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1 Introduction

In the paper, we consider the following problem. Suppose we have a setN = {1, 2, . . . , n}
of n jobs to be processed on a single machine. Preemptions are not allowed. The machine
is available since time t0 = 0 and can handle only one job at a time. Job j ∈ N is
available for processing since its release date rj ≥ 0, its processing requires processing time
pj ≥ 0 time units and should ideally be completed before its due date dj . We will call
an instance the set of given parameters: release dates, processing times, and due dates.
We will use superscripts to distinguish parameters belonged to different instances. Note
that an instance A = {rA1 , . . . , rAn , pA1 , . . . , pAn , dA1 , . . . , dAn } can be considered as a vector in
3n-dimensional space.

Let Sj(π) and Cj(π) be a starting and a completion time of job j ∈ N in schedule π,
respectively. We will consider only early schedules (sequences), i.e., if π = (j1, . . . , jn), then
Sj1 = max{0, rj1}, Sjk = max{rjk , Cjk−1

}, k = 2, 3, . . . , n, and Cj(π) = Sj(π) + pj , j ∈ N .
Thus an early schedule is uniquely determined by a permutation of the jobs of set N . Then
let Tj(π) = max{0, Cj(π)− dj} be a tardiness of job j in schedule π.

The objective is to find an optimal schedule π̄ which minimizes the total tardiness, i.e.,

objective function is F (π) =
n∑

j=1

Tj(π). In the notation introduced by Graham et. al. (1979)

the problem is denoted by 1|rj |
∑
Tj . The problem is NP -hard in ordinary sense (Du and

Leung 1990).
In the paper we propose an approximation scheme for the minimizing total tardiness

problem. In the scheme we construct a polynomially solvable instance B and apply its
solution to the given instance A. To evaluate the error of the solution we construct a
metric for the considered problem. For the 1||

∑
Tj problem the metric was constructed

by Lazarev and Kvaratskheliya (2010). For the problem 1|rj |
∑
Tj we propose a metric

ρ(A,B)

ρ(A,B) = n ·max
j∈N
|rAj − rBj |+ n ·

n∑
j=1

|pAj − pBj |+
n∑

j=1

|dAj − dBj |.

2 Approximation scheme

Lemma 1 The function

ρ(A,B) = n ·max
j∈N
|rAj − rBj |+ n ·

n∑
j=1

|pAj − pBj |+
n∑

j=1

|dAj − dBj |.

satisfies the metric axioms.
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Theorem 1 Let π̄A and π̄B be an optimal schedules for instances A and B, respectively.
Moreover, let π̃B be an approximate schedule, subject to

n∑
j=1

TB
j (π̃B)−

n∑
j=1

TB
j (π̄B) ≤ δ.

Then

n∑
j=1

TA
j (π̃B)−

n∑
j=1

TA
j (π̄A) ≤ δ + 2ρ(A,B).

The idea of the approximated scheme is to find the least distanced in the metric from the
given instance A polynomially solvable instance B. Then, by applying known polynomial
algorithm to the instanceB, one obtains a schedule π̄B which can be used as an approximate
solution for instance A with error no greater than 2ρ(A,B). One can also use approximate
solution for the instance B with an absolute error δ as an approximate solution for instance
A, in this case the error is not greater that 2ρ(A,B) + δ.

Thereby, the problem 1|rj |
∑
Tj is reduced to the problem of minimizing the function

ρ(A,B).
Let us search for the instance B in the polynomially solvable class defined by the system

of linear inequalities

A ·RB + B · PB + C ·DB ≤ H,

where RB = (rB1 , . . . , r
B
n )T , PB = (pB1 , . . . , p

B
n )T , DB = (dB1 , . . . , d

B
n )T , pBj ≥ 0, rBj ≥ 0,

j ∈ N , T is transposition symbol, A,B, C – m × n matrices, and H – a column of m
elements.

Then the problem of finding the least distanced from A instance of the given polyno-
mially solvable class can be formulated as follows

minimize f = n · (yr − xr) + n ·
n∑

j=1

(ypj − x
p
j ) +

n∑
j=1

(ydj − xdj ),

subject to

xr ≤ rAj − rBj ≤ yr,
xpj ≤ p

A
j − pBj ≤ y

p
j ,

xdj ≤ dAj − dBj ≤ yd,
rBj ≥ 0, pBj ≥ 0, j ∈ N,

A ·RB + B · PB + C ·DB ≤ H.

It is the problem of the linear programming, with 7n + 2 variables: rBj , pBj , dBj , x
p
j , y

p
j ,

xdj , y
d
j , x

r, yr, j = 1, . . . , n.
However, it is not necessary to use algorithms of the linear programming, if there are

less complicated ways.

3 Examples of the approximation scheme

Let PR denote the class of instances with rj = r, pj = p, j = 1, . . . , n and PD denote
the class with pj = p, dj = d, j = 1, . . . , n. Both classes are polynomially solvable. In the
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optimal schedules jobs are processed in the increasing order of their due dates for PR class
and in the increasing order of their release dates for PR.

If in the approximation scheme one searches for the instance B in class PR, one has to
minimize the function

f(r, p) = n ·max
j∈N
|rAj − r|+ n ·

n∑
j=1

|pAj − p|.

Lemma 2 Function f(r, p) has minimum at point (r =
rAmax+rAmin

2 , p ∈ {pA1 , . . . , pAn }),
where rAmax = max

j∈N
rAj , r

A
min = min

j∈N
rAj , therefore minimum can be found in O(n) operations.

And if in the approximation scheme one searches for the instance B in class PD, one
has to minimize the function

g(p, d) = n ·
n∑

j=1

|pAj − p|+
n∑

j=1

|dAj − d|.

Lemma 3 Function g(p, d) has minimum at point (p ∈ {pA1 , . . . , pAn }, d ∈ {dA1 , . . . , dAn }),
therefore minimum can be found in O(n) operations.

So, we have two variants of the proposed scheme: with the use of PR and PD classes.
To evaluate approximated solutions for both cases we have run computational experiments.
10000 instances were generated for each value of n. Experiments were performed for n =
4, 5, . . . , 10. For each instance, processing times pj were generated randomly in the interval
[1, 100], due dates dj were generated in the interval [−100, 100], and release dates rj were
generated in the interval [0, 100]. We used proposed scheme to find an approximate solution
with value of objective function Fa for each instance, and branch & bound algorithm to find
an optimal solution with value of objective function Fo. After we estimated experimental
error ∆ = Fa−Fo in percentage of the theoretical error, which is doubled value of function
f(r, p) or g(p, d) for cases with PR and PD classes, respectively.

All obtained distributions are bell-shaped. The typical distribution of experimental
error is shown in Fig. 1. In both cases distributions narrow with increasing of n. In the
PR-case experimental errors averages near 19% of the theoretical. In PR-case we have
obtain that error does not exceed 30% of theoretical, though its average grows from 5% to
10% with increasing of n. Obtained average errors are shown in Table 1.

Table 1. Average experimental error in percentage of the theoretical error

n Average error in PR-case Average error in PD-case
4 19% 4,5%
5 19,5% 6,2%
6 19,2% 7,3%
7 19,6% 8,5%
8 19,3% 9,2%
9 19,4% 10%
10 19% 10,5%
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Fig. 1. Distribution of experimental error in percentage of the theoretical error

4 Conclusion

In the paper we have proposed the new approximation scheme for the minimizing total
tardiness problem. The scheme is based on search for the polynomially solvable instance
which has a minimal distance in the metric from the original instance.

In further research the scheme can be applied to other scheduling problems. One can
also improve the scheme by constructing new metrics and finding new polynomially solvable
cases of scheduling problems.
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