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Abstract

The process of the nonlinear deformation of a shallow water wave in a basin of a constant depth is studied. Characteristics of the first

breaking of the wave are analyzed in detail. The Fourier spectrum and steepness of the nonlinear wave are calculated. It is shown that the

spectral amplitudes can be expressed using the wave front steepness, which allows the practical estimations.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The process of the nonlinear wave evolution in the
shallow water resulting in wave breaking is well known,
and it can be described analytically in the framework of the
nonlinear shallow-water theory (see, for instance, books:
Stoker, 1957; Whitham, 1974; Engelbrecht et al., 1988;
Voltsinger et al., 1989; Arseniev and Shelkovnikov, 1991;
Tan, 1992). Mathematically, wave breaking can be
considered as the crossing of the characteristics of the
hyperbolic system for the shallow water (gradient cata-
strophe). Many observations of wave breaking and its
transformation into an undular bore were made during the
huge tsunami in the Indian Ocean which occurred on 26
December 2004 after the earthquake with magnitude of 9.3.
Fig. 1 shows a set of photos taken by a Canadian couple of
the tsunami approaching the coast (these photos have
subsequently been shown on TV very often ). The increase
in the steepness of the tsunami wave front can also be
obtained by numerical simulation of the tsunami wave
propagation on long distances (Zahibo et al., 2006) and
predicted theoretically (Hammack, 1973; Ostrovsky and
e front matter r 2007 Elsevier Ltd. All rights reserved.
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Pelinovsky, 1976; Murty, 1977; Pelinovsky, 1982). This
phenomenon of steepness increase is also observed when
sea waves enter the river mouths (Pelinovsky, 1982; Tsuji
et al., 1991), straits, or channels (Pelinovsky and Troshina,
1994; Wu and Tian, 2000; Caputo and Stepanyants, 2003).
Meanwhile, we do not know of any publications, where the
characteristics of the nonlinear deformed wave such as
steepness, spectrum and location of the breaking point
have been analyzed in detail. In this paper, we shall analyze
the nonlinear deformation of the shallow water wave in a
basin of a constant depth without wave amplitude
limitation. This article is organized as follows. In Section
2, the spatial evolution of the nonlinear deformed wave and
the characteristics of the first breaking are analyzed. In
Section 3, the wave steepness and the Fourier spectrum of
the nonlinear deformed periodic wave are studied. In
Section 4 we present the conclusions.

2. Spatial evolution of the shallow water wave

The basic equations of the nonlinear shallow water
theory can be written in the following form (Stoker, 1955):

qu

qt
þ u

qu

qx
þ g

qZ
qx
¼ 0, (1)

qZ
qt
þ

q
qx
½ðhþ ZÞu� ¼ 0,
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Fig. 1. Snapshot of tsunami approaching the coast (Indian Ocean, December 26, 2004).
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where Z is the water level displacement, u is the horizontal
velocity of water flow, g is the gravitational acceleration
and h is the unperturbed water depth assumed to be
constant.

In the unidirectional wave, the flow velocity depends on
the water displacement only, and after substitution
u ¼ u(Z) in (1), the relation between u and Z can be found
explicitly by

u ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðhþ ZÞ

p
�

ffiffiffiffiffi
gh

p� �
(2)

(for definiteness, we consider waves propagating in the
positive direction, x40). Using this assumption, (1) can be
reduced to the first-order quasi-linear partial differential
equation (Whitham, 1974; Voltsinger et al., 1989)

qZ
qt
þ V ðZÞ

qZ
qx
¼ 0, (3)

where the wave speed (or characteristic speed) V is

V ðZÞ ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðhþ ZÞ

p
� 2

ffiffiffiffiffi
gh

p
. (4)
It is important to mention that Eq. (3) is an exact
equation and it is valid formally for the waves of an
arbitrary amplitude if dispersion and dissipation are
neglected.
We will solve Eq. (3) with boundary condition

Z(t,x ¼ 0) ¼ Z0(t), which is typical for the cases when the
wave is generated in the laboratory tank by the wave-
maker. Thus, the solution of Eq. (3) is

Zðx; tÞ ¼ Z0 t�
x

V ðZÞ

� �
; or t�

x

V ðZÞ
¼ tðZÞ, (5)

where t(Z) is an inverse function to Z0(t) which is
determined by the wavemaker. First of all, it is important
to mention that the wave may propagate from the
wavemaker in the positive direction x40 only if

Z4�
5

9
h, (6)

and, therefore, the wave trough should not be deep.
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Fig. 3. Displacement at the breaking point versus the wave amplitude.
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Fig. 4. Phase of the breaking point versus the wave amplitude.
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The implicit formula (5) describes a simple or Riemann
wave, which is well known in nonlinear acoustics
(Rudenko and Soluyan, 1977; Engelbrecht et al., 1988;
Gurbatov et al., 1991). This solution describes the non-
linear deformation of the wave with distance; the steepness
of its face slope increases with distance. The time de-
rivative of the wave profile can be calculated in the
explicit form

qZ
qt
¼

dZ0=dt
1þ xdV�1ðZ0Þ=dt

. (7)

On the face slope ðqZ=qt40Þ the time derivative dV�1/dt

is negative, and the denominator in (6) decreases with
distance; the time derivative of the wave profile increases
and tends to infinity at distance x ¼ X. The breaking length
(nonlinearity length) which characterizes the first breaking
equals to

X ¼
1

maxð�dV�1=dtÞ
. (8)

Therefore, the wave begins to break at the point on the
wave profile where the inverse speed derivative reaches its
maximum, and this point in general does not coincide with
the point of the wave profile with the maximum steepness.
As a detailed example, the initial sinusoidal shape of
the generated wave will be analyzed. Such a wave,
Z0(t) ¼ a sin(ot), has the maximum derivative equal to ao
in the wave point with the zero displacement of the water
level. The breaking begins in the trough, and the phase
(y ¼ ot*) and displacement (z ¼ Z*/h, Z* ¼ a siny) of the
breaking point (see Fig. 2 for definitions) depend on the
wave amplitude (A ¼ a/h) through the algebraic dimen-
sionless expressions

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2ð3

ffiffiffiffiffiffiffiffiffiffiffi
1þ z
p

þ 2Þ � 2zð3
ffiffiffiffiffiffiffiffiffiffiffi
1þ z
p

� 2Þ

9
ffiffiffiffiffiffiffiffiffiffiffi
1þ z
p

� 2

s
,

y ¼ arcsin
z
A

� �
. ð9Þ

These characteristics are shown in Figs. 3 and 4. At small
wave amplitudes the first breaking appears in the wave on
the zero level (unperturbed fluid surface), and in this case
the following asymptotic formulas can be used to estimate
displacement and phase of the breaking point:

z � �
7

2
A2; y � �

7

2
A. (10)
ωt0 2π-2π

breaking point

η∗=asin(θ)

η(t)

h

Fig. 2. Location of the breaking point in trough on the shallow-water

wave.
When the wave amplitude approaches the critical value
(6), the breaking point shifts to the end of the wave trough

z � �A ¼
5

9
; y � �

p
2
. (11)

The distance the wave travels from the wavemaker to the
breaking point (breaking length) can be found from (8)

oT ¼
2
ffiffiffiffiffiffiffiffiffiffiffi
1þ z
p

ð3
ffiffiffiffiffiffiffiffiffiffiffi
1þ z
p

� 2Þ2

3A cos y
, (12)

where expressions (9) should be used. In fact, we introduce
the breaking time, T ¼ X/(gh)1/2 reducing the number of
the dimensional quantities. The breaking time decreases
when the wave amplitude increases (Fig. 5) and tends to
zero as the wave amplitude tends to its critical value 5/9.
Thus, the wave of large amplitude breaks near the
wavemaker and in fact does not propagate. For weak
amplitude waves the breaking time is big, and it can be
described by the asymptotic formula

oT �
2

3A
. (13)



ARTICLE IN PRESS

0 0.2 0.4 0.6 0.8 1

distance, x/X

0

5

10

15

20

s
te

e
p
n
e
s
s
, 
s
/s

0

Fig. 6. The wave steepness versus the distance from the wavemaker.
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Fig. 5. Breaking time versus the wave amplitude.
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Taking into the account the importance of this formula
for practice let us give it in a dimensional form

X ¼
2
ffiffiffiffiffi
gh

p
h

3oa
¼

lh

3pa
, (14)

where the wavelength l is determined by the linear
dispersion relation of long waves,

l ¼
2p

ffiffiffiffiffi
gh

p
o

. (15)

The weak amplitude wave has to propagate a long
distance of many wavelengths before the nonlinear effects
become significant and the wave breaks.

3. The wave steepness and Fourier spectrum

The wave steepness is the measured characteristics of the
wave field important for applications, and it can be
calculated exactly from (5)

qZ
qx
¼ �

1

V

qZ
qt
¼ �

V�1ðZ0ÞdZ0=dt
1þ xdV�1ðZ0Þ=dt

. (16)

The maximum steepness is achieved at the point of wave
profile where V�1 has the maximum time derivative; the
first breaking occurs at this point. Taking into the account
the definition of the breaking length (8) from (16) follows
the expression for maximum steepness

s ¼ max ðqZ=qxÞ ¼
s0

1� x=X
, (17)

where s0 ¼ qZ0=qx ¼ V�1qZ0=qt is the initial steepness of
the wave in the point Z*. The maximum steepness increases
very rapidly in the vicinity of the breaking point, see Fig. 6.
The minimum steepness is achieved on the back face of the
wave, and it is varied with distance as

smin ¼ min ðqZ=qxÞ ¼
s0

1þ x=X
. (18)

The minimum steepness reduces with distance and it is
half of the initial steepness at the breaking point. The
steepness of the nonlinear deformed wave can be calculated
similarly for other points on the wave profile.
For practice it is important to know the frequency

spectrum of the wave field. In general form the Fourier
integral can be written in the explicit form (Pelinovsky,
1976)

SðoÞ ¼
Z

Zðx; tÞ exp ð�iotÞdt

¼
1

io

Z
dZ0
dt

exp ð�io½tþ x=V ðZ0Þ�Þ dt ð19Þ

It is impossible to calculate this integral analytically even
for monochromatic initial disturbances. Let us consider
here, the case of weak, but finite amplitudes when the wave
propagates on long distances without breaking. Using the
Taylor’s series for inverse velocity V�1(Z) ¼ (gh)�1/2(1–3Z/
2 h), integral (19) can be calculated exactly and the wave
field at any distance from the wavemaker is

Zðt;xÞ ¼
X1
n¼1

AnðxÞ sin no½t� x=
ffiffiffiffiffi
gh

p
�

� �

¼
4h

ffiffiffiffiffi
gh

p
3ox

X1
n¼1

1

n
Jn

3noxa

2h
ffiffiffiffiffi
gh

p
 !

� sin no½t� x=
ffiffiffiffiffi
gh

p
�

� �
, ð20Þ

where Jn is the Bessel function of nth order. Spectral
amplitudes can be re-written in the following form using
the same accuracy for the breaking length (14):

AnðxÞ ¼ 2a
X

nx
Jn

nx

X

� �
. (21)
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Fig. 7. Harmonic amplitudes versus the distance from the wavemaker

(first to eighth harmonics are displayed from the top).
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breaking point (solid line—asymptotic n�1.3).
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The amplitudes of high harmonics grow with distance
from the wavemaker, and the amplitude of basic harmonics
decreases with distance from the wavemaker because the
energy transfers to the high harmonics (Fig. 7). It is
important to mention that harmonic amplitudes are
relatively weak even at the breaking point and decrease
with the increase in harmonic number.

In oceanic conditions the distance from the wave source
is unknown. It is more useful to have the relationship
between the harmonic amplitudes and the wave steepness.
Using (17) for maximum steepness, formula (21) can be
written as

AnðsÞ ¼
2a

nð1� s0=sÞ
Jn n 1�

s0

s

h i� �
. (22)

The relationship between the harmonic amplitudes and
wave steepness is displayed in Fig. 8.
It can be observed that for large values of the wave
steepness the harmonic amplitudes tend to constant values.
This limited spectrum of the shallow water wave (see
Fig. 9) does not depend on the initial wave steepness

Ān ¼
2a

n
Jn nð Þ. (23)

This function is very well approximated by the power
asymptotic, n�1.3, presented in Fig. 9 by a solid line. The
spectrum of the nonlinear nondispersive wave field has
been theoretically studied in Gurbatov et al., (1991) in
detail. According to the theory, the asymptotic o�3/2

appears in the vicinity of the breaking point and this is
close to the approximated curve (23) calculated for the
periodic waves. After the wave breaking, the asymptotic
o�1 in high-frequency range forms; this corresponds to the
‘‘jump’’ functions.

4. Conclusion

The behavior of the nonlinear shallow-water wave
generated by the wavemaker is discussed within the
framework of the exact solution in the form of the
Riemann (simple) wave. It is shown that the initial
sinusoidal wave can propagate as the smooth wave only
if its amplitude is consistent with condition ao5h/9, where
h is water depth. The wave begins to break at the point on
the wave profile where the local value of the inverse
velocity of propagation is maximal. The breaking length is
calculated; it decreases when the wave amplitude increases.
The steepness and the spectrum of the nonlinear deformed
wave are calculated in the explicit form. The spectral
amplitudes of the wave harmonics can be expressed in
terms of the local value of the maximum steepness of the
wave front. The Fourier spectrum has the universal shape
for very steep waves. These estimates of the wave spectrum
can be used in the engineering practice.
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