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Abstract—A recently proposed two-dimensional quasi-gasdynamic model of traffic flows is consid-
ered. Its Petrovskii parabolicity is analyzed, and the stability of small perturbations against a constant
background is investigated. In a nonlinear setting, an energy equality is derived and an energy estimate
of the solution is obtained.
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INTRODUCTION

The quasi-gasdynamic system of equations and the associated kinetically consistent difference schemes
have been successfully applied in the mathematical modeling of certain complicated fluid dynamics prob-
lems (see [1, 2]). A new two-dimensional quasi-gasdynamic system for simulating traffic flows was recently
proposed in [3].

In [4-7], the stability of small perturbations for quasi-gasdynamic systems was studied and a classifica-
tion of these systems was given. Below, these issues are considered for the model described in [3], which,
though related to the barotropic quasi-gasdynamic model from [7] in the two-dimensional case, has impor-
tant specific features (in particular, the former model involves no equation for the second (lateral) velocity
component). For a constant lateral velocity v, we establish the nonuniform parabolicity of the model (in the
sense of Petrovskii) and give sufficient and necessary conditions for its uniform parabolicity. For arbitrary
v; necessary and sufficient conditions for nonuniform parabolicity are presented. For constant v; the stability
of small perturbations against a constant background is analyzed and time-uniform estimates are given for
relative perturbations in the L? norms in the Cauchy problem and the initial-boundary value problem for the
corresponding linearized system.

Additionally, in the original nonlinear setting for constant v and spatially periodic solutions, we deduce
an energy equality and obtain a global a priori energy estimate of the solution.

1. TWO-DIMENSIONAL QUASI-GASDYNAMIC MODEL
OF TRAFFIC FLOWS AND ITS PARABOLICITY

The two-dimensional quasi-gasdynamic system of equations governing traffic flows [3] can be written as

atp + ax(pu) + ay(pv) = RO[p7 M]

1
=9, {10, (pu’ + p) +29,(puv)]} +9,{1[d,(pv") + x9,p1}, @

3,(pu) +3,(pu’) +d,(puv) +d,p = R,[p, ul o
=0,{1[9,(pu’ + pu) +20,(pu’v)1} +0,{1[d,(puv’) + kd,(pu) ]} + pa.
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364 ZLOTNIK

The unknown functions are the traffic density p and the streamwise traffic velocity u; they depend on the
coordinates x, y, and ¢ (where x and y are the streamwise and spanwise coordinates and ¢ is time). The partial
derivatives with respect to x, y, and  are denoted by d,, d,, and d,, respectively. It is assumed that

T=1p,u)>0, p=pp)>0, x=x(p)>0, v=vp,u), a=alp,uxyt),

where v is the lateral velocity. The details concerning the last functions are of no matter in this paper and,
for this reason, are omitted.

Consider classical solutions (p, u) to system (1), (2) that satisfy it for the arguments (x, y, f) from a
domain Q in R x R x R with values in a domain D c R" x R. It is assumed that T € C(D), ve CXD),

ae C(DxQ),pe C*D,), xe CY(D,), and p' > 0. Here, the (finite or infinite) interval D, = R" is the pro-
jection of D onto the first coordinate axis.

By using the mass balance equation (1), momentum equation (2) is rearranged into
O, + ud,u+ vo,u+ éaxp = é(Rl[p, ul —Rylp, ulu). 3)

First, let v = const (this is the basic case treated in [3]). Then the right-hand sides of Egs. (1) and (2) can
be rewritten in the nonconservative form

Rolp, ul = Roclp, ul+bo., Ri[p,ul = Riclp,ul +b,., @)
where
Roclp,ul = tl(p' +u))dp+ 2uv0,0,p + (K + vz)a_f,p +2pud u+2p vd,0,ul, &)
Riclp, u] = t[(p'+u')udip +2u°vd,d,p + (K + v )ud,p
+(p+ 3pu2)afu +4puvad du+p(K+ vz)af,u].
Here, b;. (and b; below), i =0, 1, 2, depend on p, u, Vp, and Vu, where V = (9,, 8y), and are lower order
terms. Therefore, the right-hand side of Eq. (3) can be transformed into the nonconservative form

é(Rl[p, ul = Rolp, ulu) = r[(é’ + uz)afu +2uvd,d,u + (K + vz)aiu} +b,, (6)

where there are no second derivatives of p.
Lethe C; & ne R; and & +n? = 1. According to Egs. (1) and (3) and formulas (4)—(6), the principal

symbol of the system is the matrix PC(.O) (p, u, A, &, M) = M + TA(p, u, &, M), where I is the second-order
identity matrix and A, is given by

(P +u)E +2uvEnN + (x+ vom’ 2pu’ +2pvEN

Adp.uw &) = L

. @)
0 5+u2)§2+2uv§n +(k+vOM

System (1), (3) is nonuniformly or uniformly Petrovskii parabolic in D [8, 9] if
inf§2+n2 ) 17»[Ac] >0 in D,
infp(T infé2+n2 _ MAD >0,
respectively. Here, A[A,] are the eigenvalues of A, (which coincide with its diagonal elements).
Define I'(p) := pp'(p)/p(p) is the first adiabatic exponent of p(p).

Proposition 1. Let v = const. Then the following assertions hold:

1. The two-dimensional quasi-gasdynamic model is nonuniformly parabolic in any domain D.
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SOME PROPERTIES OF THE EQUATIONS GOVERNING 365

2. A sufficient condition for its uniform parabolicity in D is that

inf(r min{min{r, ne, KH >0.
D p

3. For its uniform parabolicity in D, it is necessary and, if, for some & > 1, at least one of the two condi-

tions
lul <& [min{T, 1}15’, lv| < 8.k, 8)

is satisfied at each point of D, it is also sufficient that
inf(rmin{min{l“, l}g + uz, K+ vz}] > 0.
D
Proof. Obviously,

r2e? +xn’ + wE+vn)’  2pub(ué+vm)
Ac(pa u, é,ﬂ) = P s

0 §§2+Kn2+(u§+vn)2

which directly implies items 1 and 2.

It is also true that min_, . _ l?L[AC] = AninlSo], where A,;,[S,] is the minimum eigenvalue of the matrix

g 4n

2
SO= o+ u uv

]

uv K+ V2
and the parameter o takes the values I'p/p and p/p. Moreover, A,,;,[S,] satisfies the two-sided estimate

detS, det S,
trS, trS,

< )\'min[SO] <2

Since
2 2 . 2 2
detSo<(o+u ) (K+ v )<min{o+u", K+ v }trS,,

and, under of one of the conditions in (8), we have

1 .
(a+ uz)(K + v2) 2 ———min{o + uz, K+ vz}trSO;

detS, = L
1+ 2(1+987)

82

thus, item 3 also holds.

The necessary and sufficient conditions for uniform parabolicity in D are also easy to write in the general
case. They are omitted since they are rather cuambersome. Recall that uniform parabolicity allows us to for-
mulate an existence and uniqueness theorem for a local-in-time classical solution to the Cauchy problem for
the system of equations under study. This theorem is similar to that presented in [7] and, for this reason, is
omitted. Note that, in contrast to [7], there are no constraints on I" from above.

Now, consider the general case v = v(p, u). Then
Ro[p,u] = Rolp,ul+by, Ry[p,ul = Rilp,ul +b,,

where
I~€o[p, u] = R()c[p, ul +2t(puvyd,0,p + pvv;)af,p +puv,d,0,u+ pvv;aiu),
I~31[p, u] = i?n[p, ul + 2’c(pu2v;,axayp + puvv;)a}z,p + puzv;axayu + puvv;ayzu),
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366 ZLOTNIK

and v,') and v, denote the partial derivatives of v. Therefore, formula (6) remains the same (with another b,).
The principal symbol of the system is PO(p, u, A, §, ) = Al + TA(p, u, &, 1), where

A=A+ {Zpuvéﬁn + 2pvv;)n2 2puviEn+2pvvin’ _
0 0

Define the dimensionless variables &t := u/ J[?‘ and ¥ := v/Jx.

Proposition 2. The two-dimensional quasi-gasdynamic model is nonuniformly parabolic in the domain
D if and only if

[ ~ AN2 A2
%—12< (Zz) +1+1+2V atpoints  (p,u)e D with u=#0, )
PV;; 1 A2 . .
sgnv—= > — (1+7v7) atpoints (p,u)ye D with u =0, v=#0. (10)

Je o219

Proof. The nonuniform parabolicity of the system is reduced to the condition that the quadratic form
, 2.2 ' 2 V2
an(p,u, &) = (p'+u)E +2(uv +puvp)En + (K+ v +2pvv,)m

is positive definite at each point of D. The matrix

v, o2 :
p'+u uv+puv,

uv+puv, K+ v+ 2pvv,
of this quadratic form is positive definite if and only if detQ > 0. Defining w := p v;)/ Jx , we obtain

detQ = —p'k[a’w = 20w—(1+8"+ 7).

For u # 0, it is convenient to write

A A2
detQ = —p’Kﬁz[wz—Z%w—(l 41 L4 H

i i

and the condition detQ > 0 leads to (9).
For u = 0, the condition detQ > 0 leads to (10).

It is easy to verify that, as u — 0, condition (9) transforms into the nonstrict variant of condition (10).

2. STABILITY OF SMALL PERTURBATIONS

Let v = const and a = 0. Consider solutions to system (1), (3) of the form p=p + p and u = u + du,

where p >0 and u are constant background values of the unknowns and dp and du are their small pertur-
bations. Substituting these solutions into the system, we proceed as in the derivation of formulas (4)—(6),
taking into account that p > 0 and u are constants and discarding the terms whose orders are higher than
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SOME PROPERTIES OF THE EQUATIONS GOVERNING 367

the first with respect to the perturbations (and their derivatives). As a result, we derive the following linear-
ized system for the perturbations:

0,0p + 0, 0p + pa,du + vd,0p
= (P, D[(p'(P) + 7)), 0p +2iv0,,8p + (K(P) + v')d,8p + 2pid.du + 2pvd,d,dul,
0,0u + 19, u + vO,5u + B'-E_)@axsp

- 15, a)[(l-’iﬁ@ + ﬁz)afﬁu +20v0,0,8u + (K(P) + vz)ajsu}.

For notational simplicity, the bar over the background values and, as before, the function arguments p and
u are omitted.

By introducing the column vector of perturbations 0z = (8p, du), the last system is rewritten in the vector
form

9,8z + J/p'B9,82+ Jx 0,8z = 1[p'A""9:8z+ 2./p'kA"?9,0,82 + k(1 + ©°)0,8z] (11)

with the matrices

A2 AP oA ~ P
1+4" 2-=i An P oA u —=
an /4 (12) _ |uv —'v n _ ./p'
A = | p i , A = /p , B = ’ .
0 —+a 0 at NP g
r p

First, consider the Cauchy problem for linearized system (11) in the half-space R* x R* with the initial
conditions

8z|,_, = 82" = (8p°, du"). (12)
The functions 8z° and 8z can be assumed to be complex-valued. Define the nondimensionalized vectors
0 ¢ 0
8% = (@, @) 52" = (SL, 51)
P/ Py
The vector 62 consists of the relative perturbation in the density and the perturbation in the velocity divided
by the background speed of sound.

The following two propositions involve the complex Lebesgue L*(G) and Sobolev H'(G) spaces, where
G is a domain in R" (including G = R"™). For a vector function w = (w, ..., w;) € L%G), we define ||w]| e

Il -

Proposition 3. Ler 8z° € LZ(RZ). Then the Fourier solution to Cauchy problem (11), (12) satisfies the
t-global estimate

.0
02

max {supl82(:, D) 2 2 V2TPRIVOR s o oo F <

20

LR (13)

2,12

where |[V@| = (|E)X(p|2 +19,9|") ? and

. 1 K 1 . I 1
7_\, = C(F)mln{l + 1:, 2;}, C(F) = mmln{m, Zl.}
Ifé e H (R, then we also have the t-global estimate
max {sup|[V82(, ) 2, L2822 e ey} < VE2°

t=0

L (R%)>

2 2 > 2 12
+209,0,0" +[07¢[) .

where |82(p| = (|09
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368 ZLOTNIK

Proof. Following [7], we perform the change of variables 82 = P~'dz, where P := diag{p, A/;’ } Ge.,

P is a diagonal matrix of order 2 with the indicated diagonal elements). Multiplying system (11) by P! on
the left, we transform it into

3,02+ Jp'BV9,82+ Jk 09,82 = 1[p'A" 9282+ 2./p'kA"70,0,8% + k(1 + 07)9.84] (14)
with the nondimensionalized matrices

)
1+n

R 20 . AA A . A
A(M) _ X iR A<12> _ { V4 v}’ B(” _ [u 1}’
0 =+ 0 v 1a
1_, u
AU2)

. . . .. . . A (11
which are obtained from the previous ones by the similarity transformations A = paavp 4

PADP and B .= p1BOP.

We make up the matrix
p A £ 2. /pxEnA"Y + k(1 + 99N = pA,
where, as before, £ + 12 = 1 and
(1+0")E +2Baten +p*(1+ o7)n’ 2(a&” +BUEN)

A=
0 (%+ﬁ2)§2+2[3m7§n +[32(1 + f/z)n2

with B := J/k/p'. Clearly, p'A = P-'A_P (see (7)). Define

A - g+pn’+@E+pOM)’ (@G +PIME
(g +BoME 1 4B+ @G+ BoM)|

which is the symmetric part of the matrix A . Let
¢o = detA, = %g“ + (1 + %)Bzgznz +B'n*+ (%gz + 2[32112)(&& +BoN)’ + (@& +Bom)’,

¢ = trd, = (1 +%)§2+2[32n2+2(a§+ Bon)’.

The eigenvalues of A are positive and satisfy the lower estimate A[A, ] > cy/c,. In the case under study, it
is easy to see that ¢ = C(l“)cl2 ; hence, we have the lower estimate

MA]= A (15)
with C(I') and A defined above.

The subsequent argument is similar to that presented in [7] in the analysis of linearized parabolic quasi-
gasdynamic systems and, for this reason, is omitted. Note only that it makes use of the Fourier transform

and the energy method and is based on the symmetry of B" and on estimate (15). Although the matrix A
is not symmetric (in contrast to [7]), the inequality

Re(Ay, W) = (Ao, w2 Ay vye C° (16)

is sufficient for the proof.

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 49 No.2 2009



SOME PROPERTIES OF THE EQUATIONS GOVERNING 369

Remark 1. If v # const, then the multiplier ¥ on the left-hand side of system (11) is replaced by the
matrix

2
B():=

which is no longer symmetrizable by the similarity transformation with the matrix P.
Let Q be a bounded two-dimensional domain. Consider linearized system (11) in the cylinder Q := Q X
(0, T) (where T > 0) with the initial and boundary conditions
0
dz|,_y = 8z, Oz|ya.0. 1 = O (17)

Weak solutions from the energy class of this initial-boundary value problem are defined according to [10].

Proposition 4. Let 6z° € L*(Q). Then the initial-boundary value problem (11), (17) has a unique weak
solution from the energy class for any T > 0 and that solution satisfies a t-global estimate of form (13) with

Q substituted for R’.

Proof. It is similar to that presented in [7] and makes use of the energy method for system (14); the sym-

metry of Y ; and the inequality

Rej[(p';lm)axw, 9,w) e+ 2(J/p kAP0 W, 3, w) 2 + (k(1 + 99, W, 3, W) 2 ]dxdy
Q

>A|Vw| Vwe Hy(Q),

L’(Q)

which follows (see [7]) from (16). Here, H(l) (€) is the closure of smooth compactly supported functions in
Q with respect to the H'(€2) norm.

Remark 2. All the assertions remain valid if the terms with mixed derivatives in Egs. (1) and (2) are writ-
ten in symmetrized form:

0.{10,(puv)} +9,{1d.(puv)}, 9,{19,(pu’v)}+93,{1d,(pu’v)}.

3. ENERGY EQUALITY AND ESTIMATE

Returning to the original system (1), (2), we consider its solution (p, u) in R’ x [0, T] (where T > 0) that
are periodic with a period of X > 0 with respect to x and with a period of ¥ > 0 with respect to y with the
initial conditions

(p’ u)|t=0 = (po(x’ y)7 uo(x’ y))’ (X, y)E Rz’ (18)

where the initial data (p°, u°) are periodic in the same sense and p° > 0.

Lett e [0, T]. Integrating Eqgs. (1) and (2) over Q := (0, X) X (0, Y) and taking into account the periodicity
conditions, we obtain

a,jpdxdy =0, a,jpudxdy = J’padxdy. (19)
Q Q Q
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370 ZLOTNIK

Equation (2) is multiplied by « and is integrated over €. Integration by parts with the periodicity condi-

tions taken into account yields

J[%a,(puz) + é(alp)u2 — puzaxu —puvo,u+ p'(axp)u}dxdy
Q

+ jr{ [0.(pu’ + pu) +20,(pu’ v)19,u + [3,(puv’) + kd,(pu)1d,utdxdy = jpaudxdy.

Q Q
Define the known function

r

Py = [(E-1)prds, r>o.

o

with some 7, > 0 such that

Py(r) = Jp—gs)ds, Py(r) = p—i’”), r>0.

Clearly, Py(r) > 0 for r > 0, where r # ry, and P(ry) = 0.

(20)

@3y

Equation (1) is multiplied by P, (p) — (1/2)u? and is integrated over € Integration by parts with the peri-

odicity conditions taken into account gives

1 " 1
[[0:Po(9) = 5@ 02" = puP§ ()3, + pud,ue+ (3, (pV)) Py (p) + pvisd,u |dvdy

Q

+ [t{[a.(pu” + p) +20,(puv) 1 (P5(p),p — ud i)

Q
+[0,(p vz) +x0,p1(Py(p)d,p —ud,u) ydxdy = 0.
Using (21) and adding (20) to (22), we derive the energy equality

1 1
atj(épu2+Po(p))dxdy+j(ay(pv))Po(p)dxdy+jr‘l’(p, w)dxdy = jpaudxdy,
Q Q Q Q

where
1 1
(P, 1) = [P+ p) +20,(puv)120.p +[0,(p V) + K9,p1 50,

+ [(pu2 +p)o.u+ 2puv8yu]axu +[(p v Kp)ayu]ayu.

Differentiating and rearranging gives

Y(p,u) = %(uaxp +v0,p)° +2p(ud,u + vO,u)d,p + %(axp)2 +2(3,v)(ud,p + vo,p)

+ KF—l)(ayp)ayp +p(udu+ va,u)’ + p(du)’ +xp(d,u)’

= %‘(uaxp + vayp)2 + F-l)[axp +p(ud, + vayu)]2 + K‘%(ayp)2 + p(B,Cu)2 + Kp(ayu)2

+2(9,v)(ud,p+ va,p).
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SOME PROPERTIES OF THE EQUATIONS GOVERNING 371

If v-= const, we have (d,(p V) Py (p) = vd,Py(p). In view of the periodicity of p with respect to y, energy
equality (23) becomes

azj(%pbﬂ + PO(p))dXdy + JT{%(H&XP + Vayp)z + é[axp + p(uaxu + Vayl/t)]z
Q Q

+ K%(ayp)2 + p(@,u)’ + Kp(ayu)2 }dxdy = jpaudxdy.

Let |a| £ a, where a = a (x, ¢). The last equality is integrated with respect to z. Applying the estimate

12T

1”2
J.paudxdydt < ﬁmax“pa’xdy} JllallL (Q)dtmaxUzpu dxdy} ,
Or

the first equality in (19), and initial conditions (18), by means of the standard argument, we derive the fol-
lowing time-uniform L!(Q)-estimate of the solution:

12

max

10! p” +PO(P)

172
o e I j lal - o @

Using this estimate, we deduce the corresponding L*(Q;)-estimate for the derivatives of the solution:
[TKp' Py
p

(uE) p+ vayp)

+| o,

L*(0y)

2oy + AP0,

L’(0y)

2 172
(Qr)}

2

(Qr) [a p+pudu+vou)]

1”2 o 12 r
o2 j |al - g .

This completes the derivation of the global a priori energy estimate for the solution.
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