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Abstract. Using some specific approach to the coalition-consistency analysis
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suitable variants of Pareto optimality and converse consistency axiom and
others.
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1. Introduction

The concept of strictly strong (n−1)-equilibria (in n-person strategic games and in
multicriteria games) is based on some specific approach to the coalition-consistency
analysis, offered in (Kuzyutin D., 1995, Kuzyutin, D., 2000). Namely, we suppose
that trying to investigate the coalition-consistency of some acceptable Nash
equilibrium x, every player i does not consider the deviations of coalitions S, i ∈ S
with her participance (since player i may be sure in her own strategic choice xi).
This approach allows to make the strong Nash equilibria ( Aumann R. J., 1959 )
requirements slightly weaker.

We show(in section 2) that the strong and strictly strong (n − 1)-equilibrium
differs from other closely related solution concepts: coalition-proof equilibrium
(Bernheim B. et al.,1987) and semi-strong Nash equilibrium (Kaplan G., 1992). The
axiomatization of strong and strictly strong (n− 1)-equilibria in n-person strategic
games was given in (Kuzyutin, D., 2000).

In section 3 we explore the same approach to coalition-consistency analysis
in n-person multicriteria games (or the games with vector payoffs) and offer two
refinements of the weak Pareto equilibria (Shapley L., 1959, Voorneveld M. et al., 1999).

The axiomatic characterization of strictly strong (n − 1)- equilibria (on closed
families of multicriteria games) is provided in section 4 using the technique offered in
(Peleg B. and Tijs S., 1996, Norde H. et al., 1996, Voorneveld M. et al., 1999). In
this axiomatization the suitable variants of Pareto-optimality and converse consistency



axioms play a role to distinguish between the strictly strong (n− 1)-equilibria and
other equilibrium solutions in multicriteria games.

2. Strong and strictly strong (n − 1)-equilibrium in strategic games

Consider a game in strategic form G = (N, (Ai)i∈N , (ui)i∈N , where N is a finite
set of players |N | = n Ai 6= ∅ is the set of player’s i strategies; and ui : A =∏

j∈N Aj → R1 is the payoff function of player i ∈ N . A solution (optimality
principle) ϕ, defined on a class of strategic games Γ , is a function that assigns to
each game G = (N, (Ai)i∈N , (ui)i∈N ∈ Γ a subset ϕ(G) of A. We’ll call a strategy
profile x the optimal situation, if x ∈ ϕ(G). Let S ⊂ N , S 6= ∅, be a coalition;
S ⊂ N , S 6= ∅, N proper coalition; AS =

∏
j∈S Aj — a set of all possible players’

i ∈ S strategy profiles.
The concept of strong (Nash) equilibria was offered by Aumann R. J., 1959.

Definition 1. x ∈ A is a strong Nash equilibrium (SNE), if ∀S ⊂ N , S 6= ∅,
∀yS ∈ AS , ∃i ∈ S:

ui(x) ≥ ui(yS , xN\S),

where yS = (yj)j∈ S, xN\S = (xj)j∈N\S .
Definition 2. x ∈ A is weakly Pareto-optimal (WPO), if ∀y ∈ A, ∃i ∈ N :

ui(x) ≥ ui(y).

Definition 3. x ∈ A is a strictly strong Nash equilibrium (SSNE), if there do not
exist coalition S ⊂ N and yS ∈ AS such that:

ui(yS , xN\S) ≥ ui(x) ∀i ∈ S,

∃j ∈ S : uj(yS , xN\S) > uj(x).

Notice that the concept of SNE (as well as SSNE) deals with a r b i t r a
r y deviations of a l l p o s s i b l e coalitions S ⊂ N . We denote by NE(G),
SNE(G), SSNE(G) the set of Nash equilibriums (Nash J. F., 1950), strong Nash
equilibriums and strictly strong Nash equilibriums of G respectively. The following
inclusions hold: NE(G) ⊃ SNE(G) ⊃ SSNE(G).

Unfortunately, the sets SNE(G) and SSNE(G) are often empty (see, for instance,
Petrosjan L. and Kuzyutin D., 2008) by the reason of ”too strong” requirements
to the solution used in def. 1, 3. We’ll consider an opportunity to make these
requirements slightly weaker that leads to new concept of coalition-stable equilibrium.

We guess a game G = (N, (Ai)i∈N , (ui)i∈N ) is ”of common knowledge”, when
every player knows all players’ strategy sets and payoff functions. Moreover, suppose
that trying to investigate the coalition stability of some acceptable strategy profile
x, every player i does not consider the deviations of coalitions S ∈ i with her
participance since player i may be sure in her own strategic choice xi. The related
motivation was used early for other purposes in Kuzyutin D., 1995 to define the
i-stability property in n-person extensive game.
Definition 4. Let G = (N, (Ai)i∈N , (ui)i∈N ) ∈ Γ , |N | = n.

1. n ≥ 2: x ∈ A is a strong (n−1)-equilibrium (SNEn−1), if for every player i ∈ N
the following condition holds:

∀S ⊂ N \ {i}, ∀ yS ∈ AS , ∃ j ∈ S : uj(x) ≥ uj(yS , xN\S);



2. n = 1: xi ∈ Ai is a strong (n − 1)-equilibrium in one-player game G =
({i}, Ai, ui), if

ui(xi) ≥ ui(yi) ∀yi ∈ Ai

Definition 5.

1. n ≥ 2: x ∈ A is a strictly strong (n − 1)-equilibrium (SSNEn−1), if for every
player i ∈ N there do not exist a coalition S ⊂ N \ {i} and yS ∈ AS such that:

uj(yS , xN\S) ≥ uj(x) ∀ j ∈ S,

∃ k ∈ S : uk(yS , xN\S) > uk(x).

2. n = 1: SSNEn−1 coincides with SNEn−1.

Remark 1. Another possible definition of SNEn−l (n > 2) is as follows: x is a
SNEn−l if ∀ S ⊂ N, |S| ≤ n− 1, ∀ yS ∈ AS ∃ j ∈ S:

uj(x) ≥ uj(yS , xN\S).

However, we guess the def. 4 is more useful to clarify the offered approach every
player (independently of others) holds on to check the coalition stability of x. The
optimally principles SNEn−l and SSNEn−l deal with a r b i t r a r y deviations
of c e r t a i n (c r e d i b 1 e) coalitions.

It is clear that

NE(G) ⊃ SNEn−l(G) ⊃ SSNEn−1(G).

Further we have:
NE(G) ⊃ SNEn−1(G) ⊃ SNE(G),

NE(G) ⊃ SNEn−1(G) ⊃ SSNE(G).

The example shows that these inclusions may be strict.
Example 1. Let the three-person game

G = (N = {1, 2, 3}, A1 = {x1, y1}, A2 = {x2, y2}, A3 = {x3, y3}, (ui)i∈N ), be
given by the following normal form:

x3 y3

x2 y2 x2 y2

x1 (7, 7, 0) (0, 0, 5) x1 (4, 4, 9) (0, 0, 5)
y1 (0, 0, 5) (5, 5, 15) y1 (0, 0, 5) (0, 0, 0)

For the convenience we’ll restrict ourselves to the players’ pure strategies (player
1 chooses a row, player 2 a column and player 3 a block of the table). Here:
NE(G) = {(y1, y2, x3), (x1, x2, y3)}; SNE(G) = SSNE(G) = ∅; SNEn−1(G) =
SSNEn−1(G) = {x1, x2, y3)}; WPO(G) = {(y1, y2, x3), (x1, x2, x3)} is the set of
weak Pareto-optimal strategy profiles in G.

Certainly, player 3 can not accept the situation (y1, y2, x3) ∈ NE(G)∩WPO(G)
since the best player 1 and player 2 joint response to the player 3 strategy x3 is
(x1, x2) that leads to the least possible payoff of player 3. At the same time the
strategy profile (x1, x2, y3) is free from such danger, and satisfies the requirements
of coalition stability from def. 4, 5 although does not satisfy weak Pareto-optimality.



Thus one can use the strong (n−1)-equilibrium concept to obtain a unique optimal
outcome in strategic game G.

Notice, that the extended analysis of closely related example is offered in
Bernheim B. et al.,1987 in connection with the coalition-proof Nash equilibrium
concept.
Definition 6. Let G = (N, (Ai)i∈N , (ui)i∈N ) be a game, let x ∈ A and let ∅ 6=
S ⊂ N . An internally consistent improvement (ICI) of S upon x is defined by
induction on |S|. If |S| = 1, that is S = {i} for some i ∈ N , then yi ∈ Ai is an ICI
of i upon x if it is an improvement upon x, that is, ui(yi, xN\{i}) > ui(x).
If |S| > 1 then yS ∈ AS is an ICI of S upon x if:

1. ui(ys, xN\S) > ui(x) for all i ∈ S,
2. no T ⊂ S, T 6= ∅, S has an ICI upon (yS , xN\S).

x is a coalition-proof Nash equilibrium (CPNE) if no T ⊂ N , T 6= ∅, has an ICI
upon x.

The reader is refereed to Bernheim B. et al.,1987 for discussion and motivation.
Definition 7. (Kaplan G., 1992) Let G = (N, (Ai)i∈N , (ui)i∈N ) be a game. x ∈ A
is a semi-strong Nash equilibrium (SMSNE), if for every ∅ 6= S ⊂ N and every
yS ∈ NE(GS,x) there exists i ∈ S such that ui(x) ≥ ui(yS , xN\S).

Notice that the concept of CPNE (as well as SMSNE) deals only with c e r t
a i n deviations of a l l p o s s i b l e coalitions S ⊂ N .

To clarify the difference between CPNE and SMSNE from the one hand and
the strong (n − 1)-equilibrium concept from the other we consider the following
example.
Example 2. G = (N = {1, 2, 3}, A1 = {x1, y1}, A2 = {x2, y2}, A3 = {x3, y3}, (ui)i∈N ),
is the three-person strategic game:

x3 y3

x2 y2 x2 y2

x1 (9, 9, 0) (4, 10, 0) x1 (4, 4, 9) (0, 0, 5)
y1 (0, 0, 5) (5, 5, 10) y1 (0, 0, 5) (0, 0, 0)

Here: NE(G) = {(y1, y2, x3), (x1, x2, y3)}; WPO(G) = {(x1, x2, x3),
(x1, y2, x3), (y1, y2, x3)}; SNE(G) = SSNE(G) = ∅; CPNE(G) = SMSNE(G) =
NE(G) ∩WPO(G) = {(y1, y2, x3)}, but SSNEn−1(G) = {(x1, x2, y3)}.

Notice that (as in example 1) player 3 can reject the strategy profile (y1, y2, x3)
by the reason of other players have the profitable joint deviation (x1, x2) from
(y1, y2, x3) that is still possible (although (x1, x2) is not ICI of S = {1, 2} upon
(y1, y2, x3)). If such deviation takes place player 3 will receive the least feasible
payoff (independently of further possible deviation y2 of player 2).

Remark 2. SSNEn−l does not coincide with CPNE (as soon as with SMSNE)
in general case.

Remark 3. Let ϕ be one of the optimality principles: CPNE or SMSNE.
SSNEn−1 is not a refinement of ϕ, and ϕ is not a refinement of SSNEn−1.

3. Coalition stable equilibriums in multicriteria games

Now let us turn to so-called multicriteria games (or the games with vector payoffs)
when every player may take several criteria into account. Formally,
let G = (N, (Ai)i∈N , (ui)i∈N ) be a finite multicriteria game, were N is a finite set



of players, |N | = n, Ai 6= ∅ is the finite set of pure strategies of player i ∈ N , and
for each player i ∈ N the function ui :

∏
j∈N Aj → Rr(i) maps each strategy profile

to a point in r(i)-dimensional Euclidean space. Note that player i in multicriteria
game G tries to maximaize r(i) scalar criteria (i.e. all the components of her vector
valued payoff function ui(xi, x−i)).

The concept of equilibrium point for multicriteria games was proposed by ?? as
a natural generalization of the Nash equilibrium concept for unicriterium games.

Let a, b ∈ Rt, and a > b means that ai > bi for all i = 1, . . . , t; a ≥ b means
that ai ≥ bi for all i = 1, . . . , t, and a 6= b.

The vector a ∈ M ⊆ Rt is weak Pareto efficient (or undominated) in M iff {b ∈
Rt : b > a} ∩M = ∅. In this case we’ll use the following notation: a ∈ WPO(M).

Given strategy profile x = (xi, x−i) in the finite multicriteria game G denote by

Mi(G, x−i) = {ui(yi, x−i), yi ∈ Ai}

the set of all player’s i attainable vector payoffs (due to arbitrary choice of his
strategy yi ∈ Ai).

Definition 8. The strategy profile x = (x1, . . . , xn) ∈ ∏
j∈N Aj is called (weak

Pareto) equilibrium in multicriteria game G iff for each player i ∈ N there does not
exist a strategy yi ∈ Ai such that:

ui(yi, x−i) > ui(xi, x−i) (1)

Note that (1) is equivalent to the following condition:

ui(xi, x−i) ∈ WPO(Mi(G, x−i)) ∀i ∈ N. (2)

Let E(G) be the set off all (weak Pareto) equilibriums in multicriteria game G.
Definition 9. The strategy profile x = (x1, . . . , xn) is called strong equilibrium (in
a sense of ) in multicriteria game G iff

∀S ⊂ N,S 6= ∅ yS ∈
∏

j∈S

Aj :
{

ui(yS , x−S) > ui(xS , x−S)
i ∈ S .

Definition 10. The strategy profile x = (x1, . . . , xn) is called strictly strong equilibrium
in multicriteria game G iff

∀S ⊂ N,S 6= ∅ yS ∈
∏

j∈S

Aj :
{

ui(yS , x−S) ≥ ui(xS , x−S)
i ∈ S .

Definition 11. Let G = (N, (Ai)i∈N , (ui)i∈N ) be a finite multicriteria game with
n players, |N | = n.

1. n ≥ 2: x = (x1, . . . , xn) ∈ ∏
j∈N Aj is a strong (n − 1)-equilibrium if for each

player i ∈ N the following condition holds:

∀S ⊂ N\{i}, yS ∈ AS :
{

uj(yS , x−S) > ui(xS , x−S)
j ∈ S . (3)

2. n = 1: xi ∈ Ai is a strong (n− 1)-equilibrium in one player multicriteria game
G = ({i}, Ai, ui) if yi ∈ Ai : ui(yi) > ui(xi).



Let SE(G), SSE(G) and SEn−1(G) be the sets S of all strong equilibriums,
strictly strong equilibriums and strong (n−1)-equilibriums in multicriteria game G
correspondly.
Definition 12.

1. n ≥ 2: x = (x1, . . . , xn) ∈ A is a strictly strong (n − 1)-equilibrium if for every
player i ∈ N the following condition holds:

∀S ⊂ N\{i}, yS ∈ AS :
{

uj(yS , x−S) ≥ uj(xS , x−S)
j ∈ S . (4)

2. n = 1: xi ∈ Ai is a strictly strong (n−1)-equilibrium in one-person multicriteria
game G = ({i}, Ai, ui), if yi ∈ Ai: ui(yi) ≥ ui(xi).

The set of all strictly strong (n− 1)-equilibriums in G denote by SSEn−1(G).
Definition 13. The strategy profile x = (x1, . . . , xn) ∈ ∏

j∈N Aj is called Pareto
efficient in a multicriteria game G iff

y ∈
∏

j∈N

Aj :
{

ui(y) ≥ ui(x)
i ∈ N . (5)

The set of all Pareto efficient strategy profiles in G denote by POMG(G).
It is clear that

E(G) ⊃ SEn−1(G) ⊃ SSEn−1(G),

SSEn−1(G) ⊃ SSE(G),

POMG(G) ⊃ SSE(G).

4. Axiomatization of strictly strong (n − 1)- equilibria in multicriteria
games

In this section we give axiomatization of SSEn−1 correspondence on closed classes of
multicriteria games in terms on consistency, one-person rationality, suitable variants
of converse consistency and Pareto-optimality axiom and others.

Let Γ be a set of muliticriteria games G and let ϕ be a solution on Γ .
Definition 14. ϕ satisfies strong one-person rationality (SOPR) if for every one-
person game G = ({i}, Ai, ui) ∈ Γ

ϕ(G) = {xi ∈ Ai| yi ∈ Ai : ui(yi) ≥ ui(xi)}
Let G = (N, (Ai)i∈N , (ui)i∈N ) be a game, n =| N |≥ 2, let S ⊂ N be a proper

coalition, i.e. S 6= ∅, N .
Definition 15. The proper reduced game GS,x of G (with respect to S and x) is
the multicriteria game GS,x = (S, (Ai)i∈S , (ux

i )i∈S), where

ux
i (yS) = ui(yS , xN\S) ∀ yS ∈ AS , ∀ i ∈ S.

A family Γ of multicriteria games is r-closed, if G = (N, (Ai)i∈N , (ui)i∈N ) ∈ Γ ,
S ⊂ N , S 6= ∅, N and x ∈ A imply that GS,x ∈ Γ .



Definition 16. Let Γ be a r-closed family of strategic games. A solution ϕ on Γ
satisfies consistency (CONS), if for every G = (N, (Ai)i∈N , (ui)i∈N ) ∈ Γ , ∀ S ⊂ N ,
S 6= ∅, N , ∀ x ∈ ϕ(G) the following condition holds:

xS ∈ ϕ(GS,x).

The CONS property means the restriction xS of the optimal strategy profile
x ∈ ϕ(G) still satisfies the optimality principle ϕ in every reduced game GS,x. If
G = (N, (Ai)i∈N , (ui)i∈N ) ∈ Γ , and n ≥ 2, then we denote:

ϕ̃(G) = {x ∈ A | ∀ S ⊂ N, S 6= ∅, N, xS ∈ ϕ(GS,x)} (6)

Taking (6) into account one can notice that CONS property means ϕ(G) ⊂
ϕ̃(G) for every G ∈ Γ .

Definition 17. A solution ϕ on Γ satisfies (n − 1)-Pareto optimality for
multicriteria games (POn−1

MG ), if for every G = (N, (Ai)i∈N , (ui)i∈N ) ∈ Γ with
at least two players (n ≥ 2), for every x ∈ ϕ(G) the following conditions holds:

∀ i ∈ N y−i ∈ A−i :
{

uj(y−i, xi) ≥ uj(x−i, xi)
j ∈ N \ {i}. . (7)

Notice that ϕ satisfies POn−1
MG iff ∀ x ∈ ϕ(G),∀i ∈ N

xN\{i} ∈ POMG(GN\{i},x).

Let POn−1
MG be the set of all strategy profiles x ∈ Πi∈NAi, satisfying (7).

Definition 18. Let Γ be a r-closed family of strategic games. A solution ϕ
satisfies COCONSn−1

∗ (the appropriate version of converse for SSEn−1), if for
every G = (N, (Ai)i∈N , (ui)i∈N ) ∈ Γ , n ≥ 2, it is true that:

[
x ∈ ϕ̃(G) and x ∈ POn−1

MG (G)
] ⇒ x ∈ ϕ(G) (8)

In accordance with COCONSn−1
∗ property if the restrictions xS of some strategy

profile x ∈ A satisfy optimality principle ϕ in every reduced game GS,x, and x ∈
POn−1

MG (G) then x is the optimal strategy profile in the original game G.

Theorem 1. A solution ϕ on a r-closed family of multicriteria games Γ satisfies
CONS, SOPR, POn−1

MG and COCONSn−1
∗ , if and only if ϕ = SSEn−1 (i.e.

ϕ(G) = SSEn−1(G) for every G ∈ Γ ).

Proof. 1. It is not difficult to verify that SSEn−1 satisfies CONS, SOPR, POn−1
MG

and COCONSn−1
∗ . Let us check here that SSEn−1 satisfies CONS (for instance).

If x ∈ SSEn−1 then ∀ S ⊂ N\{i} yS ∈ AS :
{

uj(yS , x−S) ≥ uj(xS , x−S) = uj(x)
j ∈ S. . (9)

Consider an arbitrary coalition S1 ⊂ N , S1 6= ∅, N and reduced game GS1,x.
Let S ⊂ S1\{i} ⊂ S1 ⊂ N . Using (9) we have that

∀ S ⊂ S1\{i} yS ∈ AS :
{

uj(yS , xS1\S , xN\S1) = uj(yS , xN\S) ≥ uj(x)
j ∈ S. .

This means that xS1 ∈ SSEn−1(GS1,x), i.e. SSEn−1 satisfies CONS.



2. Now let ϕ be a solution on Γ that satisfies the foregoing four axioms. We prove
by induction (on the number of players n) that ϕ(G) = SSEn−1(G) for every
G ∈ Γ .
By SOPR ϕ(G) = SSEn−1(G) for every one-person multicriteria game G ∈ Γ .
Now assume that

ϕ(G) = SSEn−1(G) ∀ G = (N, (Ai)i∈N , (ui)i∈N ) ∈ Γ, (10)

where 1 ≤ |N | ≤ k, k ≥ 1, and consider an arbitrary (k+1)-person multicriteria
game G ∈ Γ . Let x ∈ ϕ(G). From the CONS of ϕ it follows that

x ∈ ϕ̃(G). (11)

Using the induction hypothesis and the notation (6) we obtain:

ϕ̃(G) = S̃SE
n−1

(G).

Moreover, by POn−1
MG of ϕ,

x ∈ POn−1
MG (G). (12)

Taking into account (10), (11), and (12), and COCONSn−1
∗ property of SSEn−1,

we obtain that x ∈ SSEn−1(G), and, hence, ϕ(G) ⊂ SSEn−1(G).
Similarly, we may prove that SSEn−1(G) ⊂ ϕ(G) for every (k + 1)-person
multicriteria game G ∈ Γ . The inductive conclusion completes the proof.

Corollary 1. Let ϕ be a solution on r-closed family of games Γ , that satisfies
CONS and POn−1

MG . Then

ϕ(G) ⊂ SSEn−1(G) ∀ G ∈ Γ, | N |= n ≥ 2.

Proof. Let x ∈ ϕ(G), n ≥ 2. To prove that x ∈ SSEn−1(G) we need to verify that
for every possible proper coalition

S ⊂ N, S 6= N, ∅, yS ∈ AS :
{

uj(yS , x−S) ≥ uj(x),
j ∈ S.

i.e.
xS ∈ POMG(GS,x) ∀ S ⊂ N : s =| S |= 1, 2, . . . , n− 1 (13)

By POn−1
MG of ϕ

xS ∈ POMG(GS,x) ∀ S ⊂ N : s = n− 1.

If n = 2 we have already established (13) for all possible proper coalitions. Otherwise
(if n ≥ 3), consider a proper reduced game GS,x, where s = n− 1. By CONS of ϕ
xS ∈ ϕ(GS,x), and by POn−1

MG xS ∈ POs−1
MG(GS,x), i.e.

xT ∈ POMG(GT,x) ∀ T ⊂ S, t = |T | = s− 1 = n− 2.

Using the same approach we can establish (13) for every proper coalition S ⊂ N ,
s =| S |= n− 1, n− 2, . . . , 1.



Another axiomatic characterization of the SSEn−1 correspondence involves the
following axioms (Peleg B. and Tijs S., 1996).
Definition 19. Let Γ be a set of multicriteria games, and ϕ be a solution Γ . ϕ
satisfies independence of irrelevant strategies (IIS) if the following condition holds:
if G = (N, (Ai)i∈N , (ui)i∈N ) ∈ Γ , x ∈ ϕ(G), xi ∈ Bi ⊂ Ai for all i ∈ N , and
G∗ = (N, (Bi)i∈N , (ui)i∈N ) ∈ Γ , then x ∈ ϕ(G∗).

A family of games Γ is called s-closed, if for every game G = (N, (Ai)i∈N , (ui)i∈N ) ∈
Γ , and Bi ⊂ Ai, Bi 6= ∅, i ∈ N , the game G∗ = (N, (Bi)i∈N , (ui)i∈N ) ∈ Γ . Further,
Γ is called closed, if it is both r-closed and s-closed. For example, the set of all finite
multicriteria games is closed.
Definition 20. A solution ϕ on r-closed family of games Γ satisfies the dummy
axiom (DUM), if for every game G = (N, (Ai)i∈N , (ui)i∈N ) ∈ Γ and every ”dummy
player” d in G (i.e. player d ∈ N such that | Ad |= 1), the following condition holds:
ϕ(G) = Ad × ϕ(GN\{d}, x), where x is an arbitrary strategy profile from A.

Note, that SSEn−1 satisfies IIS and DUM .
Proposition 1. (Peleg B., Tijs S. [1996]) If a solution ϕ on closed family of games
Γ satisfies IIS and DUM , then ϕ also satisfies CONS.

The next axiomatic characterization of SSEn−1 correspondence follows from
the theorem 1 and proposition 1.

Theorem 2. Let Γ be a closed family of multicriteria games. The SSEn−1

correspondence is the unique solution on Γ that satisfies SOPR, POn−1
MG , COCONSn−1

∗ ,
IIS and DUM .
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