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1. Introduction

Let Ω be an unbounded open subset of Rn, n ≥ 2. As is customary, byW 1
2, loc(Ω)

we denote the space of functions which are locally Sobolev, i.e.,

W 1
2, loc(Ω) = {f : f ∈W 1

2 (Ω ∩Bx
ρ ) ∀ ρ > 0 , ∀x ∈ R

n},

where B x
ρ the open ball in R

n of radius ρ centered at the point x [9]. If

x = 0, we write Bρ instead of B x
ρ . In this case, denote by

o

W 1
2, loc(Ω) the

subset of W 1
2, loc(R

n) which is the closure of C∞
0 (Ω) in the system of seminorms
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‖u‖W 1
2
(Ω∩Bρ), ρ > 0. Further, following [10, Subsec. 1.1], denote by L1

2(Ω) the

space of distributions (“generalized functions”) whose first derivatives belong
to L2(Ω); in other words,

L1
2(Ω) = {f ∈ D

′

(Ω) :

∫

Ω

|∇f | 2dx <∞}.

Let ω ⊆ R
n be an open set and let K ⊂ ω be a compact set. Denote by

Φϕ(K, ω) the set of functions ψ ∈ C∞
0 (ω) such that ψ = ϕ in a neighborhood

of K, or, in other words, ψ − ϕ ∈
o

W1
2, loc(R

n \ K). Write Ψ(K, ω) = {ψ ∈
C∞
0 (ω) : ψ = 1 in a neighborhood of K.

The quantity

capϕ(K, ω) = inf
ψ∈Φϕ(K, ω)

∫

ω

|∇ψ| 2dx

is referred to as the capacity of the compact set K with respect to an open set
ω [10, Subsec. 7.2]. The capacity of an arbitrary closed subset E ⊂ ω of Rn is
defined by the rule

capϕ(E,ω) = sup
K⊂E

capϕ(K, ω),

where the supremum on the right-hand side is taken over all compacta K ⊂ E.
If ω = R

n, then we write capϕ(E) instead of capϕ(E,R
n).

We also need the following capacity [10, Subsec. 9.1]:

Cap(K,W 1
2 (ω)) = inf

ψ∈Ψ(K, ω)



∫

ω

|∇ψ| 2dx+

∫

ω

|ψ|2 dx


 .

As above, the capacity of an arbitrary set E ⊂ ω closed in R
n is given by the

rule

Cap(E,W 1
2 (ω)) = sup

K⊂E
Cap(K,W 1

2 (ω)),

where the supremum on the right-hand side is taken over all compacta K ⊂ E.

Finally, denote by W−1
2 the space of continuous linear functionals on W 1

2 .
A set E ⊂ R

n is said to be (2, 1)-polar if the only element of W−1
2 supported

by E is zero [10, Subsec. 9.2].
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2. Statement of the Problem

Here and below, L stands for the divergence operator of the form

L =

n∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
,

where measurable bounded coefficients aij satisfy the uniform ellipticity condi-
tion

c1|ξ|
2 ≤

n∑

i,j=1

aij(x) ξi ξj ≤ c2|ξ|
2, ξ ∈ R

n, c1, c2 > 0.

By a solution of the Dirichlet problem
{
Lu = 0 on Ω

u|∂Ω = ϕ,
(1)

where ϕ ∈W 1
2, loc(R

n), we mean a function u ∈W 1
2, loc(Ω) such that

1) u−ϕ ∈
o

W1
2, loc(Ω), i.e., (u−ϕ)µ ∈

o

W1
2(Ω) for any function µ ∈ C∞

0 (Rn);
2) the function u has the bounded Dirichlet integral

∫

Ω

|∇u|2dx <∞;

3) ∫

Ω

n∑

i,j=1

aij(x)
∂u

∂xj

∂ψ

∂xi
dx = 0

for any function ψ ∈ C∞
0 (Ω).

3. Main Results

Theorem 1. Let capϕ− c(R
n \ Ω) < ∞ for some constant c ∈ R. Then

problem (1) has a solution.

Theorem 2. Let problem (1) have a solution, and let
∫

Rn\Ω

|∇ϕ|2dx <∞.

Then there is a constant c ∈ R such that capϕ− c(R
n \ Ω) <∞.
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Theorem 3. For any function ϕ ∈W 1
2, loc(R

n), the condition capϕ− c(R
n \

Ω) <∞ is equivalent to the inequality

∞∑

k=1

capϕ− c((Brk+1
\Brk−1

) ∩ (Rn \Ω), Brk+2
\Brk−2

) <∞,

where

rk =

{
2k , if n ≥ 3

22
k
, if n = 2.

Let ω ⊂ R
n be a bounded Lipschitz domain, and let µ be a measure on ω

such that

sup
x∈Rn, ρ>0

ρ1−nµ(Bx
ρ ∩ ω) <∞.

In this case, for any function v ∈W 1
2 (ω), there is a c ∈ R such that

σ(ω, µ)‖v − c‖L2(ω,µ) ≤ ‖∇v‖L2(ω), (2)

where the constant σ(ω, µ) > 0 does not depend on v [10, Subsec. 1.4.5].

Theorem 4. Let problem (1) have a solution, and let µk be a family of

measures on ωk, where ωk, k = 1, 2, . . ., are pairwise disjoint Lipschitz domains

in R
n such that

sup
x∈Rn, ρ>0

ρ1−nµk(B
x
ρ ∩ ωk) <∞

and
∞∑

k=1

∫

ωk\Ω

|∇ϕ|2dx <∞. (3)

Write

mk(ϕ) = inf
c∈R

‖ϕ− c‖L2(ωk\Ω,µk).

Then
∞∑

k=1

σ2(ωk, µk)m
2
k(ϕ) <∞, (4)

where σ(ωk, µk) stands for the coefficient in inequality (2).

To prove the Theorems 1 – 4 we need a number of auxiliary results.
An inequality from the following lemma is fairly well-known [e.g., 5 p. 288,

p. 398] and occurs in various forms. However, for the sake of completeness, we
give a detailed proof of this inequality.
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Lemma 1 (Special Hardy inequality). Let ψ ∈ C∞
0 (Rn) and n ≥ 3. Then

∫

Rn

|∇ψ|2 dx ≥ k

∫

Rn

|ψ|2

|x|2
dx,

where constant k doesn’t depend on u.

Proof. Let’s pass to the polar coordinates. Hence, the integral in the right-
hand side takes the form

∫
dS

∞∫

0

|ψ|2

r2
rn−1 dr,

where first integral is taken over all angular coordinates. Let’s fix angular
coordinates and obtain a chain of transformations

∞∫

0

|ψ|2

r2
rn−1 dr =

∞∫

0

|ψ2| rn−3 dr =
1

n− 2

∞∫

0

|ψ|2 (rn−2)
′

dr =

1

n− 2


rn−2 |ψ|2

∣∣∣∣
∞

r=0

−

∞∫

0

2 |ψ| |ψ|′ rn−2 dr


 .

The first term in the final bracket, obviously, equals zero, as ψ is a sampling
function. Let’s estimate the modulus of the second term, using the inequality

ab ≤ ε a2 + 1
ε b

2, considering a = |ψ| r
n−3

2 , b = r
n−1

2 |ψ ′| .

∣∣∣∣∣∣

∞∫

0

2 |ψ| |ψ|′ rn−2 dr

∣∣∣∣∣∣
≤ 2

∞∫

0

|ψ| |ψ′| rn−2 dr ≤

2


ε

∞∫

0

|ψ|2 rn−3 dr +
1

ε

∞∫

0

|ψ′|2 rn−1 dr


 .

Thus, we obtain a chain of inequalities

∞∫

0

|ψ|2 rn−3 dr ≤
2

n− 2

∞∫

0

|ψ| |ψ′| rn−2 dr ≤

2 ε

n− 2

∞∫

0

|ψ|2 rn−3 dr +
2

ε(n − 2)

∞∫

0

|ψ′|2 rn−1 dr.
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Consequently, by transferring of the first term to the left-hand side, we obtain
following inequality

(1−
2 ε

n− 2
)

∞∫

0

|ψ|2 rn−3 dr ≤
2

ε(n− 2)

∞∫

0

|ψ′|2 rn−1 dr.

Given that |ψ′|2 ≤ |∇ψ|2 and that rn−1 represents the Jacobian of the trans-
formation to the polar coordinates, after returning to the initial coordinates,
we obtain ∫

Rn

|∇ψ|2 dx ≥ k

∫

Rn

|ψ|2

|x|2
dx.

Remark. Taking a sequence {ψk} ∈ C∞
0 (Rn), which is fundamental in

L1
2, i.e. in seminorm

‖ · ‖L1
2
(Rn) =



∫

Rn

|∇ψ|2 dx




1

2

,

by the special Hardy inequality, we immediately obtain a fundamentality of this
sequence in the metric

‖ · ‖ =



∫

Rn

|∇ψ|2 dx+

∫

Rn

|ψ|2

|x|2
dx




1

2

.

Therefore, the special Hardy inequality is also fair for ψ ∈
o

L12(R
n).

Lemma 2 (General Hardy inequality). Let u ∈ L1
2(R

n) and n ≥ 3. Then
there is a constant c such that the following inequality is fair

∫

Rn

|∇u|2 dx ≥ k

∫

Rn

|u− c|2

|x|2
dx,

where constant k doesn’t depend on u.

Proof. The fact that u belongs to the space L1
2(R

n) is equivalent to the
following condition ∫

Rn

|∇u|2 dx <∞.
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Let’s decompose the space L1
2(R

n) into a direct product of the space
o

L1
2(R

n)

and its orthogonal complement. Let u0 be a projection of u on
o

L1
2(R

n), and h
is a component from the orthogonal complement. Considering that the space
o

L1
2(R

n) is Hilbert and separable, we find out that for any v ∈
o

L1
2(R

n) it is true
that ∫

Rn

∇v∇hdx = 0.

Hence, △h = 0 in R
n. From the Parseval’s identity, we obtain that

∫

Rn

|∇h|2 dx+

∫

Rn

|∇u0|
2 dx =

∫

Rn

|∇u|2 dx.

Due to the finiteness of the right-hand side, we have the finiteness of each term
on the left-hand side. In particular, we obtain that

∫

Rn

|∇h|2 dx <∞.

Recalling the ellipticity of h, we obtain that h is constant. Then, using the
special Hardy inequality with respect to u0 = u − h = u − c, we obtain the
general Hardy inequality.

Lemma 3. In case of n = 2, the general Hardy inequality takes the form

∫

R2

|∇u|2 dx ≥ k

∫

|x|≥ 2δ

|u|2

|x|2 ln2 |x|
δ

dx,

for any function u ∈ L1
2(R

2) and for any constant δ > 0, where constant k

doesn’t depend on u, which is equivalent to the inequality

∫

R2

|∇u|2 dx ≥ k

∫

R2

|u|2

|x|2 ln2 |x|
dx,

for any function u ∈ L1
2(R

2) such that u = 0 almost everywhere in a neighbor-

hood of zero, and where constant k doesn’t depend on u.

Proof. At first let’s prove this proposition for a function u ∈ C∞(R2).
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Let’s pass to the polar coordinates. Hence, the integral in the right-hand
side takes the form

2π∫

0

dφ

∞∫

0

r|u|2

r2 ln2 r
dr.

Let’s fix angular coordinates and obtain a chain of transformations

∞∫

0

r|u|2

r2 ln2 r
dr =

∞∫

0

|u|2

r ln2 r
dr = −

∞∫

0

(
1

ln r

)′

|u|2 dr =

−
1

ln r
|u|2
∣∣∣∣
∞

r=0

+

∞∫

0

1

ln r
2 |u||u|′dr.

The first term in the final bracket, obviously, is zero, as u vanishes in a neigh-
borhood of zero. Let’s estimate the modulus of the second term, using the
inequality ab ≤ ε a2 + 1

ε b
2, considering a = |u|

r
1
2 ln r

, b = r
1

2 |u′| .

∣∣∣∣∣∣

∞∫

0

1

ln r
2|u||u|′dr

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∞∫

0

2r
1

2 |u||u|′

r
1

2 ln r
dr

∣∣∣∣∣∣
≤ 2

∞∫

0

r
1

2 |u||u′|

r
1

2 ln r
dr ≤

2


ε

∞∫

0

|u|2

r ln2 r
dr +

1

ε

∞∫

0

r|u′|2 dr


 .

Thus, we obtain a chain of inequalities

∞∫

0

|u|2

r ln2 r
dr ≤ 2 ε

∞∫

0

|u|2

r ln2 r
dr +

2

ε

∞∫

0

r|u′|2 dr.

Consequently, by transferring of the first term to the left-hand side, we obtain
the following inequality

(1− 2 ε)

∞∫

0

|u|2

r ln2 r
dr ≤

2

ε

∞∫

0

r|u′|2 dr.

Given that |u′|2 ≤ |∇u|2 and that r represents the Jacobian of the transfor-
mation to the polar coordinates, after returning to the initial coordinates, we
obtain ∫

R2

|∇u|2 dx ≥ k

∫

R2

|u|2

|x|2 ln2 |x|
dx.
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Then, using the passage to the limit and the fact that C∞ is dense in L1
2 [10,

p. 18], we obtain the proof of the Lemma.

Lemma 4. Let E be a (2, 1)-polar set. Then u
∣∣
E

= 0 for any function

u ∈W 1
2, loc(R

n), i.e. µu ∈
o

W1
2(R

n \E) for any function µ ∈ C∞
0 (Rn).

Proof. It is known [10, p. 331, Theorem 1] that the space D(Ω) is dense in
W 1

2 if and only if Rn \Ω is a (2, 1)-polar set. That implies the statement of the
Lemma.

Lemma 5. Let Cap((Rn \ Ω) ∩Br0 ,W
1
2 (R

n)) > 0 for some r0. Then

‖ϕ ‖L2(Br) ≤ A ‖∇ϕ ‖L2(Br)

for any r > 2 r0 and for any ϕ ∈W 1
2, loc(R

n) such that

ϕ

∣∣∣∣
(Rn\Ω)∩Br0

= 0,

where constant A doesn’t depend on ϕ.

Proof. Let’s suppose the contrary. Then for any constant A there is r > 2 r0
and a function ϕ ∈W 1

2, loc(R
n) such that

ϕ

∣∣∣∣
(Rn\Ω)∩Br0

= 0,

and besides it is true that

‖ϕ ‖L2(Br) > A ‖∇ϕ ‖L2(Br).

Let’s choose a sequence As = s, s = 1, 2, . . . There is a sequence ϕs such that
‖ϕs ‖L2(Br) > s ‖∇ϕs ‖L2(Br). Denote

ψs =
ϕs

‖ϕs ‖L2(Br)
.

It is obvious that ‖ψs ‖L2(Br) = 1, while

‖∇ψs ‖L2(Br) → 0 as s→ ∞.
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Consequently, ‖k−ψs‖W 1
2
(Br) tends to zero as s→ ∞ for some constant k. Thus,

taking the function (k − ψs)η, where η ∈ C∞
0 (B2r0), η ≡ 1 in a neighborhood

of Br0 , we obtain that

Cap((Rn \ Ω) ∩ Br0 ,W
1
2 (R

n)) ≤

∫

Rn

|∇((k−ψs)η)|
2dx ≤ const ‖k−ψs‖W 1

2
(Br).

Taking the limit as s→ ∞, it follows that Cap((Rn \ Ω) ∩ Br0 ,W
1
2 (R

n)) = 0.
This contradiction proves the Lemma.

Proof of the Theorem 1. {ri}
n
i=1 and {ρi}

n
i=1 are infinitely increasing sequences

of real numbers. Let ri < ρi for all i, and

capϕ− c((R
n \Ω) ∩Bri , Bρi) < capϕ− c(R

n \ Ω) +
1

2 i
, i = 1, 2, . . .

It is obvious [11] that capacity capϕ− c((R
n \ Ω) ∩ Bri , Bρi) is achieved by the

function vi ∈
o

W1
2(Bρi) such that





△vi = 0 Bρi \ ((R
n \ Ω) ∩Bri)

vi

∣∣∣∣
(Rn\Ω)∩Bri

= ϕ− c,
(5)

where the last equality means that (vi−(ϕ−c))µ ∈
o

W1
2(Bρi \((R

n\Ω)∩Bri)) for
any µ ∈ C∞

0 (Bρi). Along with the problem (5), let’s consider another problem:





Lui = 0 on Bρi \ ((R
n \ Ω) ∩Bri)

ui

∣∣∣∣
(Rn\Ω)∩Bri

= ϕ− c,
(6)

where ui ∈
o

W1
2(Bρi).

The following statement takes place: let function ui be a solution of the
problem (6), and function vi is a solution of the problem (5). Then

∫

Bρi

|∇vi|
2dx ≤

∫

Bρi

|∇ui|
2dx ≤ c

∫

Bρi

|∇vi|
2dx , (7)

where c is a non-negative constant, which doesn’t depend on ui and vi. Let’s
prove this fact. The left-hand inequality, obviously, follows from the definition
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of capacity. Let’s prove the right-hand inequality. Given that the function ui
is a solution of the problem (6), it is true that

∫

Bρi

n∑

l,m=1

alm(x)
∂ui

∂xm

∂ψ

∂xl
dx = 0

for any function ψ ∈
o

W1
2(Ω). In particular, taking ψ = u− v, we obtain

∫

Bρi

n∑

l,m=1

alm(x)
∂ui

∂xm

∂ui

∂xl
dx−

∫

Bρi

n∑

l,m=1

alm(x)
∂ui

∂xm

∂vi

∂xl
dx = 0,

from where the following estimates are obtained

γ

∫

Bρi

|∇ui|
2dx ≤

∫

Bρi

n∑

l,m=1

alm(x)
∂ui

∂xm

∂ui

∂xl
dx =

∫

Bρi

n∑

l,m=1

alm(x)
∂ui

∂xm

∂vi

∂xl
dx ≤

const



∫

Bρi

|∇ui|
2dx




1

2


∫

Ω

|∇vi|
2dx




1

2

,

that prove the right-hand inequality in (7).
It is obvious that

capϕ− c((R
n \ Ω) ∩Bri) ≤

∫

Bρi

|∇vi|
2dx < capϕ− c(R

n \Ω) +
1

2 i
.

At the same time, from the inequality (7), it follows that
∫

Bρi

|∇ui|
2dx < c

(
capϕ− c(R

n \ Ω) +
1

2 i

)
.

If Cap(Rn \ Ω,W 1
2 (R

n)) = 0 then the set R
n \ Ω is (2, 1)-polar [10, p. 331],

what means, according to the Lemma 4, that the function 1 − ϕ is zero on
R
n \ Ω. Thus, taking the unit function, we obtain the required solution of the

problem (1).
Now let Cap((Rn \ Ω) ∩ Bri ,W

1
2 (R

n)) > 0 for some ri. Then, from the
Lemma 5, we obtain that the sequence {ui}

n
i=1 is bounded both in L2(Br) and

W 1
2 (Br) for any r. Indeed, for sufficiently large i, j it is true that

ui − uj ∈
o

W
1
2, loc(R

n \ ((Rn \ Ω) ∩Br)) , i, j > i0.
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Thus, fixing j, we have

‖ui‖
2
L1
2

+ ‖ui‖
2
W 1

2
(K) ≤ α

(
‖uj‖

2
W 1

2
(K) + capϕ− c(R

n \ Ω) +
1

2 i
+

1

2 j

)

for any compacta K ⊂ R
n, where constant α > 0 doesn’t depend on ui.

Due to the compactness of the embeddingW 1
2 (Br) in L2(Br), we can choose

a subsequence of the sequence {ui}
n
i=1 which is fundamental in L2(Br). In order

not to overload the indexes, we denote this subsequence also as {ui}
n
i=1. Let’s

take a function η ∈ C∞
0 (Br) such that η ≡ 1 in an open neighborhood of the set

Br/2. Due to the fact that ui satisfies (6), for the difference ui − uj we obtain
that ∫

Br

n∑

l,m=1

alm(x)
∂(ui − uj)

∂xm

∂ψ

∂xl
dx = 0,

where ψ = η2 (ui − uj). In other words,

∫

Br

n∑

l,m=1

alm(x)
∂(ui − uj)

∂xm

∂η2

∂xl
(ui − uj) dx+

∫

Br

n∑

l,m=1

alm(x)η
2 ∂(ui − uj)

∂xm

∂(ui − uj)

∂xl
dx = 0.

Let’s rewrite the last relation in the form

γ

∫

Br

η2|∇(ui − uj)|
2dx ≤ −2

∫

Br

n∑

k,l=1

akl(x)
∂(ui − uj)

∂xl

∂η

∂xk
η (ui − uj) dx,

whence, in view of the inequality ab ≤ 1
2 a

2 + 1
2 b

2, we obtain that

∫

Br

η2|∇(ui − uj)|
2dx ≤ c1

∫

Br

|∇(ui − uj)|
2η2dx+ c2

∫

Br

|∇η|2(ui − uj)
2 dx,

where c1, c2 are non-negative constants, which don’t depend on ui. Thus, we
have ∫

Br/2

|∇(ui − uj)|
2dx ≤ β

∫

Br

(ui − uj)
2 dx,

where constant β > 0 doesn’t depend on ui. Last inequality proves that the
sequence {ui}

n
i=1 is fundamental in W 1

2 (Br/2) for any r > 0. Therefore, there
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is a function u ∈W 1
2, loc(R

n) such that for any r > 0 the sequence {ui}
n
i=1 tends

to u in W 1
2 (Br). It is obvious that the function u is the desired solution of the

problem (1).

Proof of the Theorem 2. Let’s suppose that the function u is a solution of the
problem (1). Let’s extend u on R

n \Ω with value ϕ. Let n ≥ 3, then there is a
constant c ∈ R such that for the function u the general Hardy inequality takes
place. Denote

νR = η

(
|x|

R

)
(u− c),

where η ∈ C∞
0 (B2) and η ≡ 1 in an open neighborhood of the set B1. Hence,

we obtain

νR|(Rn\Ω)∩BR
= ϕ− c.

The Dirichlet integral for the function νR can be estimated

∫

B 2R

∣∣∣∣∇
(
η

(
|x|

R

)
(u− c)

)∣∣∣∣
2

dx ≤

2



∫

B 2R

∣∣∣∣∇η
(
|x|

R

)
(u− c)

∣∣∣∣
2

dx+

∫

B 2R

∣∣∣∣η
(
|x|

R

)
∇(u− c)

∣∣∣∣
2

dx


 .

Let’s notice that
∣∣∣∣∇η

(
|x|

R

)∣∣∣∣ ≤
p

R
and

1

R2
≤

4

|x|2
for x ∈ B 2R,

where p > 0 is a constant. Then, considering the Hardy inequality, we obtain

∫

B 2R

∣∣∣∣∇η
(
|x|

R

)
(u− c)

∣∣∣∣
2

dx ≤
p 2

R2

∫

B 2R\BR

|u− c|2 dx ≤

4p 2

∫

B 2R\BR

|u− c|2

|x|2
dx ≤

4p 2

k

∫

B 2R

|∇u|2dx.

Thus,

capϕ− c((R
n \ Ω) ∩BR) ≤

∫

B 2R

|∇νR|
2dx ≤ γ

∫

B 2R

|∇u|2dx <∞,
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where γ > 0 is a constant, which doesn’t depend on νR. Proceeding to the limit
as R→ ∞, we obtain

capϕ− c(R
n \ Ω) ≤ γ

∫

Rn

|∇u|2dx <∞,

that proves the Theorem 2 for n ≥ 3.
In case of n = 2, denoting

νR = η

(
ln |x|

R

lnR

)
u,

where η ∈ C∞
0 (R2), η = 0 in a neighborhood of zero and η ≡ 1 in a open

neighborhood of B1, we obtain

νR

∣∣∣∣
(Rn\Ω)∩BR2

= ϕ.

The Dirichlet integral for the function νR can be estimated

∫

B
2R2

∣∣∣∣∣∇
(
η

(
ln |x|

R

lnR

)
u

)∣∣∣∣∣

2

dx ≤

2



∫

B
2R2

∣∣∣∣∣∇η
(
ln |x|

R

lnR

)
u

∣∣∣∣∣

2

dx+

∫

B
2R2

∣∣∣∣∣η
(
ln |x|

R

lnR

)
∇u

∣∣∣∣∣

2

dx


 .

Let’s notice that
∣∣∣∣∣∇η

(
ln |x|

R

lnR

)∣∣∣∣∣ ≤
2q

|x| lnR2
and

1

ln2R2
≤

m

ln2 |x|
for x ∈ B 2R2 ,

where q,m > 0 are some constants. Then, considering the Hardy inequality, we
obtain

∫

B
2R2

∣∣∣∣∣∇η
(
ln |x|

R

lnR

)
u

∣∣∣∣∣

2

dx ≤

∫

B
2R2\BR2

4 q2

|x|2 ln2R2
|u|2 dx ≤

4 q2m

∫

B
2R2\BR2

|u|2

|x|2 ln2 |x|
dx ≤

4q 2m

k

∫

B
2R2

|∇u|2dx.
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Thus,

capϕ((R
2 \Ω) ∩BR2) ≤

∫

B
2R2

|∇νR|
2dx ≤ γ

∫

B
2R2

|∇u|2dx <∞,

where γ > 0 is a constant, which doesn’t depend on νR. Proceeding to the limit
as R→ ∞, we obtain

capϕ(R
2 \Ω) ≤ γ

∫

R2

|∇u|2dx <∞.

Thus, the Theorem 2 is completely proved.

Proof of the Theorem 3. Let capϕ− c(R
n \ Ω) < ∞. Then, by the Theorem 2,

there is a function u, which is a solution of the problem (1). Let n ≥ 3. Let’s
consider a shearing function ηk ∈ C∞

0 (Rn) such that ηk(x) = 1 on B2k+1 \B2k−1

and supp ηk(x) ⊂ B2k+2 \ B2k−2 , k = 1, 2, . . ., which is constructed as follows.
Let η(x) is a monotone non-decreasing function from C∞(Rn), which is equal
to zero on the interval [−∞, 14 ] and is equal to one on the interval [34 ,+∞].
Further, we denote by ηk(x) the following function

ηk(x) =





η

(
|x| − rk−2

rk−1 − rk−2

)
, if x ∈ Brk−1

\Brk−2

1 , if x ∈ Brk+1
\Brk−1

η

(
rk+2 − |x|

rk+2 − rk+1

)
, if x ∈ Brk+2

\Brk+1
.

We have the estimate

|∇ηk(x)|
2 ≤

c

|x|2
,

where c doesn’t depend on k. Then, considering the Hardy inequality, we obtain
a chain of inequalities

capϕ− c((Brk+1
\Brk−1

) ∩ (Rn \ Ω), Brk+2
\Brk−2

) ≤
∫

Brk+2
\Brk−2

|∇ (ηk(x)u(x))|
2 dx ≤ 2

∫

Brk+2
\Brk−2

|∇ηk(x)u(x)|
2 dx+

2

∫

Brk+2
\Brk−2

|ηk(x)∇u(x)|
2 dx ≤ 2c

∫

Brk+2
\Brk−2

|u(x)|2

|x|2
dx+
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b1

∫

Brk+2
\Brk−2

|∇u(x)|2 dx,

where b1 is a positive constant, which doesn’t depend on u. Thus,

∞∑

k=1

capϕ− c((Brk+1
\Brk−1

) ∩ (Rn \ Ω), Brk+2
\Brk−2

) ≤

∞∑

k=1

2

∫

Brk+2
\Brk−2

|u(x)|2

|x|2
dx+

∞∑

k=1

b1

∫

Brk+2
\Brk−2

|∇u(x)|2 dx.

Due to the fact that each point x ∈ R
n belongs to no more than three areas

Brk+2
\Brk−2

, we obtain

∞∑

k=1

2

∫

Brk+2
\Brk−2

|u(x)|2

|x|2
dx+

∞∑

k=1

b1

∫

Brk+2
\Brk−2

|∇u(x)|2 dx ≤

b2

∫

Rn

|u(x)|2

|x|2
dx+ b3

∫

Rn

|∇u(x)|2 dx ≤ b4

∫

Rn

|∇u(x)|2 dx <∞,

where b2, b3, b4 are positive constants, which don’t depend on u.
Now let n = 2. Denote

ηk(x) =





η



ln |x|

rk−2

ln
rk−1

rk−2


 , if x ∈ Brk−1

\Brk−2

1 , if x ∈ Brk+1
\Brk−1

η

(
ln

rk+2

|x|

ln
rk+2

rk+1

)
, if x ∈ Brk+2

\Brk+1
,

where η(x) is a monotone non-decreasing function from C∞(Rn), which is equal
to zero on the interval [−∞, 14 ] and is equal to one on the interval [34 ,+∞]. We
have the estimate

|∇ηk(x)|
2 ≤

c

|x|2 ln2 |x|
,

where c doesn’t depend on k. Then, considering the Hardy inequality, we obtain
a chain of inequalities

capϕ− c((Brk+1
\Brk−1

) ∩ (Rn \ Ω), Brk+2
\Brk−2

) ≤
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∫

Brk+2
\Brk−2

|∇ (ηk(x)u(x))|
2 dx ≤ 2

∫

Brk+2
\Brk−2

|∇ηk(x)u(x)|
2 dx+

2

∫

Brk+2
\Brk−2

|ηk(x)∇u(x)|
2 dx ≤ 2c

∫

Brk+2
\Brk−2

|u(x)|2

|x|2 ln2 |x|
dx+

b1

∫

Brk+2
\Brk−2

|∇u(x)|2 dx,

where b1 is a positive constant, which doesn’t depend on u. Thus,

∞∑

k=1

capϕ− c((Brk+1
\Brk−1

) ∩ (Rn \ Ω), Brk+2
\Brk−2

) ≤

∞∑

k=1

2

∫

Brk+2
\Brk−2

|u(x)|2

|x|2 ln2 |x|
dx+

∞∑

k=1

b1

∫

Brk+2
\Brk−2

|∇u(x)|2 dx.

Due to the fact that each point x ∈ R
n belongs to no more than three areas

Brk+2
\Brk−2

, we obtain

∞∑

k=1

2

∫

Brk+2
\Brk−2

|u(x)|2

|x|2 ln2 |x|
dx+

∞∑

k=1

b1

∫

Brk+2
\Brk−2

|∇u(x)|2 dx ≤

b2

∫

Rn

|u(x)|2

|x|2 ln2 |x|
dx+ b3

∫

Rn

|∇u(x)|2 dx ≤ b4

∫

Rn

|∇u(x)|2 dx <∞,

where b2, b3, b4 are positive constants, which don’t depend on u.

The converse. Let

∞∑

k=1

capϕ− c((Brk+1
\Brk−1

) ∩ (Rn \ Ω), Brk+2
\Brk−2

) <∞

and n ≥ 3. Let’s consider a shearing function

ψ̃k(x) =





η

(
|x| − rk−1

rk − rk−1

)
, if |x| ≤ rk

η

(
rk+1 − |x|

rk+1 − rk

)
, if |x| ≥ rk.
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Denote

ψk(x) =
ψ̃k(x)

∞∑
i=0

ψ̃i(x)

.

Obviously,
∞∑

k=1

ψk(x) = 1.

From the condition on the capacity, we have functions uk(x), which implement
the capacity and equal to ϕ−c on Brk+1

\Brk−1
and with supports from Brk+2

\
Brk−2

. Let’s notice that

N2∑

k=N1

uk(x)ψk(x) = ϕ− c,

if x is from a neighborhood of the set (BrN2−1
\ BrN1+1

) ∩ (Rn \ Ω). Then we
obtain

∣∣∣∣∣∣
∇

N2∑

k=N1

uk(x)ψk(x)

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

N2∑

k=N1

∇uk(x)ψk(x) +

N2∑

k=N1

uk(x)∇ψk(x)

∣∣∣∣∣∣

2

≤

2

∣∣∣∣∣∣

N2∑

k=N1

∇uk(x)ψk(x)

∣∣∣∣∣∣

2

+ 2

∣∣∣∣∣∣

N2∑

k=N1

uk(x)∇ψk(x)

∣∣∣∣∣∣

2

.

Since for each x ∈ R
n there are no more than three natural numbers k ∈

{N1, . . . , N2} such that ψk(x) 6= 0, then we obtain

∣∣∣∣∣∣

N2∑

k=N1

∇uk(x)ψk(x)

∣∣∣∣∣∣

2

≤ 9

N2∑

k=N1

|∇uk(x)|
2|ψk(x)|

2.

Similarly, ∣∣∣∣∣∣

N2∑

k=N1

uk(x)∇ψk(x)

∣∣∣∣∣∣

2

≤ 9

N2∑

k=N1

|uk(x)|
2|∇ψk(x)|

2.

As a result, we obtain

∣∣∣∣∣∣
∇

N2∑

k=N1

uk(x)ψk(x)

∣∣∣∣∣∣

2

≤ 18

N2∑

k=N1

|∇uk(x)|
2|ψk(x)|

2 + 18

N2∑

k=N1

|∇uk(x)|
2|ψk(x)|

2.
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Therefore,

∫

Rn

∣∣∣∣∣∣
∇




N2∑

k=N1

uk(x)ψk(x)




∣∣∣∣∣∣

2

dx ≤ 18




N2∑

k=N1

∫

Brk+2
\Brk−2

|∇uk(x)ψk(x)|
2dx+

N2∑

k=N1

∫

Brk+2
\Brk−2

|uk(x)∇ψk(x)|
2dx


 .

The first term in the last expression can be estimated as follows

N2∑

k=N1

∫

Brk+2
\Brk−2

|∇uk(x)ψk(x)|
2dx ≤

N2∑

k=N1

∫

Brk+2
\Brk−2

|∇uk(x)|
2dx,

since |ψk(x)| ≤ 1. Using the fact that

|∇ψk(x)| ≤
rk+1 − rk

2k

and Friedrichs’ inequality, we estimate the second term as follows

N2∑

k=N1

∫

Brk+2
\Brk−2

|uk(x)∇ψk(x)|
2dx ≤

N2∑

k=N1

(rk+1 − rk)
2

4k

∫

Brk+2
\Brk−2

|uk(x)|
2dx ≤

c1

N2∑

k=N1

∫

Brk+2
\Brk−2

|∇uk(x)|
2dx,

where c1 is a positive constant, which doesn’t depend on uk and ψk. We obtain
a chain of inequalities

capϕ− c((BrN2
\BrN1

) ∩ (Rn \ Ω)) ≤

∫

Rn

∣∣∣∣∣∣
∇




N2∑

k=N1

uk(x)ψk(x)




∣∣∣∣∣∣

2

dx ≤

c2

N2∑

k=N1

∫

Brk+2
\Brk−2

|∇uk(x)|
2dx =

N2∑

k=N1

capϕ− c((Brk+1
\Brk−1

) ∩ (Rn \ Ω), Brk+2
\Brk−2

),
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where c2 is a positive constant, which doesn’t depend on uk and ψk. As N2

tending to infinity, we obtain

capϕ− c((R
n \Ω) \BrN1

) ≤
∞∑

k=N1

capϕ− c((Brk+1
\Brk−1

) ∩ (Rn \ Ω), Brk+2
\Brk−2

) <∞,

what implies that

capϕ− c(R
n \ Ω) <∞.

Now let n = 2. Then let’s consider a shearing function

ψ̃k(x) =





η



ln |x|

rk−1

ln rk
rk−1


 , if |x| ≤ rk

η

(
ln

rk+1

|x|

ln
rk+1

rk

)
, if |x| ≥ rk,

and let

ψk(x) =
ψ̃k(x)

∞∑
i=0

ψ̃i(x)

.

Obviously,
∞∑

k=1

ψk(x) = 1.

From the condition on the capacity, we have functions uk(x), which implement
the capacity and equal to ϕ−c on Brk+1

\Brk−1
and with supports from Brk+2

\
Brk−2

. Let’s notice that

N2∑

k=N1

uk(x)ψk(x) = ϕ− c,

if x is from a neighborhood of the set (BrN2−1
\ BrN1+1

) ∩ (Rn \ Ω). It is easy
to see that the functions ψk again satisfy the following relations

∫

Rn

∣∣∣∣∣∣
∇




N2∑

k=N1

uk(x)ψk(x)




∣∣∣∣∣∣

2

dx ≤ 18




N2∑

k=N1

∫

Brk+2
\Brk−2

|∇uk(x)ψk(x)|
2dx+
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N2∑

k=N1

∫

Brk+2
\Brk−2

|uk(x)∇ψk(x)|
2dx


 .

The first term in the last expression can be estimated as follows

N2∑

k=N1

∫

Brk+2
\Brk−2

|∇uk(x)ψk(x)|
2dx ≤

N2∑

k=N1

∫

Brk+2
\Brk−2

|∇uk(x)|
2dx,

since |ψk(x)| ≤ 1. Then, using the fact that |∇ψk(x)| ≤
const

|x| ln |x|
and the Hardy

inequality, we estimate the second term as follows

N2∑

k=N1

∫

Brk+2
\Brk−2

|uk(x)∇ψk(x)|
2dx ≤

N2∑

k=N1

∫

Brk+2
\Brk−2

|uk(x)|
2

|x|2 ln2 |x|
dx ≤

c1

N2∑

k=N1

∫

Brk+2
\Brk−2

|∇uk(x)|
2dx,

where c1 is a positive constant, which doesn’t depend on uk and ψk. We obtain
a chain of inequalities

capϕ− c((BrN2
\BrN1

) ∩ (Rn \ Ω)) ≤

∫

Rn

∣∣∣∣∣∣
∇




N2∑

k=N1

uk(x)ψk(x)




∣∣∣∣∣∣

2

dx ≤

c2

N2∑

k=N1

∫

Brk+2
\Brk−2

|∇uk(x)|
2dx =

N2∑

k=N1

capϕ− c((Brk+1
\Brk−1

) ∩ (Rn \ Ω), Brk+2
\Brk−2

),

where c2 is a positive constant, which doesn’t depend on uk and ψk. As N2

tending to infinity, we obtain

capϕ− c((R
n \Ω) \BrN1

) ≤
∞∑

k=N1

capϕ− c((Brk+1
\Brk−1

) ∩ (Rn \ Ω), Brk+2
\Brk−2

) <∞,



520 A.L. Beklaryan

what implies that

capϕ− c(R
n \ Ω) <∞.

Proof of the Theorem 4. Let u is a solution of the problem (1). Let’s extend u
on R

n \ Ω with value ϕ. Then, by the inequality (2), we obtain that

σ(ωk, µk)‖u− ck‖L2(ωk,µk) ≤ ‖∇u‖L2(ωk),

what implies that

σ2(ωk, µk)‖ϕ− ck‖
2
L2(ωk\Ω,µk)

= σ2(ωk, µk)‖u− ck‖
2
L2(ωk\Ω,µk)

≤ ‖∇u‖2L2(ωk)
.

Summing this relation, we obtain

∞∑

k=1

σ2(ωk, µk)‖ϕ − ck‖
2
L2(ωk\Ω,µk)

≤
∞∑

k=1

‖∇u‖2L2(ωk)
=

∞∑

k=1

∫

ωk∩Ω

|∇u|2dx+

∞∑

k=1

∫

ωk\Ω

|∇u|2dx.

Let’s notice that

∞∑

k=1

∫

ωk∩Ω

|∇u|2dx ≤

∫

Ω

|∇u|2dx <∞,

and
∞∑

k=1

∫

ωk\Ω

|∇u|2dx =

∞∑

k=1

∫

ωk\Ω

|∇ϕ|2dx <∞.

Thus, we have
∞∑

k=1

σ2(ωk, µk)‖ϕ− ck‖
2
L2(ωk\Ω,µk)

<∞,

which immediately implies (4). The Theorem is completely proved.



ON THE EXISTENCE OF SOLUTIONS OF THE FIRST... 521

Acknowledgments

The author expresses his gratitude to Professor A.A. Kon’kov for setting the
problem and for the interest shown in the process of its solution.

References

[1] A.L. Beklaryan, Existence theorems for elliptic equations in unbounded
domains, Proceedings of III International conference ”Optimization and
applications” (OPTIMA-2012), Portugal (2012), 47-50.

[2] A.L. Beklaryan, On the Existence of Solutions of the First Bound-
ary Value Problem for Elliptic Equations on Unbounded Domains, Rus-
sian Journal of Mathematical Physics, 19, No. 4 (2012), 508-511, DOI:
10.1134/S1061920812040115.

[3] L. Bers, F. John, M. Schechter, Partial differential equations, American
Mathematical Soc., USA (1964).

[4] I.M. Gel’fand, G.E. Shilov, Generalized functions. Vol. I: Properties and
operations, MA: Academic Press, Boston (1964).

[5] G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, Cambridge University
Press, New York-London-Tokyo (1952).

[6] A.N. Kolmogorov, S.V. Fomin, Elements of the Theory of Functions and
Functional Analysis, Dover Publications, USA (1999).

[7] V.A. Kondrat’ev, The Solvability of the First Boundary Value Problem for
Strongly Elliptic Equations, Tr. Mosk. Mat. Obs., 16 (1967), 209-292 [in
Russian].

[8] A.A. Kon’kov, On the Dimension of the Solution Space of Elliptic Systems
in Unbounded Domains, Russ. Acad. Sci. Sb. Math., 80, No. 2 (1995),
411-434, DOI: 10.1070/SM1995v080n02ABEH003531.

[9] O.A. Ladyzhenskaya, N.N. Ural’tseva, Linear and Quasilinear Elliptic
Equations, Academic Press, New York-London (1968).

[10] V.G. Maz’ya, Sobolev Spaces, Springer-Verlag, Berlin-New York (1985).

[11] S.G. Mihlin, Linear partial differential equations, Vysshaya shkola, Russia
(1977) [in Russian].



522 A.L. Beklaryan

[12] V.S. Vladimirov, Equations of mathematical physics, Mir, Moscow (1984).


