉 the minimal
strictly full triangulated subcategory in T containing all objects in E and closed under taking
direct summands. We say that E generates T if T = 〈E〉.

2.2 Semiorthogonal decompositions
Given a class E of objects in a triangulated category T , we denote the right and the left orthogonal
to E by

E⊥ = {T ∈ T | Hom(E[k], T ) = 0 for all E ∈ E and all k ∈ Z},
⊥E = {T ∈ T | Hom(T, E[k]) = 0 for all E ∈ E and all k ∈ Z}.

It is clear that both E⊥ and ⊥E are triangulated subcategories in T closed under taking direct
summands. The classes E1, E2 ⊂ T are called semiorthogonal if E1 ⊂ E⊥2 or, equivalently, E2 ⊂ ⊥E1.

Lemma 2.1. If classes E1 and E2 are semiorthogonal, then the subcategories 〈E1〉 and 〈E2〉 are
semiorthogonal as well.

Proof. We have E1 ⊂ E⊥2 ; hence 〈E1〉 ⊂ E⊥2 , hence E2 ⊂ ⊥〈E1〉 and hence 〈E2〉 ⊂ ⊥〈E1〉. 2

Definition 2.2 [BK89, BO95, BO02]. A semiorthogonal decomposition of a triangulated
category T is a sequence of full triangulated subcategories A1, . . . ,Am in T such that Ai ⊂A⊥j
for i < j and, for every object T ∈ T , there exists a chain of morphisms 0 = Tm→ Tm−1→
· · · → T1→ T0 = T such that the cone of the morphism Tk→ Tk−1 is contained in Ak for each
k = 1, 2, . . . , m. In other words, there exists a diagram

0 Tm // Tm−1

~~}}}}}}}
// . . . // T2

// T1

���������
// T0

���������
T

Am

^̂

. . . A2

\\

A1

\\

(1)

where all triangles are distinguished (dashed arrows have degree one) and Ak ∈ Ak.

Thus, every object T ∈ T admits a decreasing ‘filtration’ with factors in A1, . . . ,Am,
respectively.

Lemma 2.3. If T = 〈A1, . . . ,Am〉 is a semiorthogonal decomposition and T ∈ T , then the
diagram (1) for T is unique and functorial (for any morphism T → T ′, there exists a unique
collection of morphisms Ti→ T ′i , Ai→A′i combining into a morphism of diagram (1) for T into
diagram (1) for T ′).

Proof. Note that T1 ∈ 〈A2, . . . ,Am〉 by (1). It follows from the semiorthogonality that we have
Hom(T1, A

′
1[k]) = 0 for all k ∈ Z. Therefore, any map T0 = T → T ′ = T ′0 extends in a unique way

to a map of the triangle T1→ T0→A1 into the triangle T ′1→ T ′0→A′1. In particular, we obtain
a map T1→ T ′1 as well as a map A1→A′1 and proceed by induction. 2
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We denote by αk : T → T the functor T 7→Ak. We call αk the kth projection functor of the
semiorthogonal decomposition.

Definition 2.4 [Bon89, BK89]. A full triangulated subcategory A of a triangulated category T
is called right admissible if, for the inclusion functor i :A→ T , there is a right adjoint i! : T →A,
and left admissible if there is a left adjoint i∗ : T →A. Subcategory A is called admissible if it is
both right and left admissible.

Lemma 2.5 [Bon89]. If T = 〈A, B〉 is a semiorthogonal decomposition, then A is left admissible
and B is right admissible. Conversely, if A⊂ T is left admissible, then T = 〈A, ⊥A〉 is
a semiorthogonal decomposition and, if B ⊂ T is right admissible, then T = 〈B⊥, B〉 is a
semiorthogonal decomposition.

Definition 2.6. We will say that a semiorthogonal decomposition T = 〈A1, . . . ,Am〉 is a strong
semiorthogonal decomposition if, for each k, the category Ak is admissible in 〈Ak, . . . ,Am〉.

Note that Ak is left admissible in 〈Ak, . . . ,Am〉, by Lemma 2.5. So, the additional condition
in the definition is the right admissibility. Note also that if Ak is right admissible in T , then
it is also admissible in 〈Ak, . . . ,Am〉 (thus, a semiorthogonal decomposition with admissible
components is a strong semiorthogonal decomposition) and that in the case when T =Db(X)
with X being smooth and projective any semiorthogonal decomposition is strong.

2.3 S-linearity
Let f :X → S be a morphism of algebraic varieties. A triangulated subcategory A⊂Dqc(X)
is called S-linear (see [Kuz06]) if it is stable with respect to tensoring by pullbacks of perfect
complexes on S. In other words, if A⊗ f∗F ∈ A for any A ∈ A, then F ∈ Dperf(S).

Lemma 2.7. A pair of S-linear subcategories A, B ⊂Dqc(X) is semiorthogonal if and only if the
equality f∗ RHom(B, A) = 0 holds for any A ∈ A, B ∈ B.

Proof. First we note that for any object 0 6=G ∈ Dqc(S) there exists a non-zero map P →G from
a perfect complex P ∈ Dperf(S). Indeed, represent G by a complex of quasicoherent sheaves and
assume that Hi(G) 6= 0. Let Zi = Ker(Gi→Gi+1), so that we have an epimorphism Zi→Hi(G).
It is clear that there exist a locally free sheaf P of finite rank and a map P → Zi such that
the composition P → Zi→Hi(G) is non-zero. Then the composition P → Zi ⊂Gi induces the
required morphism P [−i]→G (it is non-zero, since the induced morphism of the cohomology
Hi(P [−i]) = P →Hi(G) is non-zero).

Further, RHom(P, f∗ RHom(B, A))∼= RHom(f∗P, RHom(B, A))∼= RHom(B ⊗ f∗P, A) for
any P ∈ Dperf(S). So, if A and B are semiorthogonal, then RHom(B ⊗ f∗P, A) = 0, since B is
S-linear and the above observation shows that f∗RHom(B, A) = 0. The inverse is evident. 2

Let f :X → S and g : Y → S be algebraic morphisms, and assume that A⊂Dqc(X), B ⊂
Dqc(Y ) are S-linear triangulated subcategories. A functor Φ :A→B is called S-linear if there is
given a functorial isomorphism Φ(F ⊗ f∗G)∼= Φ(F )⊗ g∗G for all F ∈ A, G ∈ Dperf(S).

Lemma 2.8. If T ⊂ Dqc(X) is an S-linear triangulated subcategory and T = 〈A1, . . . ,Am〉 is
an S-linear semiorthogonal decomposition, then its projection functors αi : T → T are S-linear.

Proof. Take any G ∈ Dperf(S) and consider the endofunctor of T given by tensoring with f∗G.
It preserves all Ai and hence, by Lemma 3.1 below, it commutes with the projection functors.
This gives the required functorial isomorphism. 2
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2.4 Faithful base changes
Let f :X → S and φ : T → S be algebraic morphisms. Let XT =X ×T S be the fiber product. By
an abuse of notation, denote the projections XT → T and XT →X also by f and φ, respectively.
It is easy to see that there is a canonical morphism of functors φ∗f∗→ f∗φ

∗. Recall that the
cartesian square

XT
φ //

f

��

X

f

��
T

φ // S

is called exact (see [Kuz06]) if this morphism of functors is an isomorphism. By [Kuz06], the
square is exact if either f or φ is flat, and the square is exact if and only if the transposed square
is exact.

A map φ : T → S considered as a change of base is called faithful for f :X → S (see [Kuz06])
if the corresponding cartesian square is exact. Thus, any change of base is faithful for a flat f
and similarly a flat change of base is faithful for any f .

2.5 Truncations
Given a complex C•, its stupid truncations are defined as

(σ6mC)n =

{
Cn if n6m,
0 if n >m,

and (σ>mC)n =

{
Cn if n>m,
0 if n <m.

It is clear that σ>mC→ C→ σ6m−1C is a distinguished triangle in the derived category. The ad-
vantage of the stupid truncations which we will use subsequently in the paper is that when applied
to a complex of locally free sheaves (a perfect complex) they produce a perfect complex as well.

Similarly, the canonical truncations (also known as smart truncations) are defined as

(τ6mC)n =


Cn if n <m,

Ker(Cm d−−→ Cm+1) if n=m,

0 if n >m,

(τ>mC)n =


Cn if n >m,

Coker(Cm−1 d−−→ Cm) if n=m,

0 if n <m.

Again, in the derived category we have a distinguished triangle τ6mC→ C→ τ>m+1C. The
advantage of the canonical truncations is that they descend to functors on the derived category.
Note also that

Hn(τ6mC)∼=

{
Hn(C) if n6m,
0 if n >m,

and Hn(τ>mC)∼=

{
Hn(C) if n>m,
0 if n <m.

2.6 Cohomological amplitude

Let D[p,q]
qc (X) denote the full subcategory of Dqc(X) consisting of all complexes F ∈ Dqc(X) with

Hi(F ) = 0 for i 6∈ [p, q]. Let T ⊂ Dqc(X) be a triangulated subcategory. We say that (a, b) is the
cohomological amplitude of a triangulated functor Φ : T →Dqc(Y ) if

Φ(T ∩ D[p,q]
qc (X))⊂D[p+a,q+b]

qc (Y )

for all p, q ∈ Z. In particular, we say that Φ has finite left (respectively right) cohomological
amplitude if a >−∞ (respectively b <∞). If both a and b are finite, we say that Φ has finite
cohomological amplitude.
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Lemma 2.9 [Kuz08]. Every exact functor Φ :Dperf(X)→Dbqc(Y ) has finite cohomological
amplitude.

Actually, it was shown in [Kuz08, Proposition 2.5] that one can replace Db
qc(Y ) by any

triangulated category with bounded t-structure.
Let X and Y be algebraic varieties. Consider the product X × Y and denote the projections

by p :X × Y →X and q :X × Y → Y . Recall (see [Kuz06, 10.39]) that by definition an
object K ∈ Db(X × Y ) has finite Tor-amplitude over X if the functor F 7→K ⊗ p∗F has finite
cohomological amplitude. Similarly, an object K ∈ Db(X × Y ) has finite Ext-amplitude over Y if
the functor F 7→ RHom(K, q!F ) has finite cohomological amplitude.

Lemma 2.10. If an object K ∈ Db(X × Y ) has finite Tor-amplitude over X, then the functor
ΦK(F ) = q∗(K ⊗ p∗F ) has finite cohomological amplitude. Similarly, if K ∈ Db(X × Y ) has finite
Ext-amplitude over Y , then the functor Φ!

K(G) = q∗RHom(K, q!G) has finite cohomological
amplitude.

Proof. It suffices to note that the pushforward functor has finite cohomological amplitude (it is
equal to (0, d), where d is the maximum of the dimensions of the fibers). 2

2.7 Homotopy colimits
Recall (see [BN93]) the definition of homotopy colimits in triangulated categories. Let F1→
F2→ F3→ · · · be a sequence of objects of a triangulated category having countable direct
sums. Its homotopy colimit, hocolim Fi, is defined as a cone of the canonical morphism⊕

Fi
id−shift //

⊕
Fi , where shift denotes the map

⊕
Fi→

⊕
Fi defined on Fi as the

composition Fi→ Fi+1 ⊂
⊕

Fj . Thus, we have a distinguished triangle⊕
Fi

id−shift //
⊕

Fi // hocolim Fi .

In what follows, we only consider homotopy colimits over the set of positive integers. Colimits
over other partially ordered sets are not considered at all.

Lemma 2.11. If a functor Φ commutes with countable direct sums, that is, the canonical
morphism

⊕
i Φ(Fi)→ Φ(

⊕
i Fi) is an isomorphism, then Φ commutes with homotopy colimits in

the sense that there is a non-canonical isomorphism hocolim Φ(Fi)∼= Φ(hocolim Fi). In particular,
homotopy colimits commute with tensor products, pullbacks and pushforwards.

Proof. By the assumptions, we have a diagram⊕
i Φ(Fi)

id−shift //

∼=
��

⊕
i Φ(Fi) //

∼=
��

hocolim Φ(Fi)

Φ(
⊕

i Fi)
id−shift // Φ(

⊕
i Fi) // Φ(hocolim Fi)

which is evidently commutative. It follows that it can be extended by an isomorphism
of third vertices hocolim Φ(Fi)∼= Φ(hocolim Fi). For the second claim, we use the fact that
countable direct sums commute with tensor products, pullbacks (evident) and pushforwards
[BV03, 3.3.4]. 2

Remark 2.12. Note that by [BV03, 3.3.4] tensor products, pullbacks and pushforwards commute
with arbitrary direct sums (not only with countable ones). We will use subsequently this fact.
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Now assume that the triangulated category under consideration is the unbounded derived
category D(A), where A is an abelian category with exact countable colimits.
Lemma 2.13. If F1→ F2→ F3→ · · · is a direct system of complexes in A and F is the complex
obtained by taking termwise colimits of the above direct system, then hocolim Fi ∼= F .

Proof. Consider the sequence of complexes
⊕
Fi

id−shift //
⊕
Fi //F . Since A has exact

colimits, the sequence is termwise exact. Therefore, F is isomorphic to the cone of the map⊕
Fi

id−shift //
⊕
Fi . 2

Lemma 2.14 [BN93]. If {Fi} is a direct system in D(A), then we have Hn(hocolim Fi)∼=
lim−→H

n(Fi).

Proof. The long exact sequence of cohomology sheaves of the triangle defining hocolim Fi gives

· · · →
⊕
i

Hn(Fi)→
⊕
i

Hn(Fi)→Hn(hocolim Fi)→
⊕
i

Hn+1(Fi)→
⊕
i

Hn+1(Fi)→ · · · .

Since the category A has exact colimits, the last map in the above sequence is injective. It follows
that Hn(hocolim Fi)∼= Coker(

⊕
i Hn(Fi)→

⊕
i Hn(Fi))∼= lim−→H

n(Fi), the last isomorphism
being the definition of the colimit. 2

Lemma 2.15. If {Fi} is a direct system and there is given a morphism of this direct system
to F , then there exists a map hocolim Fi→ F compatible with the maps Fi→ F . Moreover, if
lim−→H

t(Fi) =Ht(F ) for each t ∈ Z, then hocolim Fi ∼= F .

Proof. We have a canonical map ⊕Fi→ F . Its composition with
⊕
Fi

id−shift //
⊕
Fi vanishes,

since the map is induced by a map of the direct system {Fi} to F . Hence, it can be factored
through a map hocolim Fi→ F . On the tth cohomology, it gives the map Ht(hocolim Fi) =
lim−→H

t(Fi)→Ht(F ) induced by the map of the direct system {Ht(Fi)} to Ht(F ). If it is an
isomorphism for all t, then the map hocolim Fi→ F is a quasi-isomorphism. 2

2.8 Approximation
We say that a direct system {Fi} in D(A) approximates F ∈ D(A) if there is given a morphism
from the direct system to F such that for any n> 0 the map τ6nτ>−nFk→ τ6nτ>−nF is an
isomorphism for k� 0. The following is an immediate corollary of Lemma 2.15.

Lemma 2.16. If a direct system {Fi} approximates F in D(A), then hocolim Fi ∼= F .

Recall (see [Kuz08]) that a direct system {Fi} in D(A) is said to be stabilizing in finite degrees
if for any n ∈ Z the map τ>nFi→ τ>nFi+1 is an isomorphism for i� 0.

Let B ⊂A be an abelian subcategory and let D−B (A) denote the full subcategory in D−(A),
the bounded above derived category of A, consisting of all objects with cohomology in B.

Lemma 2.17. If a direct system {Fi} in D−B (A) stabilizes in finite degrees, then we have an
inclusion hocolim Fi ∈ D−B (A).

Proof. This follows immediately from Lemma 2.14. 2

The following easy lemma shows that every object of D−(X) can be approximated by a
stabilizing in finite degrees direct system of perfect complexes. This fact will be used subsequently
in the paper.
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Lemma 2.18. For every F ∈ D−(X), there is a stabilizing in finite degrees direct system of
perfect complexes Fk ∈ Dperf(X) which approximates F . In particular, hocolim Fk ∼= F .

Proof. Choose a locally free resolution for F and denote by Fk its stupid truncation at degree
−k. Then Fk is a perfect complex and the Fk form a stabilizing in finite degrees direct system.
Moreover, for any n ∈ Z, we have τ>−nFk ∼= τ>−nF for k� 0; hence, Fk approximates F . By
Lemma 2.16, we have F ∼= hocolim Fk. 2

We are also interested in approximation of arbitrary unbounded quasicoherent complexes.
Certainly, arbitrary objects of Dqc(X) cannot be represented as homotopy colimits of perfect
complexes. There is however the following implicit approximation result.

Lemma 2.19. The minimal full triangulated subcategory ofDqc(X) closed under arbitrary direct
sums and containing Dperf(X) is Dqc(X).

Proof. Let R⊂Dqc(X) be the minimal full triangulated subcategory closed under arbitrary
direct sums and containing Dperf(X). By the Bousfield localization theorem (see [Nee92,
Lemma 1.7]), there is a semiorthogonal decomposition Dqc(X) = 〈R⊥,R〉 (the category R⊥
is the category ofR-local objects). But,R⊥ ⊂ (Dperf(X))⊥ and the latter category is zero (e.g. by
the argument in the proof of Lemma 2.7); hence, R=Dqc(X). 2

We conclude this section with the following simple result, which will be used later.

Lemma 2.20. Let φ : Y →X be a quasiprojective morphism and assume that L is a line bundle
on Y ample over X. If F ∈ D[p,q](Y ), then, for any k� 0, there is a direct system Gm in D[p,q](X)
such that φ∗(F ⊗ Lk)∼= hocolimGm.

Proof. Taking the smart truncations of F at p and q, we can assume that F is a complex such
that F t = 0 unless t ∈ [p, q]. Since L is ample over X for k� 0, the higher direct images of
F t ⊗ Lk vanish; hence, φ∗(F ⊗ Lk) is isomorphic to the complex

· · · → 0 d−−→R0φ∗(F p ⊗ Lk)
d−−→ · · · d−−→R0φ∗(F q ⊗ Lk)

d−−→ 0→ · · · .

Since φ is quasiprojective, each sheaf R0φ∗(F t ⊗ Lk) is a quasicoherent sheaf which can
be represented as a countable union of coherent subsheaves. Choose such a representation
R0φ∗(F t ⊗ Lk) = ∪Cti and take

Gtm =
⋃
i6m

Cti + d

(⋃
i6m

Ct−1
i

)
.

Then it is clear that the Gm form a direct system of complexes the termwise colimit of which is
the above complex. Hence, φ∗(F ⊗ Lk)∼= hocolimGm, by Lemma 2.13. 2

3. Inducing a semiorthogonal decomposition

Let T and T ′ be triangulated categories and assume that we are given semiorthogonal
decompositions T = 〈A1, . . . ,Am〉 and T ′ = 〈A′1, . . . ,A′m〉. A triangulated functor Φ : T → T ′
is compatible with the semiorthogonal decompositions if Φ(Ai)⊂A′i for all 16 i6m.

Let αi : T → T and α′i : T ′→T ′ be the projection functors of the semiorthogonal
decompositions.
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Lemma 3.1. If the functor Φ is compatible with the semiorthogonal decompositions, then
it commutes with the projection functors, that is, we have an isomorphism of functors
Φ ◦ αi ∼= α′i ◦ Φ.

Proof. Take any T ∈ T and let

0 Tm // Tm−1
//

���������
Tm−2

//

}}||||||||
. . . // T2

// T1
//

���������
T0

���������
T

αm(T )

\\

αm−1(T )

aa

. . . α2(T )

[[

α1(T )

[[

be the filtration of T with factors in Ai. Applying the functor Φ, we obtain a diagram.

0 = Φ(Tm) // Φ(Tm−1) //

���������
Φ(Tm−2)

}}||||||||
→ · · · →Φ(T2) // Φ(T1) //

���������
Φ(T0) = Φ(T )

���������

Φ(αm(T ))

\\

Φ(αm−1(T ))

aa

. . . Φ(α2(T ))

[[

Φ(α1(T ))

[[

Since Φ(αi(T )) ∈ Φ(Ai)⊂A′i, we see that this diagram gives the filtration of Φ(T ) with factors
in A′i; hence, we get isomorphisms Φ(αi(T ))∼= α′i(Φ(T )). Since such filtration is functorial, by
Lemma 2.3, the obtained isomorphisms are functorial as well. 2

Lemma 3.2. Assume that T = 〈A1, . . . ,Am〉 and T = 〈A′1, . . . ,A′m〉 are semiorthogonal
decompositions such that A′i ⊂Ai for all 16 i6m. Then A′i =Ai for all i.

Proof. The identity functor T → T is compatible with these semiorthogonal decompositions;
hence, their projection functors are isomorphic, by Lemma 3.1. In particular, for any i and any
A ∈ Ai, we have A∼= αi(A)∼= α′i(A) ∈ A′i, where αi and α′i are the projection functors; hence,
Ai ⊂A′i. 2

Lemma 3.3. If Φ : T → T ′ is a fully faithful functor and T ′ = 〈A′1, . . . ,A′m〉 is a semiorthogonal
decomposition, then there exists at most one semiorthogonal decomposition of T compatible
with Φ. This decomposition is given by Ai = Φ−1(A′i).

Proof. Let T = 〈A1, . . . ,Am〉 be a semiorthogonal decomposition compatible with Φ. Then we
have Ai ⊂ Φ−1(A′i). On the other hand, let A ∈ Φ−1(A′i). Then α′j(Φ(A)) = 0 for all j 6= i. Hence,
by Lemma 3.1, we have Φ(αj(A)) = 0 for all j 6= i. But, since Φ is fully faithful, it follows that
αj(A) = 0 for all j 6= i, so A ∈ Ai. Thus, we are forced to have Ai = Φ−1(A′i). 2

In general, the collection of subcategories Ai = Φ−1(A′i) does not give a semiorthogonal
decomposition. Actually, it is easy to see that this collection is semiorthogonal (by faithfulness
of Φ); however, it can be not full. The simplest example is the functor Φ :Db(k)→Db(P1)
which takes k to OP1 . If one considers the semiorthogonal decomposition Db(P1) = 〈A′1,A′2〉
with A′i = 〈OP1(i)〉, then Φ−1(A′i) = 0 for i= 1, 2.

Nevertheless, if the subcategories Ai = Φ−1(A′i) form a semiorthogonal decomposition of T ,
we will say that this decomposition is induced on T by the semiorthogonal decomposition of T ′
via Φ.

Lemma 3.4. Let Φ : T → T ′ be a fully faithful functor and T ′ = 〈A′1, . . . ,A′m〉 a semiorthogonal
decomposition. It induces a semiorthogonal decomposition on T if and only if the image of Φ is
stable under the projection functors of the semiorthogonal decomposition of T ′.
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Proof. The ‘only if’ part follows immediately from Lemma 3.1. For the ‘if’ part, we only
have to prove that every object T of T can be decomposed with respect to the collection of
subcategories Ai = Φ−1(A′i). So, let T ′ = Φ(T ) and let 0 = T ′m→ T ′m−1→ · · · → T ′1→ T ′0 = T ′ be
its filtration with factors in A′i. Note that the factors are given by α′i(T

′)∼= α′i(Φ(T )). Since
the image of Φ is stable under α′i, it follows that α′i(T

′)∼= Φ(Ai) for some objects Ai ∈ Ai. Let
us check that these are the components of T . To do this, we have to construct a filtration
0 = Tm→ Tm−1→ · · · → T1→ T0 = T such that its factors are isomorphic to Ai. We do it
inductively. First of all, we put T0 = T . Now assume that Ti is constructed in such a way that
Φ(Ti)∼= T ′i . Then we compose this isomorphism with the map T ′i → α′i(T

′)∼= Φ(Ai). Since Φ is
fully faithful, the resulting map comes from a map Ti→Ai in T . We take Ti+1 to be the cone
of this morphism shifted by −1. Applying to the triangle Ti+1→ Ti→Ai the functor Φ, we
conclude that Φ(Ti+1)∼= T ′i+1. Applying this procedure m times, we construct Tm. Note that
Φ(Tm)∼= T ′m = 0. Since Φ is fully faithful, it follows that Tm = 0, so the desired filtration of T is
constructed. 2

Lemma 3.5. Let Φ : T → T ′ be a fully faithful embedding, and assume that T ′ = 〈A′1, . . . ,A′m〉
and T = 〈A1, . . . ,Am〉 are semiorthogonal decompositions compatible with Φ. Let Ψ′ : T ′→T ′
be an endofunctor, such that T and all A′i are stable under Ψ′. Then every Ai is also stable

under Ψ′.

Proof. Since T is stable under Ψ′ and Φ is fully faithful, the restriction of Ψ′ to T defines an
endofunctor Ψ : T → T , such that Φ ◦Ψ = Ψ′ ◦ Φ. Since Ai = Φ−1(A′i), we have to check that
Φ(Ψ(Ai))⊂A′i. But, Φ(Ψ(Ai)) = Ψ′(Φ(Ai))⊂Ψ′(A′i)⊂A′i, since A′i is Ψ′-stable. 2

4. Extensions of a semiorthogonal decomposition

Let X be an algebraic variety and assume that we are given a semiorthogonal decomposition
of Db(X). In this section, we construct a compatible system of semiorthogonal decompositions of
the categories Dperf(X)⊂D−(X)⊂Dqc(X).

4.1 Perfect complexes

First of all, we note that any strong semiorthogonal decomposition (see Definition 2.6) of Db(X)
induces a semiorthogonal decomposition of the category of perfect complexes.

Proposition 4.1. Let Db(X) = 〈A1, . . . ,Am〉 be a strong semiorthogonal decomposition. Then

there is a unique semiorthogonal decomposition of the category Dperf(X) compatible with the

natural embedding Dperf(X)→Db(X).

Proof. The existence of a semiorthogonal decomposition of Dperf(X) compatible with that of
Db(X) follows from [Orl06, 1.10 and 1.11]. Moreover, it follows from Lemma 3.3 that the
components of this decomposition are given by

Aperf
i =Ai ∩ Dperf(X) (2)

and that the decomposition is unique. 2

862



Base change for semiorthogonal decompositions

4.2 Unbounded quasicoherent complexes

Now we are going to show that any (not necessarily strong) semiorthogonal decomposition
of Dperf(X) induces a semiorthogonal decomposition of the unbounded derived category of
quasicoherent sheaves Dqc(X).

Proposition 4.2. Let Dperf(X) = 〈Aperf
1 , . . . ,Aperf

m 〉 be a semiorthogonal decomposition. Then
there is a unique semiorthogonal decomposition Dqc(X) = 〈Â1, . . . , Âm〉 compatible with the
natural embedding Dperf(X)→Dqc(X) and with closed under arbitrary direct sums components.
The projection functors α̂i of this decomposition commute with direct sums and homotopy
colimits.

Moreover, if the initial decomposition of the category Dperf(X) is induced by a semiorthogonal
decomposition Db(X) = 〈A1, . . . ,Am〉 of Db(X), the projection functors of which have finite
right cohomological amplitude, then the obtained decomposition of Dqc(X) is compatible with
the natural embedding Db(X)→Dqc(X) as well.

Proof. Define the subcategory Âi ⊂Dqc(X) to be the subcategory of Dqc(X) obtained by iterated
addition of cones to the closure of Aperf

i in Dqc(X) under all direct sums. Let us check that the
categories Âi form a semiorthogonal decomposition of Dqc(X). First of all, if j > i, Alj ∈ A

perf
j ,

Aki ∈ A
perf
i , then

Hom

(⊕
l

Alj ,
⊕
k

Aki

)
∼=
∏
l

Hom

(
Alj ,

⊕
k

Aki

)
∼=
∏
l

⊕
k

Hom(Alj , A
k
i ) = 0

(in the second isomorphism, we used the fact that the Alj are perfect complexes, and hence
compact objects of Dqc(X)). Addition of cones does not spoil semiorthogonality (see Lemma 2.1);
hence, the collection of subcategories Â1, . . . , Âm is semiorthogonal. Note also that a direct sum
of cones is a cone of direct sums by [KS06, 10.1.19], so Âi is a closed under all direct sums
triangulated subcategory of Dqc(X).

Now consider the triangulated subcategory 〈Â1, . . . , Âm〉 generated in Dqc(X) by the
subcategories Â1, . . . , Âm. It is clear that it is a triangulated subcategory of Dqc(X) closed under
all direct sums. Moreover, it contains 〈Aperf

1 , . . . ,Aperf
m 〉=Dperf(X). Hence, it coincides with

Dqc(X), by Lemma 2.19. This means that 〈Â1, . . . , Âm〉=Dqc(X). The uniqueness of such a
semiorthogonal decomposition is evident, by Lemma 3.2.

The compatibility with the embedding Dperf(X)→Dqc(X) and closedness under arbitrary
direct sums are evident. Commutativity of α̂i with arbitrary direct sums follows immediately
and for homotopy colimits we apply Lemma 2.11.

Further, to check that the constructed semiorthogonal decomposition of Dqc(X) is compatible
with the semiorthogonal decomposition of Db(X), we have to check that for any A ∈ Ai ⊂Db(X)
we have α̂i(A)∼=A. Let αi be the projection functors of the semiorthogonal decomposition of
Db(X). Choose a locally free resolution P •→A, and consider the stupid truncation of the
complex P • at degree −n, so that we have a distinguished triangle

σ>−nP •→A→ σ6−n−1P •.

Note that the direct system σ>−nP • approximates A in the sense of paragraph 2.8; hence, by
Lemma 2.16, we have an isomorphism hocolim (σ>−nP •)∼=A. Therefore,

α̂i(A)∼= α̂i(hocolim(σ>−nP •))∼= hocolim α̂i(σ>−nP •)∼= hocolim αi(σ>−nP •)
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(the last isomorphism is due to the fact that σ>−nP • is a perfect complex, and hence contained
in Db(X)). So, it suffices to check that hocolim αi(σ>−nP •)∼=A. Indeed, applying αi to the above
triangle, we obtain

αi(σ>−nP •)→A→ αi(σ6−n−1P •),

since αi(A) =A. Let (ai, bi) be the cohomological amplitude of the functor αi. Since the
truncation σ6−n−1P • ∈ D6−n−1(X) is bounded, we have αi(σ6−n−1P •) ∈ D6−n−1+bi(X); hence,
αi(σ>−nP •) approximates A and so hocolim αi(σ>−nP •)∼=A. 2

4.3 Bounded above coherent complexes
The next step is the following.

Proposition 4.3. Let Dperf(X) = 〈Aperf
1 , . . . ,Aperf

m 〉 be a semiorthogonal decomposition. Then
there is a unique semiorthogonal decomposition of D−(X) compatible with this decomposition
of Dperf(X) and with the decomposition of Dqc(X) constructed in Proposition 4.2 with respect
to the natural embeddings Dperf(X)→D−(X)→Dqc(X). Its components are closed under
homotopy colimits of stabilizing in finite degrees direct systems.

Proof. We have to check that D−(X) is stable under the projection functors α̂i. Then, by
Lemma 3.4, it would follow that the subcategories

A−i = Âi ∩ D−(X) (3)

give a semiorthogonal decomposition, which is evidently compatible with those of Dperf(X) and
Dqc(X). So, we take any F ∈ D−(X). By Lemma 2.18, there exists a stabilizing in finite degrees
direct system of perfect complexes Fk such that F ∼= hocolim Fk. It follows that

α̂i(F )∼= α̂i(hocolim Fk)∼= hocolim αi(Fk)

(the second isomorphism follows from Proposition 4.2). But, by Lemma 2.9, the projection
functors αi :Dperf(X)→Dperf(X) have finite cohomological amplitude; hence, the direct system
αi(Fk) also stabilizes in finite degrees and so it follows from Lemma 2.17 that hocolim αi(Fk) ∈
D−(X).

The last claim is clear, since both Âi and D−(X) are closed under homotopy colimits of
stabilizing in finite degrees direct systems. 2

4.4 S-linearity
Assume that X is a scheme over S, that is, we are given a map f :X → S. Recall that any strong
semiorthogonal decomposition of Db(X) by Proposition 4.1 induces a compatible semiorthogonal
decomposition of Dperf(X), which in its turn by Propositions 4.2 and 4.3 induces compatible
semiorthogonal decompositions of Dqc(X) and D−(X).

Lemma 4.4. If the initial semiorthogonal decomposition of the category Db(X) is S-linear,
then the induced semiorthogonal decomposition of Dperf(X) is S-linear. Similarly, if the
semiorthogonal decomposition of the category Dperf(X) is S-linear, then the induced semi-
orthogonal decompositions of Dqc(X) and D−(X) are S-linear as well.

Proof. Take any G ∈ Dperf(S). Then ΨG(H) :=H ⊗ f∗G is an endofunctor of Dqc(X) which
preserves D−(X), Db(X) and Dperf(X) as well as the initial semiorthogonal decomposition.
It follows from Lemma 3.5 that the semiorthogonal decomposition (2) of Dperf(X) is stable
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under ΨG. Now let us check that each component Âi of the semiorthogonal decomposition
of Dqc(X) is stable under ΨG. Indeed, by definition, Âi is the smallest triangulated subcategory of
Dqc(X) containing Aperf

i and closed under arbitrary direct sums. But, the functor ΨG commutes
with direct sums (see [BV03, 3.3.4]) and is exact, which implies the claim. Again applying
Lemma 3.5, we conclude that the semiorthogonal decomposition (3) of D−(X) is also stable
under ΨG. Since this is true for all G ∈ Dperf(S), we see that all these decompositions are
S-linear. 2

Actually, for the components of semiorthogonal decompositions of Dqc(X) and D−(X), we
have a stronger result.

Lemma 4.5. If D−(X) = 〈A−i , . . . ,A−m〉 is an S-linear semiorthogonal decomposition with
components closed under homotopy colimits of stabilizing in finite degrees direct systems,
then A−i ⊗ f∗D−(S)⊂A−i . Similarly, if Dqc(X) = 〈Âi, . . . , Âm〉 is an S-linear semiorthogonal

decomposition with components closed under arbitrary direct sums, then Âi ⊗ f∗Dqc(S)⊂ Âi.

Proof. Take any G in D−(S). Applying Lemma 2.18, choose a stabilizing in finite degrees direct
system of perfect complexes Gk approximating G so that G∼= hocolimGk. Then, for any F ∈ A−i ,
we have F ⊗ f∗G∼= F ⊗ f∗(hocolimGk)∼= hocolim(F ⊗ f∗Gk). Since the functors ⊗ and f∗ are
right exact, it follows that the direct system F ⊗ f∗Gk stabilizes in finite degrees. Hence, its
homotopy colimit belongs to A−i , since A−i is S-linear and closed under homotopy colimits of
stabilizing in finite degrees direct systems.

For the second claim, recall that, by Lemma 2.19, the category Dqc(S) can be obtained by
iterated addition of cones to the closure of Dperf(S) under arbitrary direct sums. Further, we
know by S-linearity of Âi that Âi ⊗ f∗G⊂ Âi for any perfect G. Since f∗ and ⊗ commute with
direct sums, it follows that the same is true for G being an arbitrary direct sum of perfect
complexes. Finally, since f∗ and ⊗ are exact and Âi is triangulated, the same embedding holds
for arbitrary G. 2

5. Change of a base

Let f :X → S be an algebraic map. Consider a base change φ : T → S and denote by XT =
X ×S T the fiber product. Denote the projections XT → T and XT →X by f and φ, respectively,
so that we have a cartesian diagram.

XT
φ //

f

��

X

f

��
T

φ // S

(4)

Throughout this section, we assume that the base change φ is faithful for f :X → S (see
paragraph 2.4 for the definition).

5.1 Base change for perfect complexes
Let Dperf(X) = 〈Aperf

1 , . . . ,Aperf
m 〉 be an S-linear semiorthogonal decomposition. Let ApiT denote

the minimal triangulated subcategory of Dperf(XT ) closed under taking direct summands and
containing all objects of the form φ∗F ⊗ f∗G with F ∈ Aperf

i , G ∈ Dperf(T ):

ApiT = 〈φ∗Aperf
i ⊗ f∗Dperf(T )〉. (5)
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Note that the subcategory ApiT ⊂Dperf(XT ) is T -linear, since the class φ∗Aperf
i ⊗ f∗Dperf(T )

generating it is T -linear, and the process of adding cones and direct summands preserves
T -linearity.

Proposition 5.1. We have Dperf(XT ) = 〈Ap1T , . . . ,A
p
mT 〉, a T -linear semiorthogonal decompo-

sition compatible with the functor φ∗ :Dperf(X)→Dperf(XT ).

Proof. Because of Lemmas 2.7 and 2.1, to verify semiorthogonality, it suffices to check that
f∗RHom(φ∗Fi ⊗ f∗G, φ∗Fj ⊗ f∗G′) = 0 for any Fi ∈ Aperf

i , Fj ∈ Aperf
j and any G, G′ ∈ Dperf(T )

if i > j. But,

f∗RHom(φ∗Fi ⊗ f∗G, φ∗Fj ⊗ f∗G′) ∼= f∗φ
∗RHom(Fi, Fj)⊗G∗ ⊗G′

∼= φ∗f∗RHom(Fi, Fj)⊗G∗ ⊗G′ = 0

(for the first isomorphism, we use perfectness of Fi, Fj , G and G′, for the second, we use
faithfulness of the base change φ and, for the third, we use S-linearity of the initial semiorthogonal
decomposition of Dperf(X) and Lemma 2.7 for it).

It remains to check that the subcategories ApiT generate Dperf(XT ). Indeed, take any object
H ∈ Dperf(XT ). Then, by Lemma 5.2 below, it can be obtained by consecutively taking cones
and direct summands starting from the collection of objects φ∗F t ⊗ f∗Gt, where F t ∈ Dperf(X),
Gt ∈ Dperf(T ) and t= 1, . . . , N . On the other hand, every object F t can be decomposed with
respect to the semiorthogonal decomposition Dperf(X) = 〈Aperf

1 , . . . ,Aperf
m 〉; in other words, it can

be obtained by consecutively taking cones from a collection of objects Ati ∈ A
perf
i , i= 1, . . . , m.

It follows that H can be obtained by consecutively taking cones and direct summands starting
from the collection of objects φ∗Ati ⊗ f∗Gt, and it remains to note that φ∗Ati ⊗ f∗Gt ∈ A

p
iT by

definition.

The second claim follows immediately from (5). 2

Lemma 5.2. The category Dperf(XT ) coincides with the minimal triangulated subcategory of
the category Dqc(X) closed under taking direct summands and containing the class of objects
φ∗Dperf(X)⊗ f∗Dperf(T ) := {φ∗F ⊗ f∗G | F ∈ Dperf(X), G ∈ Dperf(T )}.

Proof. Take any object H ∈ Dperf(X) and construct a locally free resolution P •→H in which
all sheaves P k have the form P k ∼= φ∗F ⊗ f∗G, where F and G are locally free sheaves on X
and T , respectively (this can be done, since φ is quasiprojective). Then its stupid truncation
σ>n(P •) ∈ 〈φ∗Dperf(X)⊗ f∗Dperf(T )〉 for all n, and for n� 0 the object H is a direct summand
of σ>n(P •). Indeed, since H is a perfect complex, it is quasi-isomorphic to a bounded complex of
locally free sheaves of finite rank. Assume that this complex is bounded from the left by degree
l ∈ Z. Take n6 l − dimX and consider the triangle

σ>nP •→ P •→ σ6n−1P •.

Note that, since P • is quasi-isomorphic to H and H is quasi-isomorphic to a complex
of locally free sheaves supported in degrees >l, it follows that the complex computing
Ext i(P •, σ6n−1P •) is supported in degrees 6n− 1− l. The hypercohomology spectral sequence
then shows that Exti(P •, σ6n−1P •) = 0 for i > n− 1− l + dimX. But, n− 1− l + dimX 6−1
for n6 l − dimX; hence, Hom(P •, σ6n−1P •) = 0. In particular, the above triangle splits; hence,
P • is a direct summand of σ>nP • and we are done, since P • is quasi-isomorphic to H. 2
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5.2 Base change for unbounded quasicoherent complexes
We start with an S-linear semiorthogonal decomposition Dperf(X) = 〈Aperf

1 , . . . ,Aperf
m 〉. Let

Dperf(XT ) = 〈Ap1T , . . . ,A
p
mT 〉 be the T -linear semiorthogonal decomposition constructed in

Proposition 5.1. Then, applying Proposition 4.2, we construct semiorthogonal decompo-
sitions Dqc(X) = 〈Â1, . . . , Âm〉 and Dqc(XT ) = 〈Â1T , . . . , ÂmT 〉. By Lemma 4.4, these
decompositions are S- and T -linear.

Proposition 5.3. The functors φ∗ :Dqc(XT )→Dqc(X) and φ∗ :Dqc(X)→Dqc(XT ) are
compatible with the above semiorthogonal decompositions. Moreover,

ÂiT = {H ∈ Dqc(XT ) | φ∗(H ⊗ f∗G) ∈ Âi for all G ∈ Dperf(T )}. (6)

Proof. Recall that both Âi and ÂiT are obtained from Aperf
i and ApiT by addition of arbitrary

direct sums and iterated addition of cones and both are closed under arbitrary direct sums
triangulated categories. Since both φ∗ and φ∗ commute with arbitrary direct sums and are exact,
it suffices to check that φ∗(Aperf

i )⊂ ÂiT and that φ∗(ApiT )⊂ Âi. The first is evident by definition
of ÂiT . For the second, take any F ∈ Aperf

i , G ∈ Dperf(T ). Then φ∗(φ∗F ⊗ f∗G)∼= F ⊗ φ∗f∗G∼=
F ⊗ f∗φ∗G. But, F ⊗ f∗φ∗G ∈ Âi, by Lemma 4.5.

To prove (6), we note that the left-hand side is contained in the right-hand side by the
T -linearity of ÂiT and compatibility with φ∗. Conversely, assume that H is in the right-hand
side but not in ÂiT , so that we have α̂jT (H) 6= 0 for some j 6= i. Since the semiorthogonal
decomposition 〈Â1T , . . . , ÂmT 〉 is T -linear, the functors α̂jT are T -linear, by Lemma 2.8; hence,
α̂jT (H ⊗ f∗Lk)∼= α̂jT (H)⊗ f∗Lk for any line bundle L on T and any k ∈ Z. By Lemma 5.4
below, we have hocolim φ∗(α̂jT (H)⊗ f∗Lki) 6= 0 for some sequence Lk1 → Lk2 → Lk3 → · · · if L
is ample over S. It remains to note that

α̂j(hocolim φ∗(H ⊗ f∗Lki))∼= hocolim α̂j(φ∗(H ⊗ f∗Lki))∼= hocolim φ∗(α̂jT (H ⊗ f∗Lki)) 6= 0

(the first isomorphism is by Proposition 4.2 and the second is by Lemma 3.1). This means that
hocolim φ∗(H ⊗ f∗Lki) 6∈ Âi; hence, φ∗(H ⊗ f∗Lk) 6∈ Âi for some k ∈ Z, since Âi is closed under
homotopy colimits. So, H is not in the right-hand side of (6), a contradiction. 2

Lemma 5.4. Let φ : Y →X be a quasiprojective morphism and let L be a line bundle on Y

ample over X. Take any F ∈ Dqc(Y ). Then F ∈ D[p,q]
qc (Y ) if and only if for any sequence

of maps Lk1 → Lk2 → Lk3 → · · · with ki→∞ we have hocolim φ∗(F ⊗ Lki) ∈ D[p,q]
qc (X). In

particular, F = 0 if and only if for any sequence Lk1 → Lk2 → Lk3 → · · · with ki→∞ we have
hocolim φ∗(F ⊗ Lki) = 0.

Proof. As φ is quasiprojective, we can represent φ as π1 ◦ j1, where j1 : Y → Y is an open
embedding and π1 : Y →X is a projective morphism. Furthermore, any open embedding j1 :
Y → Y can be represented as a composition of an affine open embedding j : Y → Ỹ and of a
projective morphism π2 : Ỹ → Y (we take for Ỹ the blowup of the ideal of the closed subset Y \Y
in Y ). Put π = π1 ◦ π2. Thus, φ= π ◦ j, where j is an affine open embedding and π is projective.
Since j is an affine open embedding, the functors j∗ and j∗ are exact and j∗j∗ ∼= id; hence, we
have F ∈ D[p,q]

qc (Y ) if and only if j∗F ∈ D[p,q]
qc (Ỹ ). Thus, the claim of the lemma reduces to the

case when φ is projective.
So, assume that φ is projective. For any non-zero coherent sheaf H on X, we know that

Ht(φ∗(H ⊗ Lk)) is zero for t 6= 0 and k� 0. Therefore, for any quasicoherent sheaf H on X, we

867



A. Kuznetsov

have lim−→H
t(φ∗(H ⊗ Lki)) = 0 for t 6= 0 if ki→∞. So, the hypercohomology spectral sequence

and Lemma 2.14 imply that

Ht(hocolim φ∗(F ⊗ Lki))∼= lim−→H
0(φ∗(Ht(F )⊗ Lki)).

It follows immediately that F ∈ D[p,q]
qc (Y ) implies that hocolim φ∗(F ⊗ Lki) ∈ D[p,q]

qc (X). As for the
other implication, it suffices to check that for any quasicoherent sheaf H 6= 0 on Y there exists
a sequence of maps Lk1 → Lk2 → Lk3 → · · · with ki→∞ such that lim−→H

0(φ∗(H ⊗ Lki)) 6= 0.
Since tensoring with a line bundle and the colimit are exact functors on the abelian category
Qcoh(X), while H0φ∗ is left exact, it follows that it suffices to prove the above for any non-
zero subsheaf of H. Thus, we can assume that H is coherent. Then, using ampleness of L,
we can find m and a section s of Lm such that the map H →H ⊗ Lm given by s is an
embedding. Now consider the sequence Lm→ L2m→ L3m→ · · · with all maps given by s. Then
all the maps in the sequence H0(φ∗(H ⊗ Lm))→H0(φ∗(H ⊗ L2m))→H0(φ∗(H ⊗ L3m))→ · · ·
are embeddings. Moreover, H0(φ∗(H ⊗ Lim)) 6= 0 for i� 0. Hence, the limit is non-zero and
we are done. 2

5.3 Base change for bounded above coherent complexes
As above, we start with an S-linear semiorthogonal decomposition Dperf(X) = 〈Aperf

1 , . . . ,Aperf
m 〉.

Let Dperf(XT ) = 〈Ap1T , . . . ,A
p
mT 〉 be the T -linear semiorthogonal decomposition constructed

in Proposition 5.1. Let Dqc(X) = 〈Â1, . . . , Âm〉 and Dqc(XT ) = 〈Â1T , . . . , ÂmT 〉 be the
S- and T -linear semiorthogonal decompositions constructed in Proposition 4.2 from the above
decompositions of Dperf(X) and Dperf(XT ), respectively. Finally, let D−(X) = 〈A−1 , . . . ,A−m〉 and
D−(XT ) = 〈A−1T , . . . ,A

−
mT 〉 be the S- and T -linear semiorthogonal decompositions constructed

in Proposition 4.3.

Lemma 5.5. The functors φ∗ :D−(XT )→Dqc(X) and φ∗ :D−(X)→D−(XT ) are compatible
with the above semiorthogonal decompositions.

Proof. This follows immediately from Proposition 5.3, since, by definition, A−i = Âi ∩ D−(X)
and A−iT = ÂiT ∩ D−(XT ). 2

5.4 Base change for bounded coherent complexes
This time we start with an S-linear strong semiorthogonal decomposition Db(X) = 〈A1, . . . ,

Am〉. Let Dperf(X) = 〈Aperf
1 , . . . ,Aperf

m 〉 be the induced S-linear semiorthogonal decomposition of
the category Dperf(X). Further, consider the category Dperf(XT ) and its T -linear semiorthogonal
decomposition Dperf(XT ) = 〈Ap1T , . . . ,A

p
mT 〉 of Proposition 5.1, and let Dqc(X) = 〈Â1, . . . , Âm〉

and Dqc(XT ) = 〈Â1T , . . . , ÂmT 〉 be the S- and T -linear semiorthogonal decompositions
constructed in Proposition 4.2 from the above decompositions of Dperf(X) and Dperf(XT ),
respectively. Further, let D−(X) = 〈A−1 , . . . ,A−m〉 and D−(XT ) = 〈A−1T , . . . ,A

−
mT 〉 be the S- and

T -linear semiorthogonal decompositions constructed in Proposition 4.3. Finally, we define

AiT =A−iT ∩ D
b(XT ). (7)

Theorem 5.6. Let Db(X) = 〈A1, . . . ,Am〉 be an S-linear strong semiorthogonal decomposition
the projection functors of which have finite cohomological amplitude and assume that the
base change φ is faithful for f . Then the subcategories AiT ⊂Db(XT ) defined in (7) form a
T -linear semiorthogonal decomposition Db(XT ) = 〈A1T , . . . ,AmT 〉. The projection functors of
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this semiorthogonal decomposition have the same cohomological amplitude as the projection
functors of the initial semiorthogonal decomposition. Moreover, the functors φ∗ :Db(XT )→
Dqc(X) and φ∗ :Db(X)→D−(XT ) are compatible with the semiorthogonal decompositions
of Dqc(X) and D−(XT ), respectively.

Proof. Take any H ∈ D[p,q](XT ). We have to check that α−iT (H) is bounded. Let (ai, bi) be the
cohomological amplitude of αi. Let us show that α−iT (H) ∈ D[p+ai,q+bi]

qc (XT ). This will prove
both that the categories AiT form a semiorthogonal decomposition of Db(XT ) and that the
cohomological amplitude of the projection functors is the same as that of αi. Using Lemma 5.4,
we see that it suffices to check that for k� 0 we have φ∗(α−iT (H)⊗ Lk) ∈ D[p+ai,q+bi]

qc (X), where
L is a line bundle on XT ample over X. We can take L= f∗M , where M is a line bundle on
T ample over S. Note that φ∗(α−iT (H)⊗ f∗Mk)∼= φ∗(α−iT (H ⊗ f∗Mk))∼= α̂i(φ∗(H ⊗ f∗Mk)), by
Lemma 5.5. Further, note that, by Lemma 2.20, for k� 0 we have φ∗(H ⊗ f∗Mk)∼= hocolimGm
for a certain direct system Gm with Gm ∈ D[p,q](X). Therefore,

α̂i(φ∗(H ⊗ f∗Mk)) = α̂i(hocolimGm)∼= hocolim αi(Gm),

since the functor α̂i commutes with homotopy colimits and the Gm are bounded. Finally, we
have αi(Gm) ∈ D[p+ai,q+bi](X); hence, hocolim αi(Gm) ∈ D[p+ai,q+bi]

qc (X), by Lemma 2.14, which
means that α̂i(φ∗(H ⊗ f∗Mk)) ∈ D[p+ai,q+bi]

qc (X), as was required.

Finally, it remains to check that the subcategories (7) are T -linear, and also that φ∗(AiT )⊂ Âi
and φ∗(Ai) ∈ A−iT . The first is clear since A−iT is T -linear and the other two claims follow from
Lemma 5.5. 2

The semiorthogonal decomposition of Db(XT ) constructed in Theorem 5.6 will be referred
to as the induced decomposition of Db(XT ) with respect to the base change φ. Note that the
definition of its component AiT depends only on Ai (i.e. does not depend on the choice of a
semiorthogonal decomposition containing Ai as a component). Indeed, spelling out (6), (3) and
(7), we obtain the following.

Corollary 5.7. If A⊂Db(X) is an S-linear admissible subcategory such that the

corresponding projection functor has finite cohomological amplitude and φ : T → S is a

quasiprojective base change faithful for f :X → S, then the category

AT = {F ∈ Db(XT ) | φ∗(F ⊗ f∗G) ∈ Â for all G ∈ Dperf(T )} (8)

(where Â is the minimal closed under arbitrary direct sums triangulated subcategory of Dqc(X)
containing A) is a T -linear admissible subcategory in Db(XT ) such that the corresponding

projection functor has finite cohomological amplitude. Moreover, we have φ∗(A)⊂AT if φ has

finite Tor-dimension and φ∗(AT )⊂A if φ is projective.

5.5 Exterior product of semiorthogonal decompositions

Now assume that we are given two algebraic varieties over the same base, say f :X → S
and g : Y → S, and S-linear strong semiorthogonal decompositions of their derived categories
Db(X) = 〈A1, . . . ,Am〉 and Db(Y ) = 〈B1, . . . , Bn〉. Assume that their projection functors have
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finite cohomological amplitude. Assume also that the cartesian square

X ×S Y
p //

q

��

X

f

��
Y

g // S

(9)

is exact, so that g is a faithful base change for f and f is a faithful base change for g. Applying
Theorem 5.6, we obtain a pair of semiorthogonal decompositions of Db(X ×S Y ):

Db(X ×S Y ) = 〈A1Y , . . . ,AmY 〉 and Db(X ×S Y ) = 〈B1X , . . . , BnX〉.

Let

Ai �S Bj :=AiY ∩ BjX ⊂Db(X ×S Y ). (10)

We call the category Ai �S Bj the exterior product (over S) of Ai and Bj .
Consider any complete order on the set {(i, j)}16i6m,16j6n extending the natural partial

order.

Theorem 5.8. The exterior product subcategories Ai �S Bj ⊂Db(X ×S Y ) form a semiortho-
gonal decomposition of the category Db(X ×S Y ):

Db(X ×S Y ) = 〈Ai �S Bj〉16i6m,16j6n.

Moreover, we have the following semiorthogonal decompositions:

AiY = 〈Ai �S B1, . . . ,Ai �S Bn〉 and BjX = 〈A1 �S Bj , . . . ,Am �S Bj〉.

Proof. Let Cpij = 〈p∗Aperf
i ⊗ q∗Bperf

j 〉 ⊂ Dperf(X ×S Y ) be the minimal triangulated subcategory of
Dperf(X ×S Y ) closed under taking direct summands and containing objects of the form p∗A⊗
q∗B with A ∈ Aperf

i , B ∈ Bperf
j . The arguments of Proposition 5.1 show that Dperf(X ×S Y ) =

〈Cpij〉16i6m,16j6n is a semiorthogonal decomposition. Moreover, it is clear from the construction
that we have semiorthogonal decompositions

ApiY = 〈Cpi1, . . . , C
p
in〉 and BpjX = 〈Cp1j , . . . , C

p
mj〉.

Extending these decompositions to Dqc(X ×S Y ) as in Proposition 4.2, we obtain semiorthogonal
decompositions Dqc(X ×S Y ) = 〈Ĉij〉16i6m,16j6n as well as

ÂiY = 〈Ĉi1, . . . , Ĉin〉 and B̂jX = 〈Ĉ1j , . . . , Ĉmj〉,

where Ĉij is obtained from Cij by addition of arbitrary direct sums and iterated addition
of cones. Finally, intersecting with Db(X ×S Y ), we obtain semiorthogonal decompositions
Db(X ×S Y ) = 〈Cij〉16i6m,16j6n as well as

AiY = 〈Ci1, . . . , Cin〉 and BjX = 〈C1j , . . . , Cmj〉,

where Cij = Ĉij ∩ Db(X × Y ). So, it remains to check that Cij =AiY ∩ BjX . Since Cij ⊂AiY ∩ BjX
by construction, it suffices to check only the other inclusion. Indeed, we have

BjX = ⊥〈B1X , . . . , Bj−1,X〉 ∩ 〈Bj+1,X , . . . , BnX〉⊥ = ⊥〈Cit〉16i6m,16t6j−1 ∩ 〈Cit〉⊥16i6m,j+16t6n;

hence,

AiY ∩ BjX ⊂AiY ∩ ⊥〈Cit〉16t6j−1 ∩ 〈Cit〉⊥j+16t6n = Cij ,
which is precisely what we need. 2
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5.6 Products
If S is a point, then any semiorthogonal decomposition of Db(X) is S-linear. Moreover, any base
change T → S is flat, hence faithful for f :X → S, and X ×S T =X × T is the product. Thus,
given a semiorthogonal decomposition of Db(X), we can construct a compatible semiorthogonal
decomposition of the bounded derived category of the product of X with any quasiprojective
variety. Explicitly, applying Theorem 5.6, we obtain the following.

Corollary 5.9. Let Db(X) = 〈A1, . . . ,Am〉 be a strong semiorthogonal decomposition the
projection functors of which have finite cohomological amplitude. Let Y be a quasiprojective
variety. Then the subcategories

AiY = {F ∈ Db(X × Y ) | p∗(F ⊗ q∗G) ∈ Âi for any G ∈ Dperf(Y )},

where p :X × Y →X and q :X × Y → Y are the projections, and Âi is obtained from Ai by
addition of arbitrary direct sums and iterated addition of cones, form a Y -linear semiorthogonal
decomposition Db(X × Y ) = 〈A1Y , . . . ,AmY 〉. The projection functors of this semiortho-
gonal decomposition also have finite cohomological amplitude. The functors p∗ :Db(X × Y )→
Dqc(X) and p∗ :Db(X)→Db(X × Y ) are compatible with the semiorthogonal decompositions
of Dqc(X) and Db(X), respectively.

Similarly, Theorem 5.8 gives the following.

Corollary 5.10. Let Db(X) = 〈A1, . . . ,Am〉 and Db(Y ) = 〈B1, . . . , Bn〉 be strong semiortho-
gonal decompositions with projection functors of finite cohomological amplitude. Then there is
a semiorthogonal decomposition

Db(X × Y ) = 〈Ai � Bj〉16i6m,16j6n,

where Ai � Bj =AiY ∩ BjX . Moreover, we have semiorthogonal decompositions

AiY = 〈Ai � B1, . . . ,Ai � Bn〉 and BjX = 〈A1 � Bj , . . . ,Am � Bj〉.

6. Correctness

The goal of this section is to show that the extensions Aperf , Â, A− of a triangulated category A
and its base change AT under a base change T → S (if A is S-linear) do not depend on a choice
of an embedding A→Db(X). The most important technical notion for this section is that of a
splitting functor.

6.1 Splitting functors
An exact functor Φ : T → T ′ is called right splitting if Ker Φ is a right admissible subcategory
in T , the restriction of Φ to (Ker Φ)⊥ is fully faithful and Im Φ is right admissible in T ′ (note
that Im Φ = Im(Φ|(Ker Φ)⊥) is a triangulated subcategory of T ′). For more information on splitting
functors, see [Kuz07]. Here we will need only the following.

Lemma 6.1 [Kuz07]. Let Φ : T → T ′ be an exact functor. Then the following conditions are
equivalent:

(1) Φ is right splitting;

(2) Φ has a right adjoint functor Φ! and the composition of the canonical morphism of functors
idT → Φ!Φ with Φ gives an isomorphism Φ∼= ΦΦ!Φ;
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(3) Φ has a right adjoint functor Φ!, there are semiorthogonal decompositions

T = 〈Im Φ!, Ker Φ〉, T ′ = 〈Ker Φ!, Im Φ〉

and the functors Φ and Φ! give quasi-inverse equivalences Im Φ! ∼= Im Φ;

(4) there exist a full triangulated left admissible subcategory α :A⊂ T , a full triangulated
right admissible subcategory B ⊂ T ′ and an equivalence ξ :A→B such that Φ = β ◦ ξ ◦ α∗,
Φ! = α ◦ ξ−1 ◦ β!.

There is an analogous notion of left splitting functors, which enjoy a similar set of properties.
However, we will not need this notion.

6.2 Extensions
Let X be a quasiprojective variety. Let α :A→Db(X) and β : B →Db(Y ) be admissible
subcategories, and ξ :A→B an equivalence. Consider the corresponding right splitting functor
Φ :Db(X)→Db(Y ),

Φ = β ◦ ξ ◦ α∗.
We assume also that Φ is geometric, meaning that it is isomorphic to a kernel functor

ΦE :Dqc(X)→Dqc(Y ), ΦE(F ) = q∗(p∗F ⊗ E)

with a kernel E ∈ D−(X × Y ). Here p :X × Y →X and q :X × Y → Y are the projections. Note
that the right adjoint functor Φ!

E of ΦE is given by the formula

Φ!
E :Dqc(Y )→Dqc(X), Φ!

E(G) = p∗RHom(E , q!F ).

It follows in particular that ΦE commutes with direct sums. Indeed,

Hom
(

ΦE
(⊕

Fi

)
, G
)
∼= Hom

(⊕
Fi, Φ!

E(G)
)
∼=
∏

Hom(Fi, Φ!
E(G))

∼=
∏

Hom(ΦE(Fi), G)∼= Hom
(⊕

ΦE(Fi), G
)

implies that ΦE(
⊕

Fi)∼=
⊕

ΦE(Fi).
Recall that if E ∈ Db(X × Y ) has finite Tor-amplitude over X, finite Ext-amplitude over Y

and supp E is projective over both X and Y , then ΦE takes Db(X) to Db(Y ) and Φ!
E takes Db(Y )

to Db(X) by [Kuz06].

Theorem 6.2. Assume that an object E ∈ Db(X × Y ) has finite Tor-amplitude over X, finite
Ext-amplitude over Y and supp E is projective over both X and Y . Assume also that the
restriction of the functor ΦE :Dqc(X)→Dqc(Y ) to Db(X) is a right splitting functor giving
an equivalence of subcategories A⊂Db(X) and B ⊂Db(Y ). Then the functor ΦE :Dqc(X)→
Dqc(Y ) and its restriction to D−(X) are right splitting functors giving equivalences Â ∼= B̂ and
A− ∼= B−.

Proof. As we already mentioned above, the functor ΦE commutes with direct sums. Let us
check that Φ!

E also commutes with direct sums. To do this, we choose a closed embedding
i :X →X ′ with X ′ being smooth and consider the functor i∗Φ!

E instead. Since i∗ is a conservative
functor commuting with direct sums, it suffices to check that i∗Φ!

E commutes with direct sums.
But, it is clear that i∗Φ!

E
∼= Φ!

(i×idY )∗E , so, from the whole beginning, we can assume that X is
smooth. Then the projection X × Y → Y is smooth; hence, q!(F )∼= q∗(F )⊗ ωX [dimX] evidently
commutes with direct sums. Further, E is a perfect complex, by [Kuz06, 10.46]; hence, the
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functor RHom(E ,−) commutes with direct sums. Finally, the functor p∗ commutes with direct
sums, by [BV03, 3.3.4]. Thus, Φ!

E commutes with direct sums.

Further, since the functors ΦE and Φ!
E commute with direct sums, they commute with

homotopy colimits, by Lemma 2.11. Now, if F ∈ D−(X), then, by Lemma 2.18, there exists
a stabilizing in finite degrees direct system of perfect complexes Fk ∈ Db(X) such that F ∼=
hocolim Fk. Therefore, ΦE(F )∼= ΦE(hocolim Fk)∼= hocolim ΦE(Fk). But, the functor ΦE has finite
cohomological amplitude, by Lemma 2.10. Therefore, the direct system ΦE(Fk) ∈ Db(Y ) stabilizes
in finite degrees; hence, hocolim ΦE(Fk) ∈ D−(Y ), by Lemma 2.17. Thus, ΦE takes D−(X) to
D−(Y ). The same argument shows that Φ!

E takes D−(Y ) to D−(X).

To check that ΦE is right splitting on Dqc(X), we have to check that applying ΦE to the cano-
nical morphism of functors id→ Φ!

EΦE gives an isomorphism ΦE ∼= ΦEΦ!
EΦE . Consider the full

subcategory T ⊂ Dqc(X) consisting of all objects F ∈ Dqc(X) for which ΦE(F )∼= ΦEΦ!
EΦE(F )

in Dqc(Y ). We want to show that T =Dqc(X). Note that Db(X)⊂ T by the conditions; hence,
Dperf(X)⊂ T . Moreover, since ΦE and Φ!

E commute with direct sums, T is closed under arbitrary
direct sums. Finally, since ΦE and Φ!

E are exact, T is triangulated. So, by Lemma 2.19, we have
T =Dqc(X).

Now let us check that B̂ = ΦE(Dqc(X)). Indeed, the right-hand side is contained in the
left-hand side, by Lemma 2.19, since B̂ is closed under an arbitrary direct sums triangulated
subcategory containing ΦE(Dperf(X))⊂ ΦE(Db(X)) = B. For the other embedding, it suffices to
check that B̂ is contained in the full subcategory T ⊂ Dqc(Y ) consisting of all objects G such that
the canonical morphism ΦEΦ!

E(G)→G is an isomorphism. Indeed, T contains B by conditions
of the proposition. Moreover, it is closed under arbitrary direct sums, since both ΦE and Φ!

E
commute with direct sums, and is triangulated, since both ΦE and Φ!

E are exact. The same
argument shows that Â= Im Φ!

E , so it follows that ΦE induces an equivalence Â ∼= B̂.

Finally, since ΦE and Φ!
E preserve D− and A− = Â ∩ D−(X), B− = B̂ ∩ D−(Y ), it follows

that ΦE induces an equivalence A− ∼= B−. 2

Remark 6.3. One can also check that ΦE takes Dperf(X) to Dperf(Y ) (this follows easily from
the fact that Φ!

E commutes with direct sums). If it were also known that Φ!
E takes Dperf(Y ) to

Dperf(X), then it would follow that ΦE induces an equivalence Aperf ∼= Bperf .

6.3 Base change

Now assume that f :X → S and g : Y → S are quasiprojective morphisms, α :A→Db(X) and
β : B →Db(Y ) are admissible S-linear subcategories and ξ :A→B is an S-linear equivalence.
Assume also that φ : T → S is a base change faithful for both f and g. Again, consider the
corresponding right splitting functor Φ :Db(X)→Db(Y ), Φ = β ◦ ξ ◦ α∗. We assume also that Φ
is geometrically S-linear, meaning that it is isomorphic to a kernel functor

ΦE :Dqc(X)→Dqc(Y ), ΦE(F ) = q∗(p∗F ⊗ E)

with a kernel E ∈ D−(X ×S Y ) supported on the fiber product of X and Y over S. Here
p :X ×S Y →X and q :X ×S Y → Y are the projections. Note that the right adjoint functor
Φ!
E of ΦE is given by the formula

Φ!
E :Dqc(Y )→Dqc(X), Φ!

E(G) = p∗RHom(E , q!F ).
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Consider the following commutative diagram.

XT

φ

��

XT ×T YT
φ

��

qT //pToo YT

φ

��
X X ×S Y

q //poo Y

Define the kernel ET := φ∗E ∈ D−(XT ×T YT ).

Theorem 6.4. Assume that E ∈ Db(X ×S Y ) has finite Tor-amplitude over X, finite Ext-
amplitude over Y and supp E is projective over both X and Y . Assume also that the functor
ΦE :Db(X)→Db(Y ) is a right splitting functor giving an equivalence of S-linear subcategories
A⊂Db(X) and B ⊂Db(Y ). Then ΦET :Db(XT )→Db(YT ) is a right splitting functor inducing
an equivalence AT ∼= BT .

Proof. First of all, note that ET has finite Tor-amplitude over XT , finite Ext-amplitude over Y
and projective support over both XT and YT , by [Kuz06, 10.47]. Hence, as was mentioned in
the proof of Theorem 6.2, the functors ΦE , Φ!

E , ΦET and Φ!
ET commute with direct sums and

homotopy colimits.
Moreover, by [Kuz06, 2.4], the functors Φ!

E and Φ!
ET are right adjoint to ΦE and ΦET ,

respectively, and all these functors preserve boundedness and coherence. Finally, by [Kuz06,
2.42], there are canonical isomorphisms

ΦET φ
∗ = φ∗ΦE , ΦEφ∗ = φ∗ΦET ,

Φ!
ET φ

∗ = φ∗Φ!
E , Φ!

Eφ∗ = φ∗Φ!
ET .

(11)

Since ΦE is right splitting on Dqc(X) by Theorem 6.2, applying ΦE to the canonical morphism
of functors id→ Φ!

EΦE gives an isomorphism ΦE ∼= ΦEΦ!
EΦE . Now take any H ∈ Dqc(XT ). We

want to show that ΦET (H)∼= ΦET Φ!
ET ΦET (H) in Dqc(YT ). By Lemma 5.4, to do this it suffices

to check that φ∗(ΦET (H)⊗ g∗Lk)∼= φ∗(ΦET Φ!
ET ΦET (H)⊗ g∗Lk) in Dqc(Y ) for an ample over S

line bundle L on T and any k� 0. But,

φ∗(ΦET (H)⊗ g∗Lk) ∼= φ∗(ΦET (H ⊗ f∗Lk))∼= ΦE(φ∗(H ⊗ f∗Lk))
∼= ΦEΦ!

EΦE(φ∗(H ⊗ f∗Lk))∼= φ∗(ΦET Φ!
ET ΦET (H ⊗ f∗Lk))

∼= φ∗(ΦET Φ!
ET ΦET (H)⊗ g∗Lk).

The first and the fifth isomorphisms are given by T -linearity of the functors ΦET and Φ!
ET , the

second and the fourth are given by (11) and the third is because ΦE is right splitting. So, we
conclude that ΦET ∼= ΦET Φ!

ET ΦET ; hence, ΦET is a right splitting functor.

Now let us show that ΦET (Dqc(XT )) = B̂T . Indeed, let F ∈ Dqc(XT ). Let G be a perfect
complex on T . Then we have

φ∗(ΦET (F )⊗ g∗G)∼= φ∗(ΦET (F ⊗ f∗G))∼= ΦE(φ∗(F ⊗ f∗G)) ∈ B̂;

hence, ΦET (F ) ∈ B̂T , by (6). Further, since ΦET is a right splitting T -linear functor commuting
with arbitrary direct sums, the category ΦET (Dqc(XT )) is a T -linear triangulated subcategory
in Dqc(YT ) closed under arbitrary direct sums. On the other hand,

φ∗(Bperf)⊂ φ∗(B) = φ∗(ΦE(Db(X))) = ΦET (φ∗(Db(X)))⊂ ΦET (Dqc(XT )),

so it follows from the definition of B̂T that B̂T ⊂ ΦET (Dqc(XT )). The same argument shows that
Φ!
ET (Dqc(YT )) = ÂT .
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Finally, as we already mentioned, the functors ΦET and Φ!
ET preserve the bounded category of

coherent sheaves and, since AT = ÂT ∩ Db(XT ), BT = B̂T ∩ Db(YT ), it follows that ΦET induces
an equivalence AT ∼= BT . 2

7. Applications

As an application, we deduce that the projection functors of a strong semiorthogonal
decomposition are kernel functors.

Theorem 7.1. Let X be a quasiprojective variety and Db(X) = 〈A1, . . . ,Am〉 a strong
semiorthogonal decomposition. Let αi :Db(X)→Db(X) be the projection functor to the ith
component. Assume that each αi has finite cohomological amplitude. Then for every i there is
an object Ki ∈ Db(X ×X) such that αi ∼= ΦKi .

Remark 7.2. Note that the condition that the semiorthogonal decomposition is strong is
necessary for the projection functors to be representable by kernels. Indeed, every functor
isomorphic to ΦK has a right adjoint functor; hence, if α1

∼= ΦK , then α1 has a right adjoint
functor and hence A1 is right admissible.

Proof. We consider the semiorthogonal decomposition Db(X ×X) = 〈A1X , . . . ,AmX〉 con-
structed in Corollary 5.9 and let Ki be the component of ∆∗OX ∈ Db(X ×X) in AiX . Consider
the corresponding filtration of ∆∗OX .

0 Tm // Tm−1
//

���������
. . . // T1

// T0

���������
∆∗OX

Km

\\

. . . K1

[[

Take any F ∈ Dqc(X), pull it back to X ×X via the projection p1 :X ×X →X, then tensor
it by the above diagram and push it forward to X via the projection p2 :X ×X →X. We will
obtain the following diagram in Dqc(X).

0 p2∗(Tm ⊗ p∗
1F ) //

__
p2∗(Tm−1 ⊗ p∗

1F ) //

}}{{{{{{{{
. . . // p2∗(T1 ⊗ p∗

1F ) //
^̂

p2∗(T0 ⊗ p∗
1F )

���������
p2∗(∆∗OX ⊗ p∗

1F )

p2∗(Km ⊗ p∗
1F ) . . . p2∗(K1 ⊗ p∗

1F )

Note that, by Lemma 4.5, we have Ki ⊗ p∗1F ∈ ÂiX ; hence, p2∗(Ki ⊗ p∗1F ) ∈ Âi, by Proposi-
tion 5.3. On the other hand, p2∗(∆∗OX ⊗ p∗1F )∼= F , so we conclude that p2∗(Ki ⊗ p∗1F )∼= α̂i(F ).
Restricting to Db(X) and using Lemma 3.1, we obtain an isomorphism ΦKi

∼= αi on Db(X). 2

This theorem has a relative variant.

Theorem 7.3. Assume that f :X → S is a morphism of quasiprojective varieties and let
Db(X) = 〈A1, . . . ,Am〉 be an S-linear strong semiorthogonal decomposition. Denote the
corresponding projection functors by αi :Db(X)→Db(X). Assume that the map f is a faithful
base change for itself and each αi has finite cohomological amplitude. Then for every i there is
an object Ki ∈ Db(X ×S X) such that αi ∼= ΦKi .

The proof is analogous. We consider the induced semiorthogonal decomposition of
Db(X ×S X) and consider the decomposition of ∆∗OX , where this time ∆ denotes the diagonal
embedding into the fiber product ∆ :X →X ×S X.
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