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INTRODUCTION

The important role of Rossby waves was revealed
comparatively recently, and the study of these waves
was developed irregularly. The Laplace tidal theory
contains proper solutions, but important geophysical
applications of these waves were only developed one
and half decades after Rossby discovered planetary
waves in the atmosphere. Two decades later, at the end
of the 1960s, corresponding motions in the ocean were
recognized. It was found that particular oceanographic
“weather”, which is significant for a lot of applications
(e.g., shipping, fishing, or hydroacoustics), is deter-
mined by Rossby waves and nonlinear individual struc-
tures, such as the synoptic eddies and rings directly
associated with them. In addition, Rossby waves play
an important role in the redistribution of energy
throughout the World Ocean, since, due to their insta-
bility, the current energy is mainly transported by
Rossby waves, which, in turn, contribute to the large-
scale horizontal exchange.

The presence of the planetary waves is associated
with the latitudinal variations of the Coriolis parameter.
Rossby waves, however, can exist over a sloping bot-
tom even if this parameter is constant. Such waves are
called topographic waves. In the general case, both of
the factors make contributions—planetary and topo-
graphic. The total effect of the factors is characterized
by the gradient of the value of 

 

Ω

 

/

 

h

 

 (the external poten-
tial vorticity, where 

 

h

 

 is the ocean depth and 

 

Ω

 

 is the
Coriolis parameter). The lines of constant external
potential vorticity for the North Atlantic are presented
in [4, 5]. These contours indicate the possible directions
of the barotropic planetary topographic Rossby waves.
The barotropic planetary topographic mode of the
Rossby waves can also exist in a stratified fluid when
the wavelength is so large that the waves are not
affected by the stratification. The results of the labora-

tory modeling of the topographical Rossby waves in a
tank with a linearly sloping bottom are described in
[13]. The propagation of the low-frequency Rossby
waves is studied in [15] from the point of view of the
refraction theory. The fundamentals of the nonlinear
dispersion theory of the Rossby waves were established
as early as in the 1970s–1980s, e.g., in [1–3, 8, 10, 14].

In the present study, we propose an improved non-
linear dispersion theory of the planetary topographic
Rossby waves of small finite amplitude for the case
when the Coriolis parameter and depth of the ocean
vary mainly along a single direction and the wave prop-
agates in the perpendicular direction. The basis of the
theory is the linear asymptotic procedure of the expan-
sion of the hydrodynamical fields in the equations for
an ideal vertically homogeneous incompressible rotat-
ing fluid in series with respect to small parameters of
nonlinearity and topographic dispersion. As a result,
the temporal evolution of the wave field and its trans-
formation along the coordinate axis of propagation are
described by a nonlinear evolution equation (NEE) of
the second order of accuracy with respect to small
parameters. This equation contains nonlinear and dis-
persion terms, nonlinear dispersion terms, and terms
responsible for the changes in the wave amplitude
caused by the fluid heterogeneity (

 

Ω

 

 and 

 

h

 

) along the
axis of propagation. When the fluid is homogeneous,
the NEE obtained is equivalent to the Korteweg–de
Vries (KDV) equation of the second order, which is fre-
quently used for the description of waves in fluids with
a weak nonlinearity and dispersion. The variable coef-
ficients of the NEE are determined by the integrals
along the transverse coordinate, which are dependent
on 

 

Ω

 

 and 

 

h

 

, as well as on the solutions of the boundary
problems that describe the structure of the wave field in
the direction perpendicular to the direction of the wave
propagation. For a particular case of topographical
Rossby waves, we consider two examples of bottom
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—A nonlinear dispersion theory of topographic Rossby waves of small finite amplitude is presented.
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profiles, which are uniform in the transverse direction:
a channel with a step-wise bottom and a channel with a
linearly sloping bottom. For these cases, the coeffi-
cients in the KDV equation of the first order were
explicitly calculated and the possible shapes of the soli-
ton-like Rossby waves were analyzed.

BASIC EQUATIONS

The basic equations that describe the motion of an
ideal homogeneous incompressible rotating fluid
between a flat lid and the bottom in the hydrostatic
approximation can be written in the form [8]

 

(1)

 

where 

 

x

 

 and 

 

y

 

 are the horizontal coordinates, 

 

t

 

 is the
time, (

 

u

 

, 

 

v

 

) are the corresponding components of the
horizontal velocity vector, and 

 

ω

 

 is the vorticity. Using

 

ω

 

 =  – , 

 

uh

 

 = –

 

 and 

 

v

 

h

 

 = 

 

, Eq. (1) can be

rewritten as

 

(2)

 

Let us direct the axes of the Cartesian coordinate
system so that the Coriolis parameter 

 

Ω

 

 and the ocean
depth vary mainly along the 

 

y

 

 axis. Let us consider a
wave, which propagates along the

 

 x

 

 axis.
Let us reduce Eq. (2) to a dimensionless form by

using the characteristic depth 

 

H

 

 as a depth scale; the
characteristic wavelength 

 

L

 

x

 

 as a scale along the 

 

x

 

 axis;

 

L

 

y

 

 as a scale along the 

 

y

 

 axis; and the characteristic cur-
rent velocity 

 

U

 

0

 

 as a scale for the velocity

By omitting the 

 

~

 

 signs, we can write Eq. (2) in the
dimensionless variables

 

(3)

 

where 

 

µ

 

 = 

 

 is the parameter of the topographic

dispersion. Let us assume that the wavelength 

 

L

 

x

 

 is
much greater than the characteristic length scale along
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2

the y axis (Lx � LÛ or µ � 1) and the wave amplitude is
a small but a finite value. Let ε � 1 be a dimensionless
parameter that characterizes the wave amplitude (non-
linearity) and express the unknown function in Eq. (3)
as

Then, Eq. (3) takes the form

(4)

Let us introduce a new variable instead of x and t

where c is the unknown velocity of the wave propaga-
tion. Then, the derivatives in Eq. (4) are defined as

.

By omitting ~ again, we have

(5)

In the approximation of long waves of small ampli-
tude (µ � 1, ε � 1), the dispersion and nonlinearity
parameters are assumed to be of the same order of
smallness (µ ~ ε). By assuming µ = ε in Eq. (5), let us
seek the solution as an expansion with respect to pow-
ers of the small parameter ε

(6)

Using the method of multiple scales [9], we intro-
duce a set of slow variables

(7)

Then,

(8)

Rewriting Eq. (5) and taking into account asymptotic
expansion (6) and Eqs. (7) and (8) in the lowest order
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with respect to ε (i.e., for ε1), we obtain a linear prob-
lem for finding the function ψ0

(9)

with the boundary conditions

ψ0 = 0 for y = 0, l or ψ0  0 for y  ±∞. (10)

Separating the variables in Eq. (9) and substituting
ψ0 as

(11)

we have a linear eigenvalue problem from which the
function F(y, ı) and the velocity of long waves c(x) can
be obtained

(12)

Let us assume that the waves of only one mode are
excited, so that F and Ò are uniquely defined.

In the higher orders (i > 0), we obtain nonhomoge-
neous boundary problems in the form

(13)

with boundary conditions imposed on ψi similar to
(10). The term Ri on the right-hand side of the boundary
problem implies various functional dependencies on
the function ψk with k < i and unknown derivatives with
respect to slow times ∂ψi/∂xi. In order to separate the
variables in (13), it is necessary to impose correspond-
ing conditions on these derivatives.

Thus, in the higher order for ε2, we have

(14)

(see the derivation of Eq. (14) in the Appendix). This
equation is a generalized Korteweg–de Vries equation,
and it was obtained for the nonlinear topographic
Rossby waves in [8]. The KDV equation with constant
coefficients was also used for describing the evolution
of the atmospheric Rossby waves with account for the
horizontal shear zonal flow [14] and baroclinic Rossby
waves in the equatorial region of the ocean [10]. In
these studies, it was pointed out that, for selected types
of the density stratification in the atmosphere or ocean,
the coefficient of quadratic nonlinearity α became
equal to zero and the nonlinear term of the next order
should be taken into account.

It needs to be pointed out that, in the case under
study, when the external conditions (Ω and h) slightly
change in the direction of the wave propagation, i.e.,
depend on x, the coefficients α, β, and q in Eq. (14) also
are variables (depend on x). On the contrary, when Ω

∂
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and h depend only on y, the coefficients α, β, and q are
constants. In so doing, the coefficient q vanishes and
Eq. (14) becomes the classical Korteweg–de Vries
equation.

On subsequent expansion and taking into account
Eqs. (5)–(8), we obtain a nonlinear evolution equation

(15)

(for the derivation of this equation, see in the Appen-
dix). This equation represents a generalized KDV equa-
tion of the second order for nonlinear topographic
Rossby waves that propagate in a slightly inhomoge-
neous fluid. The coefficients of the equation obtained
are variable along the path of the wave propagation.

It should also be noted that such laws of Ω and h
variations are possible, that the coefficient α at the term
of the nonlinearity of the first order of smallness (qua-
dratic nonlinearity) vanishes and the nonlinearity of the
second order of smallness (cubic nonlinearity) should
be taken into account. In the future, we plan to study the
effect of the second order of smallness within the
frameworks of the equation obtained for these particu-
lar cases.

Thus, the theory of the unsteady nonlinear topo-
graphic Rossby waves allows us to more precisely
describe the large-scale processes in the ocean.

QUALITATIVE ESTIMATES

Equation (15) can be used for describing the topo-
graphic Rossby waves with an accuracy of the second
order with respect to a small amplitude. If Ω and h are
independent of ı, then Eq. (15) is reduced to a KDV
equation of the second order. This simplification of the
equation is completely integrableonly for definite rela-
tions between the coefficients [7, 12]. In the general
case, it can be integrated asymptotically [6, 11]; this
means that, using a special substitution, it can be
reduced to the classical Korteweg–de Vries equation
with the same accuracy with respect to a small ampli-
tude. The asymptotic integrability indicates that the
solution of the nonintegrable equation of the second
order differs from that of its integrable asymptotically
closed analog by a local transformation of the wave
field and substitution of the time variable. Therefore,
the evolution equation of the first order is sufficient for
an adequate description of the wave dynamics, at least,
up to the second order inclusively.

The qualitative structure of the wave process within
the frameworks of the first order approximation and
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oceanological estimates of the scales of nonlinear and
unsteady waves are described in detail in [8]. The exist-
ence of the asymptotic integrability makes these esti-
mates valid excluding the case when the coefficient of
the quadratic nonlinearity becomes small. In the latter
case, the cubic nonlinearity needs to be taken into
account and the wave dynamics change. In particular,
generation of breezers and “wide” solitons is possible,
which are limited in amplitude (such solitons corre-
spond to single eddies extended along the ı axis). To
solve Eq. (15) in the most general case, approximate
and numerical calculation methods may be applied.

The examples of topography considered below—a
channel with a step-wise bottom and a channel with a
linearly sloping bottom—can be used for studying and
approximate analysis of the large-scale oceanic wave
processes over such kinds of bottom irregularities as the
edge of the continental shelf, underwater ridges, and
depressions.

Topographical Rossby Waves
over a Step-wise Bottom

Let us consider an infinite channel with a width l,
whose depth does not vary in the longitudinal direction
and abruptly changes in the transverse direction. The

function which describes the bottom topography has
the form (Fig. 1)

(16)

In so doing, without a loss of generality, we can assume
that h1 > h2 (the inverse case can be obtained by the cor-
responding linear change of the y variable). The Corio-
lis parameter is assumed to be constant

(17)

The transverse structure of the wave field and phase
velocity of long waves under such conditions can be
easily found from the eigenvalue problem (12)

The form of function F(y) is shown in Fig. 2, and the

dimensionless phase velocity c* =  as a function of

the dimensionless parameters χ = h2/h1 and δ = l1/l
(0 ≤ χ ≤ 1, 0 ≤ δ ≤ 1) is presented in Fig. 3. The negative
values of the phase velocity indicate that the wave prop-
agates along the x axis from the domain of positive val-
ues to that of negative ones. With the increase in the
depth increment (i.e., with the decrease of χ), the abso-
lute value of the phase velocity increases, reaching its

maximum value c* for a fixed value of χ at δ = .

The coefficients α, β, and q in the KDV equation (14)
can also be easily obtained for given depth profiles (16)
and the Coriolis parameter value (17)

(18)

The coefficient of quadratic nonlinearity α and the
coefficient of dispersion β are constants, and the coeffi-
cient q at the term responsible for the irregularity of the
external conditions along the coordinate of the wave
propagation in the case studied is equal to zero, as nei-
ther the channel depth nor the Coriolis parameter
depends on the x coordinate.

The dimensionless coefficients α* = α l3h1 and

β* = β l as a function of the parameter δ for fixed
values of the parameter χ are shown in Fig. 4. Both of
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Fig. 1. Step-wise bottom.

Fig. 2. Cross section of the wave field.
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the coefficients are always positive and infinitely
increase when the size of one of the steps decreases
(i.e., for δ  0 and δ  1). The equations for the
minimum values of these coefficients can be obtained
from Eq. (18), but they are rather cumbersome and we
do not present them here. The dispersion parameter β*
monotonically increases with the increase in the param-
eter χ, i.e., when the depth difference decreases. Con-
versely, the behavior of the nonlinear parameter α* is
rather complicated. Since the polarity of the solitons in
the Korteweg–de Vries equation is determined by the
sign of the product of the nonlinear and dispersion coef-
ficients, only positive solitons are possible.

It needs to be pointed out that, in the case under
study, the coefficients of nonlinearity and dispersion in
the KDV equation of the first order for any ratio of the
model parameter do not vanish. In addition, the high-
order corrections, which no doubt can be found analyt-
ically, do not essentially affect the dynamics of the
wave process.

Topographic Rossby Waves 
over a Channel with a Flat Sloping Bottom

Let us consider a model of the channel with a width l
when the depth varies linearly in the transverse direction
h(y) = γ0y and the Coriolis parameter varies so slightly
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Fig. 3. Dimensionless phase velocity c* as a function of the parameters χ = h2/h1 and δ = l1/l in the form of (a) contour lines and
(b) curves for fixed values of χ.
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that it can be assumed to be a constant Ω = Ω0 = const. In this
case, the ordinary differential equation of the second order,
which defines the eigenvalue problem (12), is reduced to the
Bessel equation and its solution can be given by

where Jn(z) is the Bessel function of the first kind, and
the eigenvalue Ò can be found from

(19)

Considering a dimensionless case and assuming that
l = 1 and Ω0 = 1, we can find numerical values of the
roots of Eq. (19) for any mode of the topographic
Rossby waves. The phase velocities for the three lowest
modes are c0 = 0.1516615, c1 = 0.0564573, and c2 =
0.0296251. The eigenfunctions, which correspond to
these coefficients, are shown in Fig. 5. The coefficients
in KDV equation (14) for the lowest mode of the topo-
graphic Rossby waves are α = 744266 and β = –17.7888
(the coefficient q vanishes identically because the exter-
nal conditions are independent of the coordinate of the
wave propagation x). In this case, the soliton of the
KDV equation described by

(20)

should have a negative polarity, since the nonlinear
coefficient is positive, whereas the dispersion coeffi-
cient is negative. The wave field of the zero mode,
which in the first approximation is given by (11), for the
soliton amplitude a = –1 is shown in Fig. 6. For a veloc-
ity amplitude equal to 0.06 m/s and a channel width
50 km, the size of the eddy along the ı axis is 200 km.

The KDV coefficients for the waves of the first
mode are α = –8261923 and β = –113.433, and, by virtue
of the fact that both of them are negative, the amplitude a
of the soliton (20) should be positive. The wave field for
a = 1 in the first approximation is shown in Fig. 7.

APPENDIX

When deducing Eq. (14) in the higher order, for ε2,
we have from (13)
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where T(d), (n), (x)(y, x) are the dispersion correction, non-
linear correction, and the correction responsible for the
weak inhomogeneity along the ı coordinate to the lin-
ear mode F(y, x), respectively, which can be found from

ψ1
∂2A

∂t2
---------T d( ) y x,( ) A2T n( ) y x,( ) A tT x( ) y x,( ),d∫+ +=

the following nonhomogeneous boundary-value prob-
lems

(A3)

LT d( ) βC11– C12,+=

LT n( ) αC11– C13,+=

LT x( ) qC11– C14,+=
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Fig. 7. Wave field of the first mode determined by the soliton of the KDV equation: (a) Stream function contour lines and (b) field
of the horizontal velocities of the particles. 
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with boundary conditions similar to (10). A necessary
condition for nonhomogeneous Eqs. (A3) to be resolv-
able is the orthogonality of their right-hand sides to the
eigenfunctions F of operator L. This results in condi-
tions imposed on the coefficients α, β, and q:

(A4)

Here, the integration limits are chosen in accordance
with the boundary conditions (10): either from 0 to l or
from –∞ to +∞. Now, substituting (A2) with coeffi-
cients (A4) in expansion (8) and holding the terms up
to the current order ∂A/∂x1 with respect to ∂A/∂x
inclusively (i.e., up to ε1), we arrive at the evolution
equation (14).

The subsequent expansion and using equations (5)–
(8) for ε3 yield

(A5)

where

α = 
FC13 yd∫
FC11 yd∫

---------------------, β = 
FC12 yd∫
FC11 yd∫

---------------------, a = 
FC14 yd∫
FC11 yd∫

---------------------.

L
∂ψ2

∂t
--------- R2,=

R2 C21
∂A
∂x2
-------- C22

∂5A

∂t5
--------- C23A2∂A

∂t
------ C24A

∂3A

∂t3
---------+ + +=

+ C25
∂A
∂t
------∂2A

∂t2
-------- C26

∂2A

∂t2
-------- C27A2 C28 A t C29

∂A
∂t
------ A t,d∫+d∫+ + +

C21 F
∂

∂y
----- Ω

h
---- ,–=

C22 βT d( ) ∂
∂y
----- Ω

h
----– 2β F

ch
------ T d( )

c2h
--------,–+=

C23 αT n( ) ∂
∂y
----- Ω

h
----–

α
2
--- ∂

∂y
----- 1

h
---∂F

∂y
------ 

 
2

+=

– αF
∂2

∂y2
-------- 1

h2
-----∂F

∂y
------ 

  1

h2
-----∂h

∂y
------ ∂

∂y
----- 1

h
---∂F

∂y
------ 

 +

+
1

h2
-----∂F

∂y
------ ∂

∂y
----- 1

h
---∂h

∂y
------ 

  1

ch4
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∂F
∂y
------∂2T n( )

∂y2
--------------

–

– 2
∂3F

∂y3
---------T n( ) ∂2F

∂y2
---------∂T n( )

∂y
------------ F

∂3T n( )

∂y3
--------------–+

+ 3h
∂h
∂y
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∂2T n( )

∂y2
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∂y
------∂T n( )

∂y
------------– 2

∂2F

∂y2
---------T n( )+

+ h
∂2h

∂y2
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∂h
∂y
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2

– F
∂T n( )

∂y
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∂F
∂y
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 ,

C24
β

ch3
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∂y2
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∂y
------F

∂F
∂y
------–

3
h
--- ∂h

∂y
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2

F2–
=

+ 2ch
∂h
∂y
------T n( ) ∂Ω

∂y
------- hF

∂F
∂y
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∂h
∂y
------F2 2ch2T n( )–++

– h
∂2Ω
∂y2
----------F2


 2αF

ch
----------- αT d( ) ∂

∂y
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h
----–+

+
1

c2h4
---------- FT d( ) Ω 3

∂h
∂y
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2

h
∂2h

∂y2
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– 3h
∂h
∂y
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∂y
------- h2∂2Ω
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β
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3
h
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2

F2+
=

+
∂Ω
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∂F
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∂h
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∂2Ω
∂y2
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+
6αF
ch
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h
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∂h
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2
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+ h
∂2h
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3h
∂h
∂y
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∂y
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,

C26 βT x( ) qT d( )+( ) ∂
∂y
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h
----– 2qF

hc
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T x( )

hc2
--------–+=

–
1

h2c
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∂h
∂x
------∂T d( )

∂y
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∂y
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∂x
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∂F
∂x
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∂Ω
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∂x
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2
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2
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∂y
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h
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1
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∂y
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∂y2∂x
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Assuming

(A6)

(the coefficients sk, k = 2…9 will be determined below),
we can separate the variables in (A5)

The corrections of the second order Tk, k = 2…9 to the
linear mode F(y, x) can be found from the following
nonhomogeneous boundary problems

(A7)

– 3ch
∂h
∂y
------∂F

∂x
------∂2F

∂y2
--------- ch3∂Ω

∂x
-------∂T n( )

∂y
------------– 2ch
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∂x
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∂y
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∂y2
---------+

– ch
∂2h

∂y2
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∂y
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2

+

– h
∂h
∂y
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∂y
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∂y
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∂y
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∂y
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∂y
------ 

 
2
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∂y
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∂y
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∂y
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2∂T x( )

∂y
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=
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∂2h

∂y2
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∂y
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∂y3
-------------- 3ch

∂h
∂y
------∂2T x( )

∂y2
--------------–+ 

 .

∂A
∂x2
-------- s2

∂5A

∂t5
---------– s3A2∂A

∂t
------– s4A

∂3A

∂t3
---------– s5

∂A
∂t
------∂2A

∂t2
---------–=

– s6
∂2A

∂t2
--------- s7A2– s8 A td∫– s9

∂A
∂t
------ A td∫–

∂ψ2

∂t
---------

∂5A

∂t5
---------T2 y x,( ) A2∂A

∂t
------T3 y x,( )+=

+ A
∂3A

∂t3
---------T4 y x,( ) ∂A

∂t
------∂2A

∂t
2

---------T5 y x,( ) ∂2A

∂t2
---------T6 y x,( )+ +

+ A2T7 y x,( ) A tT8 y x,( ) ∂A
∂t
------ A tT9 y x,( ).d∫+d∫+

LTk skC21– C2k, k+ 2…9,= =

with the boundary conditions similar to (10). The con-
ditions of solvability of boundary problems (A7) give
us an equation for the coefficients sk, k = 2…9

The substitution of ∂A/∂x1 from (A2) and ∂A/∂x2
from (A6) in the expansion for ∂A/∂x (Eq. (8)) and the
use of the terms up to the current order i with respect to
ε inclusively (i.e., up to ε2) result in the nonlinear evo-
lution equation (15).
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