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INTRODUCTION

Internal waves of large amplitude, frequently
observed in the coastal waters of the World Ocean, are
usually interpreted in the framework of the weak-non-
linear theory [1, 20]. Thus, the evolution and transfor-
mation of long (in comparison with the depth of the
ocean) internal waves are described with the help of the
well-known Korteweg–de Vries equation. Its coeffi-
cients are determined by the vertical distribution of
fluid density and shear horizontal current. As is known,
the stratification of the ocean is not constant and varies
in space and time, which causes the variability of the
coefficients of the evolutionary equation and effects the
parameters of internal waves. The calculations of the
coefficients of the Korteweg–de Vries equation for var-
ious regions of the World Ocean [2, 5, 11, 21] indicate
that the coefficient of quadratic nonlinearity varies
especially strongly and can change its sign in the
coastal zone. Basically, the sign change of the quadratic
nonlinearity has long been known in the idealized
model of a two-layer fluid, when the pycnocline
becomes closer to the sea bottom than to the surface
due to decreasing depth [13]. It is obvious that, in the
zones with a small value of quadratic nonlinearity, the
role of the high-order nonlinear terms in the asymptotic
decomposition of the wave field becomes greater.
Appropriate generalizations of the Korteweg–de Vries
equation have already been reported in publications [6,
8, 13–15, 17–19]; however, the expressions for the
coefficients of high-order terms become too bulky “to
feel” their signs and values. It turned out, for example,
that the coefficient of cubic nonlinearity can be positive

[7, 9], and this has a fundamental influence on the
dynamics of waves of large amplitude. In particular, the
quasi-steady solitons can be transformed to quickly oscil-
lating wave packages (breathers) and visa versa [10].

In the most consistent form, the generalized
Korteweg–de Vries equations for internal waves in the
ocean with a shear flow were obtained in the paper by
Lamb [16]. They were reported at the symposium on
internal waves (Sydney, Canada, 1998). However, in
actuality, the main emphasis in this paper was made on
the poor applicability of these generalizations for
describing internal solitons of a large amplitude, close
to the limiting one. Here, we shall consider moderate-
amplitude internal waves, widespread in the coastal
zone, for which we can expect that the generalizations
of the Korteweg–de Vries equation of a not very high
order will appear reasonably suitable. The coefficients
of these equations will be given for arbitrary stratifica-
tion of the ocean in density and current. The Maple
package for symbolical calculations is used to get reli-
able results of bulky calculations, which allows one to
operate with the formulas of almost any complexity and
frees the researcher from having to manually write
cumbersome expressions. Particular cases of two- and
three-layer oceans with a background horizontal cur-
rent in one of the layers are used for the calculating all
the coefficients in an explicit form. The parameters of
internal waves for these conditions, including the limit-
ing amplitude of solitons and the evaluations of the
contribution of various high-order terms to the structure
of nonlinear internal waves, were calculated for the first
time.
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Abstract

 

—A nonlinear theory of long internal waves in the ocean stratified in density and current was devel-
oped. A nonlinear evolutionary equation of the type of the generalized Korteweg–de Vries equation with an
accuracy of the third order of the perturbation theory was obtained in the framework of asymptotic methods.
The procedures of decomposition and calculation of all coefficients of the evolutionary equation were auto-
mated with the help of the Maple package of symbolical calculations. Internal waves in a two-layer ocean (the
upper layer moves at a constant speed) and in a three-layer ocean with a background current in the intermediate
layer were considered as examples. The properties of large-amplitude solitons in a stratified ocean were inves-
tigated. The contribution of high-order terms with respect to nonlinearity and dispersion to the soliton structure
was estimated.
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INITIAL EQUATIONS

The well-known nonlinear equations for the hydro-
dynamics of an inviscid and incompressible stratified
fluid were taken as the initial ones, which, in terms of
stream function 

 

ψ

 

 and buoyancy

 

 b

 

, take the form

 

(1)

(2)

 

where 

 

ψ

 

 is the stream function (

 

u

 

 = 

 

∂ψ

 

/

 

∂

 

z

 

 and 

 

w

 

 = 

 

−∂ψ

 

/

 

∂

 

x

 

),
the 

 

z

 

-axis is directed upwards, 

 

N

 

(

 

z

 

)

 

 is the Brunt–Vaisala
frequency, and 

 

J

 

(

 

A

 

, 

 

B

 

) = 

 

A

 

x

 

B

 

z

 

 – 

 

A

 

z

 

B

 

x

 

 is the Jacobian. The
sea bottom 

 

z 

 

= 0 and the surface 

 

z =

 

 

 

H

 

 are assumed
rigid; therefore, we use the boundary conditions of
impenetrability: 

 

(3)

 

It is convenient to use the Lagrangian variable
instead of the vertical coordinate 

 

z

 

,

 

(4)

 

where 

 

η

 

(

 

x

 

, 

 

z

 

, 

 

t

 

)

 

 is the vertical displacement of the
isopycnal surface relative to its undisturbed position at
spatial point (

 

x, z

 

) at time moment

 

 t.

 

 The Lagrangian
coordinate allows us to trace the position of the isopy-
cnal, which is most frequently obtained from experi-
mental data. The vertical distribution of density does
not change in this coordinate system: 

 

ρ

 

(

 

x

 

, 

 

z

 

, 

 

t

 

) = 

 

ρ

 

(

 

y

 

)

 

;
thus, the kinematic equation of the isopycnal displace-
ment is supplementary to equation (1):

 

(5)

 

The transition to the Lagrangian coordinate leads to a
greater complexity of equation (1). If we use dimen-
sionless values for coordinates (

 

z

 

/

 

H

 

, 

 

x

 

/

 

L

 

, 

 

tU

 

/

 

L

 

), Brunt–
Vaisala frequency (

 

HN/U

 

) and stream function (

 

Ψ

 

(

 

x

 

, 

 

y

 

,

 

t

 

) = 

 

ψ

 

/

 

UH

 

), where 

 

U

 

 and 

 

L 

 

are the characteristic values
of the velocity and wavelength, equation (1) takes the
form

 

(6)

 

where the dimensionless vorticity is

 

(7)

 

and equation (5) transforms to 

 

(8)
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Here, µ = H2/L2 characterizes the ratio of the ocean
depth to wavelength. This parameter is small for the
long waves considered in this work.

DERIVATION OF THE NONLINEAR 
EVOLUTIONARY EQUATION 

Equations (6)–(8) were obtained by Lamb [16] and
are referred to as equations in the Euler–Lagrange
approach. It is noteworthy that they are exact. Consid-
ering the waves to be sufficiently weak, it is natural to
introduce a small nonlinearity parameter ε and to write
the wave disturbances in the form

(9)

(10)

where U(y) is the velocity of the background shear cur-
rent. 

In the approximation of the long waves of small
amplitude (ε � 1, µ � 1), the solution of equations (6)
and (8) can be sought in the form of a series with
respect to ε and µ: 

(11)

(12)

where the first index corresponds to the power of the ε
parameter and the second corresponds to the power of
µ. According to the multiscale method, it is necessary
to introduce a set of times τij = εiµjt and perform a tran-
sition to the system of coordinates moving at a velocity
c (which is not yet determined). Then, the temporal
derivatives can be transformed in the following way:

(13)

As a result, in each order of the perturbation theory
(for either small parameter), we can exclude the
unknown function ψij and obtain one equation for the
ζij(x, y, t) function. It can be written in the general form
as

(14)

where the right side is found from the solutions of pre-
vious approximations and derivatives with respect to
slow times.

In the zero order of the theory of perturbations
(i = j = 0), describing a linear internal wave without dis-
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persion, the right-hand side in (14) is absent and the
variables are separated:

(15)

where Φ(y) is found as the solution of the boundary
problem

(16)

with zero boundary conditions at the bottom and sea
surface. The boundary problem allows us to determine
both the mode structure of the long internal wave (func-
tion Φ) and the velocity of its propagation c. In this
approximation, nonlinearity and dispersion do not
influence the wave form (the η function). From here on,
we shall consider only one mode with the maximum
propagation velocity. We also assume that the current in
the ocean is stable and no critical layer exists.

The right side of (14) may be represented in the
higher order approximations as

(17)

where M is, generally speaking, the nonlinear differen-
tial operator with respect to x (it includes the terms of
the form ∂nηm/∂xn) and S includes the corrections to the
mode found from the previous approximations (we
shall discuss this below). We shall not give the corre-
sponding expressions for these functions because they
are very cumbersome [3, 16]. The ∂η/∂τ function is not
determined, and we may use this freedom to represent
the R function as the product of functions depending on
x and y only. To do this, we require that 

(18)

where the constants s for different indices will be found
below. Then, the variables in the left-hand side of equa-
tion (14) are also separated:

(19)

where the functions Φij are the solutions of the nonho-
mogeneous boundary problem 

(20)

with zero boundary conditions at the bottom and sea
surface. It is known that the boundary problem (20) has
a solution only if its right-hand side is orthogonal to the
eigenfunction of the self-adjoint operator L, which
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leads to the determination of the previously unknown
coefficients s:

(21)

After this, the ordinary differential equation (20) can be
solved analytically or numerically.

Thus, according to (15) and (19), the series for
isopycnal displacement at different depths (11) is com-
pletely determined by a single unknown function η(x, t)
and a series for the stream function or current velocity.
Some of the terms of this series are given below:

(22)

It is noteworthy that the solution of equation (20) is
found with an accuracy of the solution of the corre-
sponding homogeneous equation, that is, with an accu-
racy of the Φ function, and therefore, each term of
series (22) is not constant. This was first noted in [15],
where the authors suggested using this fact to minimize
the difference between numerical simulations with the
full and approximate nonlinear models. This method is
not appropriate, however, from the point of view of
applying asymptotic series, which do not require
numerical solutions of initial equations. It is our opin-
ion that the problem lies in correctly defining the phys-
ical variable used in the approximate model. From the
practical point of view, it is convenient to choose a sin-
gle isopycnal located in the maximum of the linear
mode (let us designate this depth as ymax). If we impose
additional conditions

(23)

then series (22) at the point ymax breaks at the first term

(24)

and the η(x, t) function is the isopycnal displacement at
this level for any order of the perturbation method. It is
evident that other conditions are also possible, but they
lead to other values of the coefficients of the evolution-
ary equation [6, 12, 15].

The η(x, t) function describing the wave evolution
over the horizontal plane is specified by the slow-time
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derivatives (18). Taking (13) into account, we may re-
write it in the usual form:

(25)

Equation (25) in the first-order approximation with
respect to ε and µ is the well-known Korteweg–de Vries
equation widely used for the analysis of nonlinear
internal waves in the ocean. With the accuracy of the
second order of nonlinearity, equation (25) is the so-
called Gardner equation. In a more complete form, this
equation can be called a generalized or extended
Korteweg–de Vries equation. Due to its significance,
we give the expressions for all coefficients of equation
(25) in the dimensional form (parameters ε and µ are
omitted):

(26)
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where

(32)

and the mode corrections of the first approximation are
the solutions of the following equations: 

(33)

for the nonlinear correction and 

(34)

for the dispersion correction with zero boundary condi-
tions at the sea bottom and surface, and also at the point
of the maximum of the linear mode. 

The procedure of deriving the generalized
Korteweg–de Vries equation given above is described
in [16] and reproduced here for clarity. It is rather cum-
bersome. We managed to automate this procedure
using the Maple package, which improves the accuracy
of obtaining the coefficients. It is important to empha-
size that, due to the relations imposed by equations
(16), (33), and (34), the expressions for the coefficients
may take different forms [3, 16]. Here, we give only
one form, which is more convenient for calculations. 

INTERNAL WAVES IN A TWO-LAYER FLOW

The general expressions for the coefficients of the
generalized Korteweg–de Vries equation written above
can be very easily calculated for a two-layer ocean with
a moving upper layer (Fig. 1). It is noteworthy that this
problem with a zero flow was once a test to include the
cubic effects into the Korteweg–de Vries equation [13].
The current has no influence on the modal structure of
the internal wave (taking into account the nonlinear and
dispersion corrections), but it changes the wave speed:

(35)

where h1 and h2 are the thicknesses of the upper and
lower layers (H = h1 + h2), U0 is the velocity of the cur-
rent in the upper layer, and c0 is the wave speed in the
ocean at rest:

(36)
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flow is opposite, but this is not related to the Doppler
effect in the mean current U0h1/H. We shall assume that
U0 is always smaller than c0 U0 < c0, and, therefore, no
critical layer is present there. The dependence of the
wave speed on the current velocity is shown in Fig. 2.
For convenience, all coefficients are expressed using
two dimensionless parameters: the thickness of the
lower layer l = h2/H and the velocity of the current U0/c
(these dependencies of the nonlinearity coefficients and
nonlinear dispersion are shown in Figs. 3–6):

(37)

(38)

(39)

(40)

(41)

(42)

Similar to the case of the zero current, the coeffi-
cient of quadratic nonlinearity α changes its sign
depending on the depth of the pycnocline. If the current
direction coincides with the wave, the zero point of α is
shifted to the greater values of the thickness of the
lower layer; an opposite current shifts it in the opposite
direction. For undercritical currents, the latter shift is
not greater than l = H/3. The coefficient of the cubic
nonlinearity α1 is always negative for the zero current,
but if the direction of the current coincides with the
wave, its value decreases. The coefficients of linear dis-
persion β and β1 are positive for any values of the layer
thickness, and if the direction of the current coincides
with the wave, their values generally increase. The
behavior of the coefficients of nonlinear dispersion γ1
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Fig. 1. Two-layer stratification.
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and γ2 in the presence of the current is more complex.
They turn to zero at different values of the parameters
(none of them coincide with the position of the zero of
the quadratic nonlinearity α). When the current is
absent, they are proportional to each other (γ1/γ2 =
31/14), and they turn to zero when the thickness of the
layers is the same. When the direction of the current
coincides with the wave, the increase in the dispersion
coefficients allows us to conclude that, fundamentally,
nonlinear effects (all other factors being the same)
should be expressed to a lesser degree, although strong

variations of the coefficient of quadratic nonlinearity
may lead to an opposite effect. 

NONLINEAR INTERNAL WAVES
IN A THREE-LAYER SHEAR FLOW

Let us now consider a three-layer model of the den-
sity stratification with two symmetrical density jumps
∆ρ/ρ at each density interface. The thickness of the
lower and upper layer is h, the total depth is H, and
U0 is the velocity of the horizontal current in the middle
layer (Fig. 7). This kind of stratification with a zero
shear flow was studied in [9]. The vertical structure of
the first linear mode for this stratification is easily
found:

(43)

as well as the nonlinear

(44)
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and dispersion

(45)

modal corrections. The coefficients of the generalized
Korteweg–de Vries equation are also calculated analyt-
ically 

(46)

(47)

(48)

(49)

(50)

The dependence of the coefficient of cubic nonlinearity
on the l = h/H parameter for different values of U0/c is
shown in Fig. 8. It is interesting to note that the wave
speed does not depend on the background flow and, due
to the symmetry of the problem, the coefficients of the
quadratic nonlinearity and nonlinear dispersion are
equal to zero. As a result, the evolutionary equation
(25) transforms to the modified Korteweg–de Vries
equation with an additional linear dispersion term. The
coefficient of cubic nonlinearity α1 may be either posi-
tive or negative. This fact was noted for the first time in
[7, 9] for a three-layer fluid with a zero current. The
presence of a background current influences the posi-
tion of the zero of function α1(h): the opposite current
moves it to the left, and a fair current moves it to the right.
As it was expected, α1 becomes negative for h = H/2 (the
three-layer model with a current in the middle layer
transforms to a two-layer model with the layers of
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equal thickness and zero current). We note that, when
U0  c, the coefficient of the cubic nonlinearity term
tends to infinity. Therefore, nonlinear effects are
increased due to the fair current. The coefficients of lin-
ear dispersion β and β1 are always positive, and the fair
current increases their values, while the opposite cur-
rent decreases them. Here, however, we may say about
the competition of nonlinear and dispersion effects that,
when U0  c, a fair current would generally tend to
increase the role of nonlinear effects as compared to the
dispersion.

HIERARCHY OF NONLINEAR MODELS 
AND ESTIMATES OF THEIR APPLICABILITY

Knowledge of the coefficients of the generalized
Korteweg–de Vries equation allows us calculate the

U0

x
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h

H – h
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z

Fig. 7. Three-layer stratification with a moving middle layer.
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Fig. 8. Dependence of the coefficient of cubic nonlinearity
(α1H2/c) on the depth of the pycnocline for different current
velocities in a three-layer ocean.
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parameters of internal waves in different basins. Due to
the fact that the linear dispersion described by the β coef-
ficient is not zero for any stratification (this is seen from
the quadratic property of the integrals in (27)), the contri-
bution of the high-order dispersion (with coefficient β1)
should be small. The coefficient of quadratic nonlinear-
ity α may change its sign or may even be equal to zero;
thus, the role of cubic nonlinearity should be signifi-
cant, and the term with α1 should remain in the evolu-
tionary equation (in those cases, when cubic nonlinear-
ity is also absent, as was the case with one of the exam-
ples above, we have to take into account the terms with
a higher order of nonlinearity). The contribution of
nonlinear dispersion (terms with γ1 and γ2) seems to be
low because it is the product of two small factors: qua-
dratic nonlinearity and dispersion. Thus, the basic

model for the calculations of internal waves should at
least be based on the equation

(51)

which is named after Gardner. The popularity of this
equation in the general theory of nonlinear waves is
associated with its full integrability and the possibilities
of a wide use of analytical methods (see, for example,
[4]). At present, it is beginning to be applied as the base
model for numerically simulating internal waves of
large amplitude over the shelf [6, 12].

Let us discuss the solutions of (51) in the form of
solitary stationary waves (solitons). Such a solution can
very easily be found in an explicit form for α1 < 0:

(52)

where 1/Γ is the effective width of the soliton and a is
its amplitude. Any of these parameters can be consid-
ered free. The soliton’s polarity is determined by the
sign of the coefficient of quadratic nonlinearity α, in
particular, in the two-layer model, the soliton is a
depression wave if the pycnocline is located close to the
sea surface and an elevation wave if the pycnocline is
close to the sea bottom. It is important to emphasize
that the soliton’s amplitude cannot exceed (by its abso-
lute value) the limit value 

(53)

and its form tends to rectangular (Fig. 9). The depen-
dence of the limit amplitude on the location of the pyc-
nocline in the two-layer model is shown in Fig. 10.
A fair current increases the limit amplitude if the pycn-
ocline is displaced closer to the bottom and decreases it
if the pycnocline is at the sea surface. The limit ampli-
tude, according to Fig. 10, can reach half of the full
depth of the basin. In this case, a problem arises con-
cerning the applicability of the described theory based
on small parameters. One can easily see from (51) that
the nonlinear correction to the wave speed is character-
ized by parameters αη/c and α1η2/c. In the case of the
limiting soliton, they become equal to each other and
their value α2/α1c should be small within the asymp-
totic theory. If we take this value as equal to 0.3, the weak-
nonlinear theory will be valid for the pycnocline location
within (0.35–0.65)H (and zero current), while the maxi-
mum amplitude of the soliton will not exceed 0.15H. If
the depth of the coastal zone is within 100–200 m, such
limiting solitons with an amplitude of 15–30 m may be
described by the theory developed here.
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Fig. 9. Form of the soliton for negative cubic nonlinearity.
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To demonstrate these estimates we calculated the
contribution of different terms in the generalized
Korteweg–de Vries equation to the structure of a soli-
tary wave. In the first runs of the model, the thickness
of the upper layer was 220 m, and the thickness of the
lower layer was 280 m (the total depth of the basin was
500 m). In this case, the polarity of the soliton is nega-
tive and its maximal amplitude is (by the absolute
value) 29.8 m. It follows from the estimates given
above that the Gardner equation (51) should be a good
approximation of the generalized Korteweg–de Vries
equation. The calculations naturally confirmed this. For
example, when the amplitude of the soliton is close to
the critical value, both quadratic and cubic non-lineari-
ties are of the order of 10–4, the Korteweg–de Vries dis-
persion is 10–5, and all other terms do not exceed
8 × 10–7. In the second example, the thickness of the
upper layer is 100 m, and the thickness of the lower
layer is 400 m. The limiting amplitude of the soliton is
117 m and exceeds the thickness of the upper layer (the
soliton has negative polarity). The calculations show that,
if the soliton’s amplitude is moderate (up to 10–20 m), all
corrections to the classic Korteweg–de Vries equations
are small, and it is not necessary to include them into
the numerical model for internal waves. If, however,
the soliton’s amplitude is 50 m, all terms in the gener-
alized Korteweg–de Vries equation are of the same
order (10–3) and, therefore, the asymptotic series does
not converge. This was also shown by Lamb [16] in
his calculations using a full nonlinear model for the
waves of almost limiting amplitude. Therefore, in
numerical simulations of the internal wave field using
the models of the Korteweg–de Vries type, it is neces-
sary to analyze their applicability in advance. Our
experience in the simulation of actual internal tides
over the shelves shows that all situations are possible
including those within the framework of the simpli-
fied model. In particular, the Korteweg–de Vries situ-
ation is realized for internal waves up to their critical
height over the shelves of Australia [12] and Ireland
[22].

If the cubic nonlinearity (α1) is positive, then the
soliton-wise solution of equation (51) is still described
by (52), and formally has no limitation on the wave
amplitude. Physically, this limitation should be related
to the small nonlinear and dispersion corrections to the
wave speed, which lead to the convergence of the
asymptotic series. It is interesting to note that solution
(52) with negative values of the B parameter is also
possible. It corresponds to a soliton of opposite polar-
ity. Such a soliton is, however, only possible if its
amplitude (by the absolute value) is greater than
2|α/α1|. Therefore, when the amplitudes are small, the
soliton has only one polarity (determined by its sign α),
while, when the amplitudes are large, its polarity can
be either positive or negative. The structure of the soli-
ton, when the cubic nonlinearity is positive, is illus-
trated in Fig. 11. The influence of the current leads to

a variation in the soliton length. In particular, in the
three-layer model considered above, the soliton length
is reduced when the current direction coincides with
the wave and grows when the current is opposite to the
wave.

CONCLUSION

The generalized Korteweg–de Vries equation for
nonlinear internal waves in an ocean stratified in den-
sity and velocity was obtained using an asymptotic pro-
cedure. The application of the Maple package of sym-
bolical calculations allowed us to automate the process
of obtaining higher approximations and increased the
reliability of the cumbersome calculations. All coeffi-
cients of the generalized Korteweg–de Vries equation
were calculated analytically for a two-layer ocean with
a moving upper layer and for a three-layer ocean with a
background current in the middle layer. The properties
of solitary waves (solitons) in the stratified ocean were
studied, and the influence of the current on the soliton
parameters was investigated. The estimates of the cor-
rections for higher orders of nonlinearity and disper-
sion on the structure of solitary waves were given. It
was shown that taking cubic nonlinearity into account
in the Korteweg–de Vries equation is, in many cases,
enough to calculate the evolution of an internal wave
over the shelf.
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